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IOP Concise Physics

Tying Light in Knots
Applying topology to optics

David S Simon

Chapter 3

Characterizing spaces

In this chapter, some basic concepts of topology are introduced, focusing on aspects
that are of immediate use in physics and optics. A few of the more formal aspects of
topology are discussed briefly in appendix A; for more detailed discussions and for
proofs, see topology textbooks such as [1–7].

3.1 Loops, holes, and winding numbers
Loosely speaking, two spaces are topologically equivalent to each other if they can
be continuously deformed into each other. One of the most obvious ways to show
that two spaces are not topologically equivalent is to show that they have different
numbers of holes in them. For example, the single-holed torus and the double-holed
torus are inequivalent: there is no way to continuously deform the former into the
latter: to go from the single to the double torus it is necessary to tear the space to
create the second hole, and tearing is a discontinuous transformation.

So how do you characterize the number of holes? A simple way is to look at the
sets of closed loops that can be continuously deformed into each other. Consider a
plane with a single hole punctured in it (left panel of figure 3.1). The loops marked A
and B can be continuously deformed into each other. In fact, they can both be
continuously collapsed down to a single point. So we consider these loops to be
equivalent to each other. However, loop C circles the hole. It cannot be continuously
deformed into either A or B (or to a single point), because it gets snagged on the
hole. Similarly, a loop that circles the hole twice cannot be deformed into A, B, or C.
We therefore have an infinite set of equivalence classes of loops: the nth class consists
of all the loops that circle the hole n times. The loops on this space are therefore
characterized by a single integer, called the winding number, which will be defined in
more detail in chapter 5. Note that the loop has an orientation given by the direction
it rotates (clockwise or counter-clockwise). The winding number has a sign
determined by this orientation: we take n > 0 if the loop circulates around the
hole counter-clockwise, and n < 0 for clockwise.
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But now consider a second plane, with two holes punctured in it (right panel of
figure 3.1). Here, characterizing equivalence classes of loops now requires specifying
two integers, (n1, n2), where n1 specifies how many times the loop circles the left-hand
hole and n2 counts the number of windings around the right-hand hole. A plane with
three holes would require specifying three integer winding numbers, and so on.

This is still not the end of the story, however. A space may have holes of different
types. Holes in the plane are not the same as holes in a piece of Swiss cheese (figure
3.2). A loop like those of figure 3.1 can slip around the holes in the cheese. So loops
are incapable of detecting these ‘higher-dimensional’ holes. However, instead of
loops (which are topologically equivalent to a circle or one-dimensional sphere, S1)
we can use two-dimensional spheres, S2, and look at equivalence classes that can be
continuously deformed into each other without crossing holes. So equivalence
classes of spheres that wind around all of the holes the same number of times can
be used to characterize the space. These integer spherical winding numbers will be
called Chern numbers (chapter 5).

Continuing in this way, we can characterize the hole structure of a space by a
series of integers representing equivalence classes of spheres of different dimensions.
A method for testing whether or not two spaces are topologically equivalent is then
apparent: compare the list of such integers for the two spaces. If the lists are not
equal, then the spaces are distinct and cannot be smoothly deformed into each other.

Figure 3.1. On the left, the plane with a single puncture in it contains loops that cannot be continuously
deformed into each other without getting caught on the hole. So each loop can be characterized by an integer
counting the number of times n the loop is circled. For the loops shown, A and B are equivalent to each other,
with n = 0. C is not equivalent to the other two loops, since it has n = 1. For the plane on the right, with two
punctures, loops are characterized by a pair of integers (n1, n2) counting the number of times each of the two
holes is enclosed; the loop shown has n1 = n2 = 1.

Figure 3.2. The air bubbles in a piece of Swiss cheese are a different type of hole than the puncture in the plane.
Whereas a loop (which is deformable to a circle) can slide around any of the bubbles and be deformed into any
other loop, a two-dimensional sphere that surrounds a bubble cannot be deformed into a sphere that does not.
So the space is characterized by equivalence classes of two-dimensional spheres, rather than one-dimensional
loops.
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The idea of treating spaces with the same hole structure as equivalent is
formalized by the idea of homotopy classes, which will be defined in the next
section. Winding numbers and other topological invariants will be discussed in more
detail in chapter 5.

3.2 Homotopy classes
Homotopy classes are a means of classifying the structure of a topological space by
equivalence classes of circles (one-dimensional loops), or more generally, of spheres
of different dimensions. The idea of classifying surfaces by means of loops
apparently goes back to Jordan in the 1860s. The idea of imposing a group structure
on the set of homotopy classes originated with the work of Poincaré in the 1890s.

Let X be a topological space (see the appendix), and let I denote the unit interval,
=I [0, 1]. A path α in X with endpoints x0 and x1 is a continuous map α →I X: (in

other words the map has image α(t) in X, for ⩽ ⩽t0 1), such that α = x(0) 0 and
α = x(1) 1 (figure 3.3(a)). A loop in X is a path whose ends are identified, x0 = x1
(figure 3.3(b)). The loop is said to be based at x0.

Given two loops α and β based at the same point, one can define a product path
α * β as the path that follows one loop until it returns to the base point, then follows
the other loop (figure 3.3(c)):

α β
α

β
* =

⩽ ⩽

− < ⩽
t

t t

t t
( )

(2 ), for 0
1
2

(2 1), for
1
2

1.
(3.1)

⎧
⎨
⎪⎪

⎩
⎪⎪

The constant loop is simply the loop that stays fixed at x0 for all t: α =t x( ) 0 for
⩽ ⩽t0 1, and the inverse of the loop is obtained by running the parameter t in the

opposite direction: α α= −− t t( ) (1 )1 . With these definitions, it can easily be shown
that the set of loops based at a given point form a mathematical group, with the
constant loop playing the role of the group identity element.

Figure 3.3. (a) A path going from x0 to x1. (b) A closed loop obtained by identifying the two endpoints of a
path. (c) The product of two loops.
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But a more interesting and useful group may be obtained by adding a second
parameter. Given two loops α(t) and β(t) in X, based at the same point, we define a
two-parameter continuous map × →F I I X: , which provides a continuous defor-
mation of α into β:

α β= = = =F t t F t t F s F s x( , 0) ( ), ( , 1) ( ), (0, ) (1, ) (3.2)0

(see figure 3.4). The first parameter t carries us along the loop, while varying the
second parameter continuously deforms one loop into the other. Such a deformation
is called a homotopy. The idea of homotopy can be generalized in an obvious manner
from loops to arbitrary continuous maps.

If two loops α and β are homotopic to each other, we write α β∼ . Homotopy is
an equivalence relation, so we define the homotopy classes [α] of loop α to be the
equivalence class of loops homotopic to α. In other words [α] is the set of loops at x0
continuously deformable into α.

Given two topological spaces, X and Y, they are said to be of the same homotopy
type if there exist continuous maps →f X Y: and →g Y X: such that

◦ ∼ ◦ ∼f g g fand , (3.3)Y XI I

where ∼ denotes equivalence under homotopy and X Y,I denote the identity maps on
spaces X and Y.

A topological space X is called arc-wise connected if, given any two points
∈x x X,0 1 , there is a path such that x0 and x1 are its endpoints. On an arc-wise

connected space, the set of homotopy classes at each base point is isomorphic to the
homotopy classes at any other base point. In this case, all base points are equivalent,
and so there is no need to specify which base point is used. Henceforth, we only
consider arc-wise connected spaces and will often omit mention of the base point.

Given the product of loops defined above, the set of homotopy classes inherits a
natural product, which will also be denoted by *:

Figure 3.4. Homotopy of two loops α(t) and β(t). The innermost loop is α=F t t( , 0) ( ), the outermost loop is
β=F t t( , 1) ( ). The dotted loops are representative examples of F(t, s) for two other values of s (0 < s < 1). As s

increases, α(t) gradually evolves into β(t).
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α β α β* = *[ ] [ ] [ ]. (3.4)

Inverses, associativity and the existence of an identity element then follow:

α α=− −[ ] [ ], (3.5)1 1

α β γ α β γ* * = * *([ ] [ ]) [ ] [ ] ([ ] [ ]), (3.6)

α α α* = * =c c[ ] [ ] [ ] [ ] , (3.7)

where the equivalence class [c] of the constant loop c serves as the identity element.
The homotopy classes therefore form a group, called the fundamental group or the
first homotopy group of X, denoted by π X x( , )1 0 or simply as π X( )1 .

Homotopy type is an equivalence relation among topological spaces and it can be
shown that two spaces with the same fundamental group are of the same homotopy
type. Thus, the fundamental group can be used to classify homotopy-equivalent sets
of spaces.

Consider some simple examples:
(i) Euclidean spaces, n. All loops are deformable to each other, so there is a

single homotopy class. The homotopy group has a single entry, and since
every group must contain the identity element I , the group in this case
consists of just the identity: π =( ) { }n

1 I .
(ii) The n-dimensional sphere: Sn. For n > 1, all loops on the sphere can be

smoothly deformed into each other simply by sliding them around on the
sphere’s surface, so that once again π =S( ) { }n

1 I for n > 1. However, for
n = 1, the one-dimensional sphere is a circle; closed loops on the circle are
distinguished from each other by a single integer, the number of times they
wind around the circle. So the homotopy group is simply the group of
integers: π = S( )1

1 .
(iii) Tori: An n-dimensional torus Tn is formed from the product of n circles, so

there are n integers counting the windings about each hole. Therefore,
π = T( ) .n n

1

Evaluating the fundamental group allows us to detect holes such as those in a
punctured plane or the hole in a donut. As a more physical example, the interior of
the solenoid in the Aharonov–Bohm (AB) effect serves as a hole in the charged
particle’s configuration space, so that the AB effect can be viewed as a consequence
of the nontrivial first homotopy group. But as mentioned earlier, there are other
types of holes that cannot be detected by looking at deformations of circles. To study
these holes, we must move from circles (one-dimensional spheres) to spheres of
higher dimension; this leads us to define the higher homotopy groups.

Let the symbol ∂ denote the boundary operator; ∂M is the set of points on the
boundary of M. Consider a unit cube, the set of points
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= … ⩽ ⩽I s s s s{ , , , }, with 0 1. (3.8)n n i1 2

The boundary of In is the surface of the cube. In one dimension, the unit interval
I = I1 has boundary given by the pair of endpoints, ∂ =I {0, 1};1 this interval is
converted into a circle by identifying the endpoints with each other, or in other
words, gluing the ends of the interval together (figure 3.5). Similarly, for n > 1 we
can collapse the boundary of In to a single point (identify all points on the surface
with each other), to convert the n-cube into something isomorphic to an n-sphere,
Sn. This identification is formally written as a quotient (more precisely as a coset
space):

= ∂S I I . (3.9)n
n n

Now that ∂In is collapsed to a point, x0 we can use it as a base point for n-loops. The
n-loop α is a continuous map of the cube to topological space X, leaving the
boundary fixed:

α α→ ∂ →I X I x: , such that : . (3.10)n n 0

Two such loops are then homotopic α β∼ if there exists a homotopy × →F I I X: n

such that:

α… = …F s s s s( , , , 0) ( , , ) (3.11)n n1 1

β… = …F s s s s( , , , 1) ( , , ) (3.12)n n1 1

… = … ∈ ∂F s s t x s s I( , , , ) for ( , , ) . (3.13)n n n1 0 1

the homotopy relation α β∼ is again an equivalence relation, so that we may
define the corresponding homotopy equivalence classes [α ]. The product of n-loops,
α * β is

Figure 3.5. Forming n-spheres by identifying the boundaries of n-cubes. For n = 1, the endpoints of the unit
interval or one-cube (the blue dots) are identified with each other to form a circle. For n = 2, the boundary of
the square is collapsed to a point to form a two-sphere.
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⎪⎪

The nth homotopy group at x0 for n ⩾ 2 is then defined in direct analogy to the
fundamental group: π X x( , )n 0 is the group of equivalence classes continuous maps

→S Xn , where we are identifying ∂I I/n n with the n-sphere. πn quantifies the set of
topologically inequivalent n-spheres in the topological space that cannot be
deformed into each other without being obstructed by holes.

We have now defined homotopy groups π X( )n for ⩾n 1. We can carry out the
analogous construction in zero dimensions as well to form a zeroth homotopy
‘group’: the zero-dimensional interval is simply a point, =I x0 0, with the
boundary being the empty set: ∂ = ∅I { }0 . The zero sphere ∼ ∂S I I/0

0 0 is then
the point x0, and all loops are just constant maps. Two such loops at points x
and y in X will be homotopic, α β∼ , if and only if x and y can be smoothly
deformed into each other, i.e. if they are the endpoints of some continuous curve.
A space may be composed of multiple components that are disconnected from
each other, such as several concentric spheres nested inside each other. The set of
equivalence classes, π X( )0 is then just the set of connected components. A space is
simply connected if π X( )0 is the trivial group containing a single element, while a
multiply connected space has π X( )1 isomorphic to a finite set of integers that label
the connected components. Note however, that π X( )0 is not a group, unlike the
π X( )n with n > 0.

A stronger notion of topological equivalence than homotopy type is homeo-
morphism, which means essentially that two spaces can be continuously deformed
into each other. (See the appendix for the precise definition.) As mentioned above,
spaces with the same fundamental group are of the same homotopy type. However,
since there are types of holes that cannot be distinguished by the fundamental
group, being of the same homotopy type is a weaker condition than being
homeomorphic. Dimension is largely invisible to the fundamental group. For
example, points and circles are homotopy equivalent to solid balls and Möbius
bands, respectively, due to the ability to continuously contract one to the other;
however these spaces are not homeomorphic (note that the contraction is not
uniquely invertible). Including the higher homotopy classes is one way to help
distinguish between spaces that are of the same homotopy type but which are not
homeomorphic.
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