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Nuclear Data
A collective motion view

David Jenkins and John L Wood

Chapter 1

How well defined are rotations in nuclei?

Rotational states in nuclei, their symmetries and their quantum numbers are
introduced. The symmetric top model and its energies and electric quadrupole, E2
properties are confronted with data. The roles of spherical tensor operators, Clebsch–
Gordan coefficients and the Wigner–Eckart theorem are explained. The subtle nature
of the quantum mechanical uncertainty associated with rotations is illustrated.
Rotational-particle coupling is defined, its main features are explored, and a data-
based view is presented. A first look is taken at the peculiarities of nuclear moments of
inertia.

Concepts: energy patterns, total spin quantum number, K quantum number, state
vectors, electric quadrupole (E2) properties, symmetric top model, intrinsic quadru-
pole (Q0) parameter, spherical tensor operators, Clebsch–Gordan coefficients,
Wigner–Eckart theorem, body frame, laboratory frame, quantum mechanical
uncertainty, E2 transitions, lifetimes, rotational-particle coupling, Coriolis and
recoil terms, rotation alignment, moment of inertia, deformation parameter, super-
deformed band, rigid and irrotational flow.

Learning outcomes: the key data view from this chapter is the widespread evidence
for simple symmetric rotor behaviour in many nuclei. Liquid-drop behaviour of
nuclei is contradicted by the emergence of constant intrinsic quadrupole moments
with increasing nuclear rotational angular momentum; indeed, constancy of intrinsic
quadrupole moments may be realized at the few percent level. Such constancy is not
matched by rotational energy patterns, i.e. nuclei do not exhibit simple analogues of
classical moments of inertia. Furthermore, coupling an odd particle spin to a rotor
core angular momentum does not show the quantum mechanical analogue of
classical Coriolis effects.

Rotations are widely identified in nuclei and their existence is not in question. But
just what is rotating is an open question: beyond a conformity to the simplest model
expressions, data indicate a variety of features for which there are only emerging
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ideas and there is no consensus on interpretation1. In this chapter, we progressively
look at data to see what we can and cannot say about nuclear rotation.

1.1 Even–even nuclei: energies and electric quadrupole, E2 properties
The simplest criterion for assessing nuclear rotation is a comparison of the energies
of ground-state bands of even–even nuclei with the formula,

= +E AI I( 1), (1.1)I

where I is the spin of the state, = …I 0, 2, 4, 6, and A is a free parameter. This leads
to the familiar ratio test, =E E/ 3.3334 2 (also =E E/ 7.0006 2 , etc). Excited bands and
bands in odd and odd–odd nuclei can be tested in a similar manner, allowing for a
band-head excitation and non-zero spin of the band head. At a deeper level, a band
can be assigned a K quantum number and electromagnetic properties can be
assigned to states in a band, e.g., as an intrinsic quadrupole moment, Q0.

The simplicity2 of the energy patterns defined above for the ground-state bands of
even–even nuclei demands a simple explanation. It is manifested in the symmetric
top model3 which is depicted in figure 1.1. This view of deformed even–even nuclei
steps beyond all the details of the tens to hundreds of nucleons involved and
recognizes that there is an axis of rotational symmetry and a plane of reflection
symmetry at right angles to this axis. The axis of rotational symmetry has the
consequence that the projection of the total nuclear spin on this axis is a constant of
motion. This can be assigned a quantum number, traditionally labelled by K. The
plane of reflection symmetry dictates that there is a two-fold energy degeneracy with
respect to the K quantum number: the states ∣+ 〉K and ∣− 〉K are indistinguishable
energetically. Fundamentally, when such a degeneracy arises in a quantum
mechanical system, a linear combination must be adopted to describe the system.
Failure to do this would result in writing a state vector, e.g. ‘∣ + 〉K ’ that would

1Caution is needed when attempting to conceptualize quantized rotations: quantization results in stationary
states, often visualized as standing waves. In atoms, this results in the iconic atomic electron density
distributions, labelled by angular momentum quantum numbers, represented using spherical harmonics.
Recent studies of ultrafast pulsed laser imaging of molecules report on observations that endeavour to sharpen
our view of quantized rotations [1–3]; but it is impossible to escape the limitation of only ever forming
probability density ‘images’. Nevertheless, we will revisit this issue in various ways in the coming narrative.
2 The simplicity of the ‘even-spins only’ property of symmetric tops with a plane of reflection symmetry is
worth a deeper consideration. These are quantum mechanical systems, ranging from molecules to nuclei,
possessing a fundamental symmetry. In the spectroscopy of such systems, the odd-spin states are ‘missing’.
This has been the basis of searches for exotica, i.e. physical entities (particles) that have found a ‘refuge’ in
symmetric top systems with the result that odd-spin states are manifested (weakly, the species are presumably
rare) in the spectra. Such systems also provide a ‘laboratory’ for testing the symmetrization postulate applied
to identical particles: just suppose that so-called ‘identical’ particles are not quite identical. We recommend to
the reader the following: [4–8].
3 The symmetric top model is a model of a rigid rotor with two components of the inertia tensor equal. This is
characteristic of extended rigid bodies with an axis of rotational symmetry. A symmetric top can have a plane
of reflection symmetry or reflection asymmetry through the centre of mass of the body at right angles to the
axis of rotational symmetry.
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imply the direction of K was known to be ‘positive’, which is an impossibility: there
is no measurement which can establish this. Thus, we write

∣ 〉 = + 〉 + − ∣ −+
IMK

IM K IM K{ , ( 1) , }
2

, (1.2)
I K

where I is the total nuclear spin, K is the projection of I on the nuclear symmetry
axis, and M is a directional component of spin in the laboratory-fixed frame of
reference. The phase factor appearing in equation (1.2) applies to a plane of
reflection symmetry; if the body has a plane of reflection asymmetry (through the
centre of mass at right angles to the symmetry axis), there is a minus sign instead of a
plus sign between the two state kets. The distinction of a body-fixed frame from the
laboratory-fixed frame is discussed in detail in section 1.2. The key point here is that
if K = 0, the state vector components ∣ + > 〉IM K, and ∣ − 〉IM K, are indistinguish-
able; thus, in equation (1.2) only even values of I can occur.

Energies are observed to deviate from equation (1.1), in a smooth systematic
manner. There are many formulae that attempt to describe these deviations. The
simplest is

= + + +E AI I BI I( 1) ( 1) , (1.3)I
2 2

Figure 1.1. The quantum numbers of the symmetric top model superimposed on a schematic view of an axially
symmetric deformed object, with a plane of reflection symmetry through the centre of mass at right angles to
the symmetry axis. The symmetry axis is in the body-fixed frame and is labelled ‘3’. A laboratory-fixed frame
axis, labelled z is also shown. Quantization of the total spin of the system, I can only be assigned sharp values
for one directional component, independently with respect to the body-fixed axis and with respect to the
laboratory-fixed axis, i.e. the 3-axis and the z-axis are not in any fixed relationship to each other. This
relationship is not defined for a quantum mechanical rotor: a depiction of this uncertainty is attempted in
figure 1.6. Thus, there are quantum numbers K (body frame) and M (lab frame), which independently range
over the values + + − … −I I I, 1, , , respectively. The total spin I of the system has an intrinsic contribution J
and a rotational contribution R; these are discussed further in the text. The vector R is directed at right angles
to the 3-axis.
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where A and B are free parameters. There are other formulae expressed in terms of
polynomials in I, formulae expressed using what is termed a rotational frequency,
and formulae invoking parameterizations of the moment of inertia (manifested in
the A parameter, above); these formulae generally have no basis in quantum
mechanics, i.e., they are motivated from classical mechanics, or they are even
purely mathematical with no physics motivation. To enumerate this aspect of the
modelling of nuclear rotations would be laborious, inconclusive with respect to the
physics involved, and indeed a distraction from the focus that we adopt herein. None
of these phenomenological refinements describe the observed energies exactly. We
will return to energy patterns in rotational bands shortly.

Electromagnetic properties show a remarkable conformity to the simplest
quantum mechanical models in nearly all nuclei which exhibit collective behaviour.
This is the starting point for the focus that we adopt. The prototype relationships are
for B E( 2) values of transitions and electric quadrupole moments in the ground-state
bands of strongly deformed even–even nuclei, expressed as matrix elements of the
electric quadrupole operator, T E( 2).

For B E( 2) values, in ground-state bands of even–even nuclei, which have K = 0,

→ − = 〈 ∣ ∣ − 〉
+

T E
B E I I

I I
I
2

( 2; 2)
0 ( ) 2, 0

(2 1)
, (1.4)

2

where

π〈 ∣ ∣ − 〉 = + 〈 ∣ − 〉T EI I I I I eQ20 ( ) 2, 0 (2 1) (5 16 ) 020 2, 0 , (1.5)1 2 1 2
0

〈 ∣ − 〉I I020 2, 0 is a Clebsch–Gordan coefficient, e is the fundamental unit of electric
charge and Q0 is a model parameter describing the intrinsic quadrupole moment of
the nucleus. Note, cf equation (1.2), the states are expressed in terms of the I and K
quantum numbers, viz. ∣ 〉IK , with the M quantum number omitted because
these processes are independent of the orientation of the nucleus with respect to
the laboratory frame. This leads to the practical relationship, for

→ − = −B E I I B( 2; 2): I I, 2,

= −
− +

=−B

B
I I

I I
f I

15 ( 1)
2(2 1)(2 1)

: ( ) (1.6)
I I, 2

20

and the leading value, = =B B/ 10/7 1.42942 20 .
For electric quadrupole moments in ground-state bands of even–even nuclei there

is a dependence on the orientation of the nucleus with respect to the laboratory
frame. By convention,

π
〈 ∣ ∣ 〉 = 〈 = ∣ ∣ = 〉〈 = ∣ ∣ = 〉

= 〈 ∣ 〉〈 ∣ 〉 +
T E T E T EIMK IMK I M I I M I I K I K

II II I I I eQ

( 2) , ( 2) , , 0 ( 2) , 0

20 020 0 (2 1) (5 16 ) ,
(1.7)1 2 1 2

0
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whence

= −
+

Q I
I

I
eQ( )

2 3
. (1.8)0

A relationship between B20 and Q(2) follows:

π= −Q B(2)
2
7

16 . (1.9)20

Equation (1.6) is applied to data in table 1.1 and figure 1.2. Equation (1.9) is
applied to data in figure 1.3. The data shown are consistent with these simple
relationships. Experimental uncertainties result in an unclear view of the limitations
of these equations; but the averaged behaviour strongly supports nuclear rotation
with a constant quadrupole moment as a function of increasing spin. While the
relationships presented above are just stated here, the reader who wishes to explore
how they are derived is directed to exercise 1-15.

An important implication of table 1.1 and figure 1.2 is that the model parameter
Q0 is consistent with being independent of I. In contrast, changes in the rotational
energy parameter, A with respect to I, viz.

=
Δ

−
=

→ −
−

γ−A
E

I

E I I

I4 2

( 2)

4 2
, (1.10)I I, 2

variations of which are shown in figure 1.4, indicate that something must be
changing as the nucleus ‘rotates’. But the constancy of Q0 with increasing spin
implies that it is not the deformation. This implication is not widely appreciated:
many authors refer to centrifugal stretching of the moment of inertia, which is
naturally based on a semi-classical view of the nucleus as a liquid drop. The view of
the nucleus as a rotating liquid drop is evidently wrong. Phenomenological energy
formulae do not reveal the origin of departures from equation (1.1). We address the
interpretation of A in terms of a moment of inertia in section 1.4. We place the word
‘rotates’ in quotation marks because we will see that even the basic concept of
rotation may not be correct.

Equation (1.1) emerges from the elementary model called the symmetric top.
Details are presented in section 5.3 of [9]. It is the simplest possible view of quantum
mechanical rotations and only assumes an axially symmetric shape with a plane of
reflection symmetry at right angles to the symmetry axis for distribution of mass
within the body. No internal degrees of freedom are assigned to the body; it is a rigid
body. This simplicity appears valid for the distribution of electrical charge within the
body, i.e., the distribution of the protons. We will progressively address this
contradiction between the model parameters A and Q0 as we proceed to look in
depth at data.

Equations (1.5)–(1.9) depend on the concept of the K quantum number in
association with the symmetric top. It is important to emphasize that this quantum
number is a consequence of self-organization of a nuclear many-body system. These
equations are the result of applying the Wigner–Eckart theorem to operators
expressed in terms of the su(2) angular momentum algebra associated with nuclear
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Table 1.1. Table of E2 transition strengths in W.u. for ground-state bands of deformed even–even rare earth
nuclei, showing currently known values up to I = 10. The four right-hand columns give ‘reduced’ values, where
for each nucleus the 4→ 2, 6→ 4, 8→ 6, and 10→ 8 values are scaled to the → =B E B( 2; 2 0) 20 value and to
the rotor spin factor f I( ), given by equation (1.6). The spin factor for the 4→ 2 transition is 1.429 and is noted
in the column heading, with the other spin factors also given. Thus, for 154Sm— × =245/176 1.429 0.97; with
the generic form of the ratios expressed as −B B f I/ ( )I I, 2 20 . The average value appearing in each column is
given at the bottom, and the global average is 1.035, i.e., the rotor is realized at the 3.5% level. The data are
taken from ENSDF (http://www.nndc.bnl.gov/ensdf/).

→ −B E I I( 2; 2) (W.u.) −B B f I/ ( )I I, 2 20

4 6 8 10
→2 0 →4 2 →6 4 →8 6 →10 8 1.429 1.573 1.647 1.692

154Sm 1761 2456 2898 31917 31416 0.972 1.043 1.106 1.055
156Gd 1893 2644 2958 32017 31414 0.982 0.994 1.035 1.014
158Gd 1985 2904 – 33030 34030 1.023 – 1.019 1.019
158Dy 1864 26615 34040 34070 32050 1.006 1.1624 1.1123 1.0216
160Dy 1963 28511 23813 32830 32915 1.025 0.785 1.039 1.005
162Dy 2043 28912 30117 34617 35023 0.994 0.945 1.035 1.017
164Dy 2114 27111 3039 30013 35818 0.905 0.913 0.864 1.005
158Er 1299 1866 2468 29810 25040 1.017 1.219 1.4010 1.1518
160Er 1696 2418 26315 29060

90 29070 1.004 0.994 0.996 1.03

164Er 2065 26030 – 34319 35318 0.8810 – 1.016 1.015
166Er 21715 31211 37020 37314 39017 1.017 1.0810 1.048 1.068
168Er 2134 3199 42418 35413 30813 1.054 1.275 1.014 0.854
162Yb 1354 2109 19112 25070 18060 1.094 0.907 1.13 0.83
164Yb 1625 2599 27610 320110 300120 1.124 1.085 1.24 1.14
166Yb 19110 2729 29112 32040 310160 1.006 0.976 1.0214 1.05
172Yb 2122 30120 32030 40040 37523 0.997 0.9610 1.1512 1.056
174Yb 2017 2809 37050 38821 33522 0.974 1.1716 1.177 0.995
176Yb 1837 27025 29822 30050 32030 1.039 1.048 1.0017 1.0310
166Hf 1287 2027 22113 28030 – 1.105 1.109 1.3314 –
168Hf 1547 24412 28518 35050 37060 1.117 1.1810 1.42 1.42
170Hf 1827 2634 30610 34412 37525 1.015 1.075 1.156 1.228
178Hf 1603 – 21912 2376 2578 – 0.876 0.903 0.954
180Hf 1552 23040 21916 24513 23812 1.02 0.907 0.965 0.915
170W 1243 17918 18914 19050 17040 1.0110 0.977 0.92 0.82
172W 17115 24518 26030 29030 27040 1.009 0.9711 1.0314 0.9315
174W 1359 23512 41080 24030 16030 1.229 1.94 1.0813 0.7013
182W 1362 19610 20122 20918 20319 1.015 0.949 0.938 0.888
184W 1202 1669

5 1816 1855 220130
220 0.975

3 0.964 0.944 1.1020
6

186W 1112 14410 18713 17813 15145
15 0.916 1.077 0.977 0.82

1

Avg. 1.014 1.051 1.063 1.010

global average 1.035
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rotation. Details of the Wigner–Eckart theorem and the su(2) algebraic structure of
spin and angular momentum are presented in [10]. The band members are connected
by the E2 operator and the common value of K = 0 for the band permits reduction of
matrix elements, both transition and diagonal, to ratios of Clebsch–Gordan
coefficients. The parameter, Q0 is the so-called reduced matrix element of the
Wigner–Eckart theorem. There is no a priori reason why this should emerge from a
nuclear many-body system, but it appears to work well for the most strongly

Figure 1.2. Values of =− −b B B f I: / ( )I I I I, 2 , 2 20 , where f I( ) is defined in equation (1.6), for spins 4–28 for the
ground-state bands of all the actinide nuclei for which there are data. If the symmetric top is valid for nuclei, all
the −bI I, 2 values should be unity.
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deformed nuclei. An introduction to the role of quantum numbers and the Wigner–
Eckart theorem, in arriving at the simple relationships embodied in equations (1.5)–
(1.9), is given in the next section.

1.2 Quantum numbers and the Wigner–Eckart theorem for
nuclear rotation

The quantum numbers that label nuclear rotational states emerge from the quantum
mechanics of the symmetric top model. These quantum numbers are depicted in
figure 1.1. The governing quantum number of the state of a nucleus, in this context,
is the total spin, I. There is a second quantum number contingent upon the value of
I, its directional component. Recall that only a single directional component of I is
allowed due to quantum uncertainty. Thus, one speaks of the ‘cone of indetermi-
nacy’ in the quantum theory of angular momentum. This is depicted in figure 1.5.
With respect to deformed nuclei, and specifically the symmetric top model, there are
two independent frames of reference involved: the body-fixed frame and the
laboratory-fixed frame. With respect to these two frames of reference, directional
quantum numbers in the body-fixed frame and in the laboratory-fixed frame are
defined, K and M, respectively.

The defining of two frames of reference with respect to nuclear rotation is
mandatory. It is impossible to define a precise orientation of a deformed nucleus.
Indeed, this is impossible for any finite many-body quantum system when any type

Figure 1.3. The ratio of +Q(2 )1 to →+ +B E( 2; 2 0 )1 1 , reduced with respect to the rotor model scale factor (see
equation (1.9) and text). Rigid symmetric top behaviour would correspond to this ratio being equal to unity.
See later for a discussion of 186,188,190,192Os.

Nuclear Data

1-8



of ‘deformation’ of the system arises. For deformed nuclei, the two frames of
reference can be viewed, in pictorial terms, as shown in figure 1.6: we refer to this
view as the ‘hyper-cone of indeterminacy’. This view of the atomic nucleus under-
lines a fundamental limitation to our language for discussing such deformed
systems: we make observations in the laboratory frame but we are describing the
quantum mechanics in the body frame.

Figure 1.4. Values of the scaled rotational energy parameter for selected nuclei. These are defined using
equation (1.10), expressed as = → − − →γ γa I E I I I E( ): [ ( 2)/(4 2)]/[ (2 0)/6]. A rigid rotor would result in

=a I( ) 1.000 for all values of I. Experimental uncertainties for the input energies are too small to be shown.
Note the values of a I( ) for 242Pu and 174Yb are almost indistinguishable for all spin values: this is discussed
further in section 1.3, including details of the uncertainty in their energies.

Nuclear Data

1-9



We could formulate nuclear properties entirely in laboratory-frame coordinates.
The equations would be intractable. (Consider, if we attempted this when describing
physical processes on the surface of the Earth as viewed from Space.) Describing
physical processes occurring in systems that are rotating is enormously simplified by
formulating the description in the body-fixed (rotating) frame. Note that, when this
is done, so-called ‘Coriolis’ and ‘centrifugal’ effects are encountered: these are most
easily viewed from the laboratory frame. (Consider, understanding a rotating air
mass in a storm system and the flow of air towards the North Pole and the
consequent acquisition of easterly motion, as viewed from Space looking down from
above the North Pole.) We will address Coriolis and centrifugal effects in nuclei in
due course (with some major surprises). (If we expressed properties of nuclei in a
laboratory-frame of reference, from all the intractable equations we would find the
emergence of some very simple relationships: these relationships would be difficult,
even impossible to understand; but would be transparent, even trivial when
expressed in a body frame of reference.)

The observational basis of nuclear spectroscopy is the determination of expect-
ation values of quantities such as energies, spins, quadrupole moments, and
transition probabilities (radiation intensities). These are formally expressed as
‘diagonal’ matrix elements of operators for expectation values and ‘transition’
matrix elements of operators for transition probabilities. In a quantum-mechanical
model description, one works in a basis of energy eigenstates which possess
simultaneous quantum numbers, in the present context angular momentum
quantum numbers. Thus, the quantum states of the symmetric top model, in the

Figure 1.5. The ‘cone of indeterminacy’ for angular momentum in quantum mechanics. It is impossible to
define more than one directional component of angular momentum, i.e. only one directional component is
‘sharp’. Thus, in physical space, the other two (Cartesian) components can only be defined to within a circle.
This results in the useful depiction of the quantum mechanical uncertainty using a cone of height m and side

+l l( 1) , in units of ℏ.
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body-fixed frame, are defined by energy, I, and K, viz. ∣ 〉E I K, , . For present
purposes, just three quantum numbers4 define the entirety of the quantum mechanics
of the model. Most importantly, they define the quantum mechanical basis within
which all properties of the system are formulated.

Physical processes in quantum mechanical systems are described by operators. To
understand how operators work (operate) within the system, one must know how the
operators act on the basis states. This is variously formulated in quantum theory
using differential operators acting on functions, matrices acting on vectors, or
algebraic formulations. For present purposes, an algebraic formulation is by far
superior in conciseness and ease of use; but it is the most abstract. We remind the
reader that any formulation of quantum mechanics involves the preciseness of
mathematics, with the mandate that the description cannot imply more information
than is physically achievable by measurement. Herein lie the features of quantum
theory that defy everyday logic.

Operators act on basis states to produce other basis states, or the same basis state: if
the state is another basis state, a transition has occurred; if the state is the same basis

Figure 1.6. The ‘hyper-cone of indeterminacy’ for the quantum mechanical axially symmetric rotor. The body-
fixed frame and the laboratory frame are not in a fixed relationship to each other: they are connected by the
total spin I possessing a fixed projection ℏM on the laboratory frame z-axis and a fixed projection ℏK on the
body frame 3-axis. In consequence, the 3-axis has an uncertainty that involves two cones of uncertainty from
which the figure endeavours to depict the full degree of uncertainty possessed by the quantum axially
symmetric rotor.

4 There is a parity quantum number that is contingent on I, also on internal symmetries of the body: we do not
discuss this here as it does not play any role; but some details are presented in [9], and later in this volume.
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state, that defines an observable of the system. Transitions are also observable, but
there is a profoundly subtle aspect to transitions in quantum systems: namely, we learn
about quantum systems by a focus on energy eigenstates, so-called stationary states.
Energy eigenstates ‘do not do anything’ within the system. For a transition to occur,
the systemmust be coupled (interact) with another system. For nuclei this could be by
collision with another nucleus. It can also be by coupling to what we call the
electromagnetic vacuum. This is always present; but when a nucleus is in an excited
state (an energy eigenstate), e.g. after having been produced by a nuclear collision, the
excited nuclear state is not just under the control of the Hamiltonian for the nucleus; it
is also coupled to the Hamiltonian for the electromagnetic vacuum. Thus, the nucleus
in its excited state,while in an energy eigenstate of the nuclearHamiltonian, is not in an
energy eigenstate of the total Hamiltonian: it emits electromagnetic radiation and
undergoes a transition to a new energy eigenstate of the nuclear Hamiltonian.

One might ask: ‘how come the nucleus ends up in an eigenstate of the nuclear
Hamiltonian and not that of the total (nuclear + electromagnetic, field)
Hamiltonian?’ The answer is that the coupling between the two is weak. If the
coupling was strong, the states of the nucleus would not be observed as sharply
defined energies: such states are observed in nuclei as resonances. These resonances
have broad energy distributions because they are unbound with respect to neutron or
proton emission; thus, one must consider such unbound states in the full basis of
description and these unbound states have continuous energy distributions. In fact,
due to coupling to the em vacuum, bound excited states have energy ‘widths’: these
are expressed as τΔ = ℏE / , where τ is the mean lifetime of the quantum state. For
electromagnetic decay, these widths are generally far smaller than the precision with
which we can measure the energies of excited states in nuclei (detector energy
resolution). But such widths are seen in laser spectroscopy of excited states in atoms.
Energy widths observed in meson and baryon spectroscopy are nearly all enormous,
for quite different reasons than in nuclei5.

The handling of operators and how they act on basis states is enormously
simplified when symmetry is possessed by the physical system. The initial and final
states in any process must possess this symmetry for fast decay modes (the dominant
modes). As such, we classify operators by such symmetry. An operator may or may

5Baryons and mesons (hadrons) exhibit excited states due to their internal quark and anti-quark degrees of
freedom (and probably their gluon degrees of freedom). But quarks (and gluons) are absolutely bound. The
widths come from the strong coupling of these excitation degrees of freedom to decay processes such as the
emission (creation) of, e.g. π0 or π π+ − pairs (a certain analogy to the internal-conversion and internal-pair
decay modes in nuclei exists here). But there are a few excited states in baryon and meson systems that only
have small energy widths: these are states that can only decay by the weak interaction. The historical sensation
was the so-called J/psi particle, a meson formed of a charm-anti-charm quark pair. This ‘charmonium’ system
has excited states that predominantly decay by gamma-ray emission, i.e., through their coupling to the em
vacuum: they also have relatively narrow widths. One can take this line of thinking back into atomic systems
with the example of the ‘atom’ formed by an electron–positron pair, positronium. Positronium has singlet and
triplet lowest-energy states. Unlike hydrogen, positronium has a decay channel: annihilation. The singlet and
triplet lowest-energy states have different widths due to symmetry with respect to decay into two or three
photons, following the annihilation process. This is a rich arena for understanding time-dependent processes
related to finite bound quantum systems.
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not possess this symmetry. If it does possess the symmetry, our job is almost done
(see below); if it does not, we expand the operator in basis components defined by the
symmetry. To put this into practical terms, electromagnetic decays of the nucleus
can be expressed in terms of the spherical harmonics. We refer to this expansion as
multipoles of the radiative process (coupling to the em field). While such an
expansion may contain many terms (multipoles), only one or a few components
in the expansion dominate. The reason is that spherical harmonics are defined also
by an angular momentum-type label, and photon emission from nuclei is highly
restricted by angular momentum such that a spin change of more than one or two
units is very improbable (recall that the spin of a photon is ℏ1 ). This is the basis of
the so-called ‘Weisskopf’ estimate for electromagnetic transition strengths in nuclei.

Spherical harmonics are labelled by indices that match the mathematical structure
of the angular momentum theory of quantum systems. We could say that they are
‘symmetry-adapted’. Thus, spherical harmonics appear as representations in a wave
function description of electronic states in atoms. They are not simply adapted to a
wave function description of nuclear rotations (because of the hyper-cone of
indeterminacy, they are too sharp, i.e., they would imply more information than
we possess6). But all we really need from the concept of the spherical harmonics is
that of multipolarity, their indices. This takes us into the concept of the spherical
tensor structure of operators, and hence to the Wigner–Eckart theorem.

Spherical tensors are mathematical entities just like scalars and vectors. One can
manipulate them: add them together; operate on them, e.g. rotate a vector. But there
is an over-riding constraint: a vector cannot be added to a scalar. The underlying
mathematical generalization is the concept of tensorial character. A scalar has just
one ‘component’, which formalizes the concept of ‘number’. A vector in the space in
which we live has three components, say x y z( , , ). A four-dimensional space has
vectors with four components and so on. Spherical tensors are indexed by two
numbers, conventionally by l m{ , } or λ μ{ , }: for a given λ μ λ λ λ= + + − … −, , 1, , ,
i.e. λ +2 1 components. Thus, for λ = 1, there are three components, and such a
spherical tensor is said to be isomorphic (identical in form) to a cartesian vector in
three-dimensional space: this can be expressed, for μ

λT ( ), with λ = 1, as = ++T x iy1
1( ) ,

= −−T x iy1
1( ) , =T z0

1( ) . Operators can be expressed as spherical tensors, angular
momentum states have identical spherical tensor structure, so there are rules for
combining them.

6Rotational wave functions or Wigner-D functions are quite complicated. They can be expressed in their full
detail as ‘arrays’ of products of pairs of spherical harmonics, sometimes appearing in a matrix form. The
reason is that two directional indices must be used for quantum mechanical rotations, the earlier defined K and
M quantum numbers. This double indexing, and doubly expressed uncertainty, is because the orientation of
the laboratory-fixed frame of reference and the body-fixed frame of reference has an inherent quantum
mechanical uncertainty, as shown in figure 1.6. Thus, we cannot use single spherical harmonics: the Wigner-D
functions—arrays of products of pairs of spherical harmonics, one labelled by K and one labelled by M—

express this uncertainty in precise mathematical terms. They are usually written θ ϕD ( , )MK
I , where the

argument of the function involves the spherical polar angles describing the orientation of the body-fixed frame
with reference to the laboratory-fixed frame, indexed by the total spin I. We do not use the Wigner-D functions
herein.
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The quantum theory of angular momentum, whether applied to nuclei or atoms,
or any other finite many-body quantum system provides rules for coupling states of
angular momentum together, e.g. coupling a spin to an orbital angular momentum
or coupling two particle spins together to obtain a resultant total spin. So, one can
‘couple’ a spherical tensor operator to an angular momentum state: this is how an
operator can be viewed as acting on a state. One obtains a final state in a physical
process, which can be viewed as coupling the ‘spin’ of the operator to the spin of the
state. The rules for such coupling are governed by Clebsch–Gordan, CG,
coefficients.

For the action of operators on states to produce new states (transitions within the
system) this enables such processes to be formulated in terms of CG coefficients.
This is expressed as

λμ〈 ∣ ∣ 〉 = 〈 ∣ 〉〈 ∣∣ ∣∣ 〉 +μ
λ λT TI K I K I K I K I I I(2 1), (1.11)f f

( )
i i f f i i f

( )
i i

where the term on the left is the matrix element describing the physical process, the
first term on the right is a CG coefficient, and the ‘double-barred’ expression on the
right is called the ‘reduced’ matrix element (the denominator on the right is a
conventional factor). This is the statement of the Wigner–Eckart theorem. It
provides an enormous reduction in computational labour; often just involving a
look-up of the CG coefficient. Even, if the CG coefficient is zero, this leads to the
concept of a ‘forbidden’ transition.

What is remarkable about the rotational states of nuclei is that in equation (1.11),
the reduced matrix element is a common numerical factor for many matrix elements.
Specifically, for the K = 0 rotational band built on the ground state of a doubly even
nucleus, all transition and all diagonal matrix elements reduce within experimental
error to a single number (multiplied by a CG coefficient), which we define to be Q0:
the so-called intrinsic quadrupole moment of the nucleus. This is arguably the best
manifestation of the Wigner–Eckart theorem in the entire domain of quantum
theory. This ‘reduction’ depends on the validity of the quantum number K, which is
a model quantum number. Note that in equation (1.11), on the right-hand side, the
reduced matrix element is independent of K: one could say that the Wigner–Eckart
theorem has ‘factored-out’ K and isolated it in the CG coefficient.

Note that nowhere does one need to formulate the quantum mechanics of the
electromagnetic field in the above details. One only needs to know that precise
amounts of energy can be exchanged between the nucleus and the em field (with
allowance for recoil energy of the nucleus when high-precision measurements are
used); and that rates of decay, probabilities of exchange of energy, have a depend-
ence on the angular momentum change and the parity change. For the quadrupole
degree of freedom, the spin change is two, with no parity change. Again, we note the
role of the Weisskopf estimates; herein combined with the observation that collective
degrees of freedom exhibit large enhancements over these estimates (large B E( 2)
values).

The full details of the quantum mechanics underlying this section are given in the
earlier volumes in this series: (chapter 9 of [11]) an introduction to time-dependent
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quantum mechanics, (chapter 11 of [11]) an introduction to the algebraic structure of
angular momentum and spin, (chapter 1 of [10]) spherical harmonics, (chapter 2 of
[10]) coupling of angular momenta and spins, (chapter 3 of [10]) tensor structure of
operators and the Wigner–Eckart theorem, (chapter 8 of [10]) time-dependent
perturbation theory, (chapter 9 of [10]) the electromagnetic field in quantum
mechanics. Note that handling the multipole expansion of the electromagnetic field
is not yet developed in the Series (only the electric dipole approximation was made in
chapter 9 of [10]); higher multipole terms will be needed, e.g. for the theory of
angular correlations between sequential radiative decay steps.

1.3 Odd nuclei: energies and E2 properties
We can immediately look more deeply at the issue of rotations in nuclei by inspecting
data for odd-mass nuclei. The above equations are for ground-state bands of even–
even nuclei, i.e., for K = 0. For general K values these equations are modified by
replacement of the CG coefficients, viz. 〈 ∣ − 〉 → 〈 ∣ − 〉I I IK I K020 2, 0 20 2, in equa-
tion (1.5) and〈 ∣ 〉 → 〈 ∣ 〉I I IK IK020 0 20 in equation (1.7). For example, this leads to the
relationship (cf equation (1.7))

⎡⎣ ⎤⎦=
− +
+ +

Q I K
K I I eQ

I I
( , )

3 ( 1)

( 1)(2 3)
. (1.12)

2
0

Figures 1.7(a)–(f) show values of the parameter Q0 extracted from data for selected
odd-mass nuclei using equation (1.4) and (cf equation (1.5))

π〈 ∣ ∣ − 〉 = + 〈 ∣ − 〉T EI K I K I IK I K eQ, ( 2) 2, (2 1) (5 16 ) 20 2, . (1.13)1 2 1 2
0

The model interpretation is again consistent with Q0 being independent of I.
Comparison of Q0 values for odd-N nuclei with their even–even neighbours is
shown in figure 1.8; a similar comparison for odd-Lu isotopes with even-Yb and
even-Hf neighbouring isotopes is shown in figure 1.9. Figure 1.10 shows Q0 values in
the actinide region. The pattern is consistent with a smooth variation in Q0 as a
function of mass number. While all the even–even nuclei involve K = 0 states, the
odd nuclei have a range of K values; but Q0 systematics are smooth and illustrate
the independence of this quantity with respect to K. This is a practical illustration of
the way that the Wigner–Eckart theorem works, beyond the data showing that Q0

values are consistent with a single value in a rotational band.
Although energies of states in rotational nuclei do not conform exactly to

equation (1.1), one can inspect energy patterns in neighboring nuclei to seek
similarities and differences. The comparison of odd and even–even neighbours is
made for γ-ray transition energies for selected nuclei in figures 1.11–1.13. In some
cases, the differences implied for the rotational energy parameter(s) are ∼0.1%. In
general, differences in energies between odd-mass nuclei and even–even nuclei
depend on a so-called ‘rotation-particle coupling’ term. From the rotational energy
Hamiltonian,

=H AR , (1.14)2
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where R is the collective angular momentum of the core and A is the rotational
energy parameter, cf equation (1.1) and figure 1.1. Then, defining

= +I R j: , (1.15)

where I is the total spin of the nucleus and j is the spin of the odd nucleon,

= − ⋅ − = − ⋅ + ⋅H A A A AI j I j I I j j j( ) ( ) 2 . (1.16)2

On quantization, this leads to

= + − 〈 ⋅ 〉 + 〈 ⋅ 〉E AI I A AI j j j( 1) 2 , (1.17)

Figure 1.7. (a–f) Intrinsic quadrupole moments Q0 in barns versus spin for ground-state bands of selected odd-
N nuclei in the rare earth region, extracted using the axially symmetric rotor model, cf equations (1.4), (1.12),
(1.13). These values are based on B E( 2) values given in ENSDF (except for 157Gd where failure to use an
erratum [12] results in all the ENSDF values for states with spin above 7/2 being wrong). The values of Q0 and
their uncertainties deduced from the ground-state spectroscopic quadrupole moments are shown in red, with
extension across the entire range of spins of excited states so that they form a visual base reference for each
nucleus. Where excited state quadrupole moments have been measured, in 155, 157 Gd, 161Dy, these are shown
in green and the centroid of the value again extends across the entire range of spins of excited states, but the
uncertainties are localized using standard error bar notation. The spectroscopic quadrupole moment values are
taken from ENSDF and [13]. The most precise values of Q0 are for the ground states, which result from the
spectroscopic quadrupole moments. Excited band members appear to be consistent with no changes in Q0 as
spin increases, but the precision is insufficient to make strong statements regarding constant Q0 values for any
of these bands.
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Figure 1.8. Comparison of Q0 values in barns for ground states in odd-N nuclei and +21 states in even–even
neighboring nuclei, Gd–Hf. Sloping lines are to suggest a more rapid onset of deformation in going from Gd to
Yb. The values are computed using data taken from ENSDF and [13]. The value of Q0 for

161Dy is taken from
the fit to the muonic hyperfine structure allowing for K mixing [14]. The two sets of values shown for some of
the Yb and Hf isotopes correspond to evaluated data in ENSDF and data from muonic x-ray hyperfine
structure: specifically, data from [15] and data from [16]. For 170Yb, three values are shown: =Q 7.46170

Coul. b
[black], =Q 7.8040

muonic b [blue], and =Q 7.52110
ENSDF b [orange].
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Figure 1.9. Comparison of Q0 values in barns for ground states in odd-Lu (Z = 71) nuclei and +21 states in
even–even neighboring Yb (Z = 70) and Hf (Z = 72) nuclei. Uncertainties are shown only for the Lu isotopes.
Lines connect the Yb–Lu–Hf isotones. The values are computed using data taken from ENSDF and [13].

Figure 1.10. Comparison of Q0 values in barns for ground states in actinide nuclei. The values are computed
using data taken from ENSDF and [13].
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Figure 1.11. (a–d) Plot of γ-ray transition energy, γE in keV versus spin of the initial state, Ii for rotational
bands built on the Nilsson state 5/2+ [402] for selected odd-Z nuclei spanning N = 96 to 108, compared to
neighbouring −A 1 even–even ‘core’ nuclei. All the transitions have Δ =I 2 and the plots are limited to the
lowest spin band members. Experimental values are given in red; energy differences (even mass, self-evident) or
interpolated energy differences (e.g. × + − = −106.8 0.25 208.1 236.3 1.5) are given in blue. Thus, for the
odd-mass nuclei, if the difference is negative the data point lies above the even–even ‘trajectory’: this
convention is in recognition of the negative sign in the RPC term in equation (1.17). Details are discussed in the
text. The data are taken from ENSDF.
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where the first term is familiar, cf equation (1.1); the second term is called the
‘rotational-particle coupling’, RPC, term (also, sometimes, it is called the ‘Coriolis’
term) and the third term is called the ‘recoil’ term. These are expressed as
expectation values with respect to specific states in a rotational band and are
handled shortly. (The appearance of expectation values is because j is not a good
quantum number in a deformed mean field, i.e. j values are mixed; this is handled
later.) It is important to note that the second term is linear in I and the third term is
independent of I. Thus, energy differences, notably → −γE I I( 2) can be approxi-
mated by

Figure 1.12. (a–d) Plot of γ-ray transition energy, γE in keV versus spin of the initial state, Ii for rotational
bands built on the Nilsson states 5/2− [523] (163Dy), 7/2− [523] (165Ho) and 7/2− [514] (175Yb), 9/2− [514]
(175Lu). Note the common reference cores; also note that these are unique-parity configurations involving
l = 5, = = −j 9/2 5 1/2 (odd-neutron nuclei with ↓523 and ↓514 ) and l = 5, = = +j 11/2 5 1/2 (odd-proton
nuclei with ↑523 and ↑514 ). For other details, see the caption to figure 1.11 and discussion in the text. The data
are taken from ENSDF.
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θ→ − = − −γE I I A I A j( 2) (4 2) 2 (2 cos ), (1.18)Ij

where θIj can be viewed as the semi-classical angle between the average j of the
unpaired nucleon and the total nuclear spin, I. It is evident from figures 1.11–1.13
that the second term in equation (1.18) is indeed generally independent of I. In many
nuclei it is almost zero. The largest non-zero occurrences of the second term in
equation (1.18), which are for configurations originating in high j-value spherical
shell model structures, and are termed ‘alignment’ energies, are shown in
figures 1.14(a)–(c).

The rotation-particle coupling term in the Hamiltonian generally has a small
influence on electromagnetic properties in odd-mass nuclei. However, for =K 1/2
bands it can be significant. The contribution of this term to energies is discussed in
chapter 3 of [9] (especially figures 3.11 and 3.12; and cf equation (3.16) therein). For

=K 1/2 bands and E2 matrix elements

Figure 1.13. (a–f) Plot of γ-ray transition energy, γE in keV versus spin of the initial state, Ii for rotational
bands built on Nilsson states originating from the i13/2 configuration. The ‘alignment spins’ for the →13/2 9/2
transitions (and →15/2 11/2 in 183W) are given in the boxes. Both the −A 1 and the +A 1 core nuclei are
shown; the alignment spins are relative to the trajectory of the core with the lower set of energies. The pattern
suggests that alignment decreases with increasing Ω, i.e. ↑633 (Ω = 7/2), ↑624 (Ω = 9/2), ↑615 (Ω = 11/2), cf
173Yb, 179Hf, 183W, and with increasing deformation, cf 161Er/161Dy and 161Er/165Er (note configurations are
all ↑642 (Ω = 5/2) and line slopes are 161Er > 161Dy, 161Er > 165Er, where line slope is fixed by rotational
energy constant which is inversely proportional to the moment of inertia). Other details are explained in the
caption to figure 1.11 and in the text. The data are taken from ENSDF.
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Figure 1.14. (a–c) Plot of ‘alignment’ energies in keV at specified spins (indicated) for bands built on Nilsson
configurations from: (a) the 1i13/2 configuration; (b) the 1h11/2 configuration; (c) the 1h9/2 configuration. See
the text for further details.
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π〈 ∣ ∣ 〉 = + 〈 ∣ 〉T EI I I I I eQ X, 1 2 ( 2) , 1 2 (2 1) (5 16 ) , 1 2, 2, 0 , 1 2 , (1.19)i f i
1 2 1 2

i f 0

where

ζ= + − + 〈 − ∣ 〉
+ + 〈 − + ∣ 〉

X I I I I
I I I

1 [( 1 2) ( 3 2) , 3 2, 2, 1 , 1 2
( 1 2) , 1 2, 2, 1 , 1 2 ],

(1.20)i
1 2

i
1 2

i f

i i f

ζ is a parameter, and the expressions ‘〈 ∣ 〉’ are CG coefficients: the derivation of
equation (1.20) is explained later in the series. An example of high-precision data for
E2 properties is available for the nucleus 239Pu and this is illustrated in figure 1.15.
Note that the modification of the E2 matrix elements by the rotation-particle
coupling term produces a convergence between the model and the experimental
data. Thus, a simple correction to the zeroth-order manifestation of the model leads
to an improved description of the data.

We make an important philosophical point in view of the agreement between data
and the simple rotational model being used herein: namely, a symmetric top with an

⋅I j particle-rotor coupling. When agreement between a model and data is ‘good’ in
zeroth order and converges to ‘very good’ when the first-order model correction is

Figure 1.15. Deviation from the symmetric rigid rotor of experimental E2 matrix elements (in eb), determined
using muonic x-ray spectroscopy, for the =K 1/2 ground-state band in 239Pu. The red arrows show the
changes produced by including RPC effects in the symmetric rotor description (other matrix elements change
by less than 0.4%). The data are taken from [17]. The upper part of the figure shows diagonal E2 matrix
elements as blue (curved) arrows and off-diagonal E2 matrix elements as green arrows. The zeroth-order fit
uses a single parameter, =Q 11.5920 b; the fit with RPC effects uses two parameters, =Q 11.5830 b and
ζ = − × −1.8 10 3, see text, equations (1.13), (1.19) and (1.20). The figure design is a copy of one appearing in
the above-cited paper.
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made, one must consider this to be a valid fundamental feature of the many-body
system. Even if the example is rare, it is unlikely to be an accidental occurrence.

We emphasize, again, the evident validity of the K quantum number, which in
odd nuclei is not zero. Indeed, one can explore the implied values of K manifested in
the E2 matrix elements by ‘reverse engineering’ the reduction process involved in the
Wigner–Eckart theorem, i.e. imposing a fixed value of Q0 for a rotational band and
extracting the reduction factors—the CG coefficients. We extend this perspective to
transitions between bands later.

Energies for =K 1/2 bands and bands in odd–odd nuclei are handled later. There
are almost no E2 data for bands over extended ranges of spin in deformed odd–odd
nuclei and excited bands in deformed odd nuclei. Thus, for multiple rotational
bands, in a single nucleus, there is a lack of data for exploring whether Q0 is a
universal feature for multiple bands, or if each band is characterized by a different
Q0 value. This lack of data is due to the difficulty of obtaining a ‘clean’ view of the
population and subsequent de-excitation of a given excited state in a nucleus. Unless
the population of the given state is simple, it becomes (nearly) impossible to
deconvolute the feeding ‘history’ of the state. The feeding history must be
determined to allow for delays in feeding: this is handled using the so-called
Bateman equations.

1.4 A wider look at rotation in nuclei: energies and moments of
inertia

One can look at energy patterns beyond equation (1.1) via scaling of rotational band
energies in even nuclei by +E(2 )1 . This received a limited inspection in figure 1.4. But
in the finer details, a remarkable feature emerges, as presented in table 1.2 for the
comparison of 174Yb and 242Pu: when scaled, the transition energies between states
in the ground-state rotational bands are all identical to within a few parts in a
thousand, independent of spin. Further, when considering experimental uncertain-
ties, there is the possibility that these scaled energies are even more similar. We
emphasize, these are supposedly complex many-body quantum systems with 174 and
242 bodies, respectively, with very different ‘orbital occupancies’ for the constituent
nucleons. Indeed, similar patterns emerge when numerous ground-state bands are
scaled in this manner. We note that these scaled energies are closer than any
available phenomenological descriptions. There is no known explanation of this, i.e.
at the level of the behaviour of nucleons in the nucleus.

The simplest interpretation of energy patterns for bands in nuclei is that the nuclei
are deformed, and the energies of band members are characterized by a moment of
inertia parameter. From knowledge of the mass, size and deformation of a given
nucleus, a classical moment of inertia can be calculated. For a nucleus with

βθ ϕ θ ϕ= + +R R g Y( , ) [1 ( , )], (1.21)20

β π= −g /42 (volume conservation), we obtain

β β β βπ π π π= + + − + ⋯Q ZeR3 (5 ) (1 (5 ) 8 5 8 (5 ) 192 ), (1.22)0
2 2 3 2 3
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whence

β β β β= + + −Q ZA91.7436 0.157 70 0.198 94 0.010 457 . (1.23)0
2 3 2 3 4

Then, using

J β βπ= + +{ }AMR2 5 1 (5 16 ) 0.44 , (1.24)rigid
2 2

where M is the mass of the nucleon and =R A1.2 1/3 fm,

J β β= × + +− { }A9.6405 10 1 0.3154 0.44 (1.25)rigid
58 5 3 2

in kg m2. From equation (1.1), with J= ℏA /22
expt, where recall that

1 J = 6.241 509 ×1018 eV,

J = × − +E2.0824 10 (2 keV) (1.26)expt
52

1

in kg m2. Values for Jrigid and Jexpt are compared below in table 1.3.
There are rotational bands with near constant energy differences for transition

energies. Some superdeformed bands exhibit this: one of the best examples is shown
in figure 1.16. This depicts a superdeformed band in 152Dy via observed gamma-ray
transition energies. The notable feature is the extraordinary constancy of the
differences between these gamma-ray energies: an enhanced view is depicted at
the bottom of the figure.

The consequences of equations (1.21)–(1.26) for ground-state bands in 174Yb and
242Pu, and for the superdeformed band in 152Dy, are given in table 1.3.

The results manifested in table 1.3 are profound with respect to the physics of
nuclear rotation. It means that nuclei probably approach rigid rotation asymptoti-
cally as deformation increases; and the rigid rotation limit is manifestly reached in

Table 1.2. Comparison of ground-state band transition energies for 242Pu and 174Yb. The data are taken from
ENSDF.

Ii E(242Pu) (keV) E(174Yb) (keV) ×0.5824 E(174Yb) (keV) % dev.

2 44.542 44.54 [norm.] 76.4711 –

4 102.81 102.9 176.6452 +0.098
6 159.01 158.9 272.9186 −0.063
8 211.74 211.8 363.645 +0.047
10 260.56 260.46 447.210 −0.038
12 305.88 305.48 524.413 −0.131
14 347.310 347.110 595.917 −0.058
16 385.011 384.411 6602 −0.156
18 419.312 418.717 7193 −0.143
20 450.213 450.829 7745 +0.133

–0.035 (avg.)
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Figure 1.16. Example of a superdeformed band manifested in 152Dy. The figure shows the gamma-ray
spectrum associated with the band and the transition energies in keV. Probable spin assignments to the levels
from which the gamma rays originate are indicated. The remarkable constancy of the differences between
successive gamma rays is depicted at the bottom of the figure. Uncertainties in the gamma-ray energies are
generally less than the size of the data points, except the right-hand-most point. Further details are discussed in
the text. Note, the de-exciting cascade of gamma rays is attenuated starting around spin 30 due to decay out of
the band into lower-lying high-spin states, sometimes called ‘draining’; this is beyond the scope of the present
discussion. The spectrum was provided courtesy of T Laurtisen and is based on a similar spectrum appearing in
[18]. Other data are taken from ENSDF. Reproduced from [23]. Copyright 2010 World Scientific Publishing
Company.

Table 1.3. Moments of inertia for ground-state rotational bands of a rare earth and an actinide nucleus and for
a superdeformed rotational band. The moments of inertia are given in units of kg m2 × −10 54 and the +2
energies are given in keV. Note that the +2 energy given for 152Dy is an estimate based on extrapolation of
values observed in association with spins >24, cf figure 1.16 and equation (1.31). See the text for other details
and remarks.

Z Q0 A2/3 β Jrigid
+E(2 )1 Jexpt

J

J

expt

rigid

(b) (kg m2) (keV) (kg m2)

174Yb 70 7.825 31.167 0.3081 × −5.955 10 54 76.4711 × −2.723 10 54 0.4573
242Pu 94 11.906 38.834 0.2823 × −10.184 10 54 44.542 × −4.675 10 54 0.4591
152Dy 66 17.52 28.482 0.7076 × −6.025 10 54 33.75 × −6.170 10 54 1.024
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some nuclei. We caution that this derivation is based on a naïve view of the nucleus
as a quadrupole-deformed constant-density extended object with a sharp surface, i.e.
no allowance is made for surface diffuseness or higher multipole deformations of the
nucleus. We look at higher multipole deformations later. Figure 1.17 presents
moments of inertia, extracted using these simple prescriptions, for selected nuclei.
We do not comment on the remarkable similarity ofJ J/expt rigid for

174Yb and 242Pu,
except to note that this would appear to be independent of the near-identical scaled-
energy patterns shown in table 1.2.

There is considerable confusion over moments of inertia extracted from rotational
bands in odd-mass nuclei: the origin is in the use of equation (1.1), modified for
excitation and spin of a given band head, viz.

= + +E E AI I( 1), (1.27)0

where = + + …I K K K, 1, 2, and the excitation of the band head is given by
+ +E AK K( 1)0 . It is essential to include the rotation-particle coupling term when

making deductions about moments of inertia in odd nuclei. From plots such as
depicted in figures 1.11(a)–(d) et seq. a useful relationship for replacement of
equation (1.27) would take the form

α α= + − − +E E A I I( )( 1), (1.28)0

Figure 1.17. Selected view of nuclear moments of inertia for nuclei which exhibit a rotational band built on
their ground state. Moments of inertia are presented as a ratio of he experimental moment of inertia deduced
from the excitation energy of the 2+ state (equation (1.1)) with J= ℏA /22

expt, divided by the rigid body
moment of inertia (equation (1.24)), plotted as a function of the quadrupole deformation, β for the relevant
isotopes. Data are presented for the rare earth isotopes, the actinide region, the region close to ∼Z 40, ∼N 60
and for 24Mg. Interactive version available in e-book which can be downloaded from http://iopscience.iop.org/
book/mono/978-0-7503-5643-5.
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where α is the horizontal displacement in spin between the odd-mass nucleus and the
neighbouring even–even ‘core’ nucleus. Thus, e.g. in figure 1.13 a, α = 2.8 at

=I 13/2i . Such a relationship, to our knowledge, has never received attention in
the literature; although it has been suggested [19], this was without exploration at the
level of presentation of data such as shown herein. It is immediately evident that
extracting an ‘A’ parameter from data will give different values depending on
whether equation (1.27) or (1.28) is used. Note that if single energy differences are
used one arrives at the relationship

Δ = = −γ−E E A I(4 2) (1.29)I I, 2

from equation (1.27) and

αΔ = = − −γ−E E A I(4 4 2) (1.30)I I, 2

from equation (1.28); whereas if double energy differences are used (employing
states with spins I, −I 2, and −I 4) one arrives at the relationship

Δ = Δ =γE E A8 . (1.31)2

This is universally manifested in odd-mass bands and the ground-state bands of
neighboring even–even ‘core’ nuclei, as illustrated in figures 1.11(a)–(d) et seq.
Commonly, use of equations (1.29) and (1.31) has led to the terminology ‘type-I’ and
‘type-II’ moments of inertia, respectively. We leave this issue without further comment.

There is a further puzzling feature manifested in the comparison of rotational
bands in odd-mass nuclei with ground-state bands in even-mass nuclei: the unpaired
nucleon should exhibit a ‘Coriolis effect’ whereby the ‘alignment’ of its spin, j with
the core angular momentum, R should progressively increase with increasing total
spin, i.e. the semi-classical angle in equation (1.18) should ‘close’. This is not
observed. The patterns manifested in figures 1.11–1.13, to lowest order, show a
constant alignment, i.e., there is no classic rotational alignment effect such as occurs
with gyroscopes. Thus, one must question even the idea that the nucleus is ‘rotating’
in the classical sense when rotation-alignment effects (Coriolis effects) are not
conforming to classical patterns.

We note that the above empirical patterns have not been addressed theoretically
at a foundational level. Discussion can be found in the literature regarding some of
the effects portrayed; but attempts to explain such data have been confined to the
naïve rotor model. The result has been to invoke ‘delicate cancellations’ involving
‘blocking of pairing-correlation effects’, ‘deformation-driving effects’, and ‘rotation-
alignment effects’ due to the unpaired nucleon. We express the view that fine-tuning
model parameters on a case-by-case basis to fix discrepancies with data is the
signature of the much-discussed7 ‘need for a paradigm shift’ in science.

7 The expression ‘a paradigm shift’ was first coined by Thomas S Kuhn in [24]. We add, as authors we did not
foresee this paradigm shift, we have only assembled data and noted systematic patterns. We do not offer any
theoretical insights beyond recommending that the naïve rotor model, while useful for organizing data and
describing E2 properties of nuclei, should not be the basis for refining exploration of rotational energies in
nuclei. We discuss this in more detail later.
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A summary view of the data presented can be made with a few key points. Where
data are available, in nuclei that can be described as well-deformed, the simplest
rotor model is realized at the level of 1%–2% in electromagnetic properties; in nuclei
that can be described as superdeformed, the simplest rotor model is realized at the
few percent level with respect to rigid-body rotation with a moment of inertia that
matches expectations of classical mechanics. However, the requisite high-precision
data are severely lacking. Adopting the view that in complex systems, the emergence
of such simple behaviour is not by chance, rather it is a manifestation of asymptotic
behaviour, this indicates that much work needs to be done.

1.5 Exercises
1-1. With reference to table 1.1, for the nuclei shown, tabulate values of

−B B f I/ ( )I I, 2 20 for →12 10, → …14 12, transitions using B E( 2) data in
ENSDF. Note: use equation (1.6) to determine f(12), …f (14), .

1-2. Make a similar table to table 1.1 for the actinide isotopes shown in
figure 1.2 using ENSDF data for B E( 2) values.

1-3. Following on from exercise 1-2, find and add other deformed actinide
region −BI I, 2 data using ENSDF data for B E( 2) values. (Note: the data are
very limited and confined to low spin states.)

1-4. With reference to table 1.2, using data in ENSDF, explore deformed rare
earth and actinide region nuclei for similar scaled rotational transition
energies in even–even nuclei. As a set of useful starting nuclei, we suggest:
156Nd, 158,160Sm, 240,242Pu, 172,174Yb, 168,170Er, 180Hf; then look at 160Gd,
162,164Dy, 166Er, 170,176Yb, 182W, 234,236,238U, 236,238Pu.

1-5. Test the rotational energy formula, equation (1.3), for the nuclei presented
in table 1.2.

1-6. Using equation (1.12), obtain the Q0
gs values in figures 1.7(a)–(f) from the

Qs
gs values given in ENSDF.

1-7. With reference to figure 1.11, for γE versus Ii using data in ENSDF, make
similar plots for rotational bands built on the Nilsson configuration 7/2+ [404].
As a set of useful starting nuclei, we suggest odd-mass Lu and Ta isotopes
where this Nilsson configuration forms the ground-state bands.

1-8. For the nucleus 157Tb, make a plot of γE versus Ii, cf those shown in
figures 1.11–1.13, for the Nilsson configuration 5/2− [532]. Comment on the
statement in the narrative that alignment effects increase with the decreas-
ing value of the Nilsson quantum number Ω, by comparing with figure 1.12
and noting that 5/2− [532], 7/2− [523] and 9/2− [514] all have the spherical
parentage configuration h11/2, i.e. =j 11/2. (Use the data given in ENSDF
for 157Tb, where note that the head of the 5/2− [532] band is at 326.3 keV.)

1-9. For the scaling Q ZR/0
2, compare typical rare earth nuclei (figures 1.8 and

1.9) and actinide nuclei (figure 1.10) Q0 values. Use =R A1.2 1/3 fm.
Estimate the Q0 values by inspection of the figures.
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1-10. If j is parallel to I, for an even–even neighbouring ‘core’ band with
= …I 0, 2, 4, 6, , sketch what a plot of γE versus Ii will look like in an

odd-mass nucleus compared to the neighbouring even–even nucleus.
1-11. Derive equation (1.9) from equations (1.4), (1.5), and (1.8). Note, a

Clebsch–Gordan coefficient calculator is available on Wolfram Alpha
(https://www.wolframalpha.com/input?i=Clebsch-Gordan+calculator).

1-12. Look for superdeformed bands that exhibit near constant differences in
transition energies such as illustrated in figure 1.16 for 152Dy. Relevant
data can be obtained from [20].

1-13. Explore fitting equation (1.28) to odd-A nuclei. Start with the nuclei in
figure 1.13 and use values of α given by the numbers in the black boxes, e.g.
α = 2.2 for 173Yb. How do the fits compare with using equation (1.27)?

1-14. There is a simple empirical correlation between →+ +B E( 2: 0 2 )1 1 values
and the excitation energy of the first excited 2+ state, +E(2 )1 , called the
Grodzins relationship [21], viz.

→ × × ∼+ + +B E E
A
Z

( 2: 0 2 ) (2 ) constant. (1.32)1 1 1 2

This is often employed with the dimensions of B E( 2) in e2b2 and E(2) in
keV, whence the constant for many nuclei is about 16. Note that
ENSDF usually gives B E( 2) as →+ +B E( 2; 2 0 )1 1 in W.u.; recall

→ = × →+ + + +B E B E( 2: 0 2 ) 5 ( 2; 2 0 )1 1 1 1 , cf equation (1.4) (the spin factor
in the denominator). The relationship betweenB E( 2) values inW.u. and e2b2

is given by 1 W.u. = × − A5.940 10 6 4/3 e2b2. The →+ +B E( 2; 0 2 )1 1 values in
e2b2 are compiled in [22]. E(2) values in keV are given in ENSDF.

For example, for 174Yb: × × =5.85 76.471 174/70 15.92 . The ENSDF
value for 174Yb →+ +B E( 2; 2 0 )1 1 is 201W.u.: × × × ×−201 5 5.94 10 1726 4/3

= 5.71 e2b2. This value is superseded by the value of 5.85 e2b2 given
in [22].

Explore the Grodzins relationship using data from ENSDF: for
example, look at local mass regions to determine the constancy of the
product; compare this product for nuclei at closed shells with nuclei in
mid-open shell regions.

1-15. Preamble: the following notes and exercises are at a level considerably
more advanced than the preceding exercises. For the less specialized
reader it is sufficient to treat Clebsch–Gordan coefficients as numbers that
can be obtained using the Wolfram Alpha website. We illustrate in the
following how to derive algebraic expressions for E2 properties presented
in this chapter starting from more general equations given in [10]. We
recognize that a typical experimentalist will likely start with data and the
equations provided, and reach a familiarity of the effectiveness of the
equations without initial concern for their origin8. Curiosity may then

8We note that the famous equation, =E mc2 is widely used, but its derivation is a mystery to many.
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lead the reader to the origin of the equations below, which in turn have
been derived by methods which are presented from first principles, i.e.
derivation of the equations given in appendix A, in [10].

The Clebsch–Gordan coefficients that appear in equations (1.5) and
(1.7) can be obtained from appendix A, table A.4 of [10] which gives
expresssions for 〈 ∣ 〉j m m jm21 1 2 . We delay some substitution of assigned
values so that the origins of the terms can be seen in [10].

For = −j j 21 , =m 02 , =m m1 , and

〈 ∣ 〉 =
− + − + + + + +

− − +
j m jm

j m j m j m j m

j j j j
20

3( 2)( 1)( 2)( 1)

(2 2)(2 1) (2 1)
, (1.33)1

1 1 1 1

then, for =j I1 , m = 0, = −j I 2 and

〈 ∣ − 〉 =
− −

− − +

=
−

− +

I I
I I I I

I I I I

I I

I I

020 2, 0
3 ( 1) ( 1)

2( 1)(2 1) (2 1)

3 ( 1)

2(2 1)(2 1)
.

(1.34)

For =j j1, =m 02 , =m m1 , and

〈 ∣ 〉 = − +
− + +

j m jm
m j j

j j j j
20

3 ( 1)

(2 1) ( 1)(2 3)
, (1.35)1

2

1 1 1 1

then, for = =j j I1 , m = 0,

〈 ∣ 〉 = − +
− + +

= −
+

− +

I I
I I

I I I I

I I

I I

020 0
( 1)

(2 1) ( 1)(2 3)

( 1)

(2 1)(2 3)
,

(1.36)

and for =j I1 , m = I, j = I

〈 ∣ 〉 = − +
− + +

= −
− + +

=
−

+ +

II II
I I I

I I I I

I I

I I I I

I I

I I

20
3 ( 1)

(2 1) ( 1)(2 3)

(2 1)

(2 1) ( 1)(2 3)

(2 1)

( 1)(2 3)
.

(1.37)

2

(a) From equation (1.34), obtain 〈 ∣ 〉 =2020 00 1

5
.

(b) From equation (1.34), obtain equation (1.6).
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(c) From equations (1.7), (1.36) and (1.37), obtain equation (1.8).
(d) From equation (1.35) with = =j j I1 , m = K and equation (1.37), adapting

equation(1.7)bythereplacement〈 = ∣ ∣ = 〉→〈 ∣ ∣ 〉I K T E I K I K T E K, 0 ( 2) , 0 , ( 2) ,
obtain equation (1.12).

(e) The factor π(5/16 )1/2 that appears in equation (1.5) (and following
equations) is because the electric quadrupole moment of a nucleus is
defined as

∑π θ ψ〈 〉 =Q e r Y(16 5) ( , ), (1.38)
inucleons,

i1 2
eff i

2
20 i i

where θ ψ( , )i i are polar coordinates defined with respect to the centre of
mass of the nucleus, Y20 is a spherical harmonic, and eeff allows for
effective charges on the proton and neutron. Show that the factor

π(16 /5)1/2 ensures that the total charge in a nucleus is equal to +Ze,
where Z is the number of protons (here assume = +e e1eff

proton and
=e 0eff

neutron ).

Tutorial 1.1 Some preliminary views of nuclei. The video can be downloaded from https://doi.org/10.1088/978-
0-7503-5643-5.
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Tutorial 1.2 E2 properties. The video can be downloaded from https://doi.org/10.1088/978-0-7503-5643-5.

Tutorial 1.3 Excitation energies in even-even nuclei. The video can be downloaded from https://doi.org/
10.1088/978-0-7503-5643-5.
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Tutorial 1.4 Excitation energies in odd mass nuclei. The video can be downloaded from https://doi.org/
10.1088/978-0-7503-5643-5.

Tutorial 1.5 Further look at excitation energies in odd-mass nuclei. The video can be downloaded from https://
doi.org/10.1088/978-0-7503-5643-5.
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Tutorial 1.6 Comprehensive spectroscopy: Multi-spectroscopy study: 152Sm. The video can be downloaded
from https://doi.org/10.1088/978-0-7503-5643-5.

Tutorial 1.6 (Continued.). The video can be downloaded from https://doi.org/10.1088/978-0-7503-5643-5.
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Tutorial 1.6 (Continued.). The video can be downloaded from https://doi.org/10.1088/978-0-7503-5643-5.

Tutorial 1.6 (Continued.). The video can be downloaded from https://doi.org/10.1088/978-0-7503-5643-5.
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