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Appendix A

Derivation of commutator bracket relations for
spin in a body-fixed frame

The commutator brackets for the components of angular momentum, e.g., for three
Cartesian axes x y z, , in R(3, ), the space in which we live—the ‘laboratory’ frame,
take the familiar form

L L i L[ , ] , (A.1)x y z= ℏ

with cyclic permutations of x y z, , . The commutator brackets for the components of
nuclear spin in the body-frame of the nucleus—the ‘intrinsic’ frame, e.g., for three
body-fixed axes 1, 2, 3 take the form

L L i L[ , ] (A.2)1 2 3= − ℏ

with cyclic permutations of 1, 2, 3. Note the minus sign. The reason for this is not
obvious. The following provides a concise derivation of equation (A.2) from
equation (A.1).

The key to connecting equations (A.1) and (A.2) is the recognition that there is a
rotational transformation between the intrinsic frame of the nucleus and the
laboratory frame. Rotational transformations about an axis ‘n’ take the generic
form

n L
R

i
( ) exp

( )
, (A.3)n n

n⎧
⎨⎩

⎫
⎬⎭

ϕ
ϕ

= −
·
ℏ

where n L· is the component of angular momentum along the n-axis and the
rotation angle is nϕ . Thus, one can build a language of successive rotational
transformations and effect a rotation between any two frames of reference in a
given space. To ensure that this language correctly describes rotations in R(3, ) it is
important to recall that rotations about different axes do not commute, even
classically. Thus, for rotations about the x- and y-axes, using
R iL( ) exp{ / }x x x xϕ ϕ= − ℏ and { }R iL( ) exp /y y y yϕ ϕ= − ℏ , consider
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{ } { }R R iL iL( ) ( ) exp / exp / (A.4)y y x x y y x xϕ ϕ ϕ ϕ= − ℏ − ℏ

and

{ } { }R R iL iL( ) ( ) exp / exp / (A.5)x x y y x x y yϕ ϕ ϕ ϕ= − ℏ − ℏ

i.e., rotation about the x-axis through an angle xϕ followed by rotation about the y-
axis through an angle yϕ , and these two operations in reversed order. Recall that one
reads the actions of such operators on an operand on the right, not shown. The key
to manipulating such operations is to consider infinitesimal steps: all continuous
transformations are effected from a very large number of infinitesimal steps. We
illustrate this in detail in the following.

For infinitesimal angles, xx εϕ = , yy εϕ = (counterclockwise rotations, right-hand
rule),

R iL I iL( ) exp{ / } / (A.6)x x xx x xε ε ε= − ℏ ∼ − ℏ

and

{ }R iL I iL( ) exp / / , (A.7)y y yy y yε ε ε= − ℏ ∼ − ℏ

whence

R R I iL I iL( ) ( ) { / }{ / }, (A.8)y x y xy x y xε ε ε ε= − ℏ − ℏ

R R I iL iL L L( ) ( ) { / / / }. (A.9)y x y x y xy x y x y x
2ε ε ε ε ε ε∴ = − ℏ − ℏ − ℏ

Similarly,

R R I iL iL L L( ) ( ) { / / / }, (A.10)x y x y x yx y x y x y
2ε ε ε ε ε ε= − ℏ − ℏ − ℏ

which leads to

R R R R I iL iL L L

I iL iL L L

( ) ( ) ( ) ( ) / / /

/ / / ,
(A.11)

x y y x x y x y

y x y x

x y y x x y x y

y x y x

2

2

ε ε ε ε ε ε ε ε
ε ε ε ε

− = − ℏ − ℏ − ℏ
− + ℏ + ℏ + ℏ

R R R R L L L L

i L

R I

( ) ( ) ( ) ( ) ( ) /

/

( ) ,

(A.12)
x y y x x y

x y

x y

x y y x y x x y

z

z

2

2

ε ε ε ε ε ε
ε ε

ε ε

∴ − = − ℏ
= − ℏ ℏ
= −

i.e., the difference in the order of performance of the infinitesimal rotations is a
rotation about the z-axis through the infinitesimal angle x yε ε . Only the form of this
relationship is needed in order to proceed to consideration of rotations in the
intrinsic frame. The similar set of operations in the intrinsic frame follows.

Consider, R R R R( ) ( ) ( ) ( )1 1 2 2 2 2 1 1ε ε ε ε− , and for the instantaneous orientation 1-axis
with the x-axis, 2-axis with y-axis, 3-axis with z-axis, we can replace R ( )2 2ε with
R ( )y 2ε , for the R R1 2 (first term), viz.
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R R R R( ) ( ) ( ) ( ), (A.13)y1 1 2 2 1 1 2ε ε ε ε=

but then no further replacement is valid because following R ( )y 2ε , the x-axis is no
longer collinear with the 1-axis. We designate the newly oriented 1-axis the x′-axis
and obtain for the R R1 2 term

R R R R( ) ( ) ( ) ( ). (A.14)x y1 1 2 2 1 2ε ε ε ε= ′

The challenge here is to handle the R ( )x 1ε′ term. To do this we use a similarity
transformation R R R( ) ( ) ( )n n x n n

1
1εψ ψ−

′ . To understand this in practical terms (the
concept is equally valid in the space in which we live and in state vector space, i.e.
Hilbert space), consider the following task. A book on a tightly packed bookshelf
has its title upside-down. Take the book out [translation, T], rotate the title right-side
up [rotation, R], return the book to its original position on the shelf [inverse
translation,T 1− ], the result is the execution ofT R T1− , a similarity transformation.
Above we have defined a similar task, but with a translation replaced by a rotation
and its inverse. We need to rotate the x′-axis so that it becomes the x-axis. At the
instant after the infinitesimal transformation R ( )y 2ε was made, the rotation that we
seek is R R ( )y

1
2ε=− , so R R ( )y 2ε= − . Thus, we obtain

R R R R( ) ( ) ( ) ( ). (A.15)x y x y1 2 1 2ε ε ε ε= −′

Whence, for the R R1 2 term

R R R R

R R R R

R R

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ).

(A.16)
x y

y x y y

y x

1 1 2 2 1 2

2 1 2 2

2 1

ε ε ε ε
ε ε ε ε
ε ε

=
= −
=

′

Similarly, for the R R2 1 term, noting that the 1-axis = x-axis rotation occurs first for
this term

R R R R( ) ( ) ( ) ( ). (A.17)x y2 2 1 1 1 2ε ε ε ε=

It then follows by inspection that

R R R R R R R R

R R R R

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

{ ( ) ( ) ( ) ( )},
(A.18)

y x x y

x y y x

1 1 2 2 2 2 1 1 2 1 1 2

1 2 2 1

ε ε ε ε ε ε ε ε
ε ε ε ε

− = −
= − −

i.e. a minus sign is involved for the body-frame commutator brackets, cf equation
(A.18) with equation (A.12) and (A.1); thus, equation (A.2) follows.
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Appendix B

A generic two-band mixing formalism

Mixing of states with the same spin-parity in two or more bands occurs widely in
nuclei. This has been addressed in a specific situation under the title of Mikhailov
theory in section 2.4. Here, a general formalism is presented which is designed to
keep track of magnitudes of the matrix elements of the electric quadrupole, E2 and
electric monopole, E0 operators and how they contribute to electromagnetic
transition strengths.

For the mixing of two configurations of spin J, from bands a and b,

α β β α∣ 〉 = ∣ 〉 + ∣ 〉 ∣ 〉 = − ∣ 〉 + ∣ 〉J J J J J J, , (B.1)J
a

J
b

J
a

J
b

1 2

can be written, where the mixing amplitudes obey α β+ = 1J J
2 2 .

For E2 properties, intrinsic matrix elements,

= 〈 ∣ ∣ 〉M T E2 ( 2) 0 , (B.2)a a a
20

= 〈 ∣ ∣ 〉M T E2 ( 2) 0 , (B.3)b b b
20

are introduced, and then all other matrix elements are defined by the axially
symmetric rotor model using Clebsch–Gordan coefficients, viz.

= →+ +M B E( 2; 0 2 ) , (B.4)a
a a20

=
−
−−M

J J

J
M

3 ( 1)

2(2 1)
, (B.5)J J

a a
, 2 20

= −
+ +
− +

M
J J J

J J
M

( 1)(2 1)

(2 1)(2 3)
, (B.6)J J

a a
, 20

with similar expressions for band b. The E2 matrix elements for the resulting mixed
bands are then obtained directly, viz.
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α α β β= +M M M , (B.7)a b
2 0 0 2 20 0 2 201 1

α α β β= +M M M( )(1.604), (B.8)a b
4 2 2 4 20 2 4 201 1

β β α α= +M M M , (B.9)a b
2 0 0 2 20 0 2 202 2

α β α β= − +M M M , (B.10)a b
2 0 0 2 20 2 0 202 1

α β= − −M M M( )( 1.195), (B.11)a b
2 2 2 2 20 202 1

α β α β= − +M M M . (B.12)a b
0 2 2 0 20 0 2 202 1

These matrix elements follow from the substitution of equations (B.1) and (B.2)
into, e.g.

= 〈 ∣ ∣ 〉M T E2 ( 2) 0 , (B.13)2 0 1 11 1

etc and adopting zero values for the inter-band matrix elements.
For E0 properties, the intrinsic matrix elements are introduced

〈 〉 = 〈 ∣ ∣ 〉r r0 0 , (B.14)a
a a2 2

〈 〉 = 〈 ∣ ∣ 〉r r0 0 , (B.15)b
b b2 2

and zero values for the inter-band matrix elements are adopted.
Note the following:

1. The minus signs in (B.10)–(B.12) result in cancellations (destructive
interference);

2. table B.1 reveals a natural hierarchy of inter-band transition strengths which
match the cancellations.

The E0 properties for the resulting mixed bands are then obtained directly, viz.

ρ α β α β= 〈 〉 − 〈 〉 = Δ〈 〉E r r r( 0) ( ) , (B.16)J J J a b J J
2 2 2

δ β β〈 〉 = − Δ( )r r . (B.17)2
2 0 2

2
0
2 2

1 1

The strength of E0 transitions is expressed as

ρ α β= Δ〈 〉r Z R10 ( ) 10 / , (B.18)J J J
2 3 2 2 2 2 3 2 4

where =R A1.2 1/3 fm, and the factor 103 is by convention. The quantity δ〈 〉r2
2 01 1

is
sometimes called the isomer shift (between the ground and the first excited state).
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B.1 Exercises
B-1. Derive equations for M4 21 2

, M4 22 2
, M4 22 1

, M4 42 1
, M4 41 1

, M4 42 2
.

B-2. Derive equations for M6 41 1
, M6 61 1

.
B-3. Derive equation (B.18).
B-3. Using data for 152Sm in ENSDF, what is the Grodzins product? (Note that

the product is for states which are mixed configurations with different
deformations.)

B-4. Complete all of the computational steps for the calculated (calc.) values in
table B.1, using the input values given for mixing amplitudes and model
parameters.

B-5. What modifications would be needed to the above formalism to handle the
mixing of two K = 2 bands?

B-6. What modifications would be needed to the above formalism to handle the
mixing of a K = 0 band with a K = 2 band?

Table B.1. Details of the mixing for the =K 01 (ground-state band) and =K 02 (first excitedK = 0) band in 152Sm.
The parameters are =M 1.650a

20 e.b, =M 2.300b
20 e.b and the amplitudes α = 0.84580 , etc given in the box.
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Appendix C

E2 matrix elements for selected even–even nuclei
and selected transitions

See tables C.1, C.2, C.3, C.4, C.5 and C.6 for selected even–even nuclei and selected
transitions.

Table C.1. Compilation of E2 matrix elements in units of e.b for selected transitions in selected even–even zinc
(Z = 30) and germanium (Z = 32) nuclei. The values for →0 21 1, shown in blue, are derived from

→B E( 2; 0 2 )1 1 values in ·e2 b2 given in [1]. Other data are taken from: 66Zn [2], 68Zn [3], 70Ge [4], 72Ge [5],
74Ge [6], and 76Ge [7].

66Zn 68Zn 70Ge 72Ge 74Ge 76Ge

→0 21 1 +0.3704 +0.3463 +0.4234 +0.4573 +0.55314 +0.5233

→0 21 2 +0.00485
7 +0.0693 −0.043413 +0.0301 +0.05810 +0.0893

→2 21 2 +0.5710 −0.394 +0.427 +0.652
1 +0.504 +0.5357

3

→2 21 1 +0.3210 +0.124 +0.054 −0.162
7 −0.253 −0.242

→2 22 2 +0.128 −0.095 +0.1796
3 +0.348 +0.265

2

→2 41 1 +0.50010 +0.4417 +0.5410 +0.902 +0.85025 +0.7955

→4 61 1 +1.396 +1.115
4 +1.112

3

→4 41 1 +0.297 −0.144
9 −0.267

1

→6 61 1 −0.2025
8 −0.234

9

→2 41 2 +0.0356 −0.223
5

→2 42 1 +0.315 −0.5212 −0.064
3 +0.0525 +0.092

→2 42 2 +0.581
5 +0.4726

→4 41 2 +0.4310 +0.611
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Table C.2. Compilation of E2 matrix elements in units of e.b for selected transitions in selected even–even
selenium (Z = 34) nuclei. The values for →0 21 1, shown in blue, are derived from →B E( 2; 0 2 )1 1 values in ·e2

b2 given in [1]. Other data are taken from: 76Se [8], 78Se [9], and 80,82 Se [10].

76Se 78Se 80Se 82Se

→0 21 1 +0.6575
11 +0.58610 +0.5028 +0.42812

→0 21 2 +0.1102 +0.081 +0.1066 +0.1206

→2 21 2 +0.64011 +0.454 +0.382 +0.192

→2 21 1 −0.465 −0.279 −0.263
4 −0.303

4

→2 22 2 +0.256 +0.2312 +0.533 +0.455
4

→2 41 1 +1.10811
12 +0.816 +0.824 +0.633

→4 61 1 +1.396 +1.1415
29

→4 41 1 −0.395
6 −0.9020 −0.856

11 −0.768
7

→6 61 1

→2 41 2 +0.0397
35 ±0.016

13 +0.091

→2 42 1 +0.053
4 ±0.095

4 +0.0813
4

→2 42 2 +0.774 +0.6718
8 +0.719

3

→4 41 2 +0.734
5 +0.284

5

Table C.3. Compilation of E2 matrix elements in units of e.b for selected transitions in selected even–even
Krypton (Z = 36) nuclei. The values for →0 21 1, shown in blue, are derived from →B E( 2; 0 2 )1 1 values in

·e2 b2 given in [1]. Other data are taken from: 74,76Kr [11], 78Kr [12], 80Kr [13], 82Kr [14], and 84Kr [15].

74Kr 76Kr 78Kr 80Kr 82Kr 84Kr

→0 21 1 +0.79220 +0.87115 +0.79610 +0.61710 +0.4747 +0.35616

→0 21 2 −0.19911
18 +0.183 6

8 +0.1574
3 +0.07815 −0.0358

11 0.172

→2 21 2 +0.494 −0.094 +0.265
6 +0.7314 −0.286

91 0.3514

→2 21 1 −0.73 −0.93 −0.804 −0.433
7

→2 22 2 +0.32
3 −1.05 +0.588

4 +0.417

→2 41 1 +1.603 +1.491 +1.273
3 +0.7816

13 +0.699

→4 61 1 +1.989
10 +1.903

11 +1.618
6 +1.6812 +0.7423

17

→4 41 1 −1.02
6 −2.34 −0.7314

15 −0.7722

→6 61 1 −1.85
7 −2.94

→2 41 2 +0.0919
1 +0.0735

2 +0.152

→2 42 1 +0.472
3 −0.625

4 +0.324
5

→2 42 2 +0.558
16 +0.914

6 +0.418

→4 41 2 +0.433 −0.603
2 +0.8711

Nuclear Data

C-2



Table C.4. Compilation of E2 matrix elements in units of e.b for selected transitions in selected even–even
ruthenium (Z = 44), palladium (Z = 46) and cadmium (Z = 48) nuclei. The values for →0 21 1, shown in blue,
are derived from →B E( 2; 0 2 )1 1 values in ·e2 b2 given in [1]. Other data are taken from: 104Ru [16], 106,108Pd
[17], 110Pd [18], and 114Cd [19].

104Ru 106Pd 108Pd 110Pd 114Cd

→0 21 1 +0.9099 +0.81220 +0.87411 +0.93012 +0.73217

→0 21 2 −0.1562 -0.1146 −0.985 −0.0963
2 +0.0913

→2 21 2 −0.754 −0.764 −0.884 −0.86316
11 +0.68421

→2 21 1 −0.7111 −0.727
6 −0.819

4 −0.8715
17 −0.363

1

→2 22 2 +0.525
6 +0.737

9 +0.7032
9 +0.925

4

→2 41 1 +1.434 +1.387 +1.427 +1.57937
4 +1.354

→4 61 1 +2.048 +1.8614
10 +2.0611 +2.083

8 +2.33

→4 41 1 −0.7915 −1.0211
7 −0.7810

11 −1.62
4 −0.9511

4

→6 61 1 −0.72
3 −1.4113

23 −0.7618 −1.44
2 −3.59

→2 41 2 −0.1078 −0.0144
5 −0.06612

15 +0.111

→2 42 1 +0.143
30 +0.1813

9 +0.5132
11 −0.352

7

→2 42 2 +1.125 −0.305
18 +1.236

7 +0.973
4 +0.973

17

→4 41 2 −0.885 +0.794 −0.918
7 −0.944

5 +0.614
8

Table C.5. Compilation of E2 matrix elements in units of e.b for selected transitions in selected even–even
tellurium (Z = 52), xenon (Z = 54) and neodymium (Z = 60) nuclei. The values for →0 21 1, shown in blue, are
derived from →B E( 2; 0 2 )1 1 values in ·e2 b2 given in [1]. Other data are taken from: 122Te [18], 126,128Xe [20],
and 148Nd [21].

122Te 126Xe 128Xe 148Nd

→0 21 1 +0.80619 +0.913 +0.88921 +1.15713

→0 21 2 +0.1102 +0.1199 0.1058 +0.1234
5

→2 21 2 +0.64011 +1.004 +0.924 −0.652

→2 21 1 −0.465 −1.02 −0.5815
12 −1.855

4

→2 22 2 +0.256 +0.149 +0.0110
9 −1.1512

18

→2 41 1 +1.0811
12 +1.484 +1.384 +2.004

→4 61 1 +1.396 +2.079 +1.9512 +2.627

→4 41 1 −0.395
6 −0.7816 −1.3813 −1.4017

→6 61 1 −1.7220
19

→2 41 2 +0.397
35 +0.0725

→2 42 1 +0.053
4 +1.125

3

→2 42 2 +0.774 +0.976 +2.067
8

→4 41 2 +0.734
5 −0.33815

20
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C.1 Exercises
C-1. Test the triangular relationships depicted in figures 2.5(a) and (b) for

deduced Q0 values. Example: for 188Os, π+ × =(0.865 1.73 ) 56 /25 5.132 2

e.b cf π+ × =(1.581 0.483 ) 16 /5 5.242 2 e.b. (Note that the signs on the
matrix elements are ignored because they are being combined in
quadrature.)

C-2. Check the agreement of the Q0 values deduced from the two triangle
relationships within the experimental uncertainties given, e.g.

= ±0.865 0.865 0.01111 .
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