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Fourier Transform and Its Applications Using Microsoft EXCEL®

(Second Edition)

Shinil Cho

Chapter 1

The principle of superposition and the
Fourier series

There are numerous periodic motions—such as oscillations and waves—observed in
nature. Differential equations describe their periodic motions in the time domain.
They can also be analyzed in the frequency domain in order to acquire distributions
of frequency components and their amplitudes because arbitrary oscillation patterns
can be constructed with sinusoidal functions using the superposition principle. Such
sets of sinusoidal functions are called the Fourier series, originating from a thermal
conduction problem solved by Joseph Fourier.

In the first chapter of this book, we show how oscillations on a string and a
membrane, and diffusion of heat and particles can be constructed using a set of
possible solutions of their differential equations to introduce the Fourier series. We
also describe how to construct a Fourier series of a given periodic function, and
show examples of periodic functions in terms of their Fourier series.

1.1 The principle of superposition
Let us consider an oscillating string fixed at both ends to explain the important
principle of periodic motion. A continuous train of sinusoidal waves is traveling
back and forth to produce standing waves under an appropriate condition of tension
on the string and its length. Figures 1.1–1.3 are snapshots of theses standing waves.
Each of the standing waves corresponds to a normal mode of motion. Because the
string is fixed at both ends, both ends must be nodes with motion. With the fixed
boundary condition, adjacent nodes are one-half wavelength apart and the length of
the string may be any integer number of one-half wavelengths. The frequency that
gives the longest wavelength is called the first harmonic mode or the fundamental
mode, and the others are integral multiples of the fundamental, called the higher
harmonics.
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When a string is initially struck for a short time, the subsequent oscillating string
will be described by a linear combination of normal modes. In other words, there are
multiple motions of different frequencies on an arbitrarily oscillating string, and the
displacement of the arbitrary point of the string is the algebraic sum of the wave

Figure 1.1. First harmonic (fundamental) mode.

Figure 1.3. Third harmonic mode.

Figure 1.2. Second harmonic mode.
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displacements of propagation and reflection. This is called the principle of super-
position. While it is a simple statement, it is an essential principle in periodic motion.
Let us see how the superposition principle appears in mathematics.

1.2 One-dimensional standing wave
The normal modes are the solutions of the linear differential equation for the wave
motion with a particular boundary condition

v
u x t

t
u x t

x
( , ) ( , ) (1.1)

2

2
2

2

2

∂
∂

= ∂
∂

where u(x, t) is the displacement, v = (F/μ)1/2 is the wave speed, F is the tension in the
string, and μ is line density of the string. By separating the variables, u(x, t) = U(x)Γ
(t), the equation for the x-coordinate, U(x), becomes the Helmholtz equation
whereas the one for time, Γ(t), is an equation of harmonic oscillation:
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with the boundary condition of fixed ends, U(0) = U(L) = 0.
(1) Solutions of U(x) are sin(nπx/L), where λn = (nπ/L)2 and n = 1, 2, 3, …. By

the superposition principle, a general solution or an arbitrary wave form
with the same boundary condition is given by
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(2) The solution of Γ(t) for a given λn is a harmonic oscillation and is given by
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n 1

n n∑ π π δ= +
=

where An = an·Cn and δ are determined by a given initial condition.

1.3 Fourier series
The previous section describes wave phenomena using linear differential equations
where their solutions are given by sinusoidal periodic functions, and an arbitrary
wave pattern on the string can be expressed by the superposition of sinusoidal
harmonic modes. Likewise, we should be able express an arbitrary periodic function
f(ξ), where the variable ξ is a spatial coordinate or time, as a series of sinusoidal
functions. This is called the Fourier series of f(ξ). Because the sinusoidal functions
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are well-known and easy to apply, Fourier series are very useful for analyzing
periodic motions such as wave phenomena.

1.3.1 Fourier theorem

In the following discussion, we use the periodicity of time. A periodic function f(t) of
period T (−T/2 < t ⩽ +T/2) can be expressed by a Fourier series [1]:

f t
a

a n t b n t( )
2

cos( ) sin( ) (1.5)
n n1 1

n n
0

0 0∑ ∑ω ω= + +
=

∞

=

∞

where ω0 = 2π/T is the angular frequency of the fundamental mode, and the Fourier
coefficients am and bm are given by

a
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The Fourier coefficients are calculated using the orthogonal property of sinusoidal
functions.

Using the inner product, 〈… ∣ …〉, defined by equation (1.17), we obtain
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Depending on the property of the original periodic function f(t), a Fourier series may
have only sine-terms or cosine-terms. If the function f(t) is an even function in the
interval [−T/2, +T/2], the sine-terms must be excluded, and the Fourier series has
only cosine-terms:

f t
a

a n t( )
2

cos( ). (1.7)
n 1

n
0

0∑ ω= +
=

∞

Similarly, if the periodic function f(t) is an odd function in the interval [−T/2, +T/2],
the Fourier series has only sine-terms:

f t b n t( ) sin( ). (1.8)
n 1

n 0∑ ω=
=

∞

We can also obtain a Fourier series in a complex exponential form. By applying
Euler’s formula, eiθ = cosθ + i sinθ, the Fourier series (1.5) becomes
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for n = 0,1,2, ….. For n<0, we can use the same equation (1.10) by defining
a an n=− and b bn n=− . The complex Fourier coefficient represents the magnitude
of the frequency component and the phase.

Instead of a periodic function in time, a Fourier series can be also applied to a
periodic function of coordinates. The spatial periodicity can be observed through
electromagnetic waves including optical interferences and diffractions, and wave
packets of a particle. An arbitrary periodic function f(x) in the interval [−π, +π]
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where the coefficients {an; n = 0, 1, 2, 3, …} and {bn; n = 1, 2, 3 …} are given by
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The Fourier series for the spatial interval [−π, +π] can be changed to [−L, +L] by
using another variable ξ = (L/π)x or x = (π/L)ξ

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

f
a

a
n
L

b
n
L

( )
2

cos sin (1.13)
n n1 1

n n
0 ∑ ∑ξ π ξ π ξ= + +

=

∞

=

∞

where

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

a
L

f
n
L

d b
L

f
n
L

d
1

( ) cos and
1

( ) sin . (1.14)n
L

L

n
L

L

∫ ∫ξ π ξ ξ ξ π ξ ξ= =
− −

If we use complex functions, Fourier series (1.13) becomes
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Example 1: the Fourier series of a square wave. The first example of the Fourier
series is a square wave train:

f x x x( ) 1 if 0; and 1 if 0 .π π= − − < < + < <

The graph of this square wave train for x > 0 is shown in figure 1.4. The Fourier
series of the square wave train is given by:

⎜ ⎟
⎛

⎝

⎞

⎠
f x

n
n x x x x x( )

4 1
(2 1)

sin[(2 1) ]
4

sin
1
3

sin 3
1
5

sin 5
1
7

sin 7 . .
n 1

∑
π π

=
−

− = + + + + …
=

∞

Figure 1.5 is the actual Fourier series of the first 10 terms—except the multi-
plication factor π/4—by iterative summation using EXCEL®. Its macro source
program using the built-in Visual Basic for Applications (VBA) is listed in the
appendix, A13.1. If readers are not familiar with EXCEL VBA macro, refer to
A12.3 in the appendix.

If we calculate the sum of 100 terms, the Fourier series gets much closer to the
square wave train with noticeable oscillations at the rising and falling edges
(figure 1.6).

Remark: Gibbs phenomenon. The fine oscillations do not disappear, especially at
the edges, even if the Fourier series takes many more terms. This overshoot behavior
occurs at a jump discontinuity, and it is called the Gibbs phenomenon [2]. The size of
the overshoot is tuned out to be proportional to the magnitude of the discontinuity.
For the square wave train, the maximum peak value of the partial sum approaches
approximately d 1.17892 sin

0
∫ ξ ≈

π
ξ

ξ

π
.

Figure 1.4. Square wave train.
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Its calculation offers a good mathematical exercise and readers should try it.
Refer to appendix A1 for a detailed calculation.

Example 2: the Fourier series of a sawtooth wave. The sawtooth wave is a repetition
of the function f(t) = x for −π < x < +π, and the period is 2π. Figure 1.7 shows this
signal for x ⩾ 0. The Fourier series of the above sawtooth wave is

Figure 1.6. Fourier series of square wave train (100 terms).

Figure 1.5. Fourier series of square wave train (10 terms).

Fourier Transform and Its Applications Using Microsoft EXCEL® (Second Edition)

1-7



⎡
⎣

⎤
⎦
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nx x x x x( )
2( 1)

sin( ) 2 sin
1
2

sin 2
1
3

sin 3
1
4

sin 4 .
n 1
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∑= − = − + − + −⋯
=

∞ +

The Fourier series up to 10 terms and 100 terms are shown in figures 1.8 and 1.9,
respectively. The Gibbs phenomenon is also noticeable in this Fourier series.

Sawtooth wave

Figure 1.7. Sawtooth wave.

Figure 1.8. Fourier transform of sawtooth wave (10 terms).
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1.4 Orthonormal basis
The concept of orthonormal basis is the foundation of the superposition principle
and the theory of the Fourier series. Let us consider an n-dimensional Euclidian
vector space for an intuitive discussion of the orthonormal basis. In this space, an
arbitrary vector can be expressed as a linear combination of unit vectors:

v v v ve e e (1.17)n n1 1 2 2
→ = → + → + ⋯ + →

where {vj; j = 1, 2, …., n} are the components of the vector v ⃗, and

{ }e ;j n1, 2, ,j⃗ = … form a set of unit vectors associated with the given Cartesian
coordinate frame. The component vj is given by the inner product of the vector and
the unit vector

v v ve e e (1.18)
j

n

1

i j j i∑= 〈→∣→〉 = 〈→∣→〉
=

because the unit vectors are orthonormal: e ej i ijδ〈→∣ →〉 = where δij is the Kronecker’s
delta, i.e., δij = 1 if i = j and 0 otherwise. Furthermore, there are no other additional
unit vectors required to express an arbitrary vector in the n-dimensional space. Thus,
the unit vectors e i n{ ; 1, 2, ... , }i

→ = form a complete orthonormal basis of the
vector space.

As discussed in section 1.2, the standing wave equation has sinusoidal solutions as
the normal modes in the given Cartesian coordinates. Because sinusoidal functions
are orthogonal, for the string oscillation, the normal modes can be regarded as the

Figure 1.9. Fourier transform of sawtooth wave (100 terms).
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unit vectors and an arbitrary string wave can be expressed in the form of the linear
combination (superposition) of the normal modes, constituting the Fourier series.
This is what equation (1.3) implies.

A time-dependence of temperature or particle diffusion in a rod computed from a
heat or diffusion equation are other examples where we can apply Fourier series. Let
us discuss an example below.

1.5 Heat and diffusion equations
Consider the following heat transfer or particle diffusion problem given by the heat
equation:

u x t
t

u x t
x

( , ) ( , ) (1.19)
2

2
κ∂

∂
= ∂

∂

where u(x, t) is the temperature distribution and κ is the thermal diffusivity. For
particle diffusion, u(x, t) is the particle density distribution and κ is the diffusion
constant. The spatial part, X(x), of the above equations also becomes the Helmholtz
equation (1.2).

Let us find the solution of the heat equation with the following initial and the
boundary conditions:

(i) initial condition: u(x, 0) = f(x) for 0 < x < L, and u(0,0) = u(L, 0) = 0; and
(ii) boundary condition: u(0, t) = u(L, t) = 0.

By setting u(x, t) = Γ(t)X(x) to separate the variables x and t, we obtain X’(x) +
λX(x) = 0 and Γ’(t) + λκΓ(t) = 0 where λ is the separation constant.

(1) d2X(x)/dx2 + λX(x) = 0 : using the boundary condition, U(0) = U(L) = 0, we
obtain

X x c x( ) sin( )n
Ln 1= π where c1 is a constant, and n

Lnλ = π where n = 1, 2, 3,
…

(2) dΓ(t)/dt + λκΓ(t) = 0: the solution is t c D t( ) exp[ ( ) ]n
Ln 2

2Γ = − π for each λn.

Thus, the temperature distribution, u(x, t), is given by

⎡
⎣⎢

⎛
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⎤
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⎛
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⎞
⎠

u x t t X x A
n
L

t
n
L

x( , ) ( ) ( ) exp sin (1.20)
n n

n n n

2

∑ ∑ κ π π= Γ = −

where An = c1c2.
Now, we can include the initial condition, u(x, 0) = f(x) by using the Fourier series

⎛
⎝

⎞
⎠

u x f x A
n
L

x( , 0) ( ) sin (1.21)
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where the coefficient An is given by A f x dx( )sin( )
L

n
L

2
n
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0
∫= π . Therefore, the

complete solution becomes
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2

∫∑ π κ π π= −

Figure 1.10 shows the time-dependence of the temperature distribution in a rod of
length L = π, where both ends (x = 0 and π) are in contact with heat reservoirs of
zero temperature. The rod is at a uniform temperature f(x) = 100 for 0<x<L at t = 0.

1.6 Two-dimensional standing wave and two-dimensional Fourier
series

Two-dimensional standing wave: this is similar to the standing wave on a string
discussed in section 1.2, the standing wave on a membrane is an example of a two-
dimensional Fourier series. Let us discuss how to obtain two-dimensional standing
waves. The wave equation on a membrane is

v ⎡
⎣⎢

⎤
⎦⎥

u x y t
t

u x y t
x

u x y t
y

( , , ) ( , , ) ( , , )
. (1.23)
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2

∂
∂

= ∂
∂

+ ∂
∂

The solution of equation (1.23) can be obtained by the variable separation. Let u(x,
y, t) =X(x)Y(y)Γ(t), then equation (1.23) becomes

v
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Figure 1.10. Temperature distribution in a rod.
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and we have

X x
X x

k
Y y
Y y

k
"( )
( )

and
"( )
( )

. (1.25)x y
2 2= − = −

Assume the following initial and boundary conditions for a rectangular
membrane:

(i) initial condition: u(x, y, 0) = f1(x, y) and (∂u/∂t)t=0 = f2(x, y); and
(ii) boundary condition: u(0, y, t) = u(a, y, t) = 0 and u(x, 0, t) = u(x, b, t) = 0.

The solutions of equation (1.24) including the boundary condition are

⎛
⎝

⎞
⎠

X x A
m
a

x k
m
a

m( ) sin where and 1, 2, 3, ... ; (1.26)n n x
π π= = =
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Y y B
n
b
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n( ) sin where and 1, 2, 3, ... ;n n x
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and the time part is a harmonic oscillation given by

v ( )d t
dt

t k k
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Because possible kx and ky values are discrete, ω is also discrete. We obtain
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The general solution is now given by
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1 1
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where {Dm,n} = {AmBnCm,n; m = 1,2,3, …, and n = 1,2,3,….} and εm,n are
determined by the initial condition. The spatial part is a two-dimensional (sine)
Fourier series. Figure 1.11 shows the spatial part of u3,2 with a = b = 3.15. Refer to
appendix A13.3 for how to draw this 3D chart using EXCEL.

Note: a popular demonstration of standing waves on a Chladni plate has the
boundary conditions of free ends and it is a forced oscillation because the plates are
driven at the center vertically. Therefore, the resonant modes of a Chladni plate are
different from equation (1.29). Refer to [3] for more information on Chladni plates.

Two-dimensional Fourier series: equation (1.29) is an example of a two-dimen-
sional Fourier series. The two-dimensional Fourier series of an arbitrary periodic
function f(x,y) can be formulated in the following way. First, construct a Fourier
series with respect to x whence coefficients are function of y. Second, construct
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another Fourier series with respect to y from the coefficients. For example, from the
one-dimensional complex Fourier series (1.13), we can formulate two-dimensional
complex Fourier series:

⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
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⎤

⎦
⎥f x y c k i
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⎦
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L L
dx dy i
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L

y
L

kwhere ( , ℓ)
1

4
exp

ℓ
, , ℓ 0, 1, 2, ...

x y L

L

L

L

x yx

x

y

y∫ ∫ π= − + = ± ±
− −

Because we do not use the two-dimensional Fourier series, refer to [4] for a general
discussion of multi-dimensional Fourier series as necessary.
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