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Preface

The development of humankind’s ultimate energy source, nuclear fusion, has
proceeded slowly but surely over the course of the last 60 years. Moreover, the
perceived need for such an energy source has never been more acute than it is at
present. Of all of the plasma confinement schemes that have been attempted over the
years, magnetic confinement, by which a thermonuclear plasma equilibrium is
contained by a strong magnetic field, seems to be the most practical. Moreover,
by far and away the most successful magnetic confinement device is the tokamak.

A tokamak is a device whose purpose is to confine a thermonuclear plasma on a
set of axisymmetric, nested, toroidal magnetic flux-surfaces generated by a combi-
nation of electrical currents flowing in external field coils and currents induced
within the plasma itself by transformer action. Confinement is possible because,
although heat and charged particles stream along magnetic field lines very rapidly,
they can only diffuse across magnetic flux surfaces comparatively slowly.

Unlike most naturally occurring plasmas (e.g. the solar wind), tokamak plasmas
are extremely quiescent. (Of course, this is by design.) Tokamak plasma discharges
usually last tens of millions of Alfvén times. (The Alfvén time is the typical timescale
on which Alfvén waves traverse the plasma and also on which ideal magneto-
hydrodynamic (MHD) instabilities grow; it is of the order of a tenth of a micro-
second in conventional tokamak plasmas.)

Tokamak plasmas are sometimes terminated by violent events known as
disruptions. One major class of disruption is caused by the plasma discharge crossing
an ideal MHD stability boundary. However, such disruptions are easy to avoid,
because the locations of the stability boundaries in operational space can be
calculated very accurately.

The overwhelming majority of disruptions that are not caused by crossing ideal
stability boundaries are associated with tearing modes. Tearing modes are slow-
growing, macroscopic instabilities in tokamak plasmas that tear and reconnect
magnetic field lines at various resonant surfaces in the plasma to produce radially
localized magnetic island chains. Tearing modes are driven by radial current and
pressure gradients within the plasma and can be unstable even when the plasma is
ideally stable. Tearing modes degrade plasma confinement because heat and
particles can flow very rapidly from one (radial) side of a magnetic island chain
to another by streaming along magnetic field lines, rather than by having to slowly
diffuse across magnetic flux surfaces. Tearing modes in tokamak plasmas generally
saturate at fairly low amplitudes (such that the associated magnetic island chains
have radial extents that are a few percent of the plasma’s minor radius), and can
persist over a large fraction of the lifetime of the plasma discharge.

Tearing modes in tokamak plasmas usually rotate rapidly (at many kilo-radians
per second) as a consequence of plasma flows induced by the radial density and
temperature gradients in the plasma. However, tearing modes that grow to
comparatively large amplitudes tend to slow down due to eddy currents induced in
the vacuum vessel surrounding the plasma and eventually lock (i.e. become

xi



stationary in the laboratory frame) to static imperfections in the externally generated
magnetic field known as error fields. Such tearing modes often trigger disruptions. In
fact, there is a very clear correlation between the occurrence of so-called locked
modes and disruptions.

Tearing modes are generally driven to instability by radial current and pressure
gradients within tokamak plasmas. However, there exists a particularly virulent
class of tearing modes, known as neoclassical tearing modes, that is driven by the loss
of the neoclassical bootstrap current inside the separatrix of a magnetic island chain
consequent on the flattening of the plasma pressure profile within the separatrix.

Tearing modes in tokamak plasmas are very poorly described by conventional
single-fluid resistive MHD because of the relatively low collisionality of such
plasmas combined with the significantly different drift velocities of the various
plasma species. Tearing modes are also not always well described by linear analysis,
which becomes invalid as soon as the radial widths of the magnetic island chains at
the various resonant surfaces exceed the (very narrow) linear layer widths.

The aim of this book is to outline a realistic, comprehensive, self-consistent,
analytic theory of tearing-mode dynamics in tokamak plasmas. The theory in
question models the plasma as a multi-component fluid (a kinetic approach would
be infeasible) and makes extensive use of asymptotic matching methods.

Chapter 1 estimates the typical plasma parameters needed to achieve thermonu-
clear fusion in a conventional tokamak and goes on to give a general overview of
tearing modes in tokamaks. Chapter 2 outlines the fundamental fluid theory that
underpins the analysis of tearing mode dynamics in tokamak plasmas. This task is
complicated by the low collisionality of tokamak plasmas, which requires a so-called
neoclassical closure of the parallel (to the magnetic field) dynamics, as well as by the
presence of small-scale plasma turbulence, which necessitates a phenomenological
closure of the perpendicular dynamics. Chapter 3 introduces an approximation that
forms the basis of much of the analysis in this book, in which a tokamak plasma is
treated as a periodic cylinder. The chapter also introduces the fundamental
asymptotic matching method that underpins all tearing-mode theory. In chapter 4,
a reduced drift-MHDmodel is extracted from the fundamental fluid equations derived
in chapter 2 by first neglecting all specifically neoclassical terms in the equations and
then removing from the remaining equations the irrelevant physics of compressible
Alfvén waves. Chapter 5 uses the reduced drift-MHDmodel of chapter 4 to determine
all linear response regimes of a resonant layer interacting with a rotating magnetic
perturbation. In chapter 6, the linear response theory of chapter 5 is employed to
estimate the linear growth rates, rotation frequencies, and resonant-layer thicknesses
of tearing modes in tokamak plasmas. Chapter 7 uses the linear response theory of
chapter 5 to determine the critical error-field amplitude above which such a field is able
to introduce a locked magnetic island chain into a tokamak plasma. Chapter 8
employs the reduced drift-MHD model of chapter 5 to determine the nonlinear
response of a magnetic island chain to a rotating magnetic perturbation. In chapter 9,
the nonlinear response theory of chapter 8 is used to analyze the growth, saturation,
and rotation of nonlinear tearing modes in tokamak plasmas. Chapter 10 employs the
nonlinear response theory of chapter 8 to investigate the braking of a magnetic island
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chain’s rotation when it interacts electromagnetically with a resistive vacuum vessel. In
chapter 11, a neoclassical reduced drift-MHD model is extracted from the funda-
mental fluid equations derived in chapter 2 by first retaining all specifically neoclassical
terms in the equations and then removing from the equations the irrelevant physics
of compressible-Alfvén waves. Chapter 12 uses the neoclassical reduced drift-MHD
model of chapter 11 to investigate the physics of neoclassical tearing modes. In
chapter 13, the neoclassical reduced drift-MHD model of chapter 11 is employed to
analyze the locking of a rotating magnetic island chain to a static error field. Finally,
chapter 14 generalizes the analysis of the book to take the true toroidal geometry of
tokamak plasmas into account.

The author would like to express his gratitude to the teachers, colleagues, and
students with whom he has interacted over the years in his quest to gain a more
complete understanding of tearing mode dynamics in tokamak plasmas. These
include R J Hastie, J W Connor, J B Taylor, T C Hender, A W Morris, G M
Fishpool, C GGimblett, H RWilson, CMRoach, A Thyagaraja, and D AGates at
the UKAEA Culham Laboratory; J A Wesson, P G Carolan, and M F F Nave at
the Joint European Torus (JET); T H Jensen, R J La Haye, J T Scoville, M S Chu,
and C Paz-Solden at General Atomics; F L Waelbroeck, R Hazeltine, P G Watson,
F Militello, E P Yu, E Rossi, A J Cole, R L White, R Carrera, W L Rowan, R D
Bengston, E R Solano, P H Edmonds, H Gasquet, G Cima, and A J Wooten at the
University of Texas at Austin; J D Callen, C C Hegna, B E Chapman, D Craig, and
S C Prager at the University of Wisconsin-Madison; M E Mauel, G A Navratil,
A M Garofalo, S A Sabbagh, and D A Maurer at Columbia University; J P
Freidberg, I H Hutchinson, R S Granetz, S M Wolfe, and A Hubbard at the
Massachusetts Institute of Technology (MIT); A H Glasser and J M Finn at Los
Alamos National Laboratory; K M McGuire, J Bialek, M Okabayashi, H R
Strauss, A O Nelson, A H Reiman, J-K Park, S Kim, A Bhattacharjee, D P
Brennan, N C Logan, Q M Hu, and R Nazikian at Princeton Plasma Physics
Laboratory; A I Smolyakov at the University of Saskatchewan; S C Guo, D F
Escande, P Zanca, and P Martin at the Consorzio RFX, Padua; F Porcelli and
D Grasso at the Politecnico di Torino; J Lee at the Korea Institute of Fusion
Energy, Daejeon; K H Finken at Jülich; and H Zohm and S Günter at the
Max-Planck-Institut für Plasmaphysik, Garching.
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Chapter 1

Introduction

1.1 Introduction
The aims of this chapter are, first, to estimate the typical plasma parameters needed
to achieve thermonuclear fusion in a conventional magnetic confinement device such
as a tokamak, and second, to give a general overview of tearing modes in tokamaks.

1.2 Thermonuclear fusion
Existing nuclear reactors derive energy from the fission of heavy nuclei (i.e., U235

and Pu239 ). On the other hand, a nuclear fusion reactor would derive energy from the
fusion of light nuclei (i.e. H2 and H3 ). The main advantages of nuclear fusion
reactors are, first, that they do not generate heat-producing, highly radioactive, long-
lived fission products, and, second, that the principal fuel for such reactors (namely,
deuterium) is abundantly present on the Earth. In fact, deuterium has a natural
abundance in the Earth’s oceans of about one atom in 6420 of hydrogen.

In order for two light nuclei to fuse together, they must collide with sufficient
violence that one of the nuclei is able to quantum mechanically tunnel through the
other’s repulsive Coulomb barrier [1]. In so-called thermonuclear fusion, both species
of nuclei are confined within a plasma, and have thermal (i.e. Maxwellian) velocity
distribution functions characterized by a common temperature. The collisions that
give rise to nuclear fusion reactions are associated with the random motions of the
nuclei within the plasma, and have mean energies (in the center of mass frame) that
are directly proportional to the plasma temperature. Thus, the higher the temper-
ature, the more violent the collisions. It follows that if the temperature is made
sufficiently high, nuclear fusion will occur. However, a high-temperature plasma is,
necessarily, also a high-pressure plasma and thus requires confinement to prevent it
from dispersing. The thermonuclear plasma at the center of the Sun is confined by
gravity. Unfortunately, gravity is too weak a force to confine a terrestrial
thermonuclear plasma of realistic size. Instead, such plasmas can be confined by a
strong magnetic field. In principle, magnetic confinement is possible if the gyroradii
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of the charged particles that make up the plasma are much smaller than the plasma
dimensions [2].

1.3 Nuclear fusion reactions
The nuclear fusion reaction that is of principal interest for the purposes of energy
production in a magnetically confined thermonuclear plasma is

α+ → +D T n . (1.1)

Here, D denotes a deuterium nucleus ( H2 ), T denotes a tritium nucleus ( H3 ), n
denotes a neutron, and α denotes an alpha particle ( He4 ). At achievable mean
plasma temperatures (i.e. less than about 10 keV), a D–T fusion reaction has a cross
section that is approximately 100 times greater than that of a D–D fusion reaction
(or a T–T fusion reaction) [1]. (There is, unfortunately, no H–H fusion reaction.) For
this reason, D–T fusion is considered to be more practical than D–D fusion, despite
the fact that there is no natural source of tritium on the Earth. In fact, it is envisaged
that D–T fusion reactors will breed the requisite tritium within a blanket that
surrounds the plasma via nuclear reactions such as

α+ → +Li n T. (1.2)6

Note that Li6 makes up 7.6% of terrestrial lithium, which makes up about 0.002% of
the Earth’s crust.

A D–T fusion reaction liberates

EΔ = 17.59 MeV (1.3)DT

of kinetic energy that is subsequently carried off by the fusion products [1]. In a
thermonuclear plasma, the momenta of the fusion products exceed those of the
fusion reagents by many orders of magnitude, so the fusion reaction effectively takes
place in the center of mass frame. Consequently, momentum and energy conserva-
tion require each product to carry off the fraction of the liberated energy that is
inversely proportional to its mass (given that the products are moving non-
relativistically) [3]. The masses of a neutron and an alpha particle are

= × −m 1.675 10 kgn
27 and = ×α

−m 6.645 10 kg27 , respectively. Hence, the kinetic
energies of the neutron and the alpha particle generated by a D–T fusion reaction
are

E E=
+

Δ =α

α
⎜ ⎟
⎛
⎝

⎞
⎠

m
m m

14.05 MeV, (1.4)n
n

DT

E E=
+

Δ =α
α

⎜ ⎟
⎛
⎝

⎞
⎠

m
m m

3.541 MeV, (1.5)n

n
DT

respectively. In a magnetic confinement device, the alpha particles generated by D–T
fusion reactions are confined by the magnetic field that permeates the plasma and
subsequently slow down and heat the deuterium and tritium nuclei, thereby
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maintaining the nuclear fusion reactions. On the other hand, the neutrons generated
by D–T fusion reactions exit the plasma, and are absorbed by the surrounding
blanket. The energy absorbed by the blanket is extracted via a conventional heat
exchanger and used to generate electrical power. As has already been mentioned, the
neutrons also breed tritium within the blanket, thereby replacing the tritium burned
up in the fusion reactions.

Consider a thermonuclear plasma consisting principally of electrons, deuterium
ions (that are fully stripped of electrons), and (fully stripped) tritium ions. All three
species are assumed to have Maxwellian velocity distribution functions character-
ized by a common temperature, T. The rate of D–T fusion reactions occurring per
unit volume within the plasma is [4]

vσ= 〈 〉f n n T( ), (1.6)D T DT

where nD is the deuteron number density, nT the triton number density, σ the cross
section for D–T fusion reactions, v the relative velocity of the reacting species, and
〈 〉 denotes an average over the Maxwellian distributions of the reacting species. In
the range of temperatures from 1–100 keV, the D–T fusion reactivity, vσ〈 〉 T( )DT , is
accurately fitted by the following formula [1, 5]

vσ ζ ξ ζ ξ〈 〉 = −−T C( ) exp( 3 ), (1.7)DT 0
5/6 2 1/3

where

ξ = C
T

, (1.8)1
1/3

ζ = − + +
+ + +
C T C T C T

C T C T C T
1

1
. (1.9)2 4

2
6

3

3 5
2

7
3

Here, T is measured in units of keV. The parameters C1–C7 are specified in table 1.1.
Figure 1.1 plots vσ〈 〉 T( )DT for a realistic range of plasma temperatures. It can be
seen that vσ〈 〉 T( )DT is a rapidly increasing function of increasing temperature, and
that vσ〈 〉 ≃ − −10 m sDT

22 3 1 when ≃T 10 keV.

Table 1.1. Parameters for formulae (1.7)–(1.9).

−C (m s )0
3 1 × −6.4341 10 20

C (keV )1
1/3 6.6610
−C (keV )2

1 × −1.5136 10 2

−C (keV )3
1 × −7.5189 10 2

−C (keV )4
2 × −4.6064 10 3

−C (keV )5
2 × −1.3500 10 2

−C (keV )6
3 − × −1.0675 10 4

−C (keV )7
3 × −1.366 10 5
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1.4 The Lawson criterion
Consider a thermonuclear plasma that consists of an optimal 50%–50% mixture of
deuterium and tritium ions as well as electrons. Suppose that there are no impurity
ions or helium ash particles (i.e. thermalized alpha particles) present in the plasma.
Quasi-neutrality [2] demands that

= =n n
n
2

, (1.10)D T
e

where ne is the number density of electrons. Suppose that the two ions species have
the same temperature, Te (measured in energy units), as the electrons. The total
thermal energy density of the plasma is thus [2]

≡ + + =W n T n T n T n T
3
2

3
2

3
2

3 . (1.11)D e T e e e e

The rate of nuclear fusion reactions per unit volume is (see equation (1.6))

v vσ σ≡ 〈 〉 = 〈 〉f n n T
n

T( )
4

( ). (1.12)D T DT e
e

2

DT e

In order to achieve a self-sustaining nuclear fusion reaction in a thermonuclear
plasma, the fusion heating power per unit volume, Eαf , must exceed the energy loss
rate per unit volume, Ploss. (Recall that the alpha particles produced by nuclear

Figure 1.1. D–T fusion reactivity plotted as a function of the assumed common temperature of the fusion
reagents.
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fusion reactions heat the plasma, whereas the neutrons exit the plasma without
heating it.) Thus, we require

E ⩾αf P . (1.13)loss

Let us write

τ
=P

W
. (1.14)loss

E

Here, the energy confinement time, τE, is a measure of how long the plasma’s thermal
energy is confined within the plasma before escaping. Note that, at this stage, we are
making no statement about the nature of the energy loss mechanism. In fact,
equation (1.14) can be thought of as the definition of τE. The previous four equations
can be combined to give

τ ⩾n F T( ), (1.15)e E lawson e

where

Evσ
=

〈 〉 α
F T

T
T

( )
12

( )
. (1.16)lawson e

e

DT e

Figure 1.2 plots Flawson as a function of the electron temperature,Te. It can be seen
that F T( )lawson e attains a minimum value of × −1.49 10 s m20 3 when =T 25.67 keVe .

Figure 1.2. The Lawson function, Flawson, versus the electron temperature, Te.

Tearing Mode Dynamics in Tokamak Plasmas

1-5



Thus, we conclude that a self-sustaining nuclear fusion reaction is only possible in a
thermonuclear plasma if

τ ⩾ × −n 1.49 10 s m . (1.17)e E
20 3

This criterion is known as the Lawson criterion [6].
In conventional magnetic confinement devices, ne andTe can be varied over a wide

range of values. However, the maximum value of the plasma pressure, which is
proportional to n Te e, is fixed by plasma stability considerations [7, 8] (see section
1.10). According to equations (1.15) and (1.16), the criterion for a self-sustaining
nuclear fusion reaction can be recast in the form

τ ⩾n T F T( ), (1.18)e e E triple e

where

Evσ
=

〈 〉 α
F T

T
T

( )
12

( )
. (1.19)triple e

e
2

DT e

Given that the maximum value of the product n Te e is fixed, it follows that fusion
reactivity is maximized at the temperature that minimizes the function F T( )triple e . As
illustrated in figure 1.3, F T( )triple e attains a minimum value of × −2.76 10 keV s m21 3

when =T 13.54 keVe . Thus, a more useful form of the Lawson criterion is

Figure 1.3. The triple product function, Ftriple, versus the electron temperature, Te.
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τ ⩾ × −n T 2.76 10 keV s m . (1.20)e e E
21 3

Here, τn Te e E is known as the fusion triple product and is the conventional figure of
merit for thermonuclear fusion reactions in magnetic confinement devices [8].

1.5 Fusion plasma parameters
We are now in a position to estimate the characteristic properties of a thermonuclear
plasma trapped in a magnetic confinement device. As we have seen, the critical
fusion triple product required to achieve nuclear fusion is minimized when

≃T 13.5 keVe . Nevertheless, the two burning plasma experiments that are currently
under construction, namely the ITER tokamak [9] and the SPARC tokamak [10],
aim to operate at a somewhat lower volume-averaged plasma temperature of

≃T 7 keVe . Note that = = × −F T( 7 keV) 3.97 10 keV s mtriple e
21 3. Thus, confine-

ment devices operating at this lower plasma temperature have to satisfy the slightly
more stringent Lawson criterion

τ ⩾ × −n T 3.97 10 keV s m . (1.21)e e E
21 3

The total plasma pressure is written as

≡ + + =p n T n T n T n T2 . (1.22)D e T e e e e e

Let B be the strength of the magnetic field that confines the plasma. It is helpful to
define the dimensionless parameter [2]

β
μ

≡ = × −
−p

B
n T

B

2
8.05 10

(10 m ) (keV)
(T)

, (1.23)0
2

2 e
20 3

e
2

which measures the ratio of the plasma’s thermal energy density to the energy
density of the magnetic field. It turns out that plasma stability considerations ensure
that conventional magnetic confinement devices, such as tokamaks, cannot safely
operate at beta values that exceed a few percent [11] (see section 1.10).

We can write

τ
χ

=
⊥

a
, (1.24)E

2

where a is the minor radius of the plasma (i.e. the shortest distance from the plasma
core to the plasma boundary) and χ⊥ is the mean rate at which energy diffuses
through the plasma. In practice, energy diffuses out of a magnetic confinement
device through the action of small-scale turbulence driven by density and temper-
ature gradients within the plasma [8, 12]. Moreover, the typical energy diffusion rate
is about −1 m s2 1 [8].

The previous four equations can be combined to give

χ
β

⩾ ⊥⎡
⎣⎢

⎤
⎦⎥

B a 17.9
(%)

T m. (1.25)
1/2
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Thus, we deduce that in order to obtain a self-sustaining nuclear fusion reaction in a
magnetic confinement device characterized by β ≃ 0.02 (see equation (1.81)) and
χ ≃⊥

−1 m s2 1, the product of the magnetic field strength and the plasma’s minor
radius must exceed about 13 tesla-meters. Conventional superconducting magnet
technology limits practical magnetic field strengths in magnetic confinement devices
to approximately ≃B 5 T. Thus, to achieve nuclear fusion, such devices must have
minor radii of about ≃a 2.5 m [9]. High-temperature superconducting magnet
technology allows the practically achievable magnetic field strength to be increased
to approximately ≃B 12 T. Thus, to achieve nuclear fusion, high-field devices need
only have minor radii of about ≃a 1.1 m, which implies a reduction in the plasma
volume by a factor of approximately 12 [10]. This is significant because the cost of a
fusion experiment scales roughly with the volume of the experiment.

The rules of thumb which state that β ≃ 0.02 and χ ≃⊥
−1 m s2 1, combined with

equations (1.23)–(1.25), allow us to estimate the characteristic properties of
thermonuclear plasmas trapped in both low-field magnetic confinement devices
and high-field magnetic confinement devices, as given in table 1.2. Note that these
estimates agree well with the much more carefully worked out estimates given in
references [9] and [10]. Roughly speaking, thermonuclear fusion requires a deute-
rium–tritium plasma with a minor radius of at least 1 m and an electron number
density of at least 1020 particles per cubic meter to be heated to a mean temperature
of about 7 keV, and the heat must be subsequently confined within the plasma for at
least 1 s. The requisite strength of the confining magnetic field is at least 5 tesla.

Of course, in order for magnetic confinement to work properly, the gyroradii of
all of the charged particle species must be significantly less than the minor radius
of the plasma. Obviously, the most stringent requirement is that the gyroradii of
alpha particle fusion products, ρα, must be less than the minor radius. We can write

Table 1.2. The characteristic properties of thermonuclear plasmas trapped in low-
field magnetic confinement devices and high-field magnetic confinement devices.
Here, B is the magnetic field strength,Te the electron temperature, ne the electron
number density, R0 the plasma major radius, a the plasma minor radius, τE the
energy confinement time, β the ratio of the thermal energy density to the magnetic
energy density, and ρα the gyroradius of alpha particle fusion products.

Low field High field

B (T) 5.0 12.0

T (keV)e 7.0 7.0
−n (10 m )e

20 3 0.89 5.1

R (m)0 7.6 3.2

a (m) 2.5 1.1

τ (s)E 6.3 1.1
β 0.02 0.02
ρα a/ × −4.3 10 2 × −4.3 10 2
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E
ρ =α

α αm

e B

2
, (1.26)

where e is the magnitude of the electron charge [2]. Table 1.2 gives ρα a/ estimates for
both low-field magnetic confinement devices and high-field magnetic confinement
devices. In both cases, ρα a/ is significantly less than unity, indicating that the
magnetic field is, in principle, strong enough to confine all of the charged particles
within the plasma (see also table 2.1).

1.6 Particle balance
Let us now examine particle balance in a thermonuclear plasma trapped in a
magnetic confinement device. The number densities of the deuterons, tritons, and
helium ash particles in the plasma evolve over time according to the following
idealized equations:

τ τ
= − − +dn

dt
f

n n
, (1.27)

D D

p

D

f

τ τ
= − − +dn

dt
f

n n
, (1.28)

T T

p

T

f

τ
= −α αdn

dt
f

n
. (1.29)

p

Here, f is the rate of nuclear fusion reactions per unit volume (see equation (1.6)).
Moreover, τp is the particle confinement time, which is defined as the average time
that a particle is confined within the plasma. For the sake of simplicity, the
deuterons, tritons, and helium ash particles are assumed to have the same particle
confinement times. Finally, τf is the fueling time, which is the average time in which
the fusion reagents are replenished in the plasma (e.g. via the injection of frozen
deuterium/tritium pellets) [13]. We are assuming that deuterons and tritons are
replenished at the same rate. Of course, there is no helium ash particle fueling (other
than that provided by nuclear fusion reactions).

Suppose that the plasma has attained a steady state (i.e. =d dt/ 0). Let us assume
that =n nT D (i.e. the deuterium–tritium mix is optimal for nuclear fusion). The burn
fraction,

τ=f
f
n

, (1.30)b
f

D

is defined as the fraction of fuel ions injected into the plasma that undergo fusion
reactions, rather than escaping. Equations (1.27) and (1.29) imply that

τ τ= − f(1 ) , (1.31)f b p
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=
−

αn
n

f

f1
. (1.32)

D

b

b

Quasi-neutrality [2] demands that

+ + + =αn n n Z n n2 . (1.33)D T I I e

Here, we are supposing that the plasma contains a fixed fraction of impurity ions of
number density nI and mean charge number >Z 2I . Usually, such ions originate
from the interaction between the plasma and the surrounding solid surfaces. Typical
impurity ion species are beryllium, boron, carbon, and tungsten. The effective charge
number of the plasma ions is defined as [8]

= + + +αZ
n n n Z n

n
4

. (1.34)eff
D T I

2
I

e

The previous six equations can be combined with equation (1.6) to give

=
− −

− +
n
n

f Z Z

Z f
1
2

(1 ) ( )

(1 )
, (1.35)D

e

b I eff

I b

=
−

− +
αn

n

f Z Z

Z f
1
2

( )

(1 )
, (1.36)

e

b I eff

I b

vσ− +
−

= − 〈 〉
⊥

f Z f

f
Z Z n a

D

[ (1 )]

(1 )
( )

2
. (1.37)b I b

b
2

I eff DT e
2

Here, we have written

τ =
⊥

a
D

, (1.38)p

2

where ⊥D is the mean rate at which particles diffuse through the plasma. In practice,
particles diffuse out of a magnetic confinement device through the action of small-
scale turbulence driven by density and temperature gradients within the plasma
[8, 12]. Moreover, the typical particle diffusion rate is about −0.2 m s2 1 [8].

Assuming that ≃⊥
−D 0.2 m s2 1, =Z 1.5eff [9, 10], and =Z 6I (which corresponds

to fully stripped carbon impurity ions), making use of the data given in table 1.2, and
employing equations (1.31) and (1.34)–(1.38), we can derive the particle balance
data given in table 1.3. (Incidentally, equation (1.37) is most easily solved for fb via
iteration.) Note that, for both low-field confinement devices and high-field confine-
ment devices, the burn fraction is only about 5%. In other words, only 5% of the fuel
ions injected into the plasma undergo nuclear fusion reactions; the remainder escape.
Unfortunately, this is necessary, otherwise there would be an unacceptable buildup
of helium ash within the plasma (see equation (1.32)). In fact, we estimate that the
helium ash makes up about 3% of the ion content of the plasma. The presence of
helium ash and impurity ions in the plasma dilutes the concentration of fuel ions
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with respect to that which would be present if the helium ash and impurities were
absent by about 14%. This, in turn, reduces the nuclear fusion reaction rate in the
plasma by about 25%. We conclude that the helium ash and impurity ion contents of
the plasma must be kept as low as possible. Incidentally heavy impurity ions, such as
tungsten, have such a high mean charge number in a thermonuclear plasma (about
60, in the case of tungsten) that their relative concentration must be significantly less
than that given in table 1.3 (about ≃ × −n n/ 1.2 10I e

4, in the case of tungsten) in
order to avoid unacceptable fuel ion dilution.

If thermonuclear fusion is to work properly, the time required for alpha particle
fusion products to slow down due to collisions with thermal particles and thereby heat
the plasma must be much less than the particle confinement time. (Here, we are making
the simplifying assumption that thermonuclear alpha particles have the same confine-
ment time as the thermalized plasma species.) Otherwise, alpha particles would be able
to escape from the plasma without giving up all of their fusion energy. The slowing-
down time for alpha particles is approximately given by [2, 14, 15]

τ
π ϵ=

Λ
αm T

e n m

3

8 ln
, (1.39)s

3/2
0

2
e
3/2

4
e e

1/2

where Λ ≃ln 16 is the Coulomb logarithm [2] and me the electron mass. As shown in
table 1.3, the ratio τ τ/s p is indeed very much less than unity in thermonuclear
magnetic confinement devices.

1.7 Energy balance
Let us now perform the energy balance calculation outlined in section 1.4 more
exactly. In the presence of helium ash and impurities, expression (1.11) for the total
thermal energy density of the plasma generalizes to give

Table 1.3. Additional characteristic properties of thermonuclear plasmas trapped
in low-field magnetic confinement devices and high-field magnetic confinement
devices. Here, B is the magnetic field strength, τp the particle confinement time, τf

the fueling time, fb the burn fraction, ne the electron number density, nD the
deuteron number density, nα the alpha particle number density, nI the impurity
ion number density, and τs the alpha particle slowing-down time.

Low field High field

B (T) 5.0 12.0

τ (s)p 31 6.1

τ (s)f 30 5.7

fb × −4.8 10 2 × −5.3 10 2

n n/D e 0.433 0.431

αn n/ e × −2.2 10 2 × −2.4 10 2

n n/I e × −1.5 10 2 × −1.5 10 2

τ τ/s p × −4.1 10 3 × −3.7 10 3
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= + + +α
⎜ ⎟
⎛
⎝

⎞
⎠

W
n
n

n
n

n
n

n T
3
2

1
2

. (1.40)D

e e

I

e
e e

As before, the energy loss rate per unit volume due to the turbulent transport of
thermal energy out of the plasma is given by (see equation (1.14))

τ
=P

W
, (1.41)loss

E

where τE is the energy confinement time. However, fusion plasmas also lose energy
due to the emission of electromagnetic radiation (because they are optically thin). In
fact, the principal radiation loss mechanism is electron–ion bremsstrahlung. The
energy loss rate per unit volume due to electron–ion bremsstrahlung is

=P C Z n T , (1.42)rad eff e
2

e
1/2

where = × − − −C 4.07 10 J s m29 1/2 1 3 [4]. Impurity ions that are not fully stripped of
electrons can also radiate via line emission [16]. For light impurities, such as carbon,
which are fully stripped in the plasma core, such radiation is concentrated at the
edge of the plasma and is relatively unimportant. On the other hand, heavy
impurities, such as tungsten, are not fully stripped in the plasma core and therefore
emit line radiation throughout the plasma. The energy loss due to line radiation
from heavy impurities is typically similar in magnitude to the energy loss due to
bremsstrahlung [10, 16]. As before, the heating power per unit volume due to nuclear
fusion reactions is

E Evσ= 〈 〉α α⎜ ⎟
⎛
⎝

⎞
⎠

f
n
n

n T( ) . (1.43)D

e

2

e
2

DT e

(See equation (1.6).) The criterion that must be satisfied to obtain a self-sustaining
nuclear fusion reaction is

E ⩾ +αf P P . (1.44)loss rad

(See equation (1.13).) The previous equations can be rearranged to give

τ ⩾n T F , (1.45)e e E triple

where

Ev

τ

σ
=

+ + + +

〈 〉 α
⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥F

n
n

n
n

n
n

n
n

T C Z n T

T

3
2

1
2

( )
.

(1.46)
a

triple
e

D

2
D

e e

I

e
e

2
eff e e

3/2
E

DT e

Finally, the energy per unit time per unit plasma volume that ends up being
absorbed in the blanket via neutron emission is

E=P f . (1.47)n n
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Hence, the fractions of the nuclear fusion energy generated within the plasma that
end up being absorbed in the blanket, lost as heat conducted to the plasma-facing
components, and radiated away, are

=
+ +

f
P

P P P
, (1.48)n

n

n loss rad

=
+ +

f
P

P P P
, (1.49)loss

loss

n loss rad

=
+ +

f
P

P P P
, (1.50)rad

rad

n loss rad

respectively.
The information in tables 1.2 and 1.3 can be used in combination with equations

(1.46) and (1.48)–(1.50) to produce the estimates that are given in table 1.4. It can be
seen that the dilution of the fusion reagent ions due to the presence of helium ash and
impurities increases the critical fusion triple product needed for self-sustained
nuclear fusion by about 30%. Radiation losses increase the critical fusion triple
product by at least (because we have neglected impurity line radiation) a further
40%. Thus, the table highlights the importance of keeping the helium ash and
impurity content of the plasma as small as possible. Note, however, that, even in a
pure D–T plasma, there is an irreducible radiation loss due to bremsstrahlung
between the electrons and the fueling ions that increases the critical triple product
over that specified in equation (1.21) by about 25%. Finally, about 70% of the fusion

Table 1.4. Additional characteristic properties of thermonuclear plasmas trapped
in low-field magnetic confinement devices and high-field magnetic confinement
devices. Here, Ftriple 1 is the critical fusion triple product needed for self-sustained
nuclear fusion in the absence of both ion dilution and radiation losses, Ftriple 2 the
critical fusion triple product in the presence of ion dilution and the absence of
radiation losses, Ftriple 3 the critical fusion triple product in the presence of both
ion dilution and radiation losses, fn the fraction of the nuclear fusion energy
generated within the plasma that is absorbed by the blanket, floss the fraction of
the fusion energy that is lost as heat conducted to the plasma-facing components,
and frad the fraction of the fusion energy that is radiated away.

Low field High field

B (T) 5.0 12.0
−F (10 keV s m )triple 1

21 3 3.97 3.97
−F (10 keV s m )triple 2

21 3 5.04 5.09
−F (10 keV s m )triple 3

21 3 6.84 7.09

fn 0.69 0.71

floss
0.23 0.21

frad
0.08 0.08

Tearing Mode Dynamics in Tokamak Plasmas

1-13



energy created within the plasma is absorbed by the blanket, about 22% is lost as
heat conducted to the plasma-facing components, and about 8% is radiated away.

1.8 Linear pinches
Let us examine a particularly simple magnetic confinement device. Suppose that the
plasma is contained in a cylindrical vacuum vessel of radius a and finite length, capped
by conducting end plates (see figure 1.4). Let r, θ, z be a conventional cylindrical
coordinate system whose axis corresponds to that of the vessel. Suppose that a uniform
axial current, Ip, is driven through the plasma by electrically biasing the end plates. In
other words, suppose that the electric current density within the plasma is

π
=

I

a
j e . (1.51)z

p

2

The axial current generates a ‘poloidal’magnetic field that circulates around the axis
of the cylinder:

μ
π

= θ
I r

a
B e

2
. (1.52)0 p

2

Here, = ∇ ∣∇ ∣z ze /z and θ θ= ∇ ∣∇ ∣θe / . In combination with the poloidal magnetic
field, the axial current generates an inward radial force that compresses the plasma.
This is known as the pinch effect [17], and the type of magnetic confinement device
described here is called a linear pinch (or sometimes a Z pinch) [7]. Under
equilibrium, we expect that [2]

−∇ + × =p j B 0, (1.53)

where p r( ) is the plasma pressure. Thus, we obtain

μ
π

= − = −θ
dp
dr

j B
I r

a2
, (1.54)

z
0 p

2

2 4

which can be integrated to give

μ
π

= −p
I

a
a r

4
( ). (1.55)0 p

2

2 4
2 2

Figure 1.4. Schematic diagram of a linear pinch.
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The volume-averaged pressure is

∫π
π

μ
π

〈 〉 = =p
a

r p r dr
I

a
1

2 ( )
8

. (1.56)
a

2 0

0 p
2

2 4

Let us make the identification (see equation (1.22))

〈 〉 =p n T2 , (1.57)e e

where ne and Te are the volume-averaged electron number density and the electron
temperature within the plasma, respectively.

The previous two equations yield

π
μ

= ⎜ ⎟
⎛
⎝

⎞
⎠

I a
n T

4 . (1.58)p
e e

0

1/2

Table 1.5 uses the information in table 1.2 to estimate the critical plasma current
needed to achieve self-sustaining nuclear fusion. It can be seen that, in both low-field
confinement devices and high-field confinement devices, the critical current is about
9 MA. The critical poloidal magnetic field strength needed to achieve nuclear fusion is

μ
π

=θB
I

a2
. (1.59)0 p

Table 1.5. Further characteristic properties of thermonuclear plasmas trapped in
low-field magnetic confinement devices and high-field magnetic confinement devices.
Here, B is the magnetic field strength, Ip the plasma current, Bθ the poloidal magnetic
field strength, Te ohm the plasma temperature due to ohmic heating alone, Ploss the
energy loss rate per unit volume, τA the Alfvén time, τR the resistive time, S the
Lundquist number, δ the maximum thickness of the wall material that can be ablated
into the plasma, le the electron mean free path between collisions, τE the parallel
energy confinement time, U the electron energy flux into the end plates of a linear
pinch, and ⊥U the energy flux into the curved wall of a linear pinch.

Low field High field

B (T) 5.0 12.0

I (MA)p 8.9 8.9

θB (T) 0.71 1.7

T (keV)e ohm 0.48 0.48
−P (MW m )loss

3 × −4.7 10 2 1.5

τ (s)A × −1.7 10 6 × −7.2 10 7

τ (s)R ×1.9 103 ×3.3 102

S ×1.1 109 ×4.6 108

δ (m) × −1.5 10 11 × −3.7 10 11

l (m)e ×4.7 103 ×8.2 102

τ (s)E × −2.0 10 7 × −2.0 10 7

−U (TW m )2 7.4 43

⊥
−U (MW m )2 × −5.9 10 2 0.81
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Note from table 1.5 that the critical poloidal field strength is much less than the total
field strength. This is the case because another, much larger component of the
magnetic field (in this case, an axial component) is needed to stabilize the plasma [7]
(see section 1.10).

As well as generating a poloidal magnetic field, the axial current that passes
through the plasma heats it ohmically. The ohmic heating rate per unit volume is

σ π σ
= = ⎜ ⎟⎛

⎝
⎞
⎠

P
j I

a
1

, (1.60)z
ohm

2
p

2

2

where

σ
π ϵ=

Λ
T

Z e m

6 2

ln
(1.61)

3/2
0

2
e

3/2

eff
2

e
1/2

is the electrical conductivity of the plasma [2] (see section 2.6). Let us investigate
whether ohmic heating alone is capable of generating a high enough plasma
temperature for nuclear fusion. A steady state is achieved when the ohmic heating
rate balances the energy loss rate:

=P P (1.62)ohm loss

Here,

χ μ χ
π

= =⊥ ⊥P
n T

a

I

a

3 3

16
, (1.63)loss

e e

2
0 p

2

2 4

where use has been made of equations (1.11), (1.14), (1.24), and (1.58). Ploss is
estimated in table 1.5. The previous four equations suggest that the plasma
temperature achieved by ohmic heating alone is

π ϵ μ χ
= Λ

⊥
⎜ ⎟
⎛

⎝

⎞

⎠
T

Z e m8 ln

9 2
. (1.64)e ohm
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2

e
1/2

3/2
0

2
0

2/3

According to table 1.5, if =Z 1.5eff and χ ≃⊥
−1 m s2 1 (see sections 1.5 and 1.6),

Te ohm is only about 0.48 keV. However, this is the volume-averaged electron
temperature. If we assume that the temperature profile is peaked in the same
manner as the pressure profile in equation (1.55), then we conclude that the central
electron temperature due to ohmic heating alone is about 0.96 keV. This is still well
below the plasma temperature (i.e. 7 keV) needed for self-sustaining nuclear fusion.
Thus, we deduce that, in order to achieve thermonuclear fusion in a magnetic
confinement device, the plasma must be subject to additional heating. This so-called
auxiliary heating is usually provided by high-energy neutral particles or radio-
frequency electromagnetic waves injected into the plasma [8]. If Paux is the auxiliary
heating rate per unit volume, then we can write

+ =P P P . (1.65)ohm aux loss
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The previous five equations yield

=
−

T
T
P P(1 / )

. (1.66)e
e ohm

aux loss
2/3

Hence, we conclude that plasma temperatures sufficient for nuclear fusion can be
achieved by means of auxiliary heating, but this requires →P Paux loss.

There are two serious problems with linear pinch magnetic confinement devices.
The first problem is that the plasma is ideally unstable. A so-called ideal plasma
instability is one that does not change the topology of the magnetic field (i.e. it does
not require the reconnection of magnetic field lines). For the case of a linear pinch,
the relevant instabilities are the ‘sausage’ mode and the ‘kink’ mode [7]. These
instabilities are global in nature, cause distortions in the shape of the plasma that are
consistent with their names, and lead to the complete disruption of the plasma
discharge [4]. Ideal instabilities arise because the force balance criterion described in
equation (1.53) breaks down. Consequently, the electromagnetic pinch force is
balanced by plasma inertia, rather than by plasma pressure. In other words,

ρ ∂
∂

≃ ×
t
V

j B, (1.67)

where ρ is the plasma mass density and V is the plasma (i.e. ion) velocity. We can
make the following estimates: ≃ θB B , where Bθ is specified in equation (1.59);

μ≃ θj B a2 /( );0 ρ = +n m m(1/2) ( )e D T , where = × −m 3.344 10D
27 kg and

= × −m 5.007 10T
27 kg are the deuteron and triton masses, respectively; τ≃t A,

where τA is the typical timescale on which an ideal mode grows; and τ≃V a/ A, which
is appropriate to a global instability. These estimates lead to the following estimate
for the characteristic timescale on which an ideal instability grows:

τ
μ

=
+

θ

a n m m

B

( )

2
. (1.68)A

0 e D T

Here, τA is known as the Alfvén time [7]. According to table 1.5, the Alfvén time is of
order a microsecond in a linear pinch. We conclude that ideal instabilities would
disrupt a plasma confined in a linear pinch on a timescale that is about a million
times shorter than the energy confinement time needed to achieve nuclear fusion (see
table 1.2). Clearly, it is imperative that plasmas in magnetic confinement devices be
rendered stable when exposed to ideal instabilities. This goal can be achieved in a
linear pinch by adding an axial magnetic field, B ez z, whose strength greatly exceeds
that of the poloidal field [7].

The second problem with a linear pinch is associated with the need to keep the
impurity content of the plasma within acceptable limits. Suppose, for the sake of
example, that the inner surface of the vacuum vessel is lined with graphite tiles, as is
the case in many magnetic confinement devices. The mass density of graphite is
ρ = × −2.2 10 kg mg

3 3. Moreover, the mass of a carbon atom is = × −m 1.994 10c
26 kg.

Thus, the number density of carbon atoms within the tiles is
ρ= = × −n m/ 1.1 10 mc g c

29 3. Note that this number density exceeds that of the
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particles in the plasma by nine orders of magnitude (see table 1.2). We need to keep
the impurity content of the plasma such that ≃Z 1.5eff , otherwise the fuel ion
dilution and radiation losses become unacceptable. According to table 1.3, this
implies that the number density of carbon atoms within the plasma, nI, cannot
exceed 1.5% of the electron number density. Suppose that, as a consequence of
plasma–wall interactions, a layer of carbon atoms of thickness δ is ablated into the
plasma. It can easily be demonstrated that

δ=n
n

a
2

, (1.69)I
c

which yields

δ = n a
n2

. (1.70)
I

c

It can be seen from table 1.5 that δ ∼ −10 11 m, which is about 10 times smaller than
the interatomic spacing of carbon atoms in graphite. Thus, we conclude that in order
to avoid unacceptable fuel ion dilution and radiation losses, plasma–wall inter-
actions must result in less than an atomic monolayer of the plasma-facing
components ending up in the plasma. Obviously, this is a very stringent criterion.
If the inner surface of the vacuum vessel is lined with tungsten instead of carbon, the
criterion becomes even more stringent. In fact, only about 1 tungsten atom per 1000
making up the first atomic monolayer of the plasma-facing components can end up
in the plasma.

In a linear pinch, the interaction of the plasma with the curved surface of the
vacuum vessel is moderated by the small gyroradii of charged particles within the
plasma, which ensure that particles cannot freely stream to the surface, but instead
have to slowly diffuse across magnetic field lines in order to reach it (see section 2.6).
However, in the presence of an axial magnetic field, charged particles can reach the
end plates by moving along magnetic field lines. This process is not moderated by
the small particle gyroradii. In fact, the only possible moderation mechanism is
collisions. The mean free path between collisions of an electron moving parallel to a
magnetic field line is [2]

v τ=l , (1.71)e t e e

where v = T m(2 / )t e e e
1/2 is the electron thermal velocity, and

τ
π ϵ=

Λ
m T

Z e n
6 2

ln
(1.72)e

3/2
0

2
e

1/2
e
3/2

eff
4

e

is the electron–ion collision time [2] (see section 2.4). According to table 1.5, the
electron mean free path between collisions is of the order of a kilometer. The ion
mean free path between collisions is of similar magnitude. (See table 2.1. Note that le

is calculated with =Z 1eff in this table.) Given that a kilometer is very much longer
than the conceivable length of a practical linear pinch, we conclude that collisions do
not moderate the flow of charged particles along magnetic field lines to the end
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plates at all. In other words, electron and ion thermal energy effectively flows along
magnetic field lines to the end plates at the appropriate thermal velocity. Suppose
that the pinch has a length of L = 10m. Electron thermal energy that flows along
magnetic field lines to the end plates is effectively only confined within the plasma
for a time

v
τ = L

. (1.73)E
t e

As shown in table 1.5, this parallel energy confinement time is less than a micro-
second, which means that it is at least a million times too small for the purposes of
nuclear fusion (see table 1.2). The flux of electron thermal energy into the end plates
is

τ
=U

n T L3
2

. (1.74)
e e

E

As shown in table 1.5, this flux is of the order of a terawatt per meter squared.
Obviously, it is impossible to believe that ablation at a solid surface subject to such
an enormous energy flux could be limited to a monolayer or less of atoms. By
contrast, the flux of plasma thermal energy into the curved wall is

τ
χ

= =⊥
⊥U

n T a n T

a
3

2

3

2
. (1.75)e e

E

e e

As shown in table 1.5, this flux is much more manageable, being less than a
megawatt per meter squared.

1.9 Toroidal pinches
An obvious way of dealing with the problem of the end plates is to bend a linear
pinch into a circle to produce a toroidal plasma. See figure 1.5. This procedure
allows us to carry over most of the results that we previously obtained for a linear
pinch while obviating the need for the end plates. In a so-called toroidal pinch, the
plasma is confined on a series of axisymmetric, nested, toroidal magnetic flux
surfaces [7]. As such, the plasma thermal energy is not able to reach the toroidal

Figure 1.5. Schematic diagram of a toroidal pinch.
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vacuum vessel surrounding the plasma by freely streaming along magnetic field lines
—which, as we have seen, is a very rapid process—but must instead diffuse across
the magnetic flux surfaces, which is a comparatively slow process. The magnetic field
of a toroidal pinch consists of a poloidal component that circulates about the
magnetic axis and a toroidal component that runs parallel to the axis. See figure 1.5.
The poloidal magnetic field is generated by a toroidal current that is induced in the
plasma via transformer action. In essence, the plasma forms the single-turn
secondary winding of a transformer circuit. The toroidal magnetic field is generated
by currents flowing in magnetic field coils that surround the plasma [8]. The poloidal
magnetic field is responsible for confining the plasma via the pinch effect (when it is
combined with the toroidal plasma current). The toroidal magnetic field is needed to
stabilize the plasma against ideal kink modes but does not contribute greatly to
confinement (other than by reducing the gyroradii of charged particles within the
plasma).

Let R0 and a be the major and minor radii of the plasma torus, respectively.
Consider an idealized magnetic flux surface of circular poloidal cross section. Let

<r a be the minor radius of this surface, and let θ and φ be the poloidal and toroidal
angles, respectively. Furthermore, let θB r( ) and Bφ be the mean poloidal and
toroidal magnetic field strengths, respectively, on the surface. The safety factor,

= φ

θ
q r

r B

R B
( ) , (1.76)

0

is the mean number of toroidal circuits of the plasma that a magnetic field line within
the flux surface completes for every poloidal circuit [8]. A more exact definition of
this important quantity is given in equation (2.128). Incidentally, throughout this
book, we shall make the conventional assumptions that the r, θ, φ coordinate system
is right-handed and that >θB 0 and >φB 0. This implies that >I 0p (in other words,
the toroidal plasma current runs in the φ+ direction), and >q 0.

1.10 Tokamaks
A conventional tokamak is a type of toroidal pinch characterized by a monotoni-
cally increasing q r( ) profile with a central value that is slightly less than unity
(typically, ≃q(0) 0.8) [8].

Let =q q a( )a be the safety factor at the edge of the plasma. One criterion that
must be met if a tokamak plasma is to remain stable to ideal kink modes is [7]

>q 1. (1.77)a

This criterion is known as the Kruskal–Shafranov criterion [18, 19] and sets an upper
limit on the toroidal plasma current at a fixed toroidal magnetic field strength. In
practice, a tokamak can only safely operate when ≳q 3a [8]. A conventional
tokamak has an inverse aspect ratio of [9, 10]

ϵ ≡ ≃a
R

1
3

. (1.78)a
0
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(see table 1.2). It follows that

ϵ
= ≃φ

θ

B

B a

q

( )
9. (1.79)a

a

In other words, the strength of the toroidal magnetic field which is needed to
stabilize the plasma against ideal kink modes exceeds that of the poloidal magnetic
field (which actually confines the plasma) by almost an order of magnitude.
Obviously, this is a rather steep price to pay for plasma stability (given that most
of the expense of a tokamak experiment is associated with generating the toroidal
magnetic field).

A second criterion that must be met if a tokamak plasma is to remain stable to
ideal kink modes is [7]

β β<
φ

I

a B
(%)

(MA)

(m) (T)
, (1.80)N

p

where β = 2.8N . This criterion is known as the Troyon limit [11]; it sets an upper limit
on the plasma pressure at a fixed toroidal magnetic field strength (see equation
(1.23)). The Troyon limit can also be expressed in the form

β β ϵ< ≃
q

(%) 5 1.6, (1.81)N
a

a

where use has been made of equations (1.58) and (1.79). Thus, we can see that the
maximum beta value at which a conventional tokamak plasma can safely be
operated is indeed limited to about 0.02 (see section 1.5).

1.11 Tearing modes
Consider a magnetic perturbation of a tokamak plasma equilibrium that has m
periods in the poloidal direction and n periods in the toroidal direction. Here, m is
termed the poloidal mode number, while n is termed the toroidal mode number. Such a
perturbation resonates with the plasma (i.e. satisfies · =k B 0, where k is the
wavenumber of the perturbation, and B is the equilibrium magnetic field) at the
magnetic flux surface of minor radius rs, at which [20]

=q r
m
n

( ) . (1.82)s

Such a surface is termed a rational magnetic flux surface, for obvious reasons. The
well-known flux-freezing constraint [2] of ideal magnetohydrodynamics forbids any
change in the topology of magnetic field lines due to the perturbation [7]. In
particular, the constraint requires the perturbed radial magnetic field at the rational
surface to be zero.

An ideal kink mode is an instability of a tokamak plasma that remains
unstable even when the perturbed radial magnetic field is constrained to be zero
at the associated rational surface (assuming that the surface lies within the plasma).
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As we have seen, such instabilities grow on the very short Alfvén timescale.
Fortunately, ideal kink modes are relatively easy to avoid. In fact, ideal kink modes
can be avoided by not allowing the edge safety factor to fall significantly below three
and by not allowing the plasma beta to approach the Troyon limit. It is also
necessary to prevent the plasma density from exceeding the so-called Greenwald limit
[21] that is associated with the radiative collapse of the plasma current profile.

A tearing mode [22] is an instability of a tokamak plasma that is driven by the
same free energy source as an ideal kink mode (namely, radial current and pressure
gradients within the plasma [7]), but changes the topology of the magnetic field by
tearing and reconnecting magnetic field lines at the rational surface. This implies
that the mode is not subject to the constraint that the perturbed radial magnetic field
at the rational surface must be zero. Consequently, a tearing mode can be
unstable even when the corresponding ideal kink mode (i.e. one that possesses the
same poloidal and toroidal mode numbers) is stable [20].

Magnetic reconnection is made possible by a plasma’s finite electrical resistivity
[2]. Magnetic flux diffuses through a tokamak plasma due to the action of resistivity
in the characteristic resistive time

τ μ σ= a , (1.83)R 0
2

where the plasma’s electrical conductivity is specified in equation (1.61) [2]. As
shown in table 1.5, the resistive time in a tokamak fusion reactor exceeds the Alfvén
time by many orders of magnitude. To be more exact, the ratio of the two timescales,

τ
τ

=S , (1.84)
R

A

is known as the Lundquist number [2] and is of the order of 109 in a tokamak fusion
reactor.

It is not surprising that a tearing mode grows and saturates on a timescale that is
related to the resistive time [23]. In fact, the saturation time is typically a few percent of
the resistive time [24]. This implies that a tearing mode is an extremely slowly growing
instability. Nevertheless, the pulse duration of a tokamak plasma is generally
sufficiently long for tearing instabilities to develop fully. As illustrated in figure 1.6,
a tearing mode changes the topology of the magnetic field in the vicinity of the rational
magnetic flux surface to produce amagnetic island chain withm periods in the poloidal

Figure 1.6. Schematic diagram of an = =m n2/ 1 magnetic island chain in a tokamak plasma.
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direction and n periods in the toroidal direction. The chain typically has a radial width
(defined as the width of the magnetic separatrix that separates reconnected from
unreconnected magnetic field lines) that is a few percent of the plasma’s minor radius.
The presence of the island chain is significant because heat and particles are able to get
from one (radial) side of the magnetic separatrix to the other by rapidly streaming
along magnetic field lines, rather than by having to slowly diffuse across magnetic flux
surfaces. Consequently, the plasma pressure profile is flattened within the magnetic
separatrix [25], giving rise to a degradation of the energy and particle confinement
properties of the plasma [26]. Incidentally, the flattening of the electron temperature
within the separatrix of a magnetic island allows the island structure to be imaged by
an electron cyclotron emission diagnostic [27, 28].

1.12 Tearing mode rotation
Under normal circumstances, a tearing mode in a tokamak plasma has a nonzero
real frequency in the laboratory frame; this frequency is determined by the
equilibrium plasma flow at the rational surface. In essence, a magnetic island chain
is a helical pattern in the magnetic field generated by a helical current perturbation
that is localized in the vicinity of the rational surface [23]. Given that plasma current
is predominately carried by electrons, it is natural to suppose that a magnetic island
chain (as well as the tearing mode perturbation away from the rational surface) is
convected by the electron fluid in the immediate vicinity of the rational surface. This
is indeed the case in the so-called linear regime [29], in which the radial thickness of
the island chain is less than the (very thin) characteristic linear layer width [22]. Of
course, as a consequence of diamagnetic flows (see section 2.11), if the island chain is
convected by the electron fluid at the rational surface, then it propagates with respect
to the local ion fluid. However, this is not a problem because a linear layer is
sufficiently thin that the magnetic field can diffuse through the plasma very rapidly,
which implies that the ion fluid is not tied to the magnetic structure of the island
chain. The situation is very different in the nonlinear regime, in which the radial
thickness of the island chain exceeds the linear layer width. The region inside the
magnetic separatrix of a nonlinear magnetic island chain is governed by a
combination of flux freezing and perturbed force balance [23]. This implies that
both the electron and the ion fluids are trapped inside the separatrix and are
therefore forced to corotate with the island chain. There is no such constraint outside
the separatrix, so the electron and ion fluids flow at different speeds in this region as
a consequence of diamagnetism. It follows that one or other of the electron and the
ion fluid rotation profiles must exhibit a strong gradient across the separatrix. The
island propagation velocity is determined by whichever of the two fluids is most
resistant to the formation of such a gradient. Of course, it is the ion fluid which is
more resistant because of its much greater viscosity [30–32] (see section 2.6). Hence,
a nonlinear magnetic island chain is convected by the ion fluid in the vicinity of the
resonant surface, because this choice of propagation speed minimizes the ion fluid
velocity gradient across the separatrix. Interestingly, although early measurements
of tearing mode rotation in tokamak plasmas suggested that tearing modes corotate
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with the electron fluid at the rational surface [33, 34], later measurements obtained
the result that tearing modes corotate with the ion fluid [35, 36]. The difference
between these two sets of results may be due to the fact that the early measurements
were made in comparatively cold plasmas with comparatively wide linear layer
widths (the layer width scales roughly as −Te

3/5 [2, 22]).
Rotating tearing modes in tokamaks are often observed to slow down as they

grow in amplitude; they finally stop rotating or ‘lock’ with a definite poloidal and
toroidal phase when the mode exceeds a critical amplitude [37, 38]. So-called locked
modes are of concern because they are strongly correlated with sudden disruptions of
the plasma discharge [39]. The slowing down of the rotation of a growing tearing mode
is associated with eddy currents excited in the resistive vacuum vessel surrounding the
plasma; such currents generate a magnetic perturbation that exerts an electromagnetic
torque at the rational surface that acts to brake the local plasma rotation; in turn, this
brakes the rotation of the tearing mode [40, 41] (see chapter 10). The locking of the
tearing mode is associated with a so-called error field, which is an accidentally
produced, static, helical magnetic perturbation generated by misalignments of
magnetic field coils and uncompensated coil feeds. An error field with the same
helicity as a tearing mode exerts an electromagnetic locking torque at the mode’s
rational surface that acts to arrest the rotation of the mode [40] (see chapter 13).

1.13 Error field penetration
Error fields can drive magnetic reconnection, resulting in the formation of locked
magnetic island chains in intrinsically tearing-stable plasmas. As has already been
mentioned, locked-mode formation is strongly correlated with plasma disruptions.
Error-field-driven reconnection is strongly suppressed by plasma rotation at the
associated rational surface. However, when the error field amplitude rises above a
certain critical value, the rotation at the rational surface is suddenly arrested, and
error-field-driven reconnection proceeds unhindered. This phenomenon is known as
error-field penetration [40, 42]. The scenario just outlined has been observed in a
number of tokamak experiments [43–51] (see chapter 7).

1.14 Neoclassical tearing modes
Transformer action is not the only source of toroidal plasma current in a tokamak
plasma. In fact, there is an additional, noninductive component of the toroidal
plasma current, known as the bootstrap current [52–54], which is driven by radial
gradients in the plasma pressure (see section 2.20). The flattening of the pressure
profile inside the magnetic separatrix of a magnetic island chain gives rise to a helical
hole in the bootstrap current that has a destabilizing effect on the chain [55]. A
tearing mode that is driven into instability by this mechanism, rather than by the
usual free energy sources for a tearing mode (i.e. global current and pressure
gradients), is known as a neoclassical tearing mode (see chapter 12). Neoclassical
tearing modes were originally identified experimentally in the TFTR tokamak [56]
and are regarded as the main obstacle to obtaining β values in tokamak plasmas that
are adequate for the achievement of thermonuclear fusion [57–59]. However, a
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magnetic island chain can only locally flatten the plasma pressure when its radial
width exceeds a certain threshold value that depends on the local ratio of the parallel
and perpendicular energy diffusivities [25]. This observation leads to the conclusion
that neoclassical tearing modes are actually metastable. In other words, some sort of
seed perturbation must be applied to the relevant rational magnetic flux surface in
order to trigger a neoclassical tearing mode. In practice, the seed perturbation
usually takes the form of a transient magnetic perturbation that is resonant at the
rational surface [60]. Such perturbations arise naturally in tokamak plasmas as a
consequence of plasma instabilities such as internal kink modes and edge-localized
modes [8]. Neoclassical tearing modes can be stabilized by driving a parallel (to the
magnetic field) current in the vicinity of the rational surface by means of electron
cyclotron waves injected into the plasma; the idea is to fill in the helical hole in the
bootstrap current profile [61–66] (see chapter 12).

1.15 Tearing modes in toroidal plasmas
Figure 14.1 shows the contours of the poloidal magnetic flux for a typical plasma
discharge in the KSTAR tokamak [67]. It can be seen that there are a number of
differences from the idealized tokamak pictured in figure 1.5. The first main
difference is that the flux surfaces in figure 14.1 do not have circular cross sections.
In particular, the flux surfaces are highly vertically elongated. It turns out that this
feature allows the toroidal plasma current driven in a tokamak discharge to be
increased without violating the Kruskal–Shafranov criterion (see section 1.10). Hence,
all modern tokamaks have strongly shaped, vertically elongated cross sections. The
second main difference is that the edge of the plasma is defined by a last closed
magnetic flux surface that features a magnetic X-point (i.e. a hyperbolic null in the
poloidal magnetic field). Plasma that crosses the last closed flux surface is rapidly
conducted along magnetic field lines, in a thin scrape-off layer, to divertor plates
located below the plasma. The purpose of this feature is to mitigate the interaction of
the plasma with the plasma-facing components and thereby to help limit the flux of
impurities into the plasma [68]. Hence, all modern tokamaks have magnetic X-points.
Given that the poloidal magnetic field strength at the X-point is zero, the safety-factor
value on the last closed flux surface is infinite (see equation (1.76)). Experimentally, it
has been found that the safety-factor value on the magnetic flux surface that encloses
95% of the poloidal magnetic flux enclosed by the last closed flux surface, known as
q95, plays an analogous role to the edge safety-factor value, qa, in a tokamak without a
magnetic X-point [8] (see section 14.4). Thus, the rule of thumb for safe operation,

≳q 3a , is replaced by ≳q 395 (see section 1.9).
In the type of highly shaped plasma equilibrium pictured in figure 14.1, tearing

modes with the same toroidal mode number but different poloidal mode numbers
are coupled together [69, 70]. Somewhat confusingly, this effect is known as toroidal
mode coupling. Toroidal mode coupling allows magnetic island chains resonant on
different rational surfaces within the plasma to interact. The interaction is expected
to be mutually destabilizing [70]. However, sheared plasma rotation acts to prevent
such interaction (see chapter 14).
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Tearing Mode Dynamics in Tokamak Plasmas

Richard Fitzpatrick

Chapter 2

Plasma fluid theory

2.1 Introduction
The aim of this chapter is to outline the fundamental fluid theory that underpins the
analysis of tearing-mode dynamics in tokamak plasmas.

2.2 Kinetic theory
Consider an ideal plasma consisting of two species: electrons of mass me and
electrical charge = −e ee and ions of mass mi and electrical charge = +e ei . Note that
we are neglecting helium ash particles and impurity ions for the sake of simplicity.
Assuming that the plasma contains an optimal 50%–50% mixture of deuterium and
tritium ions, it follows that = +m m m( )/2i D T , where mD and mT are the deuteron
and triton masses, respectively.

At the most fundamental level, the dynamics of each plasma species is governed
by the kinetic equation [1]:

v v
v

∂
∂
+ · ∇ + + × ·

∂
∂
=

f

t
f

e
m

f
C f fE B( ) ( , ). (2.1)s

s
s

s

s
s e i

Here, vf tr( , , )s is the ensemble-averaged phase-space density of plasma species
s (s stands for either e or i) near point vr( , ) at time t, where r denotes spatial position
and v denotes velocity [2]. Moreover, E and B are the ensemble-averaged electric
and magnetic field strengths, respectively. Finally, C f f( , )s e i is the collision operator
for plasma species s [1]. The electron and ion kinetic equations form a complete set
when combined with Maxwell’s equations.

Equation (2.1) describes plasma dynamics in a six-dimensional space (three
spatial dimensions, and three velocity-space dimensions); as such, it is an extremely
difficult equation to solve. For dynamics that takes place on timescales that are long
compared to the inverse ion gyrofrequency, which certainly applies to tearing-mode
dynamics in tokamak plasmas, the equation can be simplified by averaging over the
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gyromotions of the charged particles [3–5]. The resulting gyrokinetic equation is only
five-dimensional (three spatial dimensions, and two velocity-space dimensions). The
electron and ion gyrokinetic equations have been extensively used to numerically
model plasma turbulence in tokamaks [6–8]. It turns out that this is possible because
turbulent eddies are localized on toroidal magnetic flux surfaces in flux tubes that
run parallel to the magnetic field and whose radial extents are, at most, a few ion
gyroradii. Moreover, the eddies attain a quasi-steady state in a matter of a few
milliseconds. Hence, despite the high dimensionalities of the gyrokinetic equations,
it is practical to solve them in calculations that only simulate a small fraction of the
plasma volume over a time interval of a few milliseconds. Tearing modes are global
plasma instabilities that evolve on timescales of hundreds, if not thousands, of
milliseconds. Unfortunately, it is simply not practical to simulate the whole plasma
over a time interval of a few hundred to a few thousand milliseconds using the
gyrokinetic equations. Hence, a different approach is needed to describe tearing-
mode dynamics. In fact, the only practical option is to employ fluid theory.

2.3 Fluid theory
Plasma fluid equations are obtained by taking the low-order velocity-space moments
of the kinetic equation [1].

The low-order moments of the distribution function, fs, all have simple physical
interpretations. First, we have the particle number density,

v v∫=n t f t dr r( , ) ( , , ) , (2.2)s s
3

and the mean flow velocity,

v v v∫=t
n

f t dV r r( , )
1

( , , ) . (2.3)s
s

s
3

Next, we have the pressure tensor,

v v∫=t m f t dp r u u r( , ) ( , , ) , (2.4)s s s s s
3

and the heat flux,

v v∫=t m u f t dq r u r( , )
1
2

( , , ) . (2.5)s s s
2

s s
3

Here,

v= −u V. (2.6)s s

The trace of the pressure tensor measures the ordinary (or scalar) pressure,

=p p
1
3

Tr ( ). (2.7)s s
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The (kinetic) temperature is defined as

=T
p

n
. (2.8)s

s

s

The low-order velocity-space moments of the collision operator also have simple
interpretations. The friction force density takes the form

v v∫= m C f f dF ( , ) , (2.9)s s s e i
3

while the collisional heating rate density (in the species-s rest frame) is written

v∫≡W m u C f f d
1
2

( , ) . (2.10)s s s
2

s e i
3

The zeroth, first, and contracted second velocity-space moments of the kinetic
equation, (2.1), yield the following set of fluid equations for species s [1]:

+ ∇ · =d n
dt

n V 0, (2.11)s s
s s

π− + × + ∇ + ∇ · =m n
d
dt

e n p
V

E V B F( ) , (2.12)s s
s s

s s s s s s

π+ ∇ · + ∇ + ∇ · =
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p WV V q

3
2

5
2

: . (2.13)s s
s s s s s s

Here,

≡ ∂
∂
+ · ∇d

dt t
V (2.14)s

s

is the well-known convective derivative, and we have written

π= +pp I , (2.15)s s s

where I is the unit (identity) tensor and πs is the viscosity tensor. Obviously, equation
(2.11) is a particle conservation equation for species s, equation (2.12) is a momentum
conservation equation, and equation (2.13) is an energy conservation equation [1].

2.4 Fundamental quantities
Before proceeding further, it is helpful to define a few fundamental quantities.

Of course, quasi-neutrality demands that [1]

≃n n . (2.16)i e

We can estimate typical particle speeds in terms of the so-called thermal speed [1],

v ⎜ ⎟
⎛
⎝

⎞
⎠

= T
m
2

. (2.17)t s
s

s

1/2
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The typical gyroradius of a charged particle gyrating in the magnetic field of a
tokamak is given by

vρ =
∣Ω ∣

, (2.18)s
t s

s

where

Ω = e B
m

(2.19)s
s

s

is the gyrofrequency associated with the gyration [1]. (Note that Ω < 0e , indicating
that electrons gyrate around magnetic field lines in the opposite direction to that of
ions.)

The electron–ion and ion–ion collision times are written

τ
π ϵ

=
Λ
m T

e n

6 2

ln
, (2.20)e

3/2
0

2
e e

3/2

4
e

τ
π ϵ

=
Λ

m T

e n

12

ln
, (2.21)i

3/2
0

2
i i

3/2

4
e

respectively [1]. Here, Λ ≃ln 16 is the Coulomb logarithm [9]. Note that τe is the
typical time required for the cumulative effect of electron–ion collisions to deviate
the path of an electron through 90°. Likewise, τi is the typical time required for the
cumulative effect of ion–ion collisions to deviate the path of an ion through 90°.

The electron and ion collision frequencies are simply the inverses of the
corresponding 90° collision times:

ν
τ

= 1
, (2.22)e

e

ν
τ

= 1
. (2.23)i

i

Finally, the mean free paths between collisions (i.e. 90° scattering events) for
electrons and ions are

v τ=l , (2.24)e t e e

v τ=l , (2.25)i t i i

respectively.
Table 2.1 gives estimates for some of the fundamental plasma parameters defined

in this section in a low-field tokamak fusion reactor and a high-field tokamak fusion
reactor. Here, use has been made of the data shown in table 1.2. For the sake of
simplicity, it has also been assumed that =T Ti e.
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2.5 Fluid closure schemes
The fluid equations for the electron and ion species take the respective forms:

+ ∇ · =d n
dt

n V 0, (2.26)e e
e e

π+ + × + ∇ + ∇ · =m n
d
dt

e n p
V

E V B F( ) , (2.27)e e
e e

e e e e e

π+ ∇ · + ∇ + ∇ · =
d p

dt
p WV V q

3
2

5
2

: , (2.28)e e
e e e e e e

and

+ ∇ · =d n
dt

n V 0, (2.29)i e
e i

π− + × + ∇ + ∇ · = −m n
d
dt

e n p
V

E V B F( ) , (2.30)i e
i i

e i i i e

π+ ∇ · + ∇ + ∇ · =
d p

dt
p WV V q

3
2

5
2

: . (2.31)i i
i i i i i i

Table 2.1. Fundamental plasma parameters in a low-field tokamak reactor and a
high-field tokamak reactor. Here, B is the toroidal magnetic field strength, R0 the
plasma major radius, a the plasma minor radius, ne the electron number density,
Te the electron temperature, Ti the ion temperature, Ωe the electron
gyrofrequency, Ωi the ion gyrofrequency, ρe the electron gyroradius, ρi the ion
gyroradius, τe the electron collision time, τi the ion collision time, le the electron
mean free path, and li the ion mean free path.

Low field High field

B (T) 5.0 12.0

R (m)0 7.6 3.2

a (m) 2.5 1.1
−n (10 m )e

20 3 0.89 5.1

T (keV)e 7.0 7.0

T (keV)i 7.0 7.0

∣Ω ∣ (THz)e 0.88 2.1

Ω (GHz)i 0.19 0.46

ρ μ( m)e
56 24

ρ (mm)i
3.8 1.6

τ (ms)e 0.14 0.025

τ (ms)i 13.6 2.36

l (km)e 7.0 1.2

l (km)i 10 1.7

Tearing Mode Dynamics in Tokamak Plasmas

2-5



Here, use has been made of equations (2.11)–(2.13) and (2.16), as well as the fact that
= −F Fi e (because collisions conserve momentum) [1]. In their present forms, the

electron and ion fluid equations relate interesting fluid quantities, such as the
electron number density, ne, the mean flow velocities, Ve and Vi, and the scalar
pressures, pe and pi, to unknown quantities, such as the viscosity tensors, πe and πi,
the heat fluxes, qe and qi, and the moments of the collision operator, Fe,We, andWi .
In order to complete our set of equations, we need to employ some additional
information to express the latter quantities in terms of the former; this process is
known as closure.

There are two basic types of fluid closure scheme. In truncation schemes, high-
order velocity-space moments of the distribution function are assumed to vanish, or
are prescribed in terms of low-order moments [10, 11]. Truncation schemes are
relatively straightforward to implement, but the error associated with the closure
cannot easily be determined. Asymptotic schemes, on the other hand, depend on a
rigorous expansion of the kinetic equation in terms of some dimensionless parameter
that is small compared to unity [12]. Asymptotic closure schemes have the advantage
of providing some estimate of the error involved in the closure. However, the
asymptotic approach to closure is mathematically demanding, because it involves
working closely with the kinetic equation. In this book, we shall rely on a mixture of
truncation and asymptotic closure schemes.

2.6 The classical closure scheme
The so-called classical asymptotic closure scheme for the electron and ion fluid
equations, (2.26)–(2.31), due to Braginskii [13], is premised on the assumption that
both fluids are highly magnetized, which means that the electron and ion gyroradii
are much smaller than the corresponding mean free paths between collisions. In
other words,

ρ
≪

l
1, (2.32)e

e

ρ
≪

l
1. (2.33)i

i

As is clear from table 2.2, the electron and the ion fluids in tokamak fusion reactors
are indeed highly magnetized, which implies that particle, momentum, and energy
flows that are perpendicular to magnetic field lines are quite different from those that
are parallel to magnetic field lines [1].

For particle, momentum, and energy flows perpendicular to magnetic field lines, the
small (compared to unity) dimensionless expansion parameters upon which the classical
asymptotic closure scheme is based are ρ a/e and ρ a/i . Here, we are assuming that the
variation length scales of quantities perpendicular to magnetic field lines are of order
the plasma minor radius, a. As is apparent from table 2.2, the expansion parameters
ρ a/e and ρ a/i are indeed small compared to unity in tokamak fusion reactors.
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For particle, momentum, and energy flows parallel to magnetic field lines, the
small (compared to unity) expansion parameters upon which the classical asymp-
totic closure scheme is based are l L/e c and l L/i c. Here, we are assuming that the
variation length scales of quantities parallel to magnetic field lines are of the order of
the connection length, π=L q R2c 0, which is the typical distance a magnetic field
line has to travel in order to fully traverse a magnetic flux surface. As is clear from
table 2.2, the expansion parameters l L/e c and l L/i c are actually both large compared
to unity in tokamak fusion reactors. It follows that the classical asymptotic closure
scheme fails in such reactors (because the confined plasmas are not sufficiently
collisional in nature). Nevertheless, in the following, we shall describe the classical
asymptotic closure scheme, before attempting to repair it.

According to the classical asymptotic closure scheme [13],

= +F F F , (2.34)ue T

⎜ ⎟
⎛
⎝

⎞
⎠σ σ

= + ⊥

⊥
n eF

j j
, (2.35)u e

τ
= − ∇ +

Ω
× ∇⊥n T

n
TF b0.71

3
2

, (2.36)T e e
e

e e
e

τ
= −

W
m

m
n T T3 ( )

, (2.37)i
e

i

e e i

e

= − + ·
W W

n e
j F

. (2.38)e i
e

e

Table 2.2. Classical fluid closure parameters in a low-field tokamak
reactor and a high-field tokamak reactor. Here, B is the toroidal
magnetic field strength, ρe the electron gyroradius, ρi the ion gyroradius,
le the electron mean free path, li the ion mean free path, and Lc the
connection length (calculated with q = 3).

Low field High field

B (T) 5.0 12.0

ρ l/e e × −8.0 10 9 × −1.9 10 8

ρ l/i i × −3.8 10 7 × −9.2 10 7

ρ a/e
× −2.2 10 5 × −2.2 10 5

ρ a/i × −1.5 10 3 × −1.5 10 3

l L/e c 49 21
l L/i c 70 29
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Here, = Bb B/ is a unit vector parallel to the magnetic field, and

= −n ej V V( ) (2.39)e i e

is the plasma current density. Moreover, the parallel electrical conductivity is given
by [13, 14]

σ τ= n e
m

1.96 . (2.40)e
2

e

e

whereas the perpendicular electrical conductivity takes the form [13]

σ τ=⊥
n e

m
. (2.41)e

2
e

e

Note that ∇ ⋯ ≡ · ∇ ⋯b b( ) [ ( )] denotes a gradient parallel to the magnetic field,
while∇ ≡ ∇ − ∇⊥ denotes a gradient perpendicular to the magnetic field. Likewise,
≡ ·j b j b( ) represents the component of the plasma current density flowing parallel

to the magnetic field, while ≡ −⊥j j j represents the perpendicular component of the
plasma current density.

It can be seen that parallel component of the friction force density, Fu, is smaller than
the perpendicular component by a factor 1.96; this is a consequence of the fact that the
collision frequency decreases with increasing velocity ( vν ∝ −

e
3), causing the distribu-

tion of electrons with large parallel velocities to be more distorted from a Maxwellian
distribution than that of slower electrons [15]. The thermal force density, FT, is also a
consequence of the velocity dependence of the collision frequency [1] (see section 2.23).

The electron and ion heat fluxes are written [13]

= + + +× ⊥q q q q q , (2.42)e e e e T

= + +× ⊥q q q q , (2.43)i i i i

respectively, where

κ= − ∇Tq , (2.44)s s s

κ= × ∇× × ⊥Tq b , (2.45)s s s

κ= − ∇⊥ ⊥ ⊥Tq , (2.46)s s s

τ
= − +

Ω
× ⊥

T
e

T
e

q j b j0.71
3

2
(2.47)T

e e

e e

are known as the parallel, cross, perpendicular, and thermal heat fluxes, respectively.
Here, the parallel thermal conductivities, which control the diffusion of heat parallel
to magnetic field lines, are given by [13]

κ τ= n T
m

3.16 , (2.48)e
e e e

e
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κ τ= n T
m

3.9 . (2.49)i
e i i

i

Moreover, the cross thermal conductivities, which control the (non-diffusive) flow
of heat within magnetic flux surfaces, perpendicular to magnetic field lines, are
written [13]

κ =
Ω×

n T
m

5
2

, (2.50)e
e e

e e

κ =
Ω×

n T
m

5
2

. (2.51)i
e i

i i

(see section 2.11). Finally, the perpendicular thermal conductivities, which control the
diffusion of heat perpendicular to magnetic flux surfaces, take the forms [13]

κ
τ

=
Ω⊥

n T
m

4.66 , (2.52)e
e e

e e
2

e

κ
τ

=
Ω⊥

n T
m

2 . (2.53)i
e i

i i
2

i

Note that κ ρ κ∼⊥ ×l( / )s s s s and κ ρ κ∼× l( / )s s s s. In other words, in a highly magnetized
plasma (i.e. ρ ≪l/ 1s s ), the species-s perpendicular thermal conductivity is much less
than the cross conductivity, which, in turn, is much less than the parallel conductivity.

According to the previous expressions, the diffusion of heat parallel to magnetic
field lines is characterized by the diffusivities

χ
κ

ν≡ =
n

l1.58 , (2.54)e
e

e
e e

2

χ
κ

ν≡ =
n

l1.95 . (2.55)i
i

e
i i

2

These diffusivities clearly correspond to collision-induced random-walk motions of
electrons and ions, parallel to magnetic field lines, with a step frequency of order νe,i

and a step length of order le,i [1, 2]. On the other hand, the diffusion of heat
perpendicular to magnetic field lines is characterized by the diffusivities

χ κ ν ρ≡ =⊥
⊥

n
2.33 , (2.56)e

e

e
e e

2

χ κ ν ρ≡ =⊥
⊥

n
. (2.57)i

i

e
i i

2

These diffusivities clearly correspond to the collision-induced random-walk motions
of electrons and ions, perpendicular to magnetic field lines, with a step frequency of
order νe,i and a step length of order ρe,i [1, 2].
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In order to describe the viscosity tensor in a highly magnetized plasma, it is
helpful to define the species-s rate-of-strain tensor:

δ=
∂
∂

+ ∂
∂

− ∇ ·W
V

r
V
r

V
2
3

. (2.58)jk
j

k

k

j
jks

s s
s

It can easily be demonstrated that this tensor is zero if the species-s fluid translates,
or rotates as a rigid body, or if it undergoes isotropic compression. Thus, the rate-of-
strain tensor measures the deformation of species-s fluid volume elements.

In a highly magnetized plasma, the viscosity tensor is conveniently described as
the sum of three component tensors [13]:

π π π π= + +× ⊥ , (2.59)s s s s

where

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

π η= − − − ∇bb I bb I V3
1
3

1
3

: , (2.60)s s s

π
η

η= × · − · × + × · − · ××
×

⊥ ⊥ ×b W I I W b b W bb bb W b
2

( ) 2 ( ), (2.61)s
s

s s s s s

⎡
⎣

⎤
⎦

π η

η

= − · · + · ·

− · · + · ·

⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥

I W I I b W b

I W bb bb W I

1
2

( )

4 ( ).

(2.62)

s

s s s s

s s

Here, I is the identity tensor, and = −⊥I I bb.
The tensor π s describes what is known as parallel viscosity; this is a viscosity that

controls the diffusion of parallel (to the magnetic field) momentum along magnetic
field lines. The parallel viscosity coefficients are given by [13]

η τ= n T0.73 , (2.63)e e e e

η τ= n T0.96 . (2.64)i e i i

Moreover, the tensor π×s describes what is known as gyroviscosity; this is not really
viscosity at all, because the associated viscous stresses are always perpendicular to
the velocity, implying that there is no dissipation (i.e. viscous heating) associated
with this effect. The gyroviscosity coefficients are given by [13]

η =
Ω×

n T
2

, (2.65)e
e e

e

η =
Ω×

n T
2

. (2.66)i
e i

i
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Finally, the tensor π⊥ s describes what is known as perpendicular viscosity; this is a
viscosity that controls the diffusion of perpendicular momentum perpendicular to
magnetic field lines. The perpendicular viscosity coefficients take the forms [13]

η
τ

=
Ω⊥
n T

0.51 , (2.67)e
e e

e
2

e

η
τ

=
Ω⊥
n T3

10
. (2.68)i

e i

i
2

i

Note that η ρ η∼⊥ ×l( / )s s s s and η ρ η∼× l( / )s s s s. In other words, in a highly magnetized
plasma (i.e. ρ ≪l/ 1s s ), the species-s perpendicular viscosity is much less than the
gyroviscosity, which, in turn, is much less than the parallel viscosity.

According to the previous expressions, the diffusion of parallel momentum (i.e.
parallel to magnetic field lines) is characterized by the diffusivities

η
νΞ ≡ =

n m
l0.37 , (2.69)e

0 e

e e
e e

2

η
νΞ ≡ =

n m
l0.48 . (2.70)i

0 i

e i
i i

2

As before, these diffusivities correspond to collision-induced random-walk motions
of electrons and ions, parallel to magnetic field lines, with a step frequency of order
νe,i and a step length of order le,i [1, 2]. On the other hand, the diffusion of
perpendicular momentum perpendicular to magnetic field lines is characterized by
the diffusivities

η
ν ρΞ ≡ =⊥

n m
0.26 , (2.71)e

1 e

e e
e e

2

η
ν ρΞ ≡ =⊥

n m
0.15 . (2.72)i

1 i

e i
i i

2

Again, these diffusivities correspond to the collision-induced random-walk motions
of electrons and ions, perpendicular to magnetic field lines, with a step frequency of
order νe,i and a step length of order ρe,i [1, 2].

Table 2.3 shows estimates for the classical heat and momentum diffusivities in a
tokamak fusion reactor. It can be seen that the electron parallel diffusivities are
much larger than the ion parallel diffusivities, but that both are extremely large. On
the other hand, the ion perpendicular diffusivities are much larger than the electron
perpendicular diffusivities, but both are much smaller than the experimentally
observed perpendicular diffusivities, which are all approximately −1 m s2 1 [16].

2.7 Trapped and passing particles
The motion of a charged particle in the presence of a uniform magnetic field consists
of gyration in the plane perpendicular to the local magnetic field line combined with
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a steady drift along the field line [1]. Suppose, however, that the magnetic field is
non-uniform, meaning that there are spatial gradients in its direction and strength.
As is well known, if the characteristic gradient scale length of the field is much larger
than the particle gyroradius, then the motion still consists of gyration in the plane
perpendicular to the local field line, combined with drift along the field line (which is
no longer straight). However, the magnetic moment,

v
μ = ⊥m

B2
, (2.73)

s
s s

2

of the particle is a conserved quantity during this motion [1, 17]. Here, v⊥ s is the
particle’s perpendicular (to the magnetic field) velocity and B the local magnetic field
strength. It is clear from table 2.1 that the gyroradii of both electrons and ions in a
tokamak fusion reactor are much smaller than the dimensions of the reactor.
Assuming that the characteristic gradient scale length of the reactor’s magnetic field
is comparable to its dimensions, we conclude that the motions of both ions and
electrons in such a reactor consist of rapid (see table 2.1) gyration perpendicular to
magnetic field lines, combined with drift along magnetic field lines at a constant
magnetic moment. However, these motions are interrupted by occasional collisions
(i.e. 90° scattering events).

Consider the gyroaveraged motion of a charged particle around an idealized
magnetic flux surface of circular poloidal cross section. Let us set up a right-handed
cylindrical coordinate system, R, φ, Z, whose axis corresponds to the symmetry axis
of the tokamak. Let R0 and r be the major and minor radii of the flux surface,
respectively. As shown in figure 2.1, we can specify the location of the charged

Table 2.3. Classical diffusivities in a low-field tokamak reactor and a high-field
tokamak reactor. Here, B is the toroidal magnetic field strength, χ e the parallel
electron energy diffusivity, χ i the parallel ion energy diffusivity, χ⊥ e the
perpendicular electron energy diffusivity, χ⊥ i the perpendicular ion energy
diffusivity, Ξ e the parallel electron momentum diffusivity, Ξ i the parallel ion
momentum diffusivity, Ξ⊥ e the perpendicular electron momentum diffusivity, and
Ξ⊥ i the perpendicular ion momentum diffusivity.

Low field High field

B (T) 5.0 12.0

χ −(m s )e
2 1 ×5.5 1011 ×9.6 1010

χ −(m s )i
2 1 ×1.4 1010 ×2.5 109

χ⊥ −(m s )e
2 1 × −5.2 10 5 × −5.2 10 5

χ⊥ −(m s )i
2 1 × −1.1 10 3 × −1.1 10 3

Ξ −(m s )e
2 1 ×1.3 1011 ×2.2 1010

Ξ −(m s )i
2 1 ×3.5 109 ×6.1 108

Ξ⊥ −(m s )e
2 1 × −5.8 10 6 × −5.8 10 6

Ξ⊥ −(m s )i
2 1 × −1.6 10 4 × −1.6 10 4
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particle in the poloidal plane in terms of an angular coordinate, θ, which is zero on
the outboard midplane (i.e. Z = 0, >R R0). In fact, the particle’s coordinates in the
poloidal plane are

θ= +R R r cos , (2.74)0

θ=Z r sin . (2.75)

If we now neglect the influence of the comparatively small poloidal currents flowing
in the plasma on the toroidal magnetic field, then we expect the overall magnetic
field strength (which is dominated by the toroidal component of the field) to vary as

θ
θ

= =
+

B B
R
R

B
r R

( )
1 ( / ) cos

. (2.76)0
0 0

0

Here, B0 is the toroidal magnetic field strength on the magnetic axis (i.e. Z = 0,
=R R0). Note that the overall magnetic field strength varies slightly around the flux

surface, being larger at smaller major radii and vice versa.
Let us suppose that the parallel (to the magnetic field) electric field strength, E , is

comparatively weak, as is indeed the case in a high-temperature tokamak plasma
(otherwise the field would generate an absurdly large parallel current) (see section 2.9).
If this is the case, then (neglecting collisions, for the moment) our charged particle
drifts around the magnetic flux surface with a constant kinetic energy (recall that a
magnetic field cannot do work on the particle). In other words,

v v= + ⊥K m m
1
2

1
2

(2.77)s s s
2

s s
2

Figure 2.1. Charged particle motion around a magnetic flux surface of circular poloidal cross section.
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is a constant of the motion. Here, v bs is the particle’s parallel velocity. However,
the particle’s magnetic moment, which is defined in equation (2.73), is also a
constant of the motion. Equations (2.73) and (2.77) can be combined to give

v ⎜ ⎟
⎛
⎝

⎡⎣ ⎤⎦
⎞
⎠

θ μ θ= ± −
m

K B( )
2

( ) . (2.78)s
s

s s

1/2

Hence, we conclude that the particle is excluded from regions of the flux surface in
which μ θ<K B( )s s (because v s clearly cannot be imaginary). In fact, if the particle
reaches a so-called bounce point, characterized by θ θ= b, where μ θ=K B( )s s b , then
its parallel motion must reverse direction (i.e. the sign in the previous equation must
flip).

Let v 0 s and v⊥ 0 s be the particle’s parallel and perpendicular velocities,
respectively, at the outermost point of the flux surface (i.e. θ = 0), where the
magnetic field is weakest. It follows that μs and Ks both take the constant values

v
μ = ⊥m

B2 (0)
, (2.79)s

s 0 s
2

v v= + ⊥K m m
1
2

1
2

, (2.80)s s 0 s
2

s 0 s
2

respectively. The previous three equations can be combined to give

v
v

v
v

⎜ ⎟
⎛

⎝
⎡
⎣⎢

⎤
⎦⎥

⎞

⎠

θ θ
∣ ∣

= ± + −⊥ B
B

( )
1 1

( )
(0)

. (2.81)s

0 s

0 s
2

0 s
2

1/2

Finally, equation (2.76) yields

v
v

v
v

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥

θ
ϵ θ

∣ ∣
≃ ± − ⊥( )

1 2 sin
2

, (2.82)s

0 s

0 s
2

0 s
2

2

1/2

where ϵ = r R/ 0 is the inverse aspect ratio of the flux surface, and we have made use
of the large-aspect-ratio approximation ϵ ≪ 1.

The previous equation, combined with the requirement that v θ( )s not be
imaginary, leads to the conclusion that (neglecting collisions) there are two
populations of charged particle on a magnetic flux surface. The first population
satisfies

ϵ ξ π< <−tan ( 2 )
2

, (2.83)1
0 s

where

v
v

⎜ ⎟
⎛
⎝

⎞
⎠

ξ =
∣ ∣
∣ ∣

−

⊥
tan (2.84)0 s

1 0 s

0 s
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is known as the pitch angle (on the outboard midplane). This first population of
particles is called passing particles because all such particles have sufficiently large
parallel velocities that they can circulate freely around the flux surface. The second
population satisfies

ξ ϵ< < −0 tan ( 2 ). (2.85)0 s
1

These so-called trapped particles have small enough parallel velocities that they are
trapped on the outer part of the flux surface, oscillating between bounce points
located at θ θ= ± b, where

⎛
⎝

⎞
⎠

θ ξ
ϵ

=sin
2

tan

2
(2.86)b 0 s

(see figure 2.2). Assuming that the charged particles at the outermost point on the
flux surface have a Maxwellian velocity distribution, all possible values of ξ0 s are
equally likely. Thus, we conclude that the fraction of the particles on the flux surface
that are trapped is

ϵ=f 2 . (2.87)t

(A more exact expression for ft is specified in equation (2.202).) Given that ϵ ∝ r, it
is clear that the trapped-particle fraction grows as we move from the innermost (i.e.
r = 0) to the outermost (i.e. r = a) magnetic flux surface in the plasma.

Figure 2.2. A gyroaveraged trapped-particle orbit (solid line) on a magnetic flux surface (dashed line) of
circular poloidal cross section. The orbital parameters are θ = °60b , =r R0.5b 0, and ρ = R0.1b s 0.
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Consider a trapped particle oscillating between bounce points located at θ θ= ± b.
Because the particle is drifting parallel to the magnetic field, its motion is
characterized by φ θ =d d q/ (see equation (1.76)). Let s represent the path length
along a magnetic field line. It follows that φ θ≃ =ds R d q R d0 0 . The particle’s
parallel equation of motion is

v v ⎡
⎣⎢

⎤
⎦⎥

θ
θ

= = ±∣ ∣ −ds
dt

1
sin ( /2)
sin ( /2)

, (2.88)s 0 s

2

2
b

1/2

where use has been made of equations (2.82), (2.84), and (2.86). Hence, we obtain

v ⎡
⎣⎢

⎤
⎦⎥

θ θ
θ

= ±
∣ ∣

−d
dt q R

1
sin ( /2)
sin ( /2)

. (2.89)0 s

0

2

2
b

1/2

Taking the derivative of the previous equation with respect to time, and making use
of equations (2.84) and (2.86), we get

θ ω θ= −d
dt

sin , (2.90)
2

2 b s
2

where

vω ϵ=
q R 2

(2.91)b s
t s

0

is known as the bounce frequency [16]. Here, we have made the large-aspect-ratio
approximation that, on average, v v∣ ∣ ≃⊥ 0 s t s for a trapped particle. Obviously,
equation (2.90) has the same form as the equation of motion of a simple pendulum.
It follows that a deeply trapped particle, characterized by θ ≪ 1b , executes simple
harmonic motion in θ, between bounce points located at θ θ= ± b, at the angular
frequency ωb s. In this case, the appropriate solution of equation (2.90) is

θ θ ω≃ tsin( ). (2.92)b b s

A more accurate expression for the bounce frequency, which does not assume that
the particle is deeply trapped, is

ω θ ω
π θ

=
K

( )
(2/ ) (sin[ /2])

, (2.93)b s b
b s

b

where ∫ θ θ= −
π −K k k d( ) (1 sin )

0

/2
2 2 1/2 is a complete elliptic integral of the first kind

[18]. Note that the bounce frequency decreases as the angular motion increases in
amplitude, eventually approaching zero logarithmically as θ π→b .

Let us now take collisions into account. In the absence of collisions, the value of
the pitch angle on the outboard midplane, ξ0 s, is a constant of a given particle’s
motion. Thus, we conclude that if the particle is initially trapped, then it remains
trapped at all subsequent times. However, collisions cause the value of ξ0 s to diffuse
in velocity space. (Note that Coulomb collisions in a high-temperature plasma are
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dominated by small-angle scattering events [1], which means that each collision only
causes a small change in ξ0s.) It takes a time of order τs (where τs is the 90° collision
time) to change ξ0 s by order unity. However, it is only necessary to change ξ0 s by
order ϵ in order to de-trap a trapped particle (see equation (2.85)). The time
required for collisional de-trapping is thus

τ ϵ τ ϵ τ= =( ) . (2.94)d s
2

s s

If ω τ ≪ 1b s d s , then a trapped particle is collisionally de-trapped long before it has
time to complete an oscillation between its bounce points. Obviously, in this case,
the plasma is sufficiently collisional that it is meaningless to draw a distinction
between trapped and passing particles. On the other hand, if ω τ ≫ 1b s d s , then
collisions are too infrequent to interfere with the oscillations of a trapped particle
between its bounce points.

It is helpful to define the dimensionless collisionality parameter [64],

v
ν ν

ϵ
=*

q R
. (2.95)s

0 s
3/2

t s

Note that ν ω τ≃*
−( )s b s d s

1. It follows that the criterion for species-s trapped particles
to exist is ν ≪* 1s . Table 2.4 shows that ν* e and ν* i are both much less than unity in a
tokamak fusion reactor, implying that populations of trapped electrons as well as
trapped ions exist in such reactors. Moreover, it is clear that the trapped-particle

Table 2.4. Neoclassical parameters in a low-field tokamak reactor and a high-
field tokamak reactor. Here, B is the toroidal magnetic field strength, ft the
fraction of trapped particles, ν* e the electron collisionality parameter, ν* i the ion
collisionality parameter, ρb e the electron banana orbit width, ρb i the ion banana
orbit width, δe the electron toroidal magnetization parameter, δi the ion toroidal
magnetization parameter, δθ e the electron poloidal magnetization parameter, δθ i

the ion poloidal magnetization parameter, Δe the electron collisionality
parameter, and Δi the ion collisionality parameter. All quantities are calculated
with q = 3 and r = a (see table 2.1).

Low field High field

B (T) 5.0 12.0

ft 0.81 0.81

ν* e × −1.7 10 2 × −4.0 10 2

ν* i × −1.2 10 2 × −2.8 10 2

ρ (m)b e
× −4.1 10 4 × −1.7 10 4

ρ (m)b i
× −2.8 10 2 × −1.2 10 2

δe × −2.2 10 5 × −2.2 10 5

δi × −1.5 10 3 × −1.5 10 3

δθ e × −2.0 10 4 × −2.0 10 4

δθ i × −1.4 10 2 × −1.4 10 2

Δe × −3.2 10 3 × −7.7 10 3

Δi × −2.3 10 3 × −5.5 10 3
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fraction, which is the same for both plasma species, is about 80% on the outermost
magnetic flux surfaces.

Let us examine the motion of a trapped particle slightly more accurately. In an
axisymmetric tokamak plasma, the gyroaveraged motion of the particle takes place
at constant toroidal canonical angular momentum:

v≡ + =φ φ φL m R e R A constant, (2.96)s s s s

where A denotes magnetic vector potential. Note that

= −θ
φB

dA

dr
. (2.97)

Suppose that the particle is trapped on a magnetic flux surface of minor radius rb.
We can write

≃ − −φ φ θA r A r B r r r( ) ( ) ( ) ( ) (2.98)b b b

in the immediate vicinity of the flux surface, where use has been made of equation
(2.97). We can now write

v v v ⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

ϵ θ θ≃ = ± ∣ ∣ −φ ⊥2 sin
2

sin
2

, (2.99)s s 0 s
2 b 2

1/2

where use has been made of equations (2.84), (2.86), and (2.88). Thus, employing
equations (2.96) and (2.98),

v ⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

ϵ θ θ± ∣ ∣ − +

− − =

φ

θ

⊥m R e R A r

e R B r r r

2 sin
2

sin
2

( )

( ) ( ) constant,

(2.100)
s 0 s

2 b 2
1/2

s b

s b b

which implies that the gyroaveraged particle orbit satisfies

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

ρ θ θ= ± −r r esgn( ) sin
2

sin
2

, (2.101)b s b s
2 b 2

1/2

where

ρ
ϵ

ρ= q2
. (2.102)

b s 1/2 s

Here, we have again used the large-aspect-ratio approximation that, on average,
v v∣ ∣ ≃⊥ 0 s t s for a trapped particle. Note that the ± signs in equation (2.101)
correspond to motion in the θ± and φ± directions, respectively. As illustrated in
figure 2.2, a trapped particle that oscillates between its bounce points makes radial
excursions from the guiding magnetic flux surface that are of amplitude
ρ θsin( /2)b s b . In fact, the gyroaveraged orbit’s poloidal cross section looks a little
like a banana. Hence, such orbits are known as banana orbits, and ρb s is known as
the banana width [16]. (Note that ρbs is the banana width of a barely trapped particle
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(i.e. θ π≃b ). Deeply trapped particles (i.e. θ ≪ 1b ) have much narrower banana
widths.) Finally, as is clear from tables 2.1 and 2.4, although the electron and ion
banana widths in a tokamak fusion reactor are much greater than the corresponding
gyroradii, they are much smaller than the minor radius of the plasma.

2.8 The neoclassical closure scheme
As we have seen, plasmas that are confined in tokamak reactors are sufficiently
collisionless that charged particles can travel around magnetic flux surfaces very
many times before the accumulated effect of small-angle scattering events becomes
significant. The classical collisional closure scheme described in section 2.6 fails
under such circumstances. The aim of sections 2.8–2.21 is to describe an alternative
scheme, known as a neoclassical closure scheme, which is appropriate to low-
collisionality plasmas [16].

The fluid equations for species s take the form:

∂
∂
= −∇ ·n

t
n V( ), (2.103)s

s s

π∂
∂
= − · ∇ + + × − ∇ − ∇ · +m n

t
m n e n p

V
V V E V B F( ) ( ) , (2.104)s s

s
s s s s s s s s s s

π
∂
∂
= − · ∇ − ∇ · − ∇ − ∇ · +

p

t
p p WV V V q

3
2

3
2

5
2

: . (2.105)s
s s s s s s s s

(See section 2.3). However, the neoclassical closure scheme also requires the
following third-order velocity-space moment of the kinetic equation [19]:

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

π∂
∂
= · + + + × − ∇ · +

t
e
m

p m n
Q

E I V V Q B R G
5
2

, (2.106)s s

s
s s s s s s s s s

where

π= + + + ·p m n VQ q V V V
5
2

1
2

, (2.107)s s s s s s s
2

s s s

v v v v∫= m f dR
1
2

, (2.108)s s
2

s
3

v v v∫= m C f f dG
1
2

( , ) . (2.109)s s
2

s e s
3

2.9 Drift and transport orderings
It is helpful to define the species-s toroidal magnetization parameter,

δ
ρ

=
a

, (2.110)s
s
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the species-s poloidal magnetization parameter,

δ
ϵ

ρ
=θ

q
a

, (2.111)s
s

and the (modified) species-s collisionality parameter,

v τ
Δ = q R

. (2.112)s
0

t s s

As is apparent from table 2.4, these dimensionless parameters are all much less than
unity for both electrons and ions in a tokamak fusion reactor.

In the following, we shall adopt the following fundamental ordering assumptions [20]:

v
δ∼⊥E

B
( ), (2.113)

t s
sO

v
δ∂

∂
∼ Δθ

a
t

( ). (2.114)
t s

s
2

sO

Equation (2.113) is known as the drift ordering [1, 21], and serves to rule out the
rapid plasma motions associated with ideal magnetohydrodynamic instabilities [22].
Equation (2.114) is known as the transport ordering. According to this ordering, any
time dependence of plasma quantities is due to the action of perpendicular transport,
viscous heating, and frictional heating. The drift and transport orderings, combined
with the analysis contained in the following two sections, imply that

v v δ∼ ∼ θV q p/ /( ) ( )s t s s s t s sO , π δ∼ Δθp/ ( )s s s sO , v δ δ∼ ΔθE B/( ) ( )t s s s sO ,
v δ∼ ∼ ΔθF p a G p a/( / ) /( / ) ( )s s s s t s

2
s sO , and v δ∼ ΔθW p a/( / ) ( )s s t s s

2
sO . Equations

(2.103)–(2.109) yield

δ Δ ∂
∂
≃ ∇ ·θ

n
t

n V[ ] ( ), (2.115)s s
s

s s

πδ δ δ≃ + Δ + × − ∇ − Δ ∇ · + Δθ θ θ⊥e n pE E V B F0 ( [ ] ) [ ] [ ] , (2.116)s s s s s s s s s s s s

⎛
⎝

⎞
⎠

πδ δ

δ

Δ
∂
∂
≃ − · ∇ − + Δ

∇ − ∇ · + Δ

θ θ

θ

p

t
p p

W

V I

V q

[ ]
3
2

3
2

5
2

[ ]

: [ ] ,

(2.117)
s s

s
s s s s s s

s s s s s

⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝

⎞
⎠

πδ δ

δ δ

≃ + Δ + × · + Δ + ×

− ∇ − Δ ∇ · + Δ

θ θ

θ θ

⊥
e
m

p

T p

m

E E V B I q B

r G

0 ( [ ] )
5
2

[ ]

5
2

[ ] [ ] ,

(2.118)

s

s
s s s s s s s s

s s

s
s s s s s s

where we have written [19]
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δ≃ + Δθ
T p

m
R I r

5
2

[ ] . (2.119)s
s s

s
s s s

In the previous five equations, we have neglected terms that are δ δθ( )s sO , δ Δθ( s
3

sO ),
or δ ρΔθ l( / )s s s sO smaller than the leading-order terms, while retaining terms that
are δ Δθ( )s sO , which is only self-consistent if δ ≪ Δs s. As shown in table 2.4, the
inequality δ ≪ Δs s is well satisfied for electrons in a tokamak fusion reactor, but is
only barely satisfied for ions. The δ Δθ[ ]s s factors in the previous equations are there
to remind us that the terms they precede are δ Δθ( )s sO smaller than the leading-order
terms. Finally, it is helpful to define

πΘ = − m
T

r
5
2

. (2.120)s s
s

s
s

2.10 Toroidal plasma equilibrium
As before, let R, φ, Z be a set of right-handed cylindrical coordinates whose
symmetry axis corresponds to that of the plasma equilibrium. On the other hand, let
ψ, θ, φ be a set of right-handed flux coordinates such that ψ R Z( , ) labels the
equilibrium magnetic flux surfaces, and θ increases by 2π for every poloidal circuit of
a given flux surface. We can assume that θ θ= R Z( , ) without loss of generality.
(Note that θ is a generalization of the poloidal angle introduced in section 2.7 that
does not assume that the flux surfaces have circular cross sections.) As before, we
shall set θ = 0 on the outboard midplane. Note that φ∣∇ ∣ = R1/ . The Jacobean of
our flux-coordinate system is defined as

ψ θ φ= ∇ × ∇ · ∇ −R Z( , ) ( ) . (2.121)1J

A general vector field, A, can be written as

θ φ φ ψ ψ θ= ∇ × ∇ + ∇ × ∇ + ∇ × ∇ψ θ φA A AA . (2.122)J J J

Moreover [21],

ψ θ φ
∇ · = ∂

∂
+ ∂

∂
+ ∂

∂

ψ θ φA A A
A

( ) ( ) ( )
. (2.123)J J J J

The axisymmetric equilibrium magnetic field of a tokamak can be expressed in
the following manifestly divergence-free manner:

φ ψ θ= ∇ × ∇ + ∇Ψ × ∇B , (2.124)

where ψΨ = Ψ( ). It follows that

=ψB 0, (2.125)J

=θB 1, (2.126)J
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=φB q, (2.127)J

where

ψ
ψ

= Ψ
q

d
d

( ) (2.128)

is the safety-factor profile [21]. Note that the previous expression reduces to
expression (1.76) in the large-aspect-ratio, circular magnetic flux-surface limit.

It is convenient to specialize the previous expressions to a coordinate system in
which

ψ
ψ

= q R
I
( )

( )
. (2.129)

2

J

It follows that

φ φ ψ= ∇ + ∇ × ∇IB . (2.130)

The equilibrium electric field is written

ψ φ= ̇ ∇ − ∇ΦE . (2.131)

Here, ψ ψ̇ ≡ ∂ ∂t/ , and ψΦ = Φ( ). Note that the previous equation automatically
satisfies ∇ × = −∂ ∂tE B/ .

Finally, we expect the plasma equilibrium to be characterized by number density,
temperature, and pressure profiles that are flux-surface functions [1]. In other words,

ψ=n n ( )s s , ψ=T T ( )s s , and ψ=p p ( )s s (see section 2.25).

2.11 Lowest-order flows
To the lowest order in the small parameter δ Δθ s s, equations (2.116) and (2.118)
yield

≃ + × − ∇⊥e n pE V B0 ( ) , (2.132)s s s s

⎜ ⎟⎡
⎣

⎤
⎦

⎛
⎝

⎞
⎠

≃ + × + × − ∇⊥
e
m

p
T p

m
E V B q B0

5
2

( )
5
2

. (2.133)s

s
s s s

s s

s

The previous two equations can be solved to give

= + ⊥VV b V , (2.134)ss s

= + ⊥qq b q , (2.135)ss s

where

= × +
× ∇

⊥
B

p

e n B
V

E B B
, (2.136)s 2

s

s s
2
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= × ∇⊥

p
T

e B

q B5
2

. (2.137)s

s

s

s
2

It can be seen that the lowest-order particle and heat flows are both confined to
magnetic flux surfaces (i.e. ψ ψ· ∇ = · ∇ =V q 0s s ). The first term on the right-hand
side of equation (2.136) is the E-cross-B velocity,

= ×
B

V
E B

, (2.138)E 2

which is common to all plasma species [1]. The second term is the diamagnetic
velocity,

=
× ∇

*
p

e n B
V

B
, (2.139)s

s

s s
2

which is different for electrons and ions and is a consequence of the rapid
gyromotions of charged particles in the presence of equilibrium pressure gradients
[1]. The drift ordering (2.113) ensures that the E-cross-B and diamagnetic velocities
are similar in magnitude. It is clear from equation (2.137) that there is a diamagnetic
flow of heat, as well as particles, around flux surfaces; this heat flow is the same as
that associated with the cross thermal conductivities introduced in section 2.6.

To the lowest order in the small parameter δ Δθ s s, equations (2.115) and (2.117)
yield

∇ · =V 0, (2.140)s

∇ · =q 0. (2.141)s

Here, use has been made of · ∇ = · ∇ =n pV V 0s s s s . Clearly, the lowest-order particle
and heat flows are both divergence free. The fact that ψ ψ· ∇ = · ∇ =V q 0s s implies
that = =ψ ψV q 0s s . Making use of these results, the previous two equations can be
combined with equations (2.123) and (2.126), as well as the fact that φ∂ ∂ ≡/ 0 in an
axisymmetric equilibrium, to give [19]

θ
θ

ψ· ∇
· ∇

= θV
V
B

( ), (2.142)s
s

θ
θ

ψ
· ∇
· ∇

= θq
q
B

( ). (2.143)s
s

Taking the scalar products of equations (2.134) and (2.135) with θ∇ , we obtain

ψ
ψ

= −θ
ψV

V

B

V

B
( )

( )
, (2.144)s

s s

2

ψ
ψ

= −θ
ψq

q

B

q

B
( )

( )
, (2.145)

s
s s

2
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where

ψ
ψ ψ

= − Φ −ψV I
d
d

I
e n

dp

d
( ) , (2.146)s

s s

s

ψ
ψ ψ
= −ψq

p
I
e

dT
d

( )

( )
5
2

. (2.147)s

s s

s

Here, use has been made of equations (2.136) and (2.137).

2.12 The flux-surface average operator
It is helpful to define the flux-surface average operator:

∮ ∮θ
π

θ
π

〈⋯〉 = ⋯R
d

R
d

( )
2 2

. (2.148)2 2

According to equations (2.129) and (2.130),

〈 · ∇ 〉 =AB 0, (2.149)

where A R Z( , ) is a general axisymmetric scalar field. Moreover, 〈 〉 =1 1.
Making use of equations (2.121)–(2.123) and (2.129), it can easily be demon-

strated that

〈∇ · 〉 = 〈 · ∇ 〉d
d

A
A

, (2.150)
V

V
where A is a general axisymmetric (i.e. φ∂ ∂ =/ 0) vector field, and

⎛
⎝

⎞
⎠

∫ ∮ ∮ ∫ ∮ψ ψ θ ψ θ φ π θ
π

ψ= ′ ′ = ′
ψ ψ

d d d
q
I

R
d

d( ) ( , ) (2 )
2

(2.151)
0

2

0

2V J

is the volume contained within the magnetic flux surface whose label is ψ.

2.13 Chew–Goldberger–Low forms
As is well known, the smallness of the toroidal magnetization parameter, δs, ensures
that the dominant parallel viscosity tensors, π s and Θ s, take the so-called Chew–
Goldberger–Low forms [21, 23]:

⎛
⎝

⎞
⎠

π π= Δ −b b I
1
3

, (2.152)s s

⎛
⎝

⎞
⎠

Θ = ΔΘ −b b I
1
3

, (2.153)s s

where π〈Δ 〉 = 〈ΔΘ 〉 = 0s s . Incidentally, it is clear from equation (2.60) that the
parallel viscosity tensor in the classical closure scheme does indeed take this form.
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If π s takes the Chew–Goldberger–Low form, then

πψ∇ · · =b 0, (2.154)s

πψ φ∇ · · ∇ = 0. (2.155)s

These results follow because ψ φ ψ· ∇ = ∇ · ∇ =b 0.
Furthermore,

π π πφ φ φ∇ · ∇ · = ∇ · ∇ · − ∇̃ ∇( )R R R: ( ), (2.156)2
s

2
s s

2

where, in Cartesian coordinates,

⎜ ⎟
⎛
⎝

⎞
⎠

˜ =
∂
∂
+ ∂
∂

A

r
A
r

A( )
1
2

, (2.157)jk
j

k

k

j

and use has been made of the fact that π s is a symmetric tensor. In fact, it can be
shown that [24]

φ∇̃ ∇ =R( ) 0. (2.158)2

Hence, we deduce that

π πφ φ∇ · ∇ · = ∇ · ∇ ·( )R R . (2.159)2
s

2
s

Making use of equation (2.150), we obtain

π πφ φ∇ · ∇ · = ∇ · · ∇R
d

d
R . (2.160)2

s
2

sV
V

However, if π s takes the Chew–Goldberger–Low form, then πφ∇ · · ∇ = 0s V
because φ· ∇ = ∇ · ∇ =b 0V V . It follows that [19, 20]

πφ∇ · ∇ · =R 0. (2.161)2
s

Likewise, if Θ s takes the Chew–Goldberger–Low form, then

φ Θ∇ · ∇ · =R 0. (2.162)2
s

2.14 Parallel flows
Equations (2.116), (2.118), and (2.120) yield

πδ δ δ≃ + Δ + × − ∇ − Δ ∇ · + Δθ θ θ⊥e n pE E u B F0 ( [ ] ) [ ] [ ] , (2.163)s s s s s 1 s s s s s s s 1

πδ δ δΘ≃ − Δ ∇ · + × − Δ ∇ · + Δθ θ θp e n u B F0 [ ]
5
2

[ ] [ ] , (2.164)s s s s s s s 2 s s s s s s 2

where [19]
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=u V, (2.165)s 1 s

= −
p

u
q2

5
, (2.166)s 2

s

s

=F F , (2.167)s 1 s

= − m
T

F F G
5
2

. (2.168)s 2 s
s

s
s

Here, we have neglected terms that are second order in the small parameter δ Δθ s s.
By analogy with the analysis given in section 2.11, we can write [19]

= + ⊥uu b u , (2.169)j j js s s

ψ
θ
θ

ψ ψ
≡

· ∇
· ∇

= −
+

θ
*u

u

B

V V

B

u

B
( )

( ) ( )
, (2.170)j

j j j j
s

s s E s

2

for =j 1, 2, where

ψ
ψ

= − Φ
V I

d
d

( ) , (2.171)E 1

ψ =V ( ) 0, (2.172)E 2

ψ
ψ

= −*V
I

e n

dp

d
( ) , (2.173)s 1

s s

s

ψ
ψ

=*V
I
e

dT
d

( ) . (2.174)s 2
s

s

Taking the scalar product of equations (2.163) and (2.164) with B and flux-surface
averaging, we annihilate the leading-order terms, leaving [19]

π〈 · ∇ · 〉 = 〈 · 〉 + 〈 · 〉e nB B F E B , (2.175)s s 1 s s

Θ〈 · ∇ · 〉 = 〈 · 〉B B F . (2.176)s s 2

Note that the annihilation of the term involving π∇ ·ps s in equation (2.164)
depends on the fact that π s takes the Chew–Goldberger–Low form (see equation
(2.154)).

According to equations (2.175) and (2.176), the parallel components of the
friction force density and the electric force density drive both particle flows and heat
flows along the magnetic field. These flows are opposed by the parallel viscous force
density. We now need to solve the previous two equations to determine the parallel
flows, which requires us to have expressions for the friction force density as well as
the parallel viscous force density.
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2.15 Useful results
In the following, u( ) represents a 1 × 2 vector, while A[ ] represents a 2 × 2 matrix.
The elements of u( ) and A[ ] are denoted uj and Akj, respectively, where =k 1, 2
indexes the rows, and =j 1, 2 indexes the columns. Furthermore, (0) denotes a null
vector, and [1] denotes an identity matrix. Equations (2.175) and (2.176) can be
written in the compact form [25]

π〈 · ∇ · 〉 = 〈 · 〉 + 〈 〉F e n B EB B( ) ( ) ( ), (2.177)s s s s

where

⎜ ⎟⎛
⎝

⎞
⎠

π
π Θ=( ) , (2.178)s

s

s

⎛
⎝

⎞
⎠

=F
F
F

( ) , (2.179)s
s 1

s 2

⎛
⎝

⎞
⎠

= 〈 · 〉 〈 〉
E

BE B
( )

/
0

. (2.180)

It is helpful to define

⎜ ⎟
⎛
⎝

⎞
⎠

=
〈 〉
〈 〉

u
u B

u B
( ) , (2.181)s

s 1

s 2

⎜ ⎟
⎛
⎝

⎞
⎠

=
〈 〉
〈 〉θ

θ

θ
u

u B

u B
( ) . (2.182)s

s 1
2

s 2
2

Equations (2.170)–(2.174), (2.181), and (2.182) can be combined to give

= + +θ *u u V V( ) ( ) ( ) ( ), (2.183)s s E s

where

⎛
⎝

⎞
⎠

=V V( )
0

, (2.184)E
E 1

⎛
⎝

⎞
⎠

=*
*

*
V

V
V

( ) . (2.185)s
s 1

s 2

It is also helpful to define

⎜ ⎟
⎛
⎝

⎞
⎠

φ
φ

=
〈 〉

〈 ∇ · 〉
〈 ∇ · 〉φu

I
R

R

R

u
u

( ) . (2.186)s 2

2
s 1

2
s 2

It follows from equations (2.130), (2.134)–(2.137), (2.165), (2.166), and (2.171)–
(2.174) that
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⎜ ⎟
⎛
⎝

⎞
⎠

ψ=
〈 〉

〈 〉
〈 〉

+
〈 〉

∣∇ ∣ +φ *u
I
R

u B

u B R B
V V( )

/

/
1

[( ) ( )]. (2.187)s

2

2

s 1

s 2
2

2

2 E s

However, equations (2.170) and (2.182) yield

⎜ ⎟
⎛
⎝

⎞
⎠

⟨ ⟩
⟨ ⟩

=
⟨ ⟩

+ +θ
∥

∥
∗

u B

u B B
u

B
V V

/

/
1

( )
1

[( ) ( )]. (2.188)
s1

s2
2 2 E s

Finally, the previous two equations can be combined to give

⎜ ⎟
⎛
⎝

⎞
⎠

=
〈 〉 〈 〉

− +φ θu
I

R B
u u( ) 1 ( ) ( ), (2.189)s

2

2 2 s s

where use has been made of equations (2.130) and (2.183).

2.16 Friction force densities
It is helpful to define the modified collision time [19]

τ
π ϵ

=
Λ
m T

e n

6 2

ln
. (2.190)ss

3/2
0

2
s s

3/2

s
4

s

It can be seen, by comparison with equations (2.20) and (2.21), that τ τ=ee e and
τ τ= / 2ii i .

Our model expressions for the friction force densities, Fs 1 and Fs 2, are taken from
the moment-based analysis of Hirschman & Sigmar [10, 19]. The ion friction force
densities are written as

τ τ
= − + − +F

n m
F u

n m
E u E u( ) { [ ] ( )} { [ ] ( ) [ ] ( )}, (2.191)i

i i

ii
ii i

e e

ee
ii i ie e

where

= ( )u
u
u( ) , (2.192)s

s 1

s 2

⎡
⎣⎢

⎤
⎦⎥

=F[ ]
0, 0

0, 2
, (2.193)ii

⎡
⎣⎢

⎤
⎦⎥

=E
T T

[ ]
1, 0
0, (15/2) /

, (2.194)ii
e i

⎡
⎣⎢

⎤
⎦⎥

=E[ ]
1, 3/2
0, 0

. (2.195)ie
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The electron friction force densities take the form

τ
= − +F

n m
F u F u( ) { [ ] ( ) [ ] ( )}, (2.196)e

e e

ee
ee e ei i

where

⎡
⎣⎢

⎤
⎦⎥

=
+

F[ ]
1, 3/2

3/2, 2 13/4
, (2.197)ee

⎡
⎣⎢

⎤
⎦⎥

=F[ ]
1, 0

3/2, 0
. (2.198)ei

Note that =F 0jii 1 , =F Ej jee 1 ie 1 , and =F Ej jei 1 ii 1 , for =j 1, 2, ensuring that

+ =F F 0, (2.199)i 1 e 1

which is a statement of collisional momentum conservation [1]. Note further that
=F 0jii 1 , =E Ej jii 1 ie 1, and =F Fj jee 1 ei 1, for =j 1, 2, which ensures that Fs 1 and Fs 2

are invariant under a Galilean transformation of the coordinate system.

2.17 Parallel viscous force densities
It is helpful to define the average fraction of passing particles on a magnetic flux
surface:

∫ λ λ
λ

= 〈 〉
〈 − 〉

f B
d

B

3
4 1

, (2.200)
B

p
2

0

1/ max

where Bmax is the maximum value of B on the surface [19]. For a flux surface with a
circular poloidal cross section [25],

ϵ ϵ= − +f 1 1.46 0.46 . (2.201)p
1/2 3/2

Thus, the average fraction of trapped particles on the flux surface is

ϵ ϵ≡ − = −f f1 1.46 0.46 . (2.202)t p
3/2

Note that the previous expression differs slightly from the less exact expression
(2.87).

In the so-called banana collisionality regime, ν ≪* 1s (see equation (2.95)), the
flux-surface averaged parallel viscous force densities take the form [19, 26, 27]

π
τ

μ· ∇ · = θ
n m

f uB ( ) [ ] ( ). (2.203)s
s s

ss
t s s

The normalized viscosity coefficients for the ions are

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

∫μ = − + ′ =
∞

−

x
Y x Y x dxe 1

1
2

( ) ( ) 0.533, (2.204)x
i 11

0
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⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

∫μ μ= = − − + ′ =
∞

− x
x

Y x Y x dxe
5
2

1
1

2
( ) ( ) 0.625, (2.205)x

i 12 i 21
0

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

∫μ = − − + ′ =
∞

− x
x

Y x Y x dxe
5
2

1
1

2
( ) ( ) 1.386, (2.206)x

i 22
0

2

where

∫π
= −Y x t dt( )

2
e , (2.207)

x
t

0

2

π
′ = −Y x x( )

2
e . (2.208)x 2

The normalized viscosity coefficients for the electrons are

∫μ μ= + =
∞

− dxe 1.533, (2.209)x
e 11 i 11

0

⎛
⎝

⎞
⎠

∫μ μ μ= = + − =
∞

−x dx
5
2

e 2.125, (2.210)x
e 12 e 21 i 12

0

⎛
⎝

⎞
⎠

∫μ μ= + − =
∞

−x dx
5
2

e 4.636. (2.211)x
e 22 i 22

0

2

In the banana collisionality regime, the parallel viscous force arises from colli-
sional drag between passing and trapped particles [26, 27]. The origin of this drag is
the fact that while passing particles can drift along magnetic field lines in one
direction, trapped particles are forced to periodically reverse direction. Not surpris-
ingly, the viscous force density is proportional to the fraction of trapped particles, ft
(see equation (2.203)).

2.18 The determination of ion flows
Making use of equations (2.169), (2.177), (2.191), and (2.203), we obtain

μ = −θf u F u[ ] ( ) [ ] ( ). (2.212)t i i ii i

Note that we have neglected terms that are m m( / )e iO smaller than the leading-
order terms in the previous equation. This simplifying assumption allows the ion
parallel flow to be decoupled from the electron parallel flow [25]. It follows from
equations (2.183) and (2.212) that

μ+ = − −θ *F f u F V F V([ ] [ ]) ( ) [ ] ( ) [ ] ( ). (2.213)ii t i i ii E ii i

However, =F V[ ] ( ) (0)ii E because =F 0jii 1 , for =j 1, 2, and =V 0E 2 . Thus, we get

= −θ *u L V( ) [ ] ( ), (2.214)i ii i
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where

μ= + −L F f F[ ] ([ [ ]) [ ]. (2.215)ii ii t i
1

ii

Employing equation (2.193) and only retaining terms up to the first order in the
small parameter ft, we obtain

⎡
⎣⎢

⎤
⎦⎥

α α
α

=
− −

−
L

f

f
[ ]

0, (1 )

0, 1
, (2.216)ii

1 2 t

2 t

where

α
μ
μ

= = 1.17, (2.217)1
i 12

i 11

α
μ μ μ μ

μ
=

−
=

2
0.461. (2.218)2

i 11 i 22 i 12 i 21

i 11

Here, use has been made of equations (2.204)–(2.206). Incidentally, ϵ∼ft
1/2 is only

a small parameter in the large-aspect-ratio limit ϵ ≪ 1.
It follows from equations (2.165), (2.166), (2.170), (2.181)–(2.185), (2.214), and

(2.216) that

θ
θ

α α· ∇
· ∇

= −
〈 〉
*f

V
B

V
B

(1 ) , (2.219)i
1 2 t

i 2
2

θ
θ

α
· ∇
· ∇

= −
〈 〉
*

p
f

V
B

q
B

5
2

(1 ) , (2.220)i

i
2 t

i 2
2

and

α α〈 · 〉 = + + −* *V V f VV B (1 ) , (2.221)i E 1 i 1 1 2 t i 2

α
〈 · 〉

= − *p
f V

q B 5
2

. (2.222)i

i
2 t i 2

Consider the circular magnetic flux-surface limit. In this limit, ≃I R B0 and
ψ ≃ θd dr R B/ 0 , so

≃ −θ *B V
B

e n

dp

dr
, (2.223)s 1

s s

s

≃θ *B V
B
e

dT
dr

, (2.224)s 2
s

s

≃ − Φ
θB V B

d
dr

, (2.225)E 1
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where use has been made of equations (2.171)–(2.174). Thus, equations (2.219) and
(2.220) reduce to [15, 16]

α α ϵ≃ − = −θV f
e B

dT
dr e B

dT
dr

(1 )
1

1.17 (1 0.67 )
1

, (2.226)i 1 2 t
i 1/2 i

α ϵ≃ − = −θq

p
f

e B
dT
dr e B

dT
dr

5
2

(1 )
1 5

2
(1 0.67 )

1
, (2.227)i

i
2 t

i 1/2 i

while equations (2.221) and (2.222) yield

α α≃ − Φ − + −
θ θ θ

V
B

d
dr e n B

dp

dr
f

e B
dT
dr

1 1
(1 )

1
, (2.228)i

e

i
1 2 t

i

α= −
θ

q

p
f

e B
dT
dr

5
2

1
, (2.229)

i

i
2 t

i

where use has been made of equations (2.202), (2.217), and (2.218).
According to equation (2.227), the poloidal component of the ion heat flux is

equivalent to the poloidal component of the diamagnetic heat flux specified in
equation (2.137), except that it is reduced by a factor of ϵ−1 0.67 1/2. The
explanation for this reduction is that trapped ions cannot carry a net poloidal
heat flux around a magnetic flux surface, because they are forced to periodically
reverse their poloidal drift direction. Hence, the diamagnetic ion heat flux is reduced
by a factor that is roughly equal to the fraction of passing particles (see equation
(2.201)). This reduction is accomplished by the parallel heat flux specified in
equation (2.229).

Equation (2.226) shows that the poloidal component of the ion fluid velocity is
directly proportional to the poloidal component of the ion heat flux. The most
surprising feature of equation (2.226) is the absence of a contribution from the E-
cross-B velocity, despite the fact that this velocity possesses a nonzero poloidal
component (see equation (2.138)). The explanation for this absence is that parallel
friction forces drive an ion flow parallel to the magnetic field that cancels out the
poloidal component of the E-cross-B velocity as well as the poloidal component of
the ion diamagnetic velocity. The requisite flow, which is specified in equation
(2.228), is quite large, being a factor of ϵ ∼q/ 9 larger than a typical diamagnetic
velocity. Equation (2.226) implies that a tokamak plasma is not free to rotate in the
poloidal direction. In fact, any deviation of the ion poloidal flow velocity from the
so-called neoclassical velocity specified by equation (2.226) is opposed by friction
between trapped and passing ions and is consequently damped away on a timescale
that is proportional to τi. This effect is known as poloidal flow damping [28] (see
section 2.24).

Incidentally, in the large-aspect-ratio limit, equation (2.189) reduces to

≃φu u( ) ( ), (2.230)s s
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because the omitted term is ϵ q[( / ) ]2O smaller than the other terms. Thus, it follows
from equations (2.130), (2.165), (2.166), (2.181), and (2.186) that

≃φV V , (2.231)s s

≃φq q . (2.232)s s

In other words, the toroidal flow velocities and heat fluxes are approximately equal
to the parallel flow velocities and heat fluxes, respectively. This is true for both ions
and electrons.

2.19 The determination of electron flows
Making use of equations (2.169), (2.177), (2.196), and (2.203), we obtain

μ τ= − + + 〈Ω 〉θf u F u F u E[ ] ( ) [ ] ( ) [ ] ( ) ( ). (2.233)t e e ee e ei i e ee

It follows from equations (2.183) and (2.233) that

μ

τ

+ = − + −

+ +
+ 〈Ω 〉

θ

θ

*

*

F f u F F V F V

F u V
E

([ ] [ ]) ( ) ( [ ] [ ]) ( ) [ ] ( )

[ ] {( ) ( )}
( ).

(2.234)
ee t e e ee ei E ee e

ei i i

e ee

However, − + =F F V( [ ] [ ]) ( ) (0)ee ei E because =F Fj jee 1 ei 1, for =j 1, 2, and =V 0E 2 .
Hence, we get

μ τ+ = − + − + 〈Ω 〉θ * *F f u F V F L V E([ ] [ ]) ( ) [ ] ( ) [ ] ([1] [ ]) ( ) ( ), (2.235)ee t e e ee e ei ii i e ee

where use has been made of equation (2.214). It follows that

τ= − + + 〈Ω 〉θ * *u L V L V Q E( ) [ ] ( ) [ ] ( ) [ ] ( ), (2.236)e ee e ei i e ee ee

where

μ= + −L F f F[ ] ([ ] [ ]) [ ], (2.237)ee ee t e
1

ee

μ= + −−L F f F L[ ] ([ ] [ ]) [ ] ([1] [ ]), (2.238)ei ee t e
1

ei ii

μ= + −Q F f[ ] ([ ] [ ]) . (2.239)ee ee t e
1

Making use of equations (2.197), (2.198), and (2.216), and only retaining terms up
to the first order in the small parameter ft, we get

⎡
⎣⎢

⎤
⎦⎥

β β
β β

=
− −
− −

L
f f

f f
[ ]

1 ,

, 1
, (2.240)ee

11 t 12 t

21 t 22 t
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⎡
⎣⎢

⎤
⎦⎥

β α α β
β α β

=
− − +
− −

L
f f

f f
[ ]

1 , (1 [ ] )

,
, (2.241)ei

11 t 1 2 11 t

21 t 1 21 t

⎡
⎣⎢

⎤
⎦⎥

γ δ γ δ
γ δ γ δ

=
− −
− −

Q
f f

f f
[ ]

,

,
, (2.242)ee

11 11 t 12 12 t

21 21 t 22 22 t

where

β
μ μ

=
+ −

+
=

( 2 13/4) (3/2)

2 1
1.64, (2.243)

11
e 11 e 12

β
μ μ

=
+ −

+
=

( 2 13/4) (3/2)

2 1
1.23, (2.244)

12
e 12 e 22

β
μ μ

=
− +

+
= −

(3/2)

2 1
0.0722, (2.245)21

e 11 e 12

β
μ μ

=
− +

+
=

(3/2)

2 1
0.600, (2.246)22

e 12 e 22

γ = +
+

=2 13/4

2 1
1.93, (2.247)11

γ = −
+

= −3/2

2 1
0.621, (2.248)12

γ = −
+

= −3/2

2 1
0.621, (2.249)21

γ =
+

=1

2 1
0.414, (2.250)22

δ β γ β γ= + = 2.41, (2.251)11 11 11 12 21

δ β γ β γ= + = −0.512, (2.252)12 11 12 12 22

δ β γ β γ= + = −0.512, (2.253)21 21 11 22 21

δ β γ β γ= + = 0.293. (2.254)22 21 12 22 22

Here, use has been made of equations (2.209)–(2.211), (2.217), and (2.218).
It follows from equations (2.165), (2.166), (2.170), (2.181)–(2.185), (2.236), and

(2.240)–(2.242) that
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θ
θ

β β β

α α β τ γ δ

· ∇
· ∇
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e
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e

e
21 21 t 2

and

β β β

α α β τ γ δ

〈 · 〉 = + + + −

+ − + − − 〈 · 〉
* * *
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V f V f V f V

f V
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e E 1 11 t e 1 12 t e 2 11 t i 1
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〈 · 〉
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e
21 t e 1 22 t e 2 21 t i 1 1 21 t i 2
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e
21 21 t

Here, we have made use of the fact that τ τ=ee e.
In the circular magnetic flux-surface limit, equations (2.255) and (2.256) reduce to

β β β

α α β τ γ δ

≃ − − − − −

+ − + − −
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while equations (2.257)–(2.258) yield

β β
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α α β τ γ δ
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Expressions (2.259)–(2.262) have many features in common with the correspond-
ing expressions for the ions (i.e. (2.226)–(2.229)), despite being much more
complicated in nature. In particular, the E-cross-B velocity makes no contribution
to the poloidal component of the electron fluid velocity. Moreover, the poloidal
component of the electron fluid velocity is similar in magnitude to a diamagnetic
velocity, while the parallel component is larger by a factor ϵq/ .

2.20 Parallel current density
The parallel current density takes the form

〈 · 〉 = 〈 · 〉 − 〈 · 〉n ej B V B V B( ). (2.263)e i e

It follows from equations (2.221) and (2.257) that

γ δ σ

β β β α β

〈 · 〉 = − 〈 · 〉
+ − − + +

⊥

* * * *( )
f

n e f V V V V

j B E B( )

,
(2.264)

11 11 t

e t 11 e 1 12 e 2 11 i 1 1 11 i 2

where σ⊥ is specified in equation (2.41). In the circular magnetic flux-surface limit,
the previous expression reduces to [15, 16]
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e
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where

σ γ σ σ= =⊥ ⊥1.93 . (2.266)11

Here, use has been made of equations (2.202), (2.217), (2.243), (2.244), (2.247), and
(2.251). Note that the previous formula agrees fairly well with the more accurate
formula (2.40). (The reason for the slight discrepancy is that the moment-based
expressions for the friction force densities given in section 2.16 are only
approximate.)

The first term on the right-hand side of equation (2.265) represents the conven-
tional ohmic parallel current driven by the inductive parallel electric field. Note,
however, that the ohmic current is smaller than that predicted by the classical fluid
closure scheme (see section 2.6) by a factor ϵ−1 1.82 1/2 [29]. The explanation for
this reduction is that trapped electrons cannot carry a net parallel current, because
they are forced to periodically reverse their drift direction parallel to the magnetic
field. Hence, the parallel electrical conductivity of the plasma is reduced by a factor
that is roughly equal to the fraction of passing particles [20] (see equation (2.201)).
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This effect is known as the neoclassical enhancement of (parallel) electrical resistivity
and has been observed in experiments [30–32].

The second term on the right-hand side of equation (2.265) represents a non-
inductive parallel current driven by equilibrium density and temperature gradients
that is known as the bootstrap current [33]. The bootstrap current has also been
observed in experiments [34, 35]. The ultimate origin of the bootstrap current is
collisional friction between trapped and passing particles. It is, therefore, not
surprising that the current is proportional to the fraction of trapped particles, ft.

2.21 Neoclassical transport
Taking the scalar product of equations (2.163) and (2.164) with φ∇R2 and
flux-surface averaging, we obtain

ψ φΓ = − ̇ − 〈 ∇ · 〉n
e

R F
1

, (2.267)s 1 s
s

2
s 1

φΓ = − 〈 ∇ · 〉
e

R F
1

, (2.268)s 2
s

2
s 2

where

ψ ψΓ = 〈 · ∇ 〉 = 〈 · ∇ 〉n nu V , (2.269)s 1 s s 1 s s

ψ ψΓ = 〈 · ∇ 〉 = − 〈 · ∇ 〉n
T

u q
5
2

1
, (2.270)s 2 s s 2

s
s

and use has been made of equations (2.130), (2.131), (2.155), (2.161), (2.162),
(2.165), and (2.166). Note that Γs 1 and − ΓTs s 2 are proportional to the species-s
particle and heat fluxes, respectively, across (i.e. perpendicular to) magnetic flux
surfaces. Note further that the cross-flux-surface components of the particle and heat
flow velocities are δ Δθ( )s sO smaller than the in-flux-surface flow velocities discussed
in section 2.11.

We can now write

φΓ − Γ = − 〈 ∇ · + 〉 =
e

R F F
1

( ) 0, (2.271)i 1 e 1
2

i 1 e 1

where use has been made of equations (2.16) and (2.199). It follows that the cross-
flux-surface particle fluxes in tokamaks are automatically ambipolar as a conse-
quence of axisymmetry, quasi-neutrality, and collisional momentum conservation
[36]. This result is of great significance because it implies that there is no preferred
radial electric field, = − ΦE d dr/r , in a tokamak plasma, which means that the
plasma can rotate freely in the toroidal direction (see equations (2.228) and (2.231)).
The situation is very different in a non-axisymmetric magnetic confinement system,
such as a stellarator, in which ambipolarity is only attained at a certain value of the
radial electric field. It follows that a stellarator plasma cannot rotate freely in the
toroidal direction [37].
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Equations (2.267) and (2.268) can be combined with equations (2.186), (2.191),
and (2.196) to give
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Making use of equations (2.193)–(2.195), (2.197), and (2.198), as well as the large-
aspect-ratio approximation (2.230), we obtain

⎜ ⎟

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

ψ
τ

τ

Γ = − ̇ + 〈 〉

+ 〈 〉 − −

n
R
I

n m
e u

R
I

n m
e

u u u

T T u

( ) ( )
0

2

(3/2)

(15/2) ( / )
,

(2.276)

i e

2
e i

i i 2

2
e e

e

i 1 e 1 e 2

e i i 2

⎛

⎝
⎜

⎞

⎠
⎟ψ

τ
Γ = − ̇ +

〈 〉 − −

− − +
n

R
I

n m
e

u u u

u u u
( ) ( )

(3/2)

(3/2) (3/2) ( 2 13/4)
. (2.277)e e

2
e e

e

i 1 e 1 e 2

i 1 e 1 e 2

Here, use has been made of the results τ τ=ee e and τ τ= / 2ii i . According to the
previous two equations, the large parallel particle and heat flows present in a low-
collisionality plasma (see sections 2.18 and 2.19) give rise to a transport of particles
and heat across magnetic flux surfaces. This transport, which is far larger than the
cross-flux-surface transport predicted by the classical closure scheme (see section
2.6), is known as neoclassical transport [26, 27].

According to equations (2.130), (2.131), (2.165), (2.166), (2.181), (2.221), (2.222),
(2.243)–(2.250), (2.257), and (2.258),

α= *u f V , (2.278)i 2 2 t i 2
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It follows that
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t e 12 e 1 e 22 e 2

e 12 i 1 1 e 12 i 2

where use has been made of equations (2.269) and (2.270). Note that we have also
made use of the large-aspect-ratio approximation that ∣〈 〉 〈 〉 − ∣ ≪R R f1/ 12 2

t.
Furthermore, we have neglected a term that is m m[( / ) ]e i

1/2O smaller than the
leading-order term in equation (2.282). In the circular magnetic flux-surface limit,
the previous three expressions reduce to [16]
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and
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where use has been made of equations (2.202), (2.209)–(2.211), (2.243), and (2.244).
The first term on the right-hand side of equation (2.284) represents an inward flow

of trapped particles driven by the inductive parallel component of the electric field.
This effect is known as the Ware pinch [38]. Consider the toroidal component of the
equation of motion of a particle of species s:

v
v= +φ

φ θm
d

dt
e E B( ). (2.287)rs

s
s s

(Note that =B 0r .) For a passing particle, φe Es is balanced by vφm d dt/s s . In other
words, the toroidal electric field causes the toroidal velocity of the particle to
continuously increase or decrease. This increase or decrease is ultimately limited by
collisions and parallel viscosity (see equation (2.175)). The net result is that passing
particles of both species carry a net toroidal current that is driven by the inductive
electric field. For a trapped particle, on the other hand, the integral between bounces
of the left-hand side of the previous equation is zero. Thus, we obtain

v〈 〉 = −θ φB E . (2.288)r s

It follows that the time-averaged radial velocity of a trapped particle is

v〈 〉 = − φ

θ

E

B
, (2.289)r

independent of the particle’s mass or charge. Hence, given that the trapped-particle
fraction is ϵ( )1/2O , we expect both plasma species to exhibit a mean radial flow of the
form

ϵ= ∼ − φ

θ
V V

E

B
. (2.290)r ri e

1/2

The Ware pinch does indeed have this form (when we take into account the fact that
≃ φE E in a large-aspect-ratio tokamak). It is clear from equation (2.286) that the

inward flow of trapped electrons is associated with an outward electron heat flux.
The remaining terms in equations (2.284)–(2.286) are all diffusive in nature.

According to Fick’s law [39], we expect the diffusive component of the species-s
radial velocity to take the form
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= − ⊥V D
n

dn
dr

1
, (2.291)r s s

s

s

where ⊥D s is the perpendicular (i.e. cross-flux-surface) particle diffusivity. If we
ignore the Ware pinch and temperature gradient terms in equation (2.284) and make
the simplifying assumption that =T Te i , then we obtain

ρ
ϵ τ

≃ −V
q

n
dn
dr

2.24
1

. (2.292)r s

2
e

2

3/2
e s

s

This leads to the following estimate for the perpendicular particle diffusivity (which
is the same for ions and electrons):

ρ
ϵ τ

≃⊥D
q

2.24 . (2.293)
2

e
2

3/2
e

The previous equation can also be written

ν
ϵ

ρ∼⊥D f , (2.294)t
e

b e
2

where use has been made of equations (2.102) and (2.202). The previous formula can
be interpreted as follows: the collisions that scatter electrons out of their trapped
orbits displace the electrons across magnetic flux surfaces by a random distance
that is of the order of the banana width, ρb e. Such collisions take place at the
frequency ν ϵ/e (see equation (2.94)). Hence, the trapped electrons have a diffusivity
of ν ϵ ρ( / )e b e

2 [2]. However, trapped electrons only make up a fraction ft of the total

number of electrons, so the overall electron diffusivity is ν ϵ ρf ( / )t e b e
2 [16, 20, 26].

Note that the ion diffusivity is limited to be the same as the electron diffusivity by the
constraint that the cross-flux-surface particle fluxes be ambipolar.

According to Fick’s law, we expect the diffusive component of the ion heat flux to
take the form

χ= − ⊥q n
dT
dr

. (2.295)r i i i
i

We can see that equation (2.285) does indeed take this form. Our estimate for the
perpendicular ion energy diffusivity is thus

χ
ρ

ϵ τ
=⊥

q
0.67 . (2.296)

i

2
i

2

3/2
i

The previous expression can also be written as

χ ν
ϵ

ρ∼⊥ f . (2.297)i t
i

b i
2

We interpret the previous formula as saying that the neoclassical perpendicular ion
energy diffusivity corresponds to the random-walk motions of trapped ions with step
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frequency ν ϵ/i and step length ρb i [16, 20, 26]. Note that the neoclassical diffusivity
specified in the previous equation is much larger, by a factor ϵq /2 3/2, that that
predicted by the classical closure scheme (see section 2.6).

According to Fick’s law [39], we expect the diffusive component of the electron
heat flux to take the form

χ= − ⊥q n
dT
dr

. (2.298)r e e e
e

If we neglect the Ware pinch, density gradient, and ion temperature gradient terms
in equation (2.286), then we get

ρ
ϵ τ

= −q
q

n
dT
dr

1.83 . (2.299)
r e

2
e

2

3/2
e

e
e

Hence, our estimate for the electron energy diffusivity becomes

χ
ρ

ϵ τ
=⊥

q
1.83 . (2.300)

e

2
e

2

3/2
e

The previous expression can also be written

χ ν
ϵ

ρ∼⊥ f . (2.301)e t
e

b e
2

We interpret the previous formula as saying that the neoclassical perpendicular
electron energy diffusivity corresponds to the random-walk motions of trapped
electrons with step frequency ν ϵ/e and step length ρb e [16, 20, 26]. As before, the
neoclassical diffusivity specified in the previous equation is much larger, by a factor

ϵq /2 3/2, that that predicted by the classical closure scheme (see section 2.6).
It turns out that the neoclassical cross-flux-surface momentum diffusivities only

exceed the classical momentum diffusivities by a factor of q2. For example [16],

ν ρΞ =⊥ q0.1 . (2.302)i
2

i i
2

Table 2.5 shows estimates for the neoclassical cross-flux-surface particle, heat,
and momentum diffusivities in a tokamak fusion reactor. Note that although the
diffusivities are much larger than the classical cross-flux-surface diffusivities shown
in table 2.3, they are still all much smaller than the experimentally observed cross-
flux-surface diffusivities, which are ∼⊥ −D 0.2 m s2 1 and χ ∼ Ξ ∼ −1 m ss s

2 1 [16].

2.22 The perpendicular closure scheme
As we have seen, the neoclassical cross-flux-surface particle, heat, and momentum
diffusivities are all much smaller than the experimentally observed diffusivities. The
additional, or anomalous, cross-flux-surface transport that is found in tokamaks is
due to the action of small-scale plasma turbulence [40]. Turbulent eddies in a
tokamak plasma are the nonlinearly saturated states of micro-instabilities driven by
temperature gradients [41]. As mentioned previously, turbulent eddies are localized
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on toroidal magnetic flux surfaces in flux tubes that run parallel to the magnetic field
and whose radial extents are a few ion gyroradii. It follows that turbulent eddies are
characterized by the so-called flute ordering, ∣ ∣ ∣ ∣ ≪⊥k k/ 1, where k and ⊥k are the
wave numbers of the underlying micro-instabilities parallel and perpendicular to
the equilibrium magnetic field, respectively. An immediate consequence of the flute
ordering is that turbulent eddies generate comparatively little transport parallel to
magnetic field lines. Consequently, we shall assume that turbulence does not upset
the parallel force and heat flux balance described in equations (2.175) and (2.176).
This implies that the expressions for the in-flux-surface neoclassical ion and electron
flows given in sections 2.18 and 2.19, well as the expression for the parallel current
density given in section 2.20, remain valid in the presence of turbulence. We also
expect the expressions for the cross heat fluxes and the gyroviscous tensors given in
section 2.6 to remain valid, because these effects are merely a consequence of the
rapid gyration of charged particles perpendicular to magnetic field lines, which is not
significantly affected by turbulence. On the other hand, we shall replace our previous
expressions for the perpendicular viscous force densities and the perpendicular heat
fluxes by phenomenological terms of the forms

π∇ · = −∇ · Ξ⊥ ⊥n m W( ), (2.303)s e s s s

χ= − ∇⊥ ⊥ ⊥n Tq , (2.304)s e s s

respectively, where Ξ⊥ s and χ⊥ s are taken from experimental measurements.
Finally, if axisymmetric tokamak plasmas are to retain their freedom to rotate in the

toroidal direction, then anomalous transport needs to be intrinsically ambipolar.
Fortunately, good theoretical arguments can be made that this is the case [21, 42, 43].

2.23 The parallel closure scheme
There are a number of other terms that appear in the so-called Braginskii equations,
described in section 2.6, that are subject to modification in a long mean-free-path
plasma.

Table 2.5. Neoclassical diffusivities in a low-field tokamak reactor and a high-
field tokamak reactor. Here, B is the toroidal magnetic field strength, ⊥D the
perpendicular particle diffusivity, χ⊥ e the perpendicular electron energy
diffusivity, χ⊥ i the perpendicular ion energy diffusivity, and Ξ⊥ i the
perpendicular ion momentum diffusivity.

Low field High field

B (T) 5.0 12.0

⊥
−D (m s )2 1 × −2.3 10 3 × −2.3 10 3

χ⊥ −(m s )e
2 1 × −1.9 10 3 × −1.9 10 3

χ⊥ −(m s )i
2 1 × −3.4 10 2 × −3.4 10 2

Ξ⊥ −(m s )i
2 1 × −1.0 10 3 × −1.0 10 3
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Consider the thermal force density (see equation (2.36)):

= + ⊥F F F , (2.305)T T T

where

= − ∇n TF 0.71 , (2.306)T e e

τ
=

Ω
× ∇⊥ ⊥

n
TF b

3
2

. (2.307)T
e

e e
e

Both the parallel and the perpendicular components of this force density are a
consequence of the fact that the friction force density is inversely proportional to the
temperatures of electrons that are scattered by ions [1, 13].

Let us first examine the parallel component of the thermal force density. Suppose
that x denotes distance along a magnetic field line. We can write [1, 13]

v
v

v v∫τ τ
= −

−−∞

∞
x

m T x

T x
f dF b( )

2 ( )

( )
( ) , (2.308)T

e

e

e e

e e e
e e

where

v
v

v

v
⎛

⎝
⎜

⎞

⎠
⎟π

= −f
n

( ) exp . (2.309)e
e

t e

e
2

t e
2

Here, we are making use of the fact that FT is the sum of v τm2 /e e e (the 2
factor is to get agreement with the collisional result) taken over all electrons moving
parallel to the field line and weighted by the inverse of the electron temperature at
the last scattering position. Thus, electrons with parallel velocity v e that are
scattered by ions at position x were last scattered at position v τ−x e e and are,
therefore, characterized by the electron temperature at the latter position. Suppose
that a tearing mode gives rise to a perturbation of the electron temperature along the
field line of the form

δ= +T x T T k x( ) cos( ), (2.310)e e e

where δ ≪T T/ 1e e . It follows that

v ∫π τ
δ≃ −

−∞

∞
x

n m
T

T k x y k l y y dyF b( )
2

sin( ) sin( ) exp( ) , (2.311)T
e e t e

e e
e e

2

which reduces to

⎡
⎣⎢

⎤
⎦⎥

= − − ∇x n
k l
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1

2
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( )

4
. (2.312)T e

e
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e

Here, use has been made of the result

⎜ ⎟
⎛
⎝

⎞
⎠

∫ α π α α− = −
−∞

∞
y y y dysin( ) exp( )

4
exp

4
. (2.313)2

2
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It can be seen that, in the short mean-free-path limit, ≪k l 1e , equation (2.312) is
identical to equation (2.306). However, in the long mean-free-path limit, ≫k l 1e ,
the parallel thermal force density is attenuated by a factor of − k lexp[ ( ) /4]e

2 . As is
clear from table 2.1, unless the parallel wavelength of the tearing mode exceeds a few
kilometers (i.e. the electron mean free path), this attenuation is very strong in a
tokamak fusion reactor. Tearing modes are global instabilities of tokamak plasmas,
so they have wavelengths that do not differ greatly from the dimensions of the
plasma, which is a few meters. Thus, we conclude that there is no parallel
component of the thermal force density in a tokamak fusion reactor. To be slightly
more exact, ∼ Δk r R r/( )0 s for a tearing mode in a tokamak plasma of minor radius
rs (where Δr measures radial distance from the rational surface), at which it
resonates with the equilibrium magnetic field (see section 1.11). Thus, the attenu-
ation of the parallel thermal force is strong unless Δ ≲ ∼ −r r R l/ / 10s 0 e

3.
Let us now consider the perpendicular component of the thermal force density.

The appropriate calculation is analogous to the calculation just performed, except
that electrons that move perpendicular to magnetic field lines and are scattered by
ions at a given point in the plasma can only have originated from points that are, at
most, a few electron gyroradii away from the given point. Hence, the appropriate
attenuation factor is ρ− ⊥kexp[ ( ) /4]e

2 . As is clear from table 2.1, unless the
perpendicular wavelength of the tearing mode falls below about 0.1 mm (i.e. the
electron gyroradius), there is no attenuation of the perpendicular thermal force
density in a tokamak fusion reactor. Thus, we conclude that equation (2.307)
remains valid in such a reactor.

The electron heat flux also has a thermal component, which is specified in
equation (2.47). Similar arguments to those that we just made reveal that the parallel
component of this heat flux is strongly attenuated in a tokamak fusion reactor, due
to long mean-free-path effects, while the perpendicular component is unaffected.

Consider the diffusive parallel heat flux associated with the electron temperature
perturbation (2.310). In the short mean-free-path limit, we have

χ= − ∇n Tq , (2.314)e e e
smfp

e

where

vχ = l1.58 . (2.315)e
smfp

t e e

(See equations (2.44) and (2.48).) On the other hand, in the long mean-free-path (i.e.
collisionless) limit [44, 45]

v ∫π
= − ′ − + ′

′
′

∞
x

n T x x T x x
x

dxq b( )
( ) ( )

. (2.316)e
e t e

3/2 0

e e

It follows from equation (2.310) that

v ∫π
δ=

∞
x

n
T k x

y
y

dyq b( )
2

sin( )
sin

, (2.317)e
e t e
3/2 0

0
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which yields

χ= − ∇n Tq , (2.318)e e e
lmfp

e

where the long mean-free-path thermal conductivity takes the form [46]

vχ
π

=
k

. (2.319)e
lmfp t e

1/2

Here, use has been made of the result ∫ π=
∞

y y dy(sin / ) /2
0

. It can be seen from a
comparison between equations (2.315) and (2.319) that the short mean-free-path
parallel electron thermal diffusivity exceeds the collisionless diffusivity when l ke

exceeds about unity. However, this is impossible, because the collisionless diffusivity
corresponds to the free flow of electrons along magnetic field lines, completely
unimpeded by collisions, and therefore sets an upper limit on the diffusivity. (Of
course, in this limit, the parallel heat flow is not diffusive at all; instead, it is
convective.) Hence, we conclude that in a tokamak fusion reactor, which is
characterized by ≫l k 1e , the appropriate expression for the parallel electron
thermal ‘diffusivity’ is given by equation (2.319). Analogous arguments reveal
that the ion parallel thermal ‘diffusivity’ in a tokamak fusion reactor takes the
form [46]

vχ
π

=
k

. (2.320)i
lmfp t i

1/2

2.24 The derivation of the neoclassical fluid equations
It is helpful to define the so-called magnetohydrodynamic (MHD) velocity [21],

= + VV V b. (2.321)E i

which is the fluid velocity associated with the ion guiding centers. Here, a guiding
center is the imaginary point about which a charged particle gyrates in the plane
perpendicular to the local magnetic field. According to section 2.11, the lowest-order
ion and electron fluid velocities can be written as

= + *V V V , (2.322)i i

= + −* n e
V V V

j
, (2.323)e i

e

respectively, where

= × ∇ +p
B

jj
b

b (2.324)

is the lowest-order electrical current density. Quasi-neutrality demands that

∇ · ≃j 0. (2.325)
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The electron and ion continuity equations, (2.26) and (2.29), can be combined
with equations (2.322), (2.323), and (2.325) to give an electron number density
continuity equation of the form [21]:

∂
∂
+ ∇ · + =*

n
t

n V V[ ( )] 0. (2.326)e
e i

If we sum the electron and the ion equations of motion, (2.27) and (2.30), then we
obtain

π π π∂
∂
+ · ∇ − × + ∇ + ∇ · + ∇ · + ∇ · =× ⊥m n

t
m n p

V
V V j B( ) 0. (2.327)i e

i
i e i i i i i

Here, = +p p pe i is the total plasma pressure, and use has been made of equations
(2.16), (2.39), and (2.59). In the previous equation, we neglected electron inertia with
respect to ion inertia because the former is m m( / )e iO times smaller than the latter.
We also neglected electron viscosity with respect to ion viscosity because the former
is at least m m[( / ) ]e i

1/2O times smaller than the latter. It can be demonstrated that
[21, 47]:

⎡
⎣

⎤
⎦

π∂
∂
+ · ∇ + ∇ · =

∂
∂
+ · ∇ + · ∇

×

*

m n
t

m n m

n
t

V
V V

V
V V V V

( )

( ) ( ) .
(2.328)

i e
i

i e i i i i

e i E

This important result is known as the gyroviscous cancellation. Furthermore, it is
clear from equations (2.152) and (2.161) that π∇ · i acts predominately in the θe
direction (i.e. parallel to θ∇ ). A model form for π∇ · i that is consistent with the
analysis of section 2.18 is

⎛
⎝

⎞
⎠

π μ
ϵ τ

∇ · = −θ θ θf
q m n

V V e2 ( ) , (2.329)i i 11 t

2
i e

i
i i

nc

where

α α= − ∂
∂θV f

e B
T
r

(1 )
1

. (2.330)i
nc

1 2 t
i

Thus, the neoclassical ion parallel viscosity tensor acts to relax the ion poloidal
velocity toward the neoclassical velocity specified in equation (2.330) on a timescale
that is roughly ϵ τq( / )3/2 2

i. As has already been mentioned, this effect is known as
poloidal flow damping. Equations (2.328) and (2.329) can be combined with
equation (2.303) to give an MHD equation of motion of the form:

⎡
⎣

⎤
⎦ τ

∂
∂
+ · ∇ + · ∇ − × + ∇ + −

− ∇ · Ξ =
θ

θ θ θ*

⊥

m n
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p
m n

V V

m n

V
V V V V j B e

W

( ) ( ) ( )

( ) 0,
(2.331)i e i E

i e

i
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i e i i

Tearing Mode Dynamics in Tokamak Plasmas

2-47



where

⎜ ⎟
⎛
⎝

⎞
⎠

τ
μ

ϵ τ=θ
f q

1

2
(2.332)i

i 11 t

2

i

is the poloidal flow-damping time. Of course, the value of the anomalous perpendic-
ular momentum diffusivity, Ξ⊥ i, must be taken from experiments.

The electron equation of motion, (2.27), can be combined with equations (2.59),
(2.139), and (2.323) to give

π
+ × + ∇ − ∇ − × +

∇ · −
=( )

e n
p p

e n
E V B j B

F1
0. (2.333)

e
i

e e

e

Here, we have neglected electron inertia and gyroviscosity because these terms are
δ( )e

2O times smaller than the leading-order terms We have also neglected anomalous
electron perpendicular viscosity because there are no available experimental
measurements of this effect in tokamak plasmas. Let us adopt the following model
form for π∇ · e which is consistent with the analysis of sections 2.16, 2.19, and 2.20:

⎛
⎝

⎞
⎠

π
η η

∇ · −
= − − × ∇ − −⊥ ⊥e n
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. (2.337)nc

t 11 12
e e

1 11
e i

Thus, the neoclassical electron parallel viscosity tensor acts to relax the perpendic-
ular current to its lowest-order value (see equation (2.324)), enhances the parallel
electrical resistivity of the plasma, and also generates the non-inductive parallel
current specified in equation (2.337). As has already been mentioned, this non-
inductive current is known as the bootstrap current. Note that in equation (2.334) we
have neglected the parallel thermal force density, (2.306), in accordance with the
discussion in section 2.23. We have also neglected the perpendicular component of
the thermal force density, (2.307) because it is ϵ q( / )3/2 2O smaller than the similar
term in the previous equation that involves η⊥

nc. Thus, equations (2.333) and (2.334)
yield the following generalized Ohm’s law for the plasma:

⎛
⎝

⎞
⎠

η η
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The electron and ion energy conservation equations, (2.28) and (2.31), yield the
following electron and ion energy conservation equations:

χ

χ

∂
∂
+ · ∇ + ∇ · + + +

+ ∇ · − ∇ · ∇

− ∇ · ∇ =

* *
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t
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5
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( ) ( )

( ) 0,

(2.339)
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2.64, (2.345)1 11 21

ϵ β β= − =3
2

5
2

0.338, (2.346)2 12 22

ϵ γ γ= − =3
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5
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4.45, (2.347)3 11 21

ϵ δ δ= − =3
2

5
2

4.89. (2.348)4 11 21
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In writing equations (2.339) and (2.258), use has been made of equations (2.139),
(2.226)–(2.229), (2.259)–(2.262), (2.322), and (2.323). We have neglected electron–
ion energy exchange (i.e.Wi ) because this is a small effect, due to the smallness of the
mass ratio m m/e i (see equation (2.37)). We have also neglected ohmic heating (i.e.
·j Fe), because this effect is ρ β ∼ −l[( / )/ ] 10e e

2 4O (see tables 1.2 and 2.1) smaller than
the leading-order terms. In addition, we have neglected viscous heating because this
effect is at least ρ l/s s times smaller than the leading-order terms. In accordance with
the discussion in section 2.23, we have neglected the parallel component of the
thermal heat flux, (2.47). We have also neglected the perpendicular component of
the thermal heat flux because this term is the same size as the classical electron
perpendicular heat flux (and therefore much smaller than the anomalous electron
perpendicular heat flux). The parallel heat ‘diffusivities,’ χ e and χ i, are given the
collisionless values specified in equations (2.319) and (2.320), respectively. Of course,
the values of the anomalous perpendicular heat diffusivities, χ⊥ e and χ⊥ i, must be
taken from experiments.

Note, finally, that when combined with the following subset of Maxwell’s
equations,

∇ · =B 0, (2.349)

μ∇ × =B j, (2.350)0

∇ × = −∂
∂t

E
B

, (2.351)

our final set of neoclassical fluid equations, (2.326), (2.331), and (2.338)–(2.340), form
a complete set.

2.25 The normalization of the neoclassical fluid equations
In this section, we shall estimate the relative sizes of the various terms appearing in
our neoclassical fluid equations. Let us assume that

∇ ∼⊥
a
1

, (2.352)

∇ ∼
R q

1
. (2.353)

0

As before, we shall adopt the drift ordering (2.113). It is helpful to define the
following timescales:

v
τ = a

, (2.354)s
t i

τ
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Here, τs is the typical time required for a sound wave to traverse the plasma, τE e is
the typical time required for electron energy to diffuse out of the plasma, τE i is the
typical time required for ion energy to diffuse out of the plasma, τM is the typical
time required for momentum to diffuse out of the plasma, τ ⊥R is the typical time
required for the perpendicular current to diffuse out of the plasma, τR is the typical
time required for the parallel current to diffuse out of the plasma, τ e is the typical
time required for the electron temperature to attain equilibrium on magnetic flux
surfaces, and τ i is the typical time required for the ion temperature to attain
equilibrium on magnetic flux surfaces. We shall assume that τ τ τ τ∼ ∼ ∼ ⊥E e E i M . We
shall also assume that

v
δ∂

∂
∼a

t
. (2.362)

t i
i

The previous equation is an extension of the drift ordering, (2.113), which takes into
account the fact that tearing modes usually propagate with respect to the MHD fluid
at diamagnetic velocities [48].

It is helpful to define the following dimensionless parameters:

δ
Δ = 1

, (2.363)i
i

2

τ
τ δ

Δ =θ
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, (2.364)
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Here, δi is the ion magnetization parameter defined in equation (2.110), while β is as
defined in equation (1.23). Table 2.6 gives estimates for the dimensionless param-
eters defined in equations (2.363)–(2.369) for a low-field fusion reactor and a high-
field fusion reactor. As before, these estimates are made assuming that β = 0.02,
χ χ= = Ξ =⊥ ⊥ ⊥

−1 m se i i
2 1, and q = 3.

Our neoclassical fluid equations, (2.326), (2.331), and (2.338)–(2.340), can be
written

∂
∂
+ ∇ · + =*

n
t

n V V[ ( )] 0, (2.370)e
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(2.371)
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i e i i

Table 2.6. Dimensionless parameters used in the normalization of the
neoclassical fluid equations in a low-field tokamak reactor and a high-field
tokamak reactor. See equations (2.363)–(2.374).

Low field High field

B (T) 5.0 12.0

Δi ×4.35 105 ×4.35 105

Δθ × −1.17 10 3 × −2.81 10 3

Δ⊥ × −3.57 10 4 × −8.57 10 4

Δ ⊥R × −7.50 10 7 × −1.80 10 6

ΔR × −4.85 10 7 × −1.12 10 6

Δ e ×2.80 103 ×2.80 103

Δ i ×4.14 101 ×4.14 101
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Here, the factors Δ[ ]i , Δθ[ ], Δ⊥[ ], etc. indicate that the terms they precede are larger or
smaller than terms preceded by no factor by the dimensionless parameter contained
within the square brackets.

According to table 2.6, the dominant parallel diffusivity term in the electron
energy conservation equation, (2.373), yields

∇ ≃T 0. (2.375)e

In other words, the parallel electron energy diffusivity in a tokamak fusion reactor is
sufficiently large to ensure that the electron temperature is uniform on magnetic flux
surfaces. Likewise, according to table 2.6, the dominant parallel diffusivity term in
the ion energy conservation equation, (2.374), gives

∇ ≃T 0. (2.376)i

In other words, the parallel ion energy diffusivity in a tokamak fusion reactor is
sufficiently large to ensure that the ion temperature is uniform on magnetic flux
surfaces. According to table 2.6, the dominant terms in the plasma equation of
motion, (2.371), yield

× − ∇ ≃pj B 0. (2.377)

In other words, the plasma in a tokamak fusion reactor exists in a state of
approximate force balance. The previous equation suggests that · ∇ =pB 0.
When combined with equations (2.375) and (2.376), this relation gives

∇ = ∇ = ∇ ≃n p p 0. (2.378)e e i

We conclude that the electron number density, the electron pressure, and the ion
pressure are all uniform on magnetic flux surfaces in a tokamak fusion reactor.
According to table 2.6, the dominant terms in the plasma Ohm’s law, (2.372), yield

+ × ≃E V B 0, (2.379)

where use has been made of equations (2.377) and (2.378). Thus, we conclude that
the plasma in a tokamak fusion reactor satisfies the so-called perfect conductivity or
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flux-freezing constraint. As is well known, this constraint forbids any change in the
topology of magnetic field lines [1]. Finally, according to table 2.6, the dominant
term in the electron number density continuity equation, (2.370), gives

∂
∂
+ ∇ · + ≃*

n
t

n V V[ ( )] 0. (2.380)e
e i

Equations (2.375)–(2.380) are known collectively as the equations of marginally
stable ideal MHD [22].

2.26 Discussion
Our derivation of the neoclassical fluid equations, (2.370)–(2.374), is premised on the
following assumptions:

• The plasma is axisymmetric.
• The plasma is in the banana collisionality regime.
• The drift ordering (2.113) holds good.
• The transport ordering (2.114) holds good.
• Plasma turbulence does not affect force and heat balance parallel to magnetic
field lines.

These assumptions are all fairly reasonable when discussing the evolution of an
axisymmetric tokamak plasma equilibrium.

In this book, however, we intend to use the neoclassical fluid equations, (2.370)–
(2.374), to describe the evolution of a tokamak plasma equilibrium that is perturbed
by a non-axisymmetric tearing mode. This approach requires some justification. The
first justification is that tearing modes in tokamak plasmas usually saturate at a
fairly low amplitudes (typically δ ∼ −B B/ 10 4) [16]. Hence, the departure from
axisymmetry associated with the tearing modes is comparatively small. The second
justification is that tearing modes do not affect the plasma collisionality, and, in
particular, do not significantly modify particle trapping. The third justification is
that tearing modes are sufficiently slow growing that they do not give rise to
perturbed E-cross-B flows that are large enough to violate the drift ordering [21, 47].
It is harder to argue that tearing modes are sufficiently slow growing that they do not
violate the transport ordering. It is certainly the case that large-amplitude tearing
modes grow on timescales that are comparable to a transport timescale (because
such modes are effectively slightly helical plasma equilibria) [49]. However, low-
amplitude tearing modes can grow on somewhat shorter timescales [50].
Furthermore, diamagnetic effects cause tearing modes to propagate with respect
to the MHD fluid [48], which is the origin of the modified ordering (2.362). We are
essentially hoping that this slightly faster time evolution does not invalidate our
analysis. The final justification is that, to a first approximation, tearing modes do not
modify, and are not directly affected by, plasma turbulence. Of course, this is not
strictly true, because a sufficiently large-amplitude tearing mode can flatten the
density and pressure profiles and thereby stabilize micro-instabilities—which has the
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effect of reducing turbulent transport—in the immediate vicinity of its rational
surface [51–54]. Under certain circumstance, turbulence can also directly influence
tearing-mode evolution [53, 55, 56]. Unfortunately, the mutual interaction between
plasma turbulence and a tearing mode is almost impossible to model accurately with
fluid equations, and will, therefore, be neglected in this book.

As we saw in the previous section, under normal circumstances the neoclassical
fluid equations, (2.370)–(2.374), reduce to the much simpler equations of marginally
stable ideal MHD, (2.375)–(2.380). However, as we shall demonstrate in the next
chapter, when applied to tearing-mode dynamics, the equations of marginally
stable ideal MHD become singular at the associated rational magnetic flux surface
(see section 3.7). The singularity is resolved in a thin current sheet characterized by
∇ ≫⊥ a1/ and ∇ ≪ R q1/( )0 (see equations (2.352) and (2.353)). When we reorder
the neoclassical fluid equations using appropriate estimates for ∇⊥ and ∇ within the
layer, we shall discover that most of the terms in the equations need to be retained.
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Tearing Mode Dynamics in Tokamak Plasmas

Richard Fitzpatrick

Chapter 3

Cylindrical tearing-mode theory

3.1 Introduction
The aim of this chapter is to describe the simplest theory of tearing-mode dynamics
in tokamak plasmas, according to which, the plasma equilibrium is approximated by
a periodic cylinder.

3.2 Cylindrical tokamak equilibrium
Consider a low-β, large-aspect-ratio, tokamak plasma equilibrium whose magnetic
flux surfaces map out (almost) concentric circles in the poloidal plane. Such an
equilibrium can be approximated by a periodic cylinder [1, 2]. Let us employ a
conventional set of right-handed cylindrical coordinates, r, θ, z. The equilibrium
magnetic flux surfaces lie on surfaces of constant r. The system is assumed to be
periodic in the z (‘toroidal’) direction and has a periodicity length of R2 0π , where R0

is the simulated major radius of the plasma. Let a be the minor radius of the plasma.
The equilibrium magnetic field is written

B r B rB e e( ) ( ) , (3.1)z z= +θ θ

where B r( )θ is the poloidal magnetic field strength, and B r( )z the toroidal magnetic
field strength. Here, e /θ θ≡ ∇ ∣∇ ∣θ and z ze /z ≡ ∇ ∣∇ ∣. The safety-factor profile takes
the form

q r
r B r

R B r
( )

( )
( )

. (3.2)z

0
=

θ

(See equation (1.76).) It is assumed that Oq (1)∼ . The equilibrium current density is
written

j r j rj e e( ) ( ) , (3.3)z z= +θ θ

where the poloidal and toroidal current densities take the respective forms
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j B , (3.4)z0μ = − ′θ

j
r B

r
( )

, (3.5)z0μ = ′θ

and ′ denotes d/dr. The plasma equilibrium satisfies the force balance criterion (see
equation (2.377)),

pj B 0, (3.6)× − ∇ =

where p r( ) is the total plasma pressure. It follows from equations (3.1) and (3.3)–
(3.5) that

d
dr

p
B B B

r2
0. (3.7)z

2 2

0

2

0

⎜ ⎟
⎛
⎝

⎞
⎠μ μ

+ + + =θ θ

3.3 Magnetic field and current density perturbations
Consider a tearing-mode perturbation that has m periods in the poloidal direction
and n periods in the toroidal direction, where m 0> , n 0> , and Om n (1)∼ ∼ . We
shall assume that all perturbed scalar and vector quantities vary as

A r z t A r t m n( , , , ) ( , ) exp[i ( )], (3.8)δ θ δ θ φ= −

r z t r t m nA A( , , , ) ( , ) exp[i ( )], (3.9)δ θ δ θ φ= −

respectively, where z R/ 0φ = is a simulated toroidal angle.
Given that tearing modes in tokamak plasmas are relatively low amplitude (i.e.

B B/ 10 4δ ∼ − ) [3], global (i.e. a1/∇ ∼⊥ ) (see equation (2.352)), relatively slow
growing (i.e. vt a/ /i t iδ∂ ∂ ∼ ) (see equation (2.362)) instabilities, it follows from the
analysis of section 2.25 that they are governed by the linearized forms of the
equations of marginally stable ideal magnetohydrodynamics (MHD), (2.375)–
(2.380). In particular, the linearized form of the curl of the force balance criterion,
(2.377), combined with the linearized forms of Maxwell’s equations, (2.349)–(2.351),
give

B j B j j B j B( ) ( ) ( ) ( ) 0, (3.10)δ δ δ δ· ∇ + · ∇ − · ∇ − · ∇ =

B 0, (3.11)δ∇ · =

j B, (3.12)0μ δ δ= ∇ ×

where Bδ and jδ are the perturbed magnetic field and current density, respectively.
Equations (3.1), (3.3), and (3.9)–(3.12) yield

F r j n j m j Bi i ( ) 0, (3.13)r z rδ ϵ δ+ − =θ
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F r j B r j r j B n j m j Bi i ( ) 0, (3.14)z z r z r z zδ δ δ ϵ δ− ′ + ′ + − =θ

and

r B m B n B( ) i i 0, (3.15)r zδ δ ϵ δ′ + − =θ

with

r j m B n Bi i , (3.16)r z0μ δ δ ϵ δ= + θ

r j r B m B( ) i , (3.17)z r0μ δ δ δ= ′ −θ

where

r
r

R
( ) , (3.18)

0
ϵ =

F r
m
r

B
n

R
B( ) . (3.19)z

0
= −θ

If we write

B
m
r

r ti ( , ), (3.20)rδ δψ=

then, after some algebra, equations (3.13)–(3.17) reduce to

B
m

m n
m
r

n
m n

n j m j

F( ) ( )

( )
, (3.21)z

2

2 2 2 2
0δ

ϵ
δψ ϵ

ϵ
μ ϵ

δψ= −
+

′ −
+

−
θ

θ

B
m n

m n
m
r

m
m n

n j m j

F
( )

( ) ( )

( )
, (3.22)z

z
2 2 2 2

0δ ϵ
ϵ

δψ
ϵ

μ ϵ
δψ=

+
′ −

+
− θ

and [4, 5]

r r
f r

r
g

1
0, (3.23)⎛

⎝
⎞
⎠

δψ δψ∂
∂

∂
∂

− =

where

f r
m

m n
( )

( )
, (3.24)

2

2 2ϵ
=

+

g r
m
r

m
r

j

F
n

m n

n j m j

F

m
r

n
m n

n j m j

F

m j n j

F

( )
( )

( )

( )

( ) ( )
.

(3.25)

z z

z z

0
2 2

0

2 2
0 0

⎧
⎨⎩

⎡
⎣⎢

⎤
⎦⎥

⎫
⎬⎭

μ ϵ
ϵ

μ ϵ

ϵ
ϵ

μ ϵ μ ϵ

= +
′

−
+

−

−
+

− +

′
θ

θ θ
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A global tearing instability in a low-β, large-aspect-ratio, tokamak plasma is
characterized by [4]

q
B
B

1, (3.26)
z

ϵ = ≪θ

Op

B q

2
, (3.27)

z

0
2

2

⎜ ⎟
⎛
⎝

⎞
⎠

β
μ ϵ≡ ∼

On
m q

. (3.28)⎜ ⎟
⎛
⎝

⎞
⎠

ϵ ϵ∼

It follows from equations (3.4), (3.5), (3.7), and (3.19) that

Or B
B q

, (3.29)z

z

2

⎜ ⎟
⎛
⎝

⎞
⎠

ϵ′ ∼

Oj

j q
, (3.30)

z

⎜ ⎟
⎛
⎝

⎞
⎠

ϵ∼θ

Oj

F
(1). (3.31)z0μ

∼

Thus, in the low-β, large-aspect-ratio limit, equations (3.20)–(3.25) simplify consid-
erably to give

B
m
r

i , (3.32)rδ δψ=

B , (3.33)δ δψ≃ − ′θ

B
n
m

n j m j

r F

( )
, (3.34)z

z0δ ϵ δψ
μ ϵ

δψ≃ ′ −
− θ

and

r r
r

r
m
r

m j

r F
1

0. (3.35)z
2

2
0⎛

⎝
⎞
⎠

δψ δψ
μ

δψ∂
∂

∂
∂

− −
′

≃

It can also easily be demonstrated that

j
m
r F

m
r

j
n

R
ji , (3.36)r z0

0

0

⎜ ⎟
⎛
⎝

⎞
⎠

μ δ
μ

δψ≃ −θ

j
m
r

n
R

n
R m

r
F

m
r

j
n

R
j( ) , (3.37)
z0

0 0

0

0

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

μ δ δψ δψ
μ

δψ≃ − ′ ′ − −
′

θ θ
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j
m
r r

r
1

( ) . (3.38)z0

2

2
μ δ δψ δψ≃ − ′ ′

Hence, we conclude that the magnetic field and current density perturbations
associated with a tearing mode in a low-β, large-aspect-ratio, tokamak plasma are
specified by equations (3.32)–(3.38). From now on, we shall treat Bz as approx-
imately independent of r, in accordance with equation (3.29).

3.4 Density and temperature perturbations
According to the equations of marginally stable ideal MHD, (2.375)–(2.380), the
electron number density, the electron temperature, and the ion temperature all
satisfy equations of the form

A AB 0. (3.39)∇ ∝ · ∇ =

Linearization of the previous equation yields

A AB B 0, (3.40)δ δ· ∇ + · ∇ =

where A r( ) denotes an equilibrium quantity. It follows from equations (3.8), (3.19),
and (3.32) that

A
m
r

A
F

. (3.41)δ δψ= − ′

More explicitly, we conclude that the perturbations in the electron number density,
the electron temperature, and the ion temperature that are associated with a tearing
mode in a low-β, large-aspect-ratio, tokamak plasma take the respective forms

n
m
r

n
F

, (3.42)e
eδ δψ= − ′

T
m
r

T
F

, (3.43)e
eδ δψ= − ′

T
m
r

T
F

. (3.44)i
iδ δψ= − ′

3.5 Fluid continuity
According to the equations of marginally stable ideal MHD, the electron number
density continuity equation takes the form

n
t

n
p

e B
V

b
0, (3.45)

z

e
e

i
⎜ ⎟
⎛
⎝

⎞
⎠

∂
∂

+ ∇ · +
× ∇

=
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where use has been made of equations (2.139), (2.380), and (3.26). Here,
B qb B e e/ ( / ) zϵ≡ ≃ +θ . It follows that b 0∇ · = and Or qb ( / )ϵ∇ × ∼ . Thus,

p

e B

b
0, (3.46)

z

i
⎜ ⎟
⎛
⎝

⎞
⎠

∇ ·
× ∇

≃

where use has been made of equation (3.29).
The equilibrium plasma flow is written

V r V rV e e( ) ( ) . (3.47)z z= +θ θ

It follows that

V 0. (3.48)∇ · =

The linearized form of equation (3.45) is

n
t

n n nV V V 0, (3.49)e
e e e

δ δ δ δ∂
∂

+ · ∇ + · ∇ + ∇ · =

where Vδ is the perturbed plasma velocity, and use has been made of equations
(3.46) and (3.48). Let us write

vV e B. (3.50)zδ ϕ δ= ∇ × +

It follows that

v vFV B i , (3.51)δ δ δ∇ · = · ∇ =

where use has been made of equations (3.8) and (3.19). Hence, writing

t
i , (3.52)ω∂

∂
= −

r
m
r

V
n

R
V( ) , (3.53)

0
Ω = −θ ϕ

equation (3.49) reduces to

v
m

r F F
n
n

, (3.54)e

e

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

δ ϕ ω δψ= − + − Ω ′

where use has been made of equation (3.42).

3.6 Velocity perturbation
The flux-freezing constraint of marginally stable ideal MHD takes the form

E V B 0. (3.55)+ × =

(See equation (2.379).) Taking the curl of the previous equation, combining with
Maxwell’s equations, and linearizing, we obtain
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t
B

B V V B B V V B( ) ( ) ( ) ( ) , (3.56)
δ δ δ δ δ∂
∂

= · ∇ − · ∇ + · ∇ − · ∇⊥ ⊥

where

V e , (3.57)zδ ϕ= ∇ ×⊥

and use has been made of equation (3.50) as well as the facts that
B B V V 0δ δ∇ · = ∇ · = ∇ · = ∇ · =⊥ . The radial component of the previous

equation yields

F
, (3.58)⎛

⎝
⎞
⎠

ϕ ω δψ= − − Ω

where use has been made of equations (3.9), (3.19), (3.32), (3.52), and (3.53).
Equations (3.54) and (3.58) imply that

v 0. (3.59)δ =

Hence, we deduce that the perturbed plasma flow associated with a tearing mode in
a low-β, large-aspect-ratio, tokamak plasma is divergence free (see equations (3.51)
and (3.59)) and is specified by equations (3.57) and (3.58).

3.7 The cylindrical tearing-mode equation
The magnetic structure of a tearing perturbation is determined by the so-called
cylindrical tearing-mode equation, (3.35), which can be written in the form [1, 2]

r r r
m
r

J
r q n m

1
(1/ / )

0, (3.60)z
2

2

2

2

δψ δψ δψ δψ∂
∂

+ ∂
∂

− − ′
−

=

where

J r
R j r

B
( )

( )
(3.61)z

z

z

0 0μ
=

is a dimensionless measure of the toroidal current density profile. Note that equation
(3.60) is singular at the so-called rational magnetic flux surface, radius r rs= , at
which

q r
m
n

( ) . (3.62)s =

At the rational surface, k B 0· = , where B is the equilibrium magnetic field and
k m r n Rk ( , / , / )r 0= − is the wavevector of the tearing perturbation.

3.8 The solution in the presence of a perfectly conducting wall
Suppose that the plasma occupies the region r a0 ⩽ ⩽ , where a is the plasma’s
minor radius. It follows that p r j r j r J r( ) ( ) ( ) ( ) 0z z= = = =θ for r a> . Let the
plasma be surrounded by a concentric, rigid, radially thin, perfectly conducting
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wall of radius r aw > . (In most circumstances, the wall represents the metallic
vacuum vessel that surrounds the plasma.) An appropriate physical solution of the
cylindrical tearing-mode equation, (3.60), takes the separable form

r t t r( , ) ( ) ( ), (3.63)s sδψ Ψ ψ= ˆ

where the real function r( )sψ̂ is a solution of

d

dr r

d

dr
m
r

J

r q n m
1

(1/ / )
0 (3.64)z

2
s

2
s

2

2 s
sψ ψ

ψ
ψˆ

+
ˆ

− ˆ −
′ ˆ
−

=

that satisfies

(0) 0, (3.65)sψ̂ =

r( ) 1, (3.66)s sψ̂ =

r r( ) 0. (3.67)s wψ̂ ⩾ =

Equation (3.65) ensures that the perturbed magnetic field associated with the tearing
mode remains finite at the magnetic axis (r = 0), while equation (3.67) represents the
physical constraint that the perturbed magnetic field cannot penetrate a perfectly
conducting wall.

Let r r r( )/s sρ = − . The solution of equation (3.64) in the vicinity of the rational
surface is

O( ) 1 ln ( ) (3.68)s s s
2ψ ρ ρ α ρ ρ ρˆ = + Δ + ∣ ∣ ++

for 0ρ > , and

O( ) 1 ln ( ) (3.69)s s s
2ψ ρ ρ α ρ ρ ρˆ = + Δ + ∣ ∣ +−

for 0ρ < . Here,

r q J
s

, (3.70)z

r r
s

s

⎛
⎝

⎞
⎠

α = − ′
=

s r
r q
q

( ) . (3.71)= ′

Moreover, the real parameters sΔ + and sΔ − are fully determined by equation (3.64)
and the boundary conditions (3.65)–(3.67). Note that, in general, Brδψ δ∝ is
continuous across the rational surface (in accordance with Maxwell’s equations),
whereas r/δψ∂ ∂ is discontinuous. The discontinuity in r/δψ∂ ∂ implies the presence of
a radially thin, helical current sheet at the rational surface. This current sheet is
resolved in a thin resistive layer that, in principle, can only be described by
employing the full set of neoclassical fluid equations, (2.370)–(2.374), rather than
the reduced set of marginally stable ideal MHD equations, (2.375)–(2.380).
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The value of r t( , )δψ at the rational surface,

t r t( ) ( , ), (3.72)s sΨ δψ=

is known as the reconnected magnetic flux [1]. Note that sΨ is, in general, a complex
quantity. The complex quantity

t r
r

( ) (3.73)
r

r

s

s

s

⎡
⎣

⎤
⎦

Ψ δψΔ = ∂
∂

−

+

parameterizes the amplitude and phase of the current sheet flowing (parallel to the
equilibrium magnetic field) at the rational surface. By asymptotically matching the
solutions in the so-called inner region (i.e. the region of the plasma in the immediate
vicinity of the rational surface) and the so-called outer region (i.e. everywhere in the
plasma other than the inner region) with the help of equations (3.63), (3.68), (3.69),
and (3.73), we obtain

E , (3.74)s ss sΨ ΨΔ =

where

E r
d

dr
(3.75)

r

r

ss
s

s s

s

s

⎡
⎣⎢

⎤
⎦⎥

ψ
=

ˆ
= Δ − Δ+ −

−

+

is a real dimensionless quantity that is known as the tearing stability index [6].

3.9 The solution in the presence of a resistive wall
Suppose, now, that the wall at r rw= possesses nonzero electrical resistivity but is
surrounded by a perfectly conducting wall located at radius r rc w> . The most
general solution to the cylindrical tearing-mode equation, (3.60), in the outer region
can be written

r t t r t r( , ) ( ) ( ) ( ) ( ), (3.76)s s w wδψ Ψ ψ Ψ ψ= ˆ + ˆ

where the real function r( )sψ̂ is specified in section 3.8, and the real function r( )wψ̂ is a
solution of

d

dr r

d

dr
m
r

J

r q n m
1

(1/ / )
0 (3.77)z

2
w

2
w

2

2 w
wψ ψ

ψ
ψˆ

+
ˆ

− ˆ −
′ ˆ
−

=

that satisfies

r r( ) 0, (3.78)w sψ̂ ⩽ =

r( ) 1, (3.79)w wψ̂ =

r r( ) 0. (3.80)w cψ̂ ⩾ =
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Again, equation (3.80) ensures that the perturbed magnetic field associated with the
tearing mode cannot penetrate the perfectly conducting wall. It can easily be seen that

r r r
r r r r

r r r r
( )

( / ) ( / )
( / ) ( / )

. (3.81)
m m

m mw w c
c c

w c w c
ψ̂ < < = −

−

−

−

In general, δψ is continuous across the resistive wall (in accordance with
Maxwell’s equations), whereas r/δψ∂ ∂ is discontinuous. The discontinuity in

r/δψ∂ ∂ is caused by a helical current sheet induced in the wall. The complex quantity

t r t( ) ( , ), (3.82)w wΨ δψ=

determines the amplitude and phase of the perturbed magnetic flux that penetrates
the resistive wall. The complex quantity

t r
r

( ) (3.83)
r

r

w

w

w

⎡
⎣

⎤
⎦

Ψ δψΔ = ∂
∂

−

+

parameterizes the amplitude and phase of the helical current sheet flowing in the
wall. Simultaneously matching the outer solution (3.76) across the rational surface
and the resistive wall yields [1]

E E , (3.84)s ss s sw wΨ Ψ ΨΔ = +

E E . (3.85)w ws s ww wΨ Ψ ΨΔ = +

Here,

E r
d

dr
, (3.86)

r

r

ww
w

w

w

⎡
⎣⎢

⎤
⎦⎥

ψ
=

ˆ

−

+

E r
d

dr
, (3.87)

r r
sw

w

s

⎡
⎣⎢

⎤
⎦⎥

ψ
=

ˆ

= +

E r
d

dr
(3.88)

r r
ws

s

w

⎡
⎣⎢

⎤
⎦⎥

ψ
= −

ˆ

= −

are real quantities determined by the solutions of equations (3.64) and (3.77) in the
outer region.

Equations (3.64) and (3.77) can be combined to give

d
dr

r
d

dr
r

d

dr
0. (3.89)s

w
w

s
⎜ ⎟⎛
⎝

⎞
⎠

ψ
ψ

ψ
ψ

ˆ
ˆ

− ˆ
ˆ

=

If we integrate the previous equation from r rs= + to r rw= −, making use of
equations (3.66), (3.67), (3.78), (3.79), (3.87), and (3.88), then we obtain [1]

E E . (3.90)sw ws=
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3.10 Resistive-wall physics
Outside the plasma, the perturbed electric field induced by the tearing mode satisfies

E B, (3.91)δ δ= ∇ ×

which yields

m
r

E
n

R
E

B
t

i i , (3.92)z
r

0
δ δ δ+ = − ∂

∂θ

n
R

E
E
r

B
t

i , (3.93)r
z

0
δ δ δ− − ∂

∂
= − ∂

∂
θ

r r
r E

m
r

E
B
t

1
( ) i . (3.94)r

zδ δ δ∂
∂

− = − ∂
∂θ

Making use of equations (3.32)–(3.34), as well as the ordering n mϵ ≪ , the previous
three equations imply that

E 0, (3.95)rδ ≃

E
n
m t

, (3.96)wδ ϵ δψ≃ − ∂
∂θ

E
t

, (3.97)zδ δψ≃ −∂
∂

where r R/w w 0ϵ = . Here, we have assumed that rw wδ ≪ , where wδ is the radial
thickness of the wall. We have also made use of the fact that j j 0z= =θ outside the
plasma.

Inside the wall,

j 0, (3.98)rδ =

j
E

, (3.99)
w

δ δ
η

=θ
θ

j
E

, (3.100)z
z

w

δ δ
η

=

where wη is the wall’s electrical resistivity. If we make use of equations (3.37), (3.38),
(3.96), and (3.97), as well as the fact that rw wδ ≪ , then both of the previous two
equations reduce to

r t
. (3.101)

2

2
0

w

δψ μ
η

δψ∂
∂

≃ ∂
∂
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Let us adopt the so-called thin-wall limit, according to which δψ is assumed to vary
only weakly in r across the wall. In this limit, integration of the previous equation
across the wall yields

d
dt

, (3.102)w w
wΨ τ ΨΔ =

where

r
(3.103)w

0 w w

w

τ
μ δ

η
=

is the so-called wall time constant [1, 7]. Here, use has been made of equations (3.82)
and (3.83). The thin-wall limit is valid as long as the wall thickness is less than the
resistive skin depth in the wall material. In other words, provided that

r d
dt
ln

. (3.104)w

w
w

w

δ
τ Ψ≫

In the thin-wall limit, equations (3.82) and (3.95)–(3.100) yield

j 0, (3.105)rδ =

j
n
m

d
dt

, (3.106)w

w

wδ ϵ
η

Ψ= −θ

j
d
dt

1
(3.107)z

w

wδ
η

Ψ= −

inside the wall. Note that j 0δ∇ · = , as required by charge conservation.

3.11 Resistive-layer physics
By analogy with equation (3.102), we can write

d
dt

i . (3.108)s s
s

s⎛
⎝

⎞
⎠

Ψ τ Ψ ω ΨΔ = +

Here, sτ is the reconnection time (i.e. the typical timescale on which magnetic
reconnection takes place in the resistive layer surrounding the rational surface),
while ω is the angular rotation frequency of the tearing mode in the laboratory frame.
The rotation frequency is nonzero because the reconnected flux in the resistive layer
is convected by the local plasma flow [1].

3.12 The solution in the presence of an external magnetic field coil
Suppose that the perfectly conducting wall at r rc= is replaced by a radially thin,
magnetic field coil that carries a helical current possessing m periods in the poloidal
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direction and n periods in the toroidal direction. Let the current density in the field
coil take the form

j 0, (3.109)rδ =

j
n
m

I t
r

r r
( )

( ), (3.110)c c

c
cδ ϵ δ= −θ

j
I t

r
r r

( )
( ), (3.111)z

c

c
cδ δ= −

where r R/c c 0ϵ = . Here, the complex quantity I t( )c specifies the amplitude and phase
of the helical current flowing in the field coil. Note that j 0δ∇ · = , as required by
charge conservation.

The most general solution to the cylindrical tearing-mode equation, (3.60), in the
outer region can now be written

r t t r t r t r( , ) ( ) ( ) ( ) ( ) ( ) ( ), (3.112)s s w w c cδψ Ψ ψ Ψ ψ Ψ ψ= ˆ + ˆ + ˆ

where the real functions r( )sψ̂ and r( )wψ̂ are specified in sections 3.8 and 3.9,
respectively. Moreover, the real function r( )cψ̂ is a solution of

d

dr r

d

dr
m
r

1
0 (3.113)

2
c

2
c

2

2 c

ψ ψ
ψ

ˆ
+

ˆ
− ˆ =

that satisfies

r r( ) 0, (3.114)c wψ̂ ⩽ =

r( ) 1, (3.115)c cψ̂ =

( ) 0. (3.116)cψ̂ ∞ =

It can easily seen that

r r( ) 0, (3.117)c wψ̂ ⩽ =

r r r
r r r r
r r r r

( )
( / ) ( / )
( / ) ( / )

, (3.118)
m m

m mc w c
w w

c w c w
ψ̂ < ⩽ = −

−

−

−

r r
r
r

( ) . (3.119)
m

c c
c

⎜ ⎟
⎛
⎝

⎞
⎠

ψ̂ > =
−

In general, δψ is continuous across the field coil (in accordance with Maxwell’s
equations), whereas r/δψ∂ ∂ is discontinuous. The discontinuity in r/δψ∂ ∂ is caused
by the helical current flowing in the field coil. The complex quantity

t r t( ) ( , ) (3.120)c cΨ δψ=
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determines the amplitude and phase of the perturbed magnetic flux at the field coil.
The complex quantity

t r
r

( ) (3.121)
r

r

c

c

c

⎡
⎣

⎤
⎦

Ψ δψΔ = ∂
∂

−

+

parameterizes the amplitude and phase of the helical current sheet flowing in the
field coil. It follows from equations (3.37), (3.38), (3.110), and (3.111) that

I . (3.122)c 0 cΨ μΔ = −

By simultaneously matching the outer solution, (3.112), across the rational
surface, the resistive wall, and the field coil, we obtain

E E , (3.123)s ss s sw wΨ Ψ ΨΔ = +

E E E , (3.124)w ws s ww w wc cΨ Ψ Ψ ΨΔ = + +

E E . (3.125)c cw w cc cΨ Ψ ΨΔ = +

Here,

E r
d

dr
m

r r
2

1 ( / )
, (3.126)

r

r

mcc
c

w c
2

c

c

⎡
⎣⎢

⎤
⎦⎥

ψ
=

ˆ
= −

−
−

+

E r
d

dr
m r r

r r
2 ( / )

1 ( / )
, (3.127)

r

m

mwc
c w c

w c
2

w

⎡
⎣⎢

⎤
⎦⎥

ψ
=

ˆ
=

−
+

E r
d

dr
m r r

r r
2 ( / )

1 ( / )
, (3.128)

r

m

mcw
w w c

w c
2

c

⎡
⎣⎢

⎤
⎦⎥

ψ
= −

ˆ
=

−
−

where use has been made of equations (3.81), (3.118), and (3.119).

3.13 Electromagnetic torques
The flux-surface integrated poloidal and toroidal electromagnetic torque densities
acting on the plasma can be written

T r t r j B e( , ) { } (3.129)= × ·θ θ

T r t R j B e( , ) { }, (3.130)z z0= × ·

respectively, where

r R d d{ } (3.131)0∮ ∮ θ φ⋯ ≡ ⋯
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is a flux-surface integration operator. However, according to the equations of
marginally stable ideal MHD, (2.375)–(2.380), both the plasma equilibrium and the
tearing perturbation satisfy the force balance criterion

pj B . (3.132)× ≃ ∇

Given that the scalar pressure is a single-valued function of θ and φ, it immediately
follows that T T 0z= =θ throughout the plasma [1]. The only exception to this rule
occurs in the immediate vicinity of the rational surface, where equation (3.132)
breaks down. It follows that we can write

T r t T t r r( , ) ( ) ( ), (3.133)s sδ= −θ θ

T r t T t r r( , ) ( ) ( ), (3.134)z z s sδ= −

where

T R r j B j B j B j B dr d d
1
4

( ) , (3.135)
r

r

z r z r r z r zs 0
2

s

s∫ ∮ ∮ δ δ δ δ δ δ δ δ θ φ= + − −θ * * * *
−

+

T R r j B j B j B j B dr d d
1
4

( ) (3.136)z
r

r

r r r rs 0
2

s

s∫ ∮ ∮ δ δ δ δ δ δ δ δ θ φ= + − −θ θ θ θ
* * * *

−

+

are the net poloidal and toroidal torques, respectively, acting at the rational surface.
Note that the zeroth-order (in perturbed quantities) torques are zero because
B j 0r r= = . Furthermore, the linear (in perturbed quantities) torques average to
zero over the flux surface. Hence, the largest nonzero torques are quadratic in
perturbed quantities.

It follows from equations (3.32)–(3.38) that

O

j B j B j B j B
m
r

r
r

r
r

r
n

i

( ) ,

(3.137)
z r z r r z r z

0
2

2⎛
⎝

⎞
⎠

δ δ δ δ δ δ δ δ
μ

δψ δψ δψ δψ ϵ

+ − − ≃

∂
∂

∂
∂

− ∂
∂

+

* * * *

*
*

j B j B j B j B

n
r r

r
r

r
r

i
.

(3.138)
r r r r

0
2

⎛
⎝

⎞
⎠

δ δ δ δ δ δ δ δ

ϵ
μ

δψ δψ δψ δψ

+ − −

≃ − ∂
∂

∂
∂

− ∂
∂

θ θ θ θ
* * * *

*
*

The previous four equations yield [1]

T
R m2

Im( ), (3.139)s

2
0

0
s s

π
μ

Ψ Ψ= − Δθ *

T
R n2

Im( ). (3.140)z s

2
0

0
s s

π
μ

Ψ Ψ= Δ *

where use has been made of equations (3.72) and (3.73).
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The net poloidal and toroidal electromagnetic torques acting on the resistive wall
can be written

T R r j B j B j B j B dr d d
1
4

( ) , (3.141)
r

r

z r z r r z r zw 0
2

w

w∫ ∮ ∮ δ δ δ δ δ δ δ δ θ φ= + − −θ * * * *
−

+

T R r j B j B j B j B dr d d
1
4

( ) . (3.142)z
r

r

r r r rw 0
2

w

w∫ ∮ ∮ δ δ δ δ δ δ δ δ θ φ= + − −θ θ θ θ
* * * *

−

+

Making use of equations (3.32), (3.82), and (3.105)–(3.107), we obtain [1]

T
R m2

Im( ), (3.143)w

2
0

0
w w

π
μ

Ψ Ψ= − Δθ *

T
R n2

Im( ). (3.144)z w

2
0

0
w w

π
μ

Ψ Ψ= Δ *

The net poloidal and toroidal electromagnetic torques acting on the magnetic
field coil can be written as

T R r j B j B j B j B dr d d
1
4

( ) , (3.145)
r

r

z r z r r z r zc 0
2

c

c∫ ∮ ∮ δ δ δ δ δ δ δ δ θ φ= + − −θ * * * *
−

+

T R r j B j B j B j B dr d d
1
4

( ) . (3.146)z
r

r

r r r rc 0
2

c

c∫ ∮ ∮ δ δ δ δ δ δ δ δ θ φ= + − −θ θ θ θ
* * * *

−

+

Making use of equations (3.32), (3.109)–(3.111), (3.120), and (3.122), we obtain [1]

T
R m2

Im( ), (3.147)c

2
0

0
c c

π
μ

Ψ Ψ= − Δθ *

T
R n2

Im( ). (3.148)z c

2
0

0
c c

π
μ

Ψ Ψ= Δ *

It follows from equations (3.123)–(3.125) that

EIm( ) Im( ), (3.149)s s sw w sΨ Ψ Ψ ΨΔ =* *

E EIm( ) Im( ) Im( ), (3.150)w w ws s w wc c wΨ Ψ Ψ Ψ Ψ ΨΔ = +* * *

EIm( ) Im( ). (3.151)c c cw w cΨ Ψ Ψ ΨΔ =* *

Thus,

E E

E E

Im( ) Im( ) Im( ) ( ) Im( )

( ) Im( ).
(3.152)s s w w c c sw ws w s

wc cw c w

Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ
Ψ Ψ

Δ + Δ + Δ = −
+ −

* * * *

*
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However, according to equations (3.90), (3.127), and (3.128), E Esw ws= and
E Ewc cw= . We deduce that

Im( ) Im( ) Im( ) 0. (3.153)s s w w c cΨ Ψ Ψ Ψ Ψ ΨΔ + Δ + Δ =* * *

Hence, equations (3.139), (3.140), (3.143), (3.144), (3.147), and (3.148) yield [1]

T T T 0, (3.154)s w c+ + =θ θ θ

T T T 0. (3.155)z z zs w c+ + =

In other words, the plasma/resistive-wall/field-coil system exerts zero net poloidal
electromagnetic torque and zero net toroidal electromagnetic torque on itself.

3.14 The plasma angular equations of motion
The full plasma equation of motion, (2.331), can be written as

t
p V V

V
V V V V j B e

V V V I

( ) ( ) ( )

2
3

0,
(3.156)

i
i E

i
i i

nc

i i i i

⎡
⎣

⎤
⎦

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

ρ
ρ

τ

ρ

∂
∂

+ · ∇ + · ∇ − × + ∇ + −

−∇ · Ξ ∇ + ∇ − ∇ · =

θ
θ θ θ*

⊥
†

where n me iρ = is the plasma mass density, VE the E-cross-B velocity (see equation
(2.138)), V i* the ion diamagnetic velocity (see equation (2.139)), V the MHD velocity
(see equation (2.321)), V V Vi i= + * the ion fluid velocity, V i

nc
θ the neoclassical

poloidal velocity (see equation (2.330)), iτθ the poloidal flow-damping time (see
equation (2.332)), and iΞ⊥ the perpendicular ion momentum diffusivity. In writing
the previous equation, we have assumed that t tV V/ /i∂ ∂ = ∂ ∂ because changes in the
ion fluid rotation induced by tearing modes are mostly due to changes in the MHD
velocity rather than changes in the ion diamagnetic velocity (which is fixed by the ion
pressure profile).

According to the analysis given in section 2.25, the dominant terms in the
previous equation are j B× and p∇ . However, if we either take the poloidal
flux-surface integral, r{ (3.156) e }· θ , or the toroidal flux-surface integral, R{ 0
(3.156) e }z· , of this equation, then the p∇ term is completely annihilated (because
p is a single-valued function of θ and φ), and the j B× term is largely annihilated. In
fact, as demonstrated in the previous section, the residual j B× term is quadratic in
perturbed quantities and localized in the vicinity of the rational surface. In these
circumstances, it makes sense to include contributions from the other smaller terms
in equation (3.156). We shall calculate these contributions using the lowest-order
(i.e. neglecting the contribution of the tearing perturbation) ion flow,

r r t R r tV e e( , ) ( , ) . (3.157)z zi 0= Ω + Ωθ θ

Here, r t( , )Ωθ and r t( , )zΩ are the ion poloidal and toroidal angular velocity profiles,
respectively.

Taking r{ (3.156) e }· θ , where the flux-surface integration operator is defined in
equation (3.131), we find that [8]
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R r
t

r
r

r
r

T r r S

4 ( )

( ) ,

(3.158)
2

0
3

3

i

nc
i

3

s s

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

π ρ ρ
τ

ρ

δ

∂Ω
∂

+ Ω − Ω − ∂
∂

Ξ ∂Ω
∂

= − +

θ

θ
θ θ

θ

θ θ

⊥

where use has been made of equations (3.133) and (3.157). Note that the advective
inertia terms in equation (3.156) make no contribution to the previous equation,
because V e V e V e 0r r rE i· = · = · =* . Here, r re /r = ∇ ∣∇ ∣. Moreover, V r/nc

i
ncΩ =θ θ .

Here, we have added a source term, S r( )θ , to the previous equation in order to
account for the equilibrium flow. Let r( )0Ωθ be the unperturbed (by the tearing
mode) ion poloidal angular velocity profile. It follows that

S R r
d
dr

r
d

dr
4 ( ) . (3.159)2

0
i

3
0

nc
i

3 0⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

π ρ
τ

ρ= Ω − Ω − Ξ Ω
θ

θ
θ θ

θ
⊥

Hence, writing

r t r r t( , ) ( ) ( , ), (3.160)0Ω = Ω + ΔΩθ θ θ

where r t( , )ΔΩθ is the modification to the ion poloidal angular velocity profile
induced by the tearing mode, equation (3.158) yields [1]

R r
t

r
r

r
r

T r r4 ( ). (3.161)2
0

3

i

3
i

3
s s

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

π ρ ρ
τ

ρ δ∂ΔΩ
∂

+ ΔΩ − ∂
∂

Ξ ∂ΔΩ
∂

= −θ

θ
θ

θ
θ⊥

Taking R{ 0 (3.156) e }z· , we find that [8]

R r
t r

r
r

T r r S4 ( ) , (3.162)z z
z z

2
0

3
i s s

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

π ρ ρ δ∂Ω
∂

− ∂
∂

Ξ ∂Ω
∂

= − +⊥

where use has been made of equations (3.134) and (3.157). We have again added a
source term, S r( )z , to the previous equation in order to account for the equilibrium
flow. Let r( )z 0Ω be the unperturbed (by the tearing mode) ion toroidal angular
velocity profile. It follows that

S R
d
dr

r
d

dr
4 . (3.163)z

2
0

3
i

0⎛
⎝

⎞
⎠

π ρ= − Ξ Ωθ
⊥

Hence, writing

r t r r t( , ) ( ) ( , ), (3.164)z z z0Ω = Ω + ΔΩ

where r t( , )zΔΩ is the modification to the ion toroidal angular velocity profile
induced by the tearing mode, equation (3.162) yields [1]

R r
t r

r
r

T r r4 ( ). (3.165)z z
z

2
0

3
i s s

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

π ρ ρ δ∂ΔΩ
∂

− ∂
∂

Ξ ∂ΔΩ
∂

= −⊥
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Equations (3.161) and (3.165) are subject to the boundary conditions

t
r

t
r

(0, ) (0, )
0, (3.166)z∂ΔΩ

∂
= ∂ΔΩ

∂
=θ

a t a t( , ) ( , ) 0. (3.167)zΔΩ = ΔΩ =θ

The boundary conditions (3.166) merely ensure that the ion angular velocities
remain finite at the magnetic axis. On the other hand, the boundary conditions
(3.167) are a consequence of the action of charge exchange with electrically neutral
particles isotropically emitted from the wall in the edge regions of the plasma [1, 9,
10]. Charge exchange with neutrals gives rise to dominant damping torques acting at
the edge of the plasma that relax the edge ion angular velocities toward particular
values. Moreover, the electromagnetic torques that develop at the rational surface
are not large enough, compared with the charge-exchange torques, to significantly
modify the edge ion angular velocities [1].

3.15 The solution of the plasma angular equations of motion
In many situations of interest, the perturbed angular velocity profiles, r t( , )ΔΩθ and

r t( , )zΔΩ , are localized in the vicinity of the rational surface [1]. Hence, it is
reasonable to express the perturbed angular equations of motion, (3.161) and
(3.165), in the simplified forms

R r
t

r
r

r
r

T r r4 ( ), (3.168)2
0 s

3 s 3
s s

3
s s

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

π ρ
ρ
τ

ρ δ∂ΔΩ
∂

+ ΔΩ − Ξ ∂
∂

∂ΔΩ
∂

= −θ

θ
θ

θ
θ⊥

R r
t r

r
r

T r r4 ( ), (3.169)z z
z

2
0

3
s s s s s

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

π ρ ρ δ∂ΔΩ
∂

− Ξ ∂
∂

∂ΔΩ
∂

= −⊥

where r( )s sρ ρ= , r( )i sτ τ=θ θ , and r( )s i sΞ = Ξ⊥ ⊥ .
Let us write [11, 12]

r t
m

t
y r

y r
( , )

1
( )

( )

( )
, (3.170)

p 1,

p
p

p s
∑ αΔΩ = −
= ∞

θ

r t
n

t
z r

z r
( , )

1
( )

( )

( )
, (3.171)

p 1,

z p
p

p s
∑ βΔΩ =
= ∞

where

y r
J j r a

r a
( )

( / )

/
, (3.172)

p

1 1p=

z r J j r a( ) ( / ). (3.173)p 0 0p=

Here, J z( )m is a Bessel function, and jmp denotes its pth zero [13]. Note that equations
(3.170)–(3.173) automatically satisfy the boundary conditions (3.166) and (3.167).
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It can easily be demonstrated that [14]

d
dr

r
dy

dr

j r y

a
, (3.174)3 p 1p

2 3
p

2⎜ ⎟
⎛
⎝

⎞
⎠

= −

d
dr

r
dz

dr

j r z

a
, (3.175)p 0p

2
p

2
⎜ ⎟
⎛
⎝

⎞
⎠

= −

and

r y r y r dr
a

J j( ) ( )
2

[ ( )] , (3.176)
a

0

3
p q

4

2 1p
2

pq∫ δ=

r z r z r dr
a

J j( ) ( )
2

[ ( )] . (3.177)
a

0
p q

2

1 0p
2

pq∫ δ=

Equations (3.139), (3.140), and (3.168)–(3.177) yield

d

dt

j m J j r a

J j
1 [ ( / )]

[ ( )]
Im( ), (3.178)

M

p 1p
2

p

2
1 1p s

2

A
2

s
2

2 1p
2 s s

⎛

⎝
⎜

⎞

⎠
⎟

α
τ τ

α
τ ϵ

Ψ Ψ+ + = Δ ˆ ˆ
θ

*

d

dt

j n J j r a

J j

[ ( / )]

[ ( )]
Im( ). (3.179)

M

p 0p
2

p

2
0 0p s

2

A
2

1 0p
2 s s

β
τ

β
τ

Ψ Ψ+ = Δ ˆ ˆ *

Here,

a
, (3.180)M

2

s
τ =

Ξ⊥

is the momentum confinement time,

a

B
(3.181)

z
A

0 s
2

2

1/2

⎜ ⎟
⎛
⎝

⎞
⎠

τ
μ ρ

=

is the Alfvén time,

r
R

1 (3.182)s
s

0
ϵ = ≪

is the inverse aspect ratio of the rational surface, and

R B
, (3.183)

z
s

s

0
Ψ ΨΔ ˆ = Δ

R B
. (3.184)

z
s

s

0
Ψ Ψˆ =
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3.16 Modification of the rotational frequency
The reconnected magnetic flux at the rational surface is assumed to convected by the
local plasma flow (see section 3.11). Hence, changes in the plasma flow at the
rational surface induced by the electromagnetic torques that develop in the vicinity
of this surface modify the convection velocity. Consequently, the tearing mode’s
rotational frequency can be written as

t m r t n r tk V( ) ( ) ( , ) ( , ), (3.185)r r z0 i 0 s ssω ω ω= + · Δ = + ΔΩ − ΔΩθ=

where 0ω is the natural frequency of the tearing mode. The natural frequency is
defined as the rotational frequency of a tearing mode that develops spontaneously
and does not interact with any external structure (such as a resistive wall or an error
field). The previous expression is known as the no-slip constraint [1] and has been
verified experimentally [15]. It follows from equations (3.170) and (3.171) that

t t t( ) ( ) ( ) . (3.186)
p 1,

0 p p⎡⎣ ⎤⎦∑ω ω α β= − +
= ∞

3.17 The tearing-mode evolution equations
Equations (3.90), (3.102), (3.108), (3.122)–(3.128), (3.178), (3.179), and (3.186) can
be combined to give the following complete set of equations that determine the time
evolution of the reconnected magnetic flux at the rational surface in the presence of a
resistive vacuum vessel and an external magnetic field coil:

d
dt

E Ei , (3.187)s s
s
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⎠
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E E I , (3.188)w w
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ws s ww w cΨ τ Ψ Ψ ΨΔ ˆ ≡
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t t t( ) ( ) ( ) , (3.189)
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Here,

R B
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R B
, (3.193)

z
w

w
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I t
r
r

I t

R B
( )
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m

z
c

w

c

0 c

0

⎜ ⎟
⎛
⎝

⎞
⎠

μˆ =

E E
E E

E
E

m r r
r r

2 ( / )
1 ( / )

. (3.195)
m

mww ww
wc cw

cc
ww

w c
2

w c
2

˜ = − = +
−

References
[1] Fitzpatrick R 1993 Interaction of tearing modes with external structures in cylindrical

geometry Nucl. Fusion 33 1049
[2] Wesson J A 1978 Hydrodynamic stability of tokamaks Nucl. Fusion 18 87
[3] Wesson J A 2011 Tokamaks 4th edn (Oxford: Oxford University Press) https://global.oup.

com/academic/product/tokamaks-9780199592234
[4] Freidberg J P 1987 Ideal Magnetohydrodynamics (New York: Plenum)
[5] Newcomb W A 1960 Hydromagnetic stability of a diffuse linear pinch Ann. Phys., NY 10

232
[6] Furth H P, Killeen J and Rosenbluth M N 1963 Finite-resistivity instabilities of a sheet pinch

Phys. Fluids 6 459
[7] Nave M F F and Wesson J A 1990 Mode locking in tokamaks Nucl. Fusion 30 2575
[8] Richardson A S 2019 2019 NRL Plasma formulary (Washington, DC: Naval Research

Laboratory) https://www.nrl.navy.mil/Portals/38/PDF%20Files/NRL_Formulary_2019.pdf
[9] Brau K, Bitter M, Goldston R J, Manos D, McGuire K and Suckewer S 1983 Plasma

rotation in the PDX tokamak Nucl. Fusion 23 1643
[10] Monier-Garbet P, Burrel K H, Hinton F L, Kim J, Garbet X and Groebner R J 1997 Effects

of neutrals on plasma rotation in DIII-D Nucl. Fusion 37 403
[11] Chapman B E, Fitzpatrick R, Craig D, Martin P and Spizzo G 2004 Observation of tearing

mode deceleration and locking due to eddy currents induced in a conducting shell Phys.
Plasmas 11 2156

[12] Fitzpatrick R, Rossi E and Yu E P 2001 Improved evolution equations for magnetic island
chains in toroidal pinch plasmas subject to externally applied resonant magnetic perturba-
tions Phys. Plasmas 8 4489

[13] Abramowitz M and Stegun I A (ed) 1964 Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical tables (New York: Dover) https://store.doverpublica-
tions.com/0486612724.html

[14] Watson G N 1922 A Treatise on the Theory of Bessel Functions 1st edn. (Cambridge:
Cambridge University Press)

[15] Vahala G, Vahala L, Harris J H, Bateman G, Waddell B V, Dunlap J L, Paré V K and
Burris R D 1980 Perturbed magnetic-field phase slip for tokamaks Nucl. Fusion 20 17

Tearing Mode Dynamics in Tokamak Plasmas

3-22

https://doi.org/10.1088/0029-5515/33/7/I08
https://doi.org/10.1088/0029-5515/18/1/010
https://global.oup.com/academic/product/tokamaks-9780199592234
https://global.oup.com/academic/product/tokamaks-9780199592234
https://doi.org/10.1016/0003-4916(60)90023-3
https://doi.org/10.1016/0003-4916(60)90023-3
https://doi.org/10.1063/1.1706761
https://doi.org/10.1088/0029-5515/30/12/011
https://www.nrl.navy.mil/Portals/38/PDF%20Files/NRL_Formulary_2019.pdf
https://doi.org/10.1088/0029-5515/23/12/008
https://doi.org/10.1088/0029-5515/37/3/I09
https://doi.org/10.1063/1.1689353
https://doi.org/10.1063/1.1404384
https://store.doverpublications.com/0486612724.html
https://store.doverpublications.com/0486612724.html
https://doi.org/10.1088/0029-5515/20/1/003


IOP Publishing

Tearing Mode Dynamics in Tokamak Plasmas

Richard Fitzpatrick

Chapter 4

Reduced resonant response model

4.1 Introduction
We saw in the previous chapter that, when we describe the response of a tokamak
plasma to a tearing-mode perturbation, the plasma can be divided into two regions
[5]. In the so-called outer region, which comprises most of the plasma, the tearing
perturbation is governed by the relatively simple equations of marginally stable ideal
magnetohydrodynamics (MHD), (2.375)–(2.380). However, these equations become
singular at the so-called rational magnetic flux surface, where the tearing mode
resonates with the equilibrium magnetic field. The resonance condition is · =k B 0,
where k is the wave number of the tearing mode and B the equilibrium magnetic
field. A radially thin resistive layer forms around the rational magnetic flux surface
and constitutes the so-called inner region. The tearing-mode solution in the inner
region needs to be asymptotically matched to that in the outer region [5]. In
principle, the relatively complicated neoclassical fluid equations, (2.370)–(2.374),
must be used to describe the resonant plasma response in the inner region. Note,
however, that the set of tearing-mode evolution equations, (3.187)–(3.191), derived
in the previous chapter, only contains two quantities that actually depend on the
plasma response in the inner region: namely, the reconnection time, τs, and the
natural frequency, ω0. This fact suggests that the true set of equations that describe
the plasma response in the inner region are almost certainly considerably simpler
than the neoclassical fluid equations. Let us search for some simplifying
approximations.

One simplifying approximation that we can make is to ignore the specifically
neoclassical terms (e.g. the terms associated with ion poloidal flow damping and the
bootstrap current) in the neoclassical fluid equations. As we saw in chapter 2, all of
these terms have their origin in friction between trapped and passing particles.
However, trapped ions make radial excursions from magnetic flux surfaces that are
of the order of the ion banana width, ρb i (see section 2.7). As shown in table 2.4, this
width is a few centimeters in a tokamak fusion reactor. In situations in which the
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width of the inner region is much less than the ion banana width, we would not
expect ion neoclassical effects to contribute to the plasma response in the inner
region (because the trapped ions would average over the spatial structure of the
inner region). According to table 2.4, the electron banana width is of the order of a
few tenths of a centimeter in a tokamak fusion reactor. Hence, we would not expect
electron neoclassical effects to contribute to the plasma response in very thin
resistive layers. When our neoclassical fluid equations are stripped of specifically
neoclassical terms, we shall refer to them as drift-MHD fluid equations. The ‘drift’
appellation merely indicates that we are still taking diamagnetic flows into account,
which necessarily entails treating the ion and electron flows separately.

A second simplifying approximation that we can make is to assume that the
perturbed electron temperature and ion temperature profiles are functions of the
perturbed electron number density profile, which reduces the number of independent
equations that we have to deal with (see section 4.2).

A final simplification is associated with the fact that a tearing mode is a modified
shear Alfvén wave [8] and has very little connection with a compressible Alfvén wave
[8]. For instance, the resonance condition, · =k B 0, which determines the position
of the rational surface, is identical to the resonance condition for a shear Alfvén
wave but differs substantially from that of a compressible Alfvén wave [2]. Hence,
one very effective way of simplifying the resonant layer equations is to remove the
irrelevant physics of compressible Alfvén waves from them altogether, in the process
converting a drift-MHD response model into a so-called reduced drift-MHD
response model [7, 9, 10]. The aim of this chapter is to describe the reduction
process and to derive the reduced drift-MHD fluid equations that will subsequently
be used to model the resonant response of the plasma.

4.2 The drift-MHD fluid equations
Let r, θ, z be conventional right-handed cylindrical coordinates, and let the rational
magnetic flux surface lie at =r rs. It is helpful to define the following parameters:

=n n r( ), (4.1)0 e s

=p p r( ), (4.2)0 s

η =
=

d T
d n

ln
ln

, (4.3)
r r

e
e

e
s
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i

e
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⎜ ⎟
⎛
⎝

⎞
⎠

τ′ =
=

T
T

, (4.6)
r r

e

i
s

where n r( )e , ≡ +p r n T T( ) ( )e e i , T r( )e , and T r( )i refer to electron number density,
total pressure, electron temperature, and ion temperature profiles, respectively, that
are unperturbed by the tearing mode.

As has already been suggested, it is convenient to make the simplifying
approximation that the perturbed electron and ion temperature profiles in the
vicinity of the resonant layer are functions of the perturbed electron number density
profile. In other words, =T T n( )e e e and =T T n( )i i e . It follows that the perturbed total
pressure profile is also a function of the perturbed electron number density profile:
that is, =p p n( )e .

When stripped of specifically neoclassical terms (i.e. the ion poloidal flow-
damping terms and any other terms involving the superscript nc), our neoclassical
fluid equations, (2.370)–(2.374), reduce to the following set of drift-MHD fluid
equations:
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Here, B is the magnetic field strength, E the electric field strength, j the current
density, Vi the ion fluid velocity, mi the ion mass, σ⊥ the classical (see section 2.6)
perpendicular (to the equilibrium magnetic field) electrical conductivity, σ the
classical parallel electrical conductivity, Ξ⊥ i the ion perpendicular momentum
diffusivity, χ e the electron parallel energy diffusivity, χ i the ion parallel energy
diffusivity, χ⊥ e the electron perpendicular energy diffusivity, χ⊥ i the ion perpendic-
ular energy diffusivity, and = Bb B/ z. Note that the simplifying assumption that

=p p n( )e negates the need for a separate electron number density conservation
equation. (In other words, equation (2.370) is redundant.) Moreover, equation (4.9)
is the sum of the electron and ion energy conservation equations, (2.373) and (2.374).
In writing equations (4.7)–(4.9), we have made a number of additional simplifying
assumptions. For instance, we have replaced B by Bz, which is approximated as a
spatial constant (see section 3.3), ne by n0 (when a spatial or temporal derivative of
the electron number density is not being taken), and p by p0 (under the same
circumstances). Finally, we have neglected any spatial variation in transport
coefficients (e.g. Ξ⊥ i, η , χ e) across the inner region.

Our drift-MHD fluid equations are closed by the following subset of Maxwell’s
equations:

∇ · =B 0, (4.20)

∇ × = − ∂
∂t

E
B

, (4.21)

μ = ∇ ×j B. (4.22)0
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4.3 The normalization scheme
The Alfvén speed, which is the typical phase velocity of a compressible Alfvén wave,
is defined as

τ μ
= =V

a B
n m

. (4.23)
z

A
A 0 0 i

(See equation (3.181).) It is helpful to define the collisionless ion skin depth,

⎜ ⎟
⎛
⎝

⎞
⎠μ

=d
m

n e
. (4.24)i

i

0
2

0

1/2

Note that ω=d c/i p i, where c is the velocity of light in vacuum and ωp i the ion
plasma frequency [2].

Let l be a typical variation length scale in the resonant layer. It is convenient to
adopt the following normalization scheme that renders all quantities in the drift-
MHD fluid equations dimensionless: ∇̂ = ∇l , ˆ =t t l V/( / )A , ˆ =d d l/i i , ˆ = B VE E/( )z A ,

μˆ = B lj j/( / )z 0 , μˆ =p p B/( / )z
2

0 , μˆ =p p B/( / )z0 0
2

0 , ˆ = VV V/ A, ˆ =* * VV V /E, ,i E, ,i A,
ˆ =V V V/i A, Ξ̂ = Ξ⊥ ⊥ l V/( )A , η η μˆ =⊥ ⊥ l V/( ), , 0 A , and χ χˆ =⊥ ⊥ l V/( ), , A . Equations
(4.7)–(4.13) and (4.20)–(4.22) yield the following set of normalized drift-MHD fluid
equations:
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where

ˆ = ˆ ×V E b, (4.28)E

ˆ = ˆ × ∇̂ ˆ* d pV b , (4.29)i
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ˆ = ˆ + V̂V V b, (4.30)E

τ
ˆ = ˆ +

+
ˆ
*V V V

1
1

, (4.31)i

and

∇̂ · =b 0, (4.32)

∇̂ × ˆ = − ∂
∂t̂

E
b

, (4.33)

ˆ = ∇̂ ×j b. (4.34)

Here, use has been made of some standard vector identities.

4.4 The reduction process
All variables in the resonant layer are assumed to be functions of

ˆ = −
x

r r
l

, (4.35)s

ζ θ φ= −m n , (4.36)

and t̂ , only. Here,m and n are the poloidal and toroidal mode numbers, respectively,
of the tearing mode, φ = z R/ 0 is a simulated toroidal angle, and R0 is the simulated
major radius of the plasma (see chapter 3).

Let

ϵ= +θ
q

n e e , (4.37)z

(1)

s

where ϵ =r r R( ) / 0 and ≡ =q q r m n( ) /s s . Here, q r( ) is the safety-factor profile (see
equation (3.2)). Moreover, the superscript (1) indicates a quantity that is first order
in our ordering scheme. (Zeroth-order terms are left without superscripts, whereas
second-order terms are given the superscript (2).)

It follows that

· ∇̂ =An 0 (4.38)

for any ζˆ ˆA x t( , , ). Furthermore,

∇̂ · =n 0, (4.39)

ϵ∇̂ × ≃ ˆ
q

n n
2

, (4.40)
(1)

s

where ϵ̂ = l R/(1)
0.
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We can automatically satisfy equation (4.32) by writing
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where (see equations (3.1) and (3.2))
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and δψ is defined in equation (3.20). Note that

ψ· ∇̂ =A Ab [ , ], (4.44)(1) (1) (1)

where
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Equations (4.33) and (4.41) give
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Here, we have explicitly separated out the time-dependent, spatially uniform part of

ψ (1) which generates the (normalized) inductive electric field, Ê
(2)
, that is responsible

for maintaining the equilibrium parallel current density in the inner region against
ohmic decay. Equations (4.34) and (4.41) yield
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Let us write

δˆ = ˆ +p p p . (4.50)0
(1)
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Note that the ordering of the plasma pressure adopted here is somewhat different to
that adopted in section 3.3. In fact, in section 3.3, p̂ was assumed to be second order.
Here, we are assuming that p̂ has a spatially constant component that is zeroth order
and a spatially varying component that is first order. This high-pressure ordering is
merely an artifice to aid the extraction of the compressible Alfvén (i.e. fast
magnetosonic) wave from the system of equations [3, 4]. In fact, the ordering
ensures that the compressible Alfvén wave has a substantially different phase
velocity than the shear Alfvén and slow magnetosonic waves [2].

Equations (4.28)–(4.31), (4.41), (4.46), and (4.50) yield
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+
ˆ
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1
1
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Here, the additional factor involving ϒ(2) in equation (4.53) is needed because the
plasma flow is slightly compressible. In fact, the velocity fields V̂E, ˆ

*V , V̂, and V̂i all
have normalized divergences that are second order.

Evaluating the normalized drift-MHD fluid equations, (4.25)–(4.27), up to the
second order, we obtain
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∂ˆ + ˆ +

+ ∇̂ ∂
∂ˆ −

ˆ

+
× + ∇̂ ˆ · ˆ +

ˆ · ˆ

+
+ +

− ∇̂ ∇̂ +
ˆ

+
∇̂ ∇̂ + ∇̂ ∇̂ + ∇̂ − Ξ ∇̂ =

⊥ ⊥ *

⊥( )

( )p b
V

t
V b

t

d p
b b

q

d
p p J

n

n V V
V V

V

, ,

,

2 (1 )
1
2 1

2

2 (1 )
0,

(4.55)

(1) (1)
(1) (1)

(1) (1) (1) (1)

(1) (1) i (1) (1)
(1) (1) E

(1) (1)
(1) (1)

(1) (1)

s
2

2 (1) (1) i 2 (1) (1) 2 (1) (1) (1) (1) (1) 2
i
(1)

⎜ ⎟
⎛

⎝
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

⎞

⎠

⎡⎣ ⎤⎦
⎛

⎝
⎜

⎞

⎠
⎟

δ δ

ψ ψ ϕ
τ

ψ δ ψ δ η

η δ δ δ δ ϵ ϵ

ψ δ ϕ

ˆ ∇̂ +

+ ˆ − ∂
∂ ˆ − +

ˆ

+
+ ˆ + ˆ

+ ∇̂ ϒ − ˆ − × +
ˆ

∇̂ +

+ ˆ ∇̂ − ∇̂ =

⊥ ( )

( )d p b

E
t

d
p d b J

b p
d

b b
q

d J b

n

n

,
1

, ,

2
2

2 0,

(4.56)

i
(1) (1)

(2) (1) (1)
(1) (1) i (1) (1)

i
(1) (1) (1) (1)

(2) (1) (1) (1) i (1) (1)
(1) (1)

s
2

i
(1) (1) (1) (1)
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⎜ ⎟

⎡⎣ ⎤⎦

⎛
⎝

⎡⎣ ⎤⎦ ⎡
⎣

⎤
⎦

⎞
⎠

⎡⎣⎡⎣ ⎤⎦ ⎤⎦

δ
δ ϕ

δ δ δϕ ψ

λ δ δ χ δ ψ ψ χ δ

∂
∂ˆ + +

ˆ − ∂
∂ˆ + + ˆ + ∇̂ ϒ

+ ˆ ˆ − ˆ − ˆ ∇̂ =−
⊥

p

t
p

p
b
t

b V

p d p b p p

3
2

3
2

,
5
2

, ,

5
2

[ , ] , , 0.

(4.57)

(1) (1)
(1) (1)

0

(1) (1)
(1) (1) (1) (1) 2 (2)

0 i
(1) (1) ( 1) (1) (1) (1) (1) 2 (1)

To the first order, equations (4.55) and (4.56) both yield

δ δ= −b p , (4.58)(1) (1)

which is simply an expression of lowest-order equilibrium force balance [3, 7].
Taking the scalar product of equation (4.55) with n annihilates the first-order

terms, leaving

⎡
⎣

⎤
⎦ ⎡⎣ ⎤⎦ϕ δ ψ

∂ ˆ

∂ˆ = ˆ − + Ξ̂ ∇̂ ˆ⊥
V

t
V p V, , . (4.59)

(1) (1)

(1) (1) (1) (1) (1) 2 (1)

Moreover, taking the scalar product of equation (4.56) with n annihilates the first-
order terms, leaving

⎡⎣ ⎤⎦ ⎛
⎝

⎞
⎠⎡⎣ ⎤⎦

ψ ϕ ψ τ
τ

δ ψ η∂
∂ˆ = + ˆ

+
+ ˆ + ˆ

t
d p J E,

1
, . (4.60)

(1) (1)
(1) (1)

i
(1) (1) (1) (1) (2)

Furthermore, taking the scalar product of the curl of equation (4.55) with n
annihilates the first-order terms, leaving

⎜ ⎟

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

⎡⎣ ⎤⎦
⎛

⎝

⎞

⎠

ϕ
τ

ϕ δ ϕ δ δ ϕ

ψ ϕ
τ

δ

∂
∂ˆ = +

ˆ

+
∇̂ + ∇̂ + ∇̂

+ + Ξ̂ ∇̂ −
ˆ

+⊥

( )U
t

U
d

p p p

J
d

p

,
2 (1 )

, , ,

,
1

,

(4.61)

(1) (1)
(1) (1) i 2 (1) (1) 2 (1) (1) 2 (1) (1)

(1) (1) (1) 4 (1) i (1)

where

ϕ= ∇̂U . (4.62)(1) 2 (1)

Finally, taking the scalar product of the curl of equation (4.56) with n annihilates the
first-order terms, leaving

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦δ ϕ ψ∇̂ ϒ = + ˆp d J2 , , . (4.63)2 (2) (1) (1)
i

(1) (1)

The previous equation can be combined with equations (4.57) and (4.58) to give

⎡⎣ ⎤⎦ ⎡
⎣

⎤
⎦ ⎡⎣ ⎤⎦

⎡⎣⎡⎣ ⎤⎦ ⎤⎦

δ ϕ δ ψ ψ

χ δ ψ ψ χ δ

∂
∂ ˆ = − ˆ − ˆ

+ − ˆ + − ˆ ∇̂

β β

β β
−

⊥

p
t

p c V c d J

c p c p

, , ,

2
3

(1 ) , ,
2
3

(1 ) ,
(4.64)

(1) (1)
(1) (1) 2 (1) (1) 2

i
(1) (1)

2 ( 1) (1) (1) (1) 2 (1) 2 (1)
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where

β
β

=
+β *

*

c
1

, (4.65)

β
μ

=
*

p

B
5
3

. (4.66)
z

0 0
2

4.5 The reduced drift-MHD model
Let us define

= ˆ ˆV d V , (4.67)i

δ= − ˆN d p. (4.68)i

Equations (4.49), (4.59)–(4.62), and (4.64) yield the following closed set of equations
[4]:

⎛
⎝

⎞
⎠

ψ ϕ ψ τ
τ

ψ η∂
∂ˆ = −

+
+ ˆ + ˆ

t
N J E[ , ]

1
[ , ] , (4.69)

ϕ ψ ψ χ ψ ψ

χ

∂
∂ˆ = + + ˆ + − ˆ

+ − ˆ ∇̂

β β β

β ⊥

N
t

N c V d J c N

c N

[ , ] [ , ] [ , ]
2
3

(1 ) [[ , ], ]

2
3

(1 ) ,
(4.70)

2 2 2

2 2

⎛
⎝

⎞
⎠

ϕ
τ

ϕ ϕ ψ

ϕ
τ

∂
∂ˆ = −

+
∇̂ + + ∇̂ +

+ Ξ̂ ∇̂ +
+⊥

( )U
t

U N U N N J

N

[ , ]
1

2 (1 )
[ , ] [ , ] [ , ] [ , ]

1
,

(4.71)

2 2

4

ϕ ψ∂
∂ˆ = + + Ξ̂ ∇̂⊥
V
t

V N V[ , ] [ , ] , (4.72)2

ϵ ψ= − + ∇̂J
q
2

, (4.73)
s

2

ϕ= ∇̂U . (4.74)2

Here, we have suppressed the ordering superscripts. Moreover, the quantity

=β βd c d (4.75)i
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is usually referred to as the ion sound radius, and ˆ =β βd d l/ . Note that equations
(4.69)–(4.74) contain the physics of the shear Alfvén and parallel ion sound waves
but do not contain the physics of the compressible Alfvén wave.

Equations (4.69)–(4.74) constitute our reduced drift-MHD resonant plasma
response model. Our model is very similar to the so-called four-field model derived
by Hazeltine et al [7]. Equation (4.69) is the generalized Ohm’s law that governs the
time evolution of the (normalized) helical magnetic flux, ψ. (Note that this ψ should
not be confused with the equilibrium poloidal flux defined in equation (2.124).)
Equation (4.70) is the energy equation that governs the time evolution of the
(normalized) perturbed total plasma pressure, N. Equation (4.71) is the ion parallel
vorticity equation that governs the time evolution of the (normalized) ion parallel
vorticity, U. Finally, equation (4.72) is the ion parallel equation of motion that
governs the time evolution of the (normalized) ion parallel velocity, V.

Strictly speaking, the reduced resonant response model derived in this chapter is
only valid when the ion gyroradius is smaller than the typical radial variation length
scale in the resonant layer. If this is not the case, then it is necessary to adopt a so-
called gyrofluid approach in which the ion response is averaged over the ion gyro-
orbits [1, 6, 11].

Finally, the crucial element of the reduction process, by which our original drift-
MHD response model is converted into a reduced drift-MHD model, is the set of
ordering assumptions that render ∇̂ · V̂ a second-order quantity while leaving V̂ a
first-order quantity. This ordering implies that the MHD fluid is incompressible to
the lowest order (see section 3.6). It should be noted, however, that the small but
finite compressibility of the MHD fluid has a significant influence on the form of the
energy equation (4.70).
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Tearing Mode Dynamics in Tokamak Plasmas

Richard Fitzpatrick

Chapter 5

Linear resonant response model

5.1 Introduction
As was explained in the previous two chapters, when we describe the response of a
tokamak plasma to a tearing-mode perturbation, the plasma can be divided into two
regions [1]. In the so-called outer region, which comprises most of the plasma, the
tearing perturbation is governed by the equations of marginally stable ideal
magnetohydrodynamics (MHD). However, these equations become singular at the
so-called rational magnetic flux surface where the safety factor (see section 3.2) takes
the rational value m/n. Here, m and n are the poloidal and toroidal mode numbers,
respectively, of the tearing mode (see chapter 3). A radially thin resistive layer forms
around the rational magnetic flux surface and constitutes the so-called inner region. The
aim of this chapter is to employ the reduced drift-MHD model derived in the previous
chapter to determine the linear response of the plasma in the inner region to a rotating
tearing perturbation in the outer region.

5.2 The reduced drift-MHD model
It is convenient to set the normalization scale length, l, (see section 4.3) in our
reduced drift-MHD model equal to the minor radius of the rational surface, rs. The
model evolves four scalar fields. These fields are the (normalized) helical magnetic
flux, ψ, the (normalized) perturbed total plasma pressure, N, the (normalized) MHD
fluid stream function, ϕ, and the (normalized) ion parallel velocity, V. Our four fields
have the following definitions:

ψ ζ∇̂ ˆ ˆ = ×
r t

B
n B

( , , ) , (5.1)
z

ζ
μ

ˆ ˆ = − ˆ −
N r t d

p p

B
( , , )

/
, (5.2)

z
i

0
2

0

⎜ ⎟
⎛
⎝

⎞
⎠
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ϕ ζ∇̂ ˆ ˆ = ×
r t

V
n V

( , , ) , (5.3)
A

ζˆ ˆ = ˆ ·
V r t d

V
n V

( , , ) , (5.4)i
A

⎜ ⎟
⎛
⎝

⎞
⎠

where

ϵ= +θ
r

q
n e e

( )
, (5.5)z

s

ϵ =r
r

R
( ) , (5.6)

0

≡ =q q r
m
n

( ) . (5.7)s s

(See equations (4.37), (4.38), (4.41), (4.50), (4.51), (4.53), (4.67), and (4.68).) Here, r,
θ, z are conventional cylindrical coordinates, ˆ =r r r/ s, ∇̂ = ∇rs , ˆ =t t r V/( / )s A ,
ζ θ φ= −m n a helical angle, φ = z R/ 0 a simulated toroidal angle (see chapter 3),
B the magnetic field strength, Bz the (spatially constant) equilibrium magnetic field
strength,VA the Alfvén speed (see equation (4.23)), V the MHD fluid velocity (see
equation (2.321)), di the collisionless ion skin depth (see equation (4.24)), ˆ =d d r/i i s,
p the total plasma pressure, p0 the equilibrium total plasma pressure at the
rational surface, q r( ) the safety-factor profile, and R0 the simulated major radius
of the plasma. The reduced drift-MHD response model also employs the auxiliary
fields

ζ ϵ ψˆ ˆ = − + ∇̂J r t
q

( , , ) 2 , (5.8)
s

s

2

ζ ϕˆ ˆ = ∇̂U r t( , , ) , (5.9)2

where ϵ ϵ= r( )s s .
The reduced drift-MHD model takes the form (see section 4.5)

ψ ϕ ψ τ
τ

ψ η∂
∂ˆ = −

+
+ ˆ + ˆ

t
N J E[ , ]

1
[ , ] , (5.10)⎛

⎝
⎞
⎠

ϕ ψ ψ χ ψ ψ χ∂
∂ˆ = + + ˆ + ˆ + ˆ ∇̂β β ⊥
N
t

N c V d J N N[ , ] [ , ] [ , ] [[ , ], ] , (5.11)2 2 2

ϕ
τ

ϕ ϕ ϕ ψ

ϕ
τ

∂
∂ˆ = −

+
∇̂ + ∇̂ + ∇̂ +

+ Ξ̂ ∇̂ +
+⊥

( )U
t

U N N N J

N

[ , ]
1

2 (1 )
[ , ] [ , ] [ , ] [ , ]

1
,

(5.12)

2 2 2

4⎛
⎝

⎞
⎠
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ϕ ψ∂
∂ˆ = + + Ξ̂ ∇̂⊥
V
t

V N V[ , ] [ , ] . (5.13)2

Here, ≡ ∇̂ × ∇̂ ·A B A B n[ , ] , Ê is the (normalized) parallel inductive electric field
that maintains the parallel plasma current at the rational surface against ohmic
decay, τ the ratio of the electron to the ion equilibrium pressure gradient at the
rational surface (see equation (4.5)), cβ a dimensionless measure of the plasma
pressure at the rational surface (see equation (4.65)), =β βd c di the ion sound radius

at the rational surface, and ˆ =β βd d r/ s. Finally,

η
μ σ

ˆ =
r r V
1

( )
, (5.14)

0 s s A

Ξ̂ = Ξ
⊥

⊥ r
r V

( )
, (5.15)i s

s A

χ τ
τ

η
η

χ
τ

η
η

χˆ =
−

+ +
+

+ +
βc

r V
r r

2
3

1

1 1
( )

1
1 1

( ) , (5.16)
2

s A

e

e
e s

i

i
i s⎜ ⎟ ⎜ ⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦
⎥

χ τ
τ

η
η

χ
τ

η
η

χˆ =
−

+ +
+

+ +
β

⊥ ⊥ ⊥
c

r V
r r

2
3

1

1 1
( )

1
1 1

( ) , (5.17)
2

s A

e

e
e s

i

i
i s⎜ ⎟ ⎜ ⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦
⎥

are the (normalized) perpendicular (to the equilibrium magnetic field) magnetic flux
diffusivity, ion perpendicular momentum diffusivity, effective parallel energy
diffusivity, and effective perpendicular energy diffusivity, respectively (see equations
(4.15), (4.17), (4.18), and (4.19)). Here, the dimensionless parameters ηe and ηi are
defined in equations (4.3) and (4.4), respectively. Moreover, σ , Ξ⊥ i, χ e, χ i, χ⊥ e, and
χ⊥ i are the (classical) parallel electrical conductivity, the ion perpendicular momen-
tum diffusivity, the electron parallel energy diffusivity, the ion parallel energy
diffusivity, the electron perpendicular energy diffusivity, and the ion perpendicular
energy diffusivity, respectively.

5.3 Plasma equilibrium
The unperturbed (by the tearing mode) plasma equilibrium is such that

= +θ
r B

R q r
BB e e

( )
, (5.18)z

z z
0

≃ +θV r V rV e e( ) ( ) , (5.19)zE i

=p p r( ). (5.20)
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(see sections 2.11, 2.24, and 3.2). Here,

≃ −V r
E
B

( ) (5.21)
z

E
r

is the (dominant θ-component of the) E-cross-B velocity (see equation (2.138)) and
V i the ion parallel fluid velocity.

The resonant layer is assumed to have a radial thickness that is much smaller than
rs (see section 5.5). Hence, we only need to evaluate plasma equilibrium quantities in
the immediate vicinity of the rational surface. Equations (4.1), (4.23), (4.24), and
(5.1)–(5.4) imply that

ψ ˆ = ˆ
ˆx

x

L
( )

2
, (5.22)

2

s

ˆ = − ˆ ˆ*N x V x( ) , (5.23)

ϕ ˆ = − ˆ ˆx V x( ) , (5.24)E

ˆ = ˆV x V( ) , (5.25)

where

ˆ = −
x

r r
r

, (5.26)
s

s

ˆ =L L r/s s s,

=L
R q

s
(5.27)s

0 s

s

is the magnetic shear length, =s s r( )s s ,

=s r
d q
d r

( )
ln
ln

(5.28)

the magnetic shear, ˆ =V V r V( )/E E s A, ˆ =* *V V r V( )/s A,

=*V r
e n B

dp
dr

( )
1

(5.29)
z0

the (dominant θ-component of the) diamagnetic velocity (see equation (4.11)), and
ˆ = ˆV d V r V( )/i i s A. We also have

ˆ = − − ˆJ x
s L

( )
2

1
1

, (5.30)
s s

⎜ ⎟
⎛
⎝

⎞
⎠

ˆ =U x( ) 0, (5.31)
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ηˆ ˆ = −
ˆ
ˆE x

s L
( )

2
1 . (5.32)

s s

⎜ ⎟
⎛
⎝

⎞
⎠

Note that we are neglecting any radial gradients in the equilibrium MHD fluid
velocity because, in conventional tokamak plasmas, such gradients do not signifi-
cantly affect the linear response of a resonant layer, due to the fact that the gradients
are comparatively weak (i.e. ∣ ∣ ≪dV dr V r/ /A s) combined with the fact that a linear
resonant layer is very narrow [2] (see section 5.5).

5.4 Linearized reduced drift-MHD equations
Let us now take the tearing-mode perturbation into account. In accordance with
equations (5.22)–(5.25) and (5.30)–(5.31), we can write

ψ ζ ψˆ ˆ = ˆ
ˆ + ˜ ˆ ζ ω− ˆ ˆx t

x

L
x( , , )

2
( ) e , (5.33)t

2

s

i ( )

ζ τ
τ

ˆ ˆ = − ˆ ˆ + + ˜ ˆ ζ ω
*

− ˆ ˆN x t V x N x( , , )
1

( ) e , (5.34)ti ( )⎛
⎝

⎞
⎠

ϕ ζ ϕˆ ˆ = − ˆ ˆ + ˜ ˆ ζ ω− ˆ ˆx t V x x( , , ) ( ) e , (5.35)t
E

i ( )

ζ τ
τ

ˆ ˆ = ˆ + + ˜ ˆ ζ ω− ˆ ˆV x t V V x( , , )
1

( ) e , (5.36)ti ( )⎛
⎝

⎞
⎠

ζ ψˆ ˆ = − − ˆ + ∇̂ ˜ ˆ ζ ω− ˆ ˆJ x t
s L

x( , , )
2

1
1

( ) e , (5.37)t

s s

2 i ( )
⎜ ⎟
⎛
⎝

⎞
⎠

ζ ϕˆ ˆ = ∇̂ ˜ ˆ ζ ω− ˆ ˆU x t x( , , ) ( ) e , (5.38)t2 i ( )

where ω ωˆ = r V/s A, and ω is the rotational frequency of the tearing perturbation in
the laboratory frame. Here, Ã denotes a perturbed quantity. By substituting
equations (5.33)–(5.38) into the reduced drift-MHD model, (5.8)–(5.13), and only
retaining first-order terms in perturbed quantities, we obtain the following set of
linear equations:

ω ω ω τ ψ ϕ ψ− − − ˜ = − ˆ ˜− ˜ + ∇̂ ˜*
−x N Si ( ) i ( ) , (5.39)E e H

1 2

ω ω τ ω τ ϕ τ
τ

ψ

ω τ ψ

− − ˜ = − ˜− ˆ ˜ −
+

ˆ ˆ ∇̂ ˜

+ ˆ ˜ − ˆ ˜ + ∇̂ ˜

β β*

−
*

−
⊥ ⊥

N c x V d x

S P x x N S P N

i ( ) i i i
1

( ) ,

(5.40)
E H e H

2 2 2

1
e H

2 1 2

⎛
⎝

⎞
⎠

ω ω ω τ ϕ ψ ϕ
τ

− − − ∇̂ ˜ = − ˆ ∇̂ ˜ + ∇̂ ˜+
˜

φ*
−x S P

N
i ( ) i , (5.41)E i H

2 2 1 4
⎜ ⎟
⎛
⎝

⎞
⎠
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ω ω τ ω τ ψ− − ˜ = ˜ − ˆ ˜ + ∇̂ ˜φ*
−V x N S P Vi ( ) i i . (5.42)E H e H

1 2

Here,

τ = L
m V

(5.43)H
s

A

is the hydromagnetic time,

ω = m
r

V r( ) (5.44)E
s

E s

the E-cross-B frequency,

ω τ
τ

ω=
+* *1

, (5.45)e ⎛
⎝

⎞
⎠

the electron diamagnetic frequency,

ω
τ

ω= −
+* *
1

1
, (5.46)i ⎛

⎝
⎞
⎠

the ion diamagnetic frequency,

ω = − = −* *
m
r

V r
m
r e n B

dp
dr

( )
1

, (5.47)
z rs

s
s 0 s

the (total) diamagnetic frequency,

τ
τ

=S (5.48)
R

H

the Lundquist number (note that this is a slightly different definition to that given in
equation (1.84)),

τ μ σ= r r( ) (5.49)R 0 s
2

s

the resistive diffusion time (note that this is a slightly different definition to that given
in equation (1.83)),

τ =
Ξφ

⊥

r
r( )

(5.50)s
2

i s

the toroidal momentum confinement time,

τ τ
τ

η
η

χ

τ
η

η
χ

= −
+ +

+
+ +

βr c r

r

2
3

(1 )
1 1

( )

1
1 1

( )

(5.51)

s
2 2 e

e
e s

i

i
i s

⎜ ⎟

⎜ ⎟

⎧
⎨
⎩

⎡

⎣
⎢⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦
⎥

⎫
⎬
⎭
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the effective parallel energy equilibration time, and

τ τ
τ

η
η

χ

τ
η

η
χ

= −
+ +

+
+ +

β⊥ ⊥

⊥

r c r

r

2
3

(1 )
1 1

( )

1
1 1

( )

(5.52)

s
2 2 e

e
e s

i

i
i s

⎜ ⎟

⎜ ⎟

⎧
⎨
⎩

⎡

⎣
⎢⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦
⎥

⎫
⎬
⎭

the effective energy confinement time. Furthermore,

τ
τ

=φ
φ

P , (5.53)
R

τ
τ

=⊥
⊥

P , (5.54)
R

ϵ τ
τ

=P n s( ) . (5.55)s s
2 R

5.5 Resonant-layer equations
In a conventional tokamak plasma, the Lundquist number, S, which is the nominal
ratio of the plasma inertia term to the resistive diffusion term in the plasma Ohm’s
law [3], is very much greater than unity. In fact, according to table 1.5, S typically
exceeds 108 in a tokamak fusion reactor. However, a resonant layer is characterized
by a balance between plasma inertia and resistive diffusion [1]. Such a balance is
only possible if the layer is very narrow in the radial direction (because a narrow
layer enhances radial derivatives and thereby enhances resistive diffusion). Let us
define the stretched radial variable [4]

= ˆX S x. (5.56)1/3

Assuming that O∼X (1) in the layer (i.e. assuming that the layer thickness is
roughly of the order of −S r1/3

s) and making use of the fact that ≫S 1, we deduce

that ∇̂ ≃ ∇̂ ≃⊥ S d dX/2 2 2/3 2 2. Hence, the linear equations (5.39)–(5.42) reduce to the
following set of resonant-layer equations [5, 6]:

ψ ϕ ψ− − − ˜ = − ˜− ˜ + ˜
Q Q Q X N

d
dX

i ( ) i ( ) , (5.57)E e

2

2

ϕ ψ ψ− − ˜ = − ˜− ˜ − ˜ + ˆ ˜ − ˜

+
˜

β

⊥

Q Q N Q c X V D X
d

dX
P X Q X N

P
d N

dX

i ( ) i i i ( )

,

(5.58)
E e

2 2
2

2 e

2

2
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ϕ ψ ϕ
τ

− − −
˜

= − ˜ + ˜+
˜

φQ Q Q
d
dX

X
d
dX

P
d

dX
N

i ( ) i , (5.59)E i

2

2

2

2

4

4
⎜ ⎟
⎛
⎝

⎞
⎠

ψ− − ˜ = ˜ − ˜ +
˜

φQ Q V Q X N P
d V
dX

i ( ) i i . (5.60)
E e

2

2

Here,

ω τ=Q S , (5.61)1/3
H

ω τ=Q S , (5.62)E
1/3

E H

ω τ τ
τ

= =
+* *

Q S Q
1

, (5.63)e
1/3

e H ⎛
⎝

⎞
⎠

ω τ
τ

= = −
+* *

Q S Q
1

1
, (5.64)i

1/3
i H ⎛

⎝
⎞
⎠

ω τ=
* *Q S , (5.65)1/3

H

τ
τ

=
+

ˆβD S d
1

, (5.66)1/3
1/2

⎛
⎝

⎞
⎠

ˆ =P
P

S
. (5.67)

4/3

Table 5.1 gives estimates for the values of the dimensionless parameters that
characterize the resonant-layer equations, (5.57)–(5.60), in a low-field fusion reactor
and a high-field tokamak fusion reactor (see chapter 1). These estimates are made
using the following assumptions: =B 5 T (low field) or =B 12 T (high field),
β = 0.02, = =T T 7 keVe i , = +m m m( )/2i D T (where mD and mT are the deuteron
and triton masses, respectively), χ χΞ = = =⊥ ⊥ ⊥

−1 m si e i
2 1, m = 2, n = 1, =r a/2s

(where a is the minor radius of the plasma), =s 1s , τ = 1, η η= = 1e i , and
= −dp dr p a/ / . The parallel energy diffusivities, χ e and χ e, are estimated from

equations (2.319) and (2.320), respectively, using ≃ −k m L S( / )s
1/3, which is the

typical parallel wave number of the tearing perturbation at the edge of a resistive
layer whose characteristic thickness is −S r1/3

s. Note that ˆ ≪ ⊥P P , which allows us to

neglect the parallel transport terms (i.e. the terms involving P̂ ) in equation (5.58).
The neglect of these terms is justified because the linear layer width is much less than
the critical width,

τ
τ ϵ

=
⊥

W
s n

r8
1

, (5.68)d

1/4

s s

1/2

s⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
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below which parallel transport is unable to constrain the perturbed electron
temperature to be constant along magnetic field lines [7].

5.6 Asymptotic matching
The resonant-layer equations, (5.57)–(5.60), possess independent tearing parity
solutions, characterized by the symmetry ψ ψ˜ − = ˜X X( ) ( ), ϕ ϕ˜ − = − ˜X X( ) ( ),
˜ − = − ˜N X N X( ) ( ), ˜ − = ˜V X V X( ) ( ) and twisting parity solutions, characterized by the
symmetry ψ ψ˜ − = − ˜X X( ) ( ), ϕ ϕ˜ − = ˜X X( ) ( ), ˜ − = ˜N X N X( ) ( ), ˜ − = − ˜V X V X( ) ( ) [8].
However, only the tearing parity solutions can be asymptotically matched to
tearing-mode solutions in the outer region. If we assume that the asymptotic
behavior of the tearing parity layer solutions is such that

Oψ ψ˜ → + Δ̂ ∣ ∣ +X X X( ) 1
2

( ) (5.69)0
2⎡

⎣⎢
⎤
⎦⎥

as ∣ ∣ → ∞X , where ψ0 is an arbitrary constant, then asymptotic matching to the outer
solution yields

Ψ ΨΔ = Δ̂S . (5.70)s
1/3

s

(See equations (3.72), (3.73), and (5.56).) Furthermore, it follows from equations
(3.19) and (3.58) that the asymptotic behavior of ϕ̃ X( ) is

Oϕ ϕ˜ → + Δ̂ +X
X

X X( )
1

2
sgn( ) ( ) (5.71)0

⎡
⎣⎢

⎤
⎦⎥

as ∣ ∣ → ∞X , where ϕ0 is an arbitrary constant.

5.7 Fourier transformation
Equations (5.57)–(5.60) are most conveniently solved in Fourier transform space [5,
6, 9]. Let

Table 5.1. Dimensionless parameters that appear in resonant-layer equations for
a low-field tokamak reactor and a high-field tokamak reactor. See equations (4.5),
(5.65), (5.66), (5.53), (5.54), and (4.65).

Low field High field

B (T) 5.0 12.0
τ 1.0 1.0

*Q 2.00 1.50

D 3.02 2.26
Pφ 874 874

⊥P 287 287
P̂ 0.635 0.635
cβ 0.128 0.128
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∫ϕ ϕ¯ = ˜
−∞

∞
−p X dX( ) ( ) e , (5.72)p Xi

etc. The Fourier transformed layer equations become

ψ ϕ ψ− − − ¯ = ¯ − ¯ − ¯Q Q Q
d
dp

N pi ( ) ( ) , (5.73)E e
2

ϕ ψ− − ¯ = − ¯ +
¯

− ¯ − ¯β ⊥Q Q N Q c
dV
dp

D
d p

dp
P p Ni ( ) i

( )
, (5.74)E e

2 2
2

2

ϕ ψ ϕ
τ

− − − ¯ = ¯ − ¯ +
¯

φQ Q Q p
d p

dp
P p

N
i ( )

( )
, (5.75)E i

2
2

4
⎜ ⎟
⎛
⎝

⎞
⎠

ψ− − ¯ = ¯ +
¯

− ¯φQ Q V Q
dN
dp

P p Vi ( ) i , (5.76)E e
2

where, for a tearing parity solution [10],

Oϕ ϕ
π

¯ → ¯ Δ̂ + +p
p

p( ) 1 ( ) (5.77)0
⎡
⎣⎢

⎤
⎦⎥

as →p 0. Here, ϕ̄0 is an arbitrary constant, and use has been made of equation
(5.71).

In accordance with our previous discussion, we have neglected the parallel
transport terms in equation (5.74). Let us also ignore the term ¯βc dV dp/2 . This
approximation can be justified a posteriori. It is equivalent to the neglect of the
contribution of ion parallel dynamics to the linear plasma response in the resonant
layer and effectively decouples equation (5.76) from equations (5.73)–(5.75) [11].
Equations (5.73)–(5.75) reduce to [5, 6]

− =d
dp

A p
dY
dp

B p
C p

p Y( )
( )
( )

0, (5.78)e 2
e

⎡
⎣⎢

⎤
⎦⎥

where

=
− − − +

A p
p

Q Q Q p
( )

i ( )
, (5.79)

2

E e
2

= − − − − − − − + +φ φ⊥ ⊥B p Q Q Q Q Q Q Q Q P P p P P p( ) ( ) ( ) i ( ) ( ) , (5.80)E E i E i
2 4

τ

= − − − + − − −

+ + φ

⊥C p Q Q Q P Q Q Q D p

P D p

( ) i ( ) i ( )

(1 1/ ) ,
(5.81)E e E i

2 2

2 4

⎡⎣ ⎤⎦

and ϕ= ¯ − ¯Y Ne is the normalized, Fourier transformed, electron fluid stream
function. It can easily be demonstrated that
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ϕ→
− −

−
¯Y p

Q Q Q

Q Q
p( ) ( ) (5.82)e

E e

E

⎜ ⎟
⎛
⎝

⎞
⎠

as →p 0. Hence, the boundary conditions on equation (3.19) are that Y p( )e is
bounded as → ∞p , and

O
π

→ Δ̂ + +Y p Y
p

p( ) 1 ( ) (5.83)e 0
⎡
⎣⎢

⎤
⎦⎥

as →p 0, where Y0 is an arbitrary constant. Here, use has been made of equation
(5.77). In the following, we shall assume that ∣ ∣ ∼ ∣ ∣ ∼

*
Q Q QE , ∼ ∼φ ⊥P P P, and

Oτ ∼ (1), for the sake of simplicity.

5.8 The constant-ψ limit
Let us suppose that there are two layers in p space. In the small-p layer, suppose that
equation (3.19) reduces to

− − − +
≃d

dp
p

Q Q Q p
dY
dpi ( )

0 (5.84)
2

E e
2

e⎡
⎣⎢

⎤
⎦⎥

when ∼p Q1/2. By direct integration, we find that

O
π

≃ Δ̂ +
− −

+ +Y p Y
p

p
Q Q Q

p( )
1

i ( )
1 ( ) (5.85)e 0

E e

2⎧
⎨⎩

⎡
⎣⎢

⎤
⎦⎥

⎫
⎬⎭

for O≲p Q( )1/2 , where use has been made of equation (5.83). The two-layer
approximation is equivalent to the well-known constant-ψ approximation [1].

In the large-p layer, for O≫p Q( )1/2 , we obtain

− ≃d Y
dp

B p
C p

p Y
( )
( )

0, (5.86)
2

e
2

2
e

withY p( )e bounded as → ∞p . Asymptotic matching to the small-p layer solution
(5.85) yields the boundary condition

O
π

≃ + Δ̂
− −

+Y p Y
p

Q Q Q
p( ) 1

i ( )
( ) (5.87)e 0

E e

2⎡
⎣⎢

⎤
⎦⎥

as →p 0.
In the various constant-ψ linear response regimes considered in section 5.9,

equation (5.86) reduces to an equation of the form

− ≃d Y
dp

G p Y 0, (5.88)k
2

e
2 e
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where k is real and nonnegative, and G is a complex constant. Let =Y p Ze and

=q G p j/j , where = +j k( 2)/2. The previous equation transforms into a modi-
fied Bessel equation of general order,

ν+ − + =q
d Z
dq

q
dZ
dq

q Z( ) 0, (5.89)2
2

2
2 2

where ν = +k1/( 2). The solution that is bounded as → ∞q has the small-q
expansion [12]

O
ν ν

=
Γ −

−
Γ +

+ν

ν ν
ν−K q

q
q

q( )
1

(1 )
2 1

(1 ) 2
( ), (5.90)2

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

where Γ z( ) is a gamma function. A comparison of this expression with equation
(5.87) reveals that

ν π ν
ν

Δ̂ = Γ −
Γ

− − −
ν

ν
−

( )Q Q Q G
(1 )

( )
i . (5.91)

2 1

E e⎡⎣ ⎤⎦

Note, finally, that ∼ ∣ ∣ ν
*

−p G , where
*

p denotes the width of the large-p layer in p
space. This width must be larger than Q1/2 (i.e. the width of the small-p layer) in
order for the constant-ψ approximation to hold. Finally, it can easily be demon-
strated that the neglect of the term involving cβ in equation (5.74) is justified
provided that ≪ +β * *

c Q P p p( )2 .

5.9 Constant-ψ linear resonant response regimes
Suppose that ≫Q P p2 and ≪D p 12 2 . It follows that k = 2, j = 2, ν = 1/4, and

=
− − − − −

− − −
G

Q Q Q Q Q

Q Q Q

[ i ( )] [ i ( )]

i ( )
. (5.92)E E i

E e

Hence, we deduce that

πΔ̂ = Γ
Γ

− − − − −

− − −

Q Q Q Q Q

Q Q Q

2 (3/4)
(1/4)

[ i ( )] [ i ( )]

[ i ( )] .

(5.93)
E e

3/4
E

1/4

E i
1/4

This response regime is known as the resistive–inertial regime because the layer
response is dominated by plasma resistivity and ion inertia [4, 13]. The characteristic
layer width is ∼

*
−p Q 1/4, which implies that the regime is valid when ≪P Q3/2,

≫Q D4, ≪Q 1, and ≪βc Q3/4.
Suppose that ≪Q P p2 and ≪D p 12 2 . It follows that k = 4, j = 3, ν = 1/6, and
= φG P . Hence, we deduce that

πΔ̂ = Γ
Γ

− − − φ( )Q Q Q P
6 (5/6)

(1/6)
[ i ] . (5.94)

2/3

E e
1/6
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This response regime is known as the viscous–resistive regime because the layer
response is dominated by ion perpendicular viscosity and plasma resistivity [14, 15].
The characteristic layer width is ∼

*
−p P 1/6, which implies that the regime is valid

when ≫P Q3/2, ≫P D6, ≪ −P Q 3, and ≪βc P1/2.
Suppose that ≫Q P p2 and ≫D p 12 2 . It follows that k = 0, j = 1, ν = 1/2, and

=
− −

G
Q Q

D

i ( )
. (5.95)E

2

Hence, we deduce that

π
Δ̂ =

− − − − −( )Q Q Q Q Q

D

[ i ] [ i ( )]
. (5.96)E e E

1/2

This response regime is known as the semi-collisional regime [16, 17]. The character-
istic layer width is ∼

*
−p Q D1/2 , which implies that the regime is valid when

≪Q D4, ≪P Q D/2 2, ≪Q D, and ≪βc Q D1/2 .
Suppose, finally, that ≪Q P p2 and ≫D p 12 2 . It follows that k = 2, j = 2,

ν = 1/4, and

τ
=

+
⊥G

P
D(1 1/ )

. (5.97)2

Hence, we deduce that

π
τ

Δ̂ = Γ
Γ

− − −
+

⊥Q Q Q P

D
2 (3/4)

(1/4)

[ i ( )]

(1 1/ )
. (5.98)E e

1/4

1/4 1/2

This response regime is known as the diffusive–resistive regime because the layer
response is dominated by perpendicular energy diffusivity and plasma resistivity [6].
The characteristic layer width is ∼

*
−p P D1/4 1/2, which implies that the regime is

valid when ≫P Q D/2 2, ≪P D6, ≪P D Q/2 2, and ≪βc P D1/4 3/2.

5.10 The nonconstant-ψ limit
Suppose that ≪p Q1/2. In this limit, equation (3.19) reduces to

− − − − =d
dp

p
dY
dp

Q Q Q
B p
C p

p Y[ i ( )]
( )
( )

0. (5.99)2 e
E e

2
e⎜ ⎟

⎛
⎝

⎞
⎠

In the various nonconstant-ψ regimes considered in section 5.11, the previous
equation takes the form

− =+d
dp

p
dY
dp

G p Y 0, (5.100)k2 e 2
e⎜ ⎟

⎛
⎝

⎞
⎠

where k is real and nonnegative, and G is a complex constant. Let =U p Ye. The
previous equation yields
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− =d U
dp

G p U 0. (5.101)k
2

2

This equation is identical in form to equation (5.88), which we have already solved.
Indeed, the solution that is bounded as → ∞p has the small-p expansion (5.90), where

=q G p j/j , = +j k( 2)/2, and ν = +k1/( 2). Matching to equation (5.83) yields

π ν ν
ν

Δ̂ = − Γ
Γ −

ν
ν

−
−G

( )
(1 )

. (5.102)
1 2

The layer width in p space again scales as ∼ ∣ ∣ ν
*

−p G . This width must be less than
Q1/2. As before, the neglect of the term involving cβ in equation (5.74) is justified
provided that ≪ +β * *

c Q P p p( )2 .

5.11 Nonconstant-ψ linear resonant response regimes
Suppose that ≫Q P p2 and ≪D p 12 2 . It follows that k = 0, j = 1, ν = 1/2, and

= − − − − −G Q Q Q Q Q[ i ( )] [ i ( )]. (5.103)E E i

Hence, we deduce that

πΔ̂ = −
− − − − −Q Q Q Q Q[ i ( )] [ i ( )]

. (5.104)
E

1/2
E i

1/2

This response regime is known as the inertial regime, because the layer response is
dominated by ion inertia [4, 13]. Note that the plasma response in the inertial regime
is equivalent to that of two closely spaced shear-Alfvén resonances that straddle the
rational surface [18]. In fact, it can easily be demonstrated that in real space,

∫Δ̂ =
− − − −−∞

∞ dX
Q Q Q Q Q X( ) ( )

, (5.105)
E E i

2

which suggests that the resonances lie at = ± − − −X Q Q Q Q Q( ) ( )E E i . The
characteristic layer width is ∼

*
−p Q 1, which implies that the regime is valid when

≪P Q3, ≫Q D, ≫Q 1, and ≪βc 1.
Suppose that ≪Q P p2 and ≪D p 12 2 . It follows that k = 2, j = 2, ν = 1/4, and

= − − − φG Q Q Q P[ i ( )] . (5.106)E e

Hence, we deduce that

πΔ̂ = − Γ
Γ

− − − φ
− −Q Q Q P

2
(1/4)
(3/4)

[ i ( )] . (5.107)E e
1/4 1/4

This response regime is known as the viscous–inertial regime because the layer
response is dominated by ion perpendicular viscosity and ion inertia [13]. The
characteristic layer width is ∼

*
− −p Q P1/4 1/4, which implies that the regime is valid

when ≫P Q3, ≫P D Q/4 , ≫ −P Q 3, and ≪β
−c Q P3/4 1/4.
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Suppose, finally, that ≪Q P p2 and ≫D p 12 2 . It follows that k = 0, j = 1,
ν = 1/2, and

τ
=

− − −
+

⊥G
Q Q Q P

D

[ i ( )]

(1 1/ )
. (5.108)E e

2

Hence, we deduce that

π τΔ̂ = − +
− − − ⊥

D

Q Q Q P

(1 1/ )

[ i ( )]
. (5.109)

1/2

E e
1/2 1/2

This response regime is known as the diffusive–inertial regime, because the layer
response is dominated by perpendicular energy diffusivity and ion inertia [6]. The
characteristic layer width is ∼

*
− −p Q P D1/2 1/2 , which implies that the regime is

valid when ≪Q D, ≪P D Q/4 , ≫P D Q/2 2, and ≪β
− −c Q P D3/2 1/2 3.

5.12 Linear resonant response regimes
Table 5.2 summarizes the properties of the various linear resonant response regimes
found in sections 5.9 and 5.11. Here, we have made use of the abbreviations

= − − −R Q Q Qi ( ), (5.110)e E e

= − −R Q Qi ( ), (5.111)E E

= − − −R Q Q Qi ( ), (5.112)i E i

τ
=

+*
⊥P

P
1 1/

. (5.113)

In addition, figures 5.1 and 5.2 show the extents of the various different response
regimes in Q–P space for the cases <D 1 and >D 1, respectively.

Table 5.2. The various linear resonant response regimes. See equations (4.65), (5.61), (5.69), (5.66), and
(5.110)–(5.113). The response regimes are the resistive–inertial (RI), the viscous–resistive (VR), the semi-
collisional (SC), the diffusive–resistive (DR), the inertial (I), the viscous–inertial (VI), and the diffusive–inertial
(DI).

Regime Δ̂ Extent in Q–P space cβ limit

RI + R R R2.124 e
3/4

E
1/4

i
1/4 ≪Q 1 ≪P Q3/2 ≫Q D4 ≪βc Q3/4

VR + φR P0.670 e
1/6 ≪ −P Q 3 ≫P Q3/2 ≫P D6 ≪βc P1/2

SC + −R R D3.142 e E
1/2 1 ≪Q D ≪ −P Q D2 2 ≪Q D4 ≪βc Q D1/2

DR + *
−R P D2.124 e

1/4 1/2 ≪ −P D Q2 2 ≫ −P Q D2 2 ≪P D6 ≪βc P D1/4 3/2

I − − −R R3.142 E
1/2

i
1/2 ≫Q 1 ≪P Q3 ≫Q D ≪βc 1

VI − φ
− −R P4.647 e

1/4 1/4 ≫ −P Q 3 ≫P Q3 ≫ −P D Q4 1 ≪β
−c Q P3/4 1/4

DI − −
*
−R P D3.142 e

1/2 1/2 ≫ −P D Q2 2 ≪Q D ≪ −P D Q4 1 ≪β
− −c Q P D3/2 1/2 3
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Let δ̂ ∼* *
−p 1 be the normalized radial thickness of the resonant layer. Of course,

the true thickness is δ δ= ˆ−
*S rs

1/3
s. It follows from equation (5.69) that the relative

change in the perturbed helical magnetic flux, ψ̃ , across the layer is

Figure 5.1. Linear resonant plasma response regimes in Q–P space for the case =D 0.9. The various regimes
are the diffusive–resistive (DR), the semi-collisional (SC), the resistive–inertial (RI), the viscous–resistive (VR),
the viscous–inertial (VI), and the inertial (I).

Figure 5.2. Linear resonant plasma response regimes in Q–P space for the case =D 1.2. The various regimes
are the diffusive–resistive (DR), the semi-collisional (SC), the diffusive–inertial (DI), the viscous–resistive
(VR), the viscous–inertial (VI), and the inertial (I).
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ψ δ˜ = Δ̂ ˆ ∼ Δ̂
δ

δ

− ˆ

+ ˆ

* *
−d

dX
p

ln
. (5.114)

/2

/2
1

According to the analysis given in section 5.9, Δ̂
*
−p 1 takes the respective valuesQ1/2,

Q P1/3, Q D/2 2, and Q P D/1/2 in the resistive–inertial, viscous–resistive, semi-colli-
sional, and diffusive–resistive response regimes. Moreover, it is clear from figures 5.1
and 5.2 that these values are all much less than unity. In other words, it is indeed the
case that ψ̃ does not vary substantially across a ‘constant-ψ’ resonant layer. On the
other hand, according to the analysis given in section 5.11, Δ̂ ∼

*
−p 11 in the inertial,

viscous–inertial, and diffusive–inertial response regimes, which implies that ψ̃ does
vary substantially across a ‘nonconstant-ψ’ layer.

5.13 Response regimes in tokamak fusion reactors
Figure 5.3 shows the linear response regimes in a low-field tokamak fusion reactor.
The boundaries between the regimes are calculated with =D 3.021 (see table 5.1). If
we assume that ≃ ≃φ ⊥P P P 500 and ≲

*
Q Q , which implies that ≲Q 2 (see

table 5.1), then it is clear from the figure that the relevant response regimes are the
viscous–inertial and diffusive–resistive regimes. Note that the respective inequalities,

≪β
−c Q P3/4 1/4 and ≪βc P D1/4 3/2, that must be satisfied in order to justify our

neglect of the ion parallel dynamics in the layer equation are very easily satisfied in
the viscous–resistive and resistive–diffusive regimes (see section 5.7 and tables 5.1

Figure 5.3. Linear resonant plasma response regimes in Q–P space for a low-field tokamak fusion reactor. The
various regimes are the diffusive–resistive (DR), the diffusive–inertial (DI), the viscous–resistive (VR), the
viscous–inertial (VI), and the inertial (I). The range of probable Q and P values in the reactor is indicated by
the × markers.
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and 5.2). Figure 5.4 shows the linear response regimes in a high-field tokamak fusion
reactor. The boundaries between the regimes are calculated with =D 2.257 (see
table 5.1). If we assume that ≃ ≃φ ⊥P P P 500 and ≲

*
Q Q , which implies that

≲Q 1.5 (see table 5.1), then it is clear from the figure that the relevant response
regimes are the viscous–inertial and viscous–resistive regimes. Note that the
respective inequalities, ≪β

−c Q P3/4 1/4 and ≪βc P1/2, that must be satisfied in order
to justify our neglect of the ion parallel dynamics in the layer equation are very easily
satisfied in the viscous–inertial and viscous–resistive regimes.

5.14 The numerical solution of the resonant-layer equations
It is possible to solve the resonant-layer equation (3.19) numerically. We already
know that in the small-p limit, the solution to this equation takes the form

O
π

→ Δ̂ + +Y p Y
p

p( ) 1 ( ) . (5.115)e 0
⎡
⎣⎢

⎤
⎦⎥

(See equation (5.83).) In the large-p limit, equations (3.19)–(5.81) reduce to

τ
−

+
≃⊥d Y

dp
P

D
p Y

(1 1/ )
0. (5.116)

2
e

2 2
2

e

Figure 5.4. Linear resonant plasma response regimes in Q–P space for a high-field tokamak fusion reactor.
The various regimes are the diffusive–resistive (DR), the diffusive–inertial (DI), the viscous–resistive (VR), the
viscous–inertial (VI), and the inertial (I). The range of probable Q and P values in the reactor is indicated by
the × markers.
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This is a parabolic cylinder equation [12] whose most general large-p solution is

O= + +
α α− +

Y p
A B

p p
( )

e e
1

1
, (5.117)

p p

e

/2 /2

1/2 2

2 2

⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥

where A and B are arbitrary constants, and

α
τ

=
+

⊥P
D(1 1/ )

. (5.118)
2

1/2
⎡
⎣⎢

⎤
⎦⎥

Obviously, the physical solution of equation (5.116) does not blow up at large p.
Hence, we must select B = 0 in equation (5.117), which implies that

O= +
α−

Y p
A

p p
( )

e
1

1
, (5.119)

p

e

/2

1/2 2

2

⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥

at large p.
Let us make use of the so-called Riccati transformation [9, 19],

=W p
p

Y
dY
dp

( ) . (5.120)
e

e

Equation (5.78) yields

=
− − − +

−

− + − − − +

dW
dp

p
Q Q Q p p

W
W

p
p Q Q Q p

B p
C p

2
i ( )

1

i ( )
( )
( )

.

(5.121)E e
2

2

E e
2

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦

According to equation (5.115), the small-p behavior of the solution to the previous
equation is

Oπ= − +
Δ̂

+W p
p

p( ) 1 ( ). (5.122)2

Likewise, according to equation (5.119), the large-p behavior of the solution is

Oα= − − +W p p
p

( )
1
2

1
. (5.123)2

2
⎜ ⎟
⎛
⎝

⎞
⎠

Equation (5.121) can be conveniently solved numerically by launching a solution of
the form (5.123) at large p and then integrating backward to small p [9]. Equation
(5.122) yields

πΔ̂ = →
dW dp

lim
/

. (5.124)p 0⎜ ⎟
⎛
⎝

⎞
⎠

Figure 5.5 shows a numerical solution of the resonant-layer equation for a low-field
tokamak fusion reactor. This calculation is made with =

*
Q 2.002, =D 3.021,
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=φP 874, =⊥P 287, and τ = 1, assuming that Q is real (see table 5.1). Note that Δ̂
parameterizes the amplitude and phase of a shielding current that is driven
inductively at the rational surface, in response to a rotating tearing perturbation
in the outer region, and acts to suppress magnetic reconnection at the surface [15]. It
can be seen that the shielding current is zero when = +Q Q QE e, which is equivalent
to ω ω ω= + *E e. In other words, the shielding current is zero when the tearing
perturbation in the outer region rotates at the frequency of a naturally
unstable tearing mode at the rational surface [4, 15] (see chapter 6). The shielding
current clearly increases linearly with − −Q Q QE e when ∣ − − ∣ ≪Q Q Q 1E e , but
saturates in magnitude as O∣ − − ∣ →Q Q Q (1)E e .

Figure 5.6 shows a numerical solution of the resonant-layer equation for a high-
field tokamak fusion reactor. This calculation is made with =

*
Q 1.496, =D 2.257,

=φP 874, =⊥P 287, and τ = 1, assuming that Q is real (see table 5.1). Note that the
figure is very similar to figure 5.5, indicating that the resonant-layer responses in
low-field and high-field tokamak fusion reactors do not differ substantially from one
another.

5.15 Plasma rotation
In this chapter, we have made the assumption that the E-cross-B velocity,V r( )E , is
similar in magnitude to the diamagnetic velocity, *V r( ), in a tokamak fusion reactor
(see equations (5.21) and (5.29)). Given that most existing tokamak plasmas are
characterized by levels of plasma rotation such that ∣ ∣ ≫ ∣ ∣*V VE , this assumption
needs justification.

As explained in section 1.8, a tokamak fusion reactor requires auxiliary heating in
order to attain plasma temperatures sufficient for nuclear fusion. Most existing

Figure 5.5. The numerical solution of the resonant-layer equations for a low-field tokamak fusion reactor. The
vertical dashed lines correspond to − =Q Q QE i, 0, and Qe, respectively, in order from left to right.
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tokamaks employ neutral beam injection as their primary auxiliary heating method
[20]. In this heating scheme, high-energy (i.e. 100 keV) neutral particles are injected
into the plasma. The neutral particles are ionized within the plasma to form
energetic ions and low-energy electrons. The energetic ions are confined by the
tokamak’s magnetic field and subsequently slow down and heat the plasma. It is
vitally important that the neutral particles are ionized within the plasma, otherwise
they pass completely through it and damage the plasma-facing components. In order
to avoid this problem, which is known as shine-through, most existing neutral beam
injection systems angle the beam so that it passes through the plasma tangentially
rather than radially, in order to maximize the path length of the beam through the
plasma. Neutral particle ions have relatively large gyroradii and banana radii before
they slow down. In order to minimize fast ion losses, the neutral particle beam is
usually angled through the plasma in the direction such that, immediately after
ionization, the interaction between the fast ions and the tokamak’s magnetic field
causes the ions to move radially inwards, rather than outwards. It follows from the
analysis given in section 2.7 that, in a tokamak in which the toroidal magnetic field
and plasma current are both directed in the φ+ direction, the beam needs to be
angled such that fast ions are injected in the φ+ direction rather than the φ−
direction. This scheme is known as co-injection because the beam injection direction
is parallel to the toroidal plasma current.

A co-injected neutral beam imparts φ+ toroidal momentum, as well as energy, to
a tokamak plasma. Roughly speaking, the ratio of the momentum to the energy
injected by the beam is Ev ∝2/ 1/ 1/2, where v and E are the speed and energy,
respectively, of the injected particles. The injected toroidal momentum causes the
plasma to spin rapidly in the ion diamagnetic direction (i.e. in the same direction as

Figure 5.6. The numerical solution of the resonant-layer equations for a high-field tokamak fusion reactor.
The vertical dashed lines correspond to − =Q Q QE i, 0, and Qe, respectively, in order from left to right.
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those of ion diamagnetic flows). Plasmas in most existing tokamak experiments are
characterized by ∣ ∣ ≫ ∣ ∣*V VE as a consequence of co-injected neutral beams.

The low-field tokamak fusion reactor (i.e. ITER–see section 1.5 and [21])
considered in this book will be sufficiently large and will have sufficiently high
density that only exceptionally high-energy (i.e. 1000 keV) neutral particles will be
able to penetrate to its core. Given that the ratio of the momentum to the energy
injected by a neutral beam system is inversely proportional to the square root of the
neutral particle injection energy, it follows that only a relatively small amount of
momentum will be injected into ITER plasmas by its neutral beam heating system,
compared to the amounts injected into existing tokamaks.

The high-field tokamak fusion reactor (i.e. SPARC [22]) considered in this book
will not possess a neutral particle heating system at all. Instead, it will rely on solely
on auxiliary heating provided by radio-frequency electromagnetic waves injected
into the plasma. Such heating schemes do not inject any appreciable momentum into
the plasma.

In the absence of a significant toroidal momentum source, there is no reason to
suppose that a tokamak plasma will rotate in such a manner that ∣ ∣VE greatly exceeds
∣ ∣*V . Given that the two planned tokamak fusion reactors lack significant toroidal
momentum sources, the assumption that ∣ ∣ ∼ ∣ ∣*V VE in tokamak fusion reactors is
reasonable, and will adopted throughout the remainder of this book.

5.16 Magnetic reconnection
Suppose that the resonant layer lies in a constant-ψ response regime. According to
equation (5.33), the perturbed helical magnetic flux in the layer takes the form:

ψ ζ ψˆ ˆ = ˆ
ˆ + ˜ ζ ω− ˆ ˆx t

x

L
( , , )

2
e , (5.125)t

2

s

i ( )

where ψ̃ is a complex constant. Of course, the physical flux is the real part of the
previous expression; that is,

ψ ξ ψ ξˆ = ˆ
ˆ + ∣ ˜ ∣x

x

L
( , )

2
cos , (5.126)

2

s

where

ξ ζ ψ ω θ φ ψ ω= + ˜ − ˆ ˆ = − + ˜ −t m n targ( ) arg( ) . (5.127)

It is clear from equation (5.1) that ψ· ∇̂ =B 0. In other words, the contours of
ψ ξx̂( , ) map out the perturbed magnetic flux surfaces in the vicinity of the resonant
layer. Let ψˆ = ˆ ∣ ˜ ∣W L4 ( )s

1/2. Equation (5.126) can be written

ψ ξ
ψ

ξ
ˆ

∣ ˜ ∣
= ˆ

ˆ +x x

W

( , )
8 cos . (5.128)

2
⎛
⎝

⎞
⎠

Figure 5.7 shows the contours of ψ ξx̂( , ) specified by the previous equation. It can be
seen that the tearing mode has changed the topology of the magnetic field in the
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immediate vicinity of the rational surface, ˆ =x 0. In fact, as the tearing mode grows
in amplitude (i.e. as ψ∣ ˜ ∣ increases), magnetic field lines pass through the magnetic ‘X-
points’ (which are located at ˆ =x 0, ξ π= j 2 , where j is an integer), at which time
they break (or ‘tear’) and then reconnect to form new field lines that do not extend
over all values of ξ. The magnetic field line that forms the boundary between the
unreconnected and reconnected regions is known as the magnetic separatrix; it
corresponds to the contour ψ ξ ψˆ ˆ = ∣ ˜ ∣x( , ) . The reconnected regions within the
magnetic separatrix are termed magnetic islands. The tearing mode clearly generates
a chain of magnetic islands centered on the rational surface, with m periods in the
poloidal direction and n periods in the toroidal direction, which propagates in the
laboratory frame at the helical phase velocity ω. The maximum full (as opposed to
half) radial width of the magnetic separatrix is

ψ Ψ= ˆ = ˆ ∣ ˜ ∣ = ∣ ˆ ∣( )W W r L r L R4 ( ) 4 , (5.129)s s
1/2

s s 0 s
1/2

where Ψ ψ= ˜r Bzs s is the reconnected magnetic flux defined in equation (3.72), and
Ψ Ψˆ = R B/( )zs s 0 .

Finally, our reduced drift-MHDmodel, (5.10)–(5.13), contains many terms of the
general form ψ Ã[ , ], where ζ˜ ˆ ˆA x t( , , ) is a perturbed quantity. According to equation
(5.126), such terms can be written

ψ ψ δ ψ
δ

˜ = ˆ
ˆ

˜− ˜ ∂ ˜
∂ ˆ

∼
ˆ
ˆ

˜− ˜
ˆ

˜A
m
r

x

L
A

A
x

m
r L

A
m
r

A[ , ] i i i , (5.130)
s s s

s

s s s

⎜ ⎟
⎛
⎝

⎞
⎠

where δ δ= ˆ rs s s is the radial width of the linear layer. Linear layer theory is only
valid when the second term on the extreme right-hand side of the previous equation

Figure 5.7. Equally spaced contours of ψ ξx̂( , ). The magnetic separatrix is shown as a dashed line.
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is negligible compared to the first (because the second term is quadratic in perturbed
quantities, whereas the first is linear). In other words, we require δ ψˆ ≫ ∣ ˜ ∣ L̂s

2
s, which

reduces to

δ ≫ W . (5.131)s

(See equation (5.129).) We conclude that the linear resonant response theory
presented in this chapter is only valid when the radial width of the magnetic island
chain that develops in the vicinity of the rational surface is much less than the radial
width of the linear layer. Given that linear layers are very narrow in conventional
tokamak plasmas (see chapter 6), this is a stringent constraint.
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Chapter 6

Linear tearing-mode stability

6.1 Introduction
The aim of this chapter is to combine the analyses given in chapters 4 and 5 to
determine the linear stability of a typical tearing mode in a tokamak fusion reactor.
In this study, we shall assume that the rigid wall that surrounds the plasma is
perfectly conductive.

6.2 The linear dispersion relation
Let us write (see equation (5.33))

ω γ ω= +i , (6.1)r

where γ is the growth rate of the tearing mode, while ωr is the real frequency of the
mode in the laboratory frame. We shall assume that γ ω∣ ∣ ≪ ∣ ∣r . This assumption can
easily be verified a posteriori (see table 6.2). Asymptotic matching (see section 3.8)
between the tearing-mode solution in the outer region and that in the thin resistive
layer surrounding the rational surface (see section 3.7), which constitutes the inner
region, yields a linear tearing-mode dispersion relation of the form

γ ωΔ̂ =S E( , ) , (6.2)1/3
r ss

where use has been made of equations (3.74) and (5.70). Here, S is the Lundquist
number at the rational surface (see equation (5.48)), Ess is the real tearing stability
index (see section 3.8), while the complex layer-matching parameter, Δ̂, is defined in
equation (5.69).

In a conventional tokamak fusion reactor (assuming that O∼m (1), where m is
the poloidal mode number of the tearing perturbation), O∼E (1)ss

1, and ≫S 11/3

1Note that we are neglecting m = 1 modes, for which ∣ ∣ ≫E 1ss , because such modes are not really tearing
modes [6].
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(see table 5.1). Hence, the previous dispersion relation can only be satisfied if ωr

takes a value that renders ∣Δ̂∣ ≪ 1. It is clear from equations (5.61)–(5.65), (5.93),
(5.94), (5.96), and (5.98) that this goal can be achieved in all of the constant-ψ linear
response regimes if

ω ω ω ω= ≡ +⊥ * . (6.3)r e E e

Here, ωE and ω* e are the E-cross-B and electron diamagnetic frequencies, respec-
tively, at the rational surface. (See equations (5.21), (5.29), (5.44), and (5.45).) The
previous equation implies that the tearing mode corotates with the electron fluid at
the rational surface [1] (see section 2.24).

6.3 The determination of linear growth rates
Reusing the analysis of sections 5.7–5.9, let us again suppose that there are two
layers in p space (i.e. Fourier space). The small-p layer turns out to be of width γ∣ ˆ∣1/2,
where

γ γ τˆ = S . (6.4)1/3
H

Here, τH is the hydromagnetic timescale defined in equation (5.43). Given that we are
effectively assuming that γ∣ ˆ∣ ≪ 1, the condition for the separation of the layer
solution into two layers (i.e. that the width of the small-p layer is less than that of the
large-p layer) is always satisfied. The large-p layer is governed by the equation

− =d Y
dp

E p
F p

Y
( )
( )

0, (6.5)
2

e
2 e

where

τ≃ − + − + +φ φ
−

* * ⊥ ⊥E p Q Q P P p P P p( ) (1 1/ ) i ( ) , (6.6)1 2 2 4

τ≃ − + + φ⊥ *
F p P Q D P D p( ) i (1 1/ ) . (6.7)2 2 2

Here,
*

Q is the normalized diamagnetic frequency (see equation (5.65)), Pφ and ⊥P
are magnetic Prandtl numbers (see equations (5.53) and (5.54)), and τ is the ratio of
the electron to the ion pressure gradient at the rational surface (see equation (4.5)).
The boundary conditions on equation (6.5) are thatYe is bounded as → ∞p , and

O⎡
⎣⎢

⎤
⎦⎥π γ

= − Δ̂
ˆ

+Y p Y
p

p( ) 1 ( ) (6.8)e 0
2

as →p 0. Here, Y0 is an arbitrary constant.
In the various constant-ψ linear growth-rate regimes considered in the next

section, equation (6.5) reduces to an equation of the form

− =d Y
dp

G p Y 0, (6.9)k
2

e
2 e
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where k is real and nonnegative, and G is a complex constant. As described in
section 5.8, the solution of this equation that is bounded as → ∞p can be matched
to the small-p asymptotic form (6.8) to give

ν π ν
ν

γΔ̂ = Γ −
Γ

ˆ
ν

ν
−

G
(1 )

( )
, (6.10)

2 1

where ν = +k1/( 2). The width of the large-p layer in p space is ∣ ∣ ν−G .

6.4 Linear growth-rate regimes
As before (see section 5.7), we shall assume that ∼ ∼φ ⊥P P P and Oτ ∼ (1) for the
sake of simplicity.

Suppose that ≫
*

Q P p2 and ≫
*

P Q D2. It follows that k = 0, ν = 1/2, and

τ
= −

+
*

⊥
G

Q

P(1 1/ )
. (6.11)

2

Hence,

π
τ

γΔ̂ =
+

ˆπ− *

⊥

Q

P
e

(1 1/ )
, (6.12)i /2

1/2 1/2

and ∼
* *

p P Q/1/2 . This so-called resistive–inertial growth-rate regime is valid when
≪

*
P Q 3/2 and ≫

*
P Q D2. Making use of equations (5.48), (5.54), (5.65), (6.2), and

(6.4), the corresponding tearing-mode growth rate is [3]

γ
π

τ
ω τ τ τ

= +π

* ⊥

E
e

(1 1/ )
. (6.13)i /2 ss

1/2

H R
1/2 1/2

Here, ω* is the total diamagnetic frequency (see equation (5.47)), τR is the resistive
diffusion timescale (see equation (5.49)), and τ⊥ is the energy confinement timescale
(see equation (5.52)). Note that τ and ω* are both assumed to be positive quantities
(which is always the case if the electron and ion equilibrium pressure profiles are
monotonically decreasing functions of the minor radius). According to the previous
equation, the tearing mode is purely oscillatory in the resistive–inertial growth-rate
regime.

Suppose that ≪
*

Q P p2 and ≪D p 12 2 . It follows that k = 3, ν = 1/6, and

= φG P . (6.14)

Hence,

π γΔ̂ = Γ
Γ

ˆφP
6 (5/6)

(1/6)
, (6.15)

2/3
1/6

and ∼
*

−p P 1/6. This so-called viscous–resistive growth-rate regime is valid when
≫

*
P Q 3/2 and ≫P D6. Making use of equation (5.53), the corresponding tearing-
mode growth rate is [3]
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γ
π

τ
τ τ

=
Γ Γ

φE
[6 (5/6)/ (1/6)]

, (6.16)ss
2/3

1/6

H
1/3

R
5/6

where τφ is the momentum confinement timescale (see equation (5.50)). We conclude
that, in the viscous–resistive growth-rate regime, the tearing mode is a purely
growing mode (in a frame of reference that is co-moving with the electron fluid at the
rational surface) when the tearing stability index, Ess, is positive; however, it is a
purely decaying mode otherwise [4].

Suppose that ≫
*

Q P p2 and ≪
*

P Q D2. It follows that k = 0, ν = 1/2, and

τ
= −

+
*G

Q

D
i

(1 1/ )
. (6.17)

2

Hence,

π
τ

γΔ̂ =
+

ˆπ− *
Q

D
e

(1 1/ )
, (6.18)i /4

1/2

1/2

and ∼
* *

p D Q/ 1/2. This so-called semi-collisional growth-rate regime is valid when

≪
*

P Q D/2 2 and ≪
*

P Q D2. Making use of equation (5.53), the corresponding
tearing-mode growth rate is [3]

γ
π ω τ τ

= π β

*

E d r
e

/
, (6.19)i /4 ss s

1/2
H R

1/2

where dβ is the ion sound radius (see equation (4.75)), and rs is the minor radius of the
rational surface. We conclude that, in the semi-collisional growth-rate regime, the
tearing mode is a growing oscillatory mode (in the electron fluid reference frame)
when the tearing stability index is positive, but it is a decaying oscillatory mode
otherwise.

Suppose, finally, that ≪
*

Q P p2 and ≫D p 12 2 . It follows that k = 2, ν = 1/4,
and

τ
=

+
⊥G

P
D(1 1/ )

. (6.20)2

Hence,

π
τ

γΔ̂ = Γ
Γ +

ˆ⊥P
D

2 (3/4)
(1/4) (1 1/ )

, (6.21)
1/4

1/4 1/2

and ∼
*

p D P/1/2 1/4. This so-called diffusive–resistive growth-rate regime is valid when
≫

*
P Q D/2 2 and ≪P D6. The corresponding tearing-mode growth rate is [3]

γ
π

τ
τ τ

=
Γ Γ

β ⊥E d r

[2 (3/4)/ (1/4)]

( / )
. (6.22)ss s

1/2 1/4

H
1/2

R
3/4
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We conclude that, in the diffusive–resistive growth-rate regime, the tearing mode is a
purely growing mode (in the electron fluid reference frame) when the tearing stability
index is positive, but a purely decaying mode otherwise.

Table 5.1 gives estimates for all of the normalized quantities that appear in the
layer equation, (6.5), for a low-field fusion reactor and a high-field fusion reactor
(see chapter 1). Likewise, table 6.1 gives estimates for all of the unnormalized
quantities that appear in the growth-rate formulae (6.13), (6.16), (6.19), and (6.22)
(except for Ess, which is O(1)) for a low-field fusion reactor and a high-field fusion
reactor (see chapter 1).

According to equations (6.1), (6.3), (6.13), (6.16), (6.19), and (6.22), a linear
tearing mode is unstable (except in the resistive–inertial growth-rate regime, in which
it is marginally stable) when the tearing stability index, Ess, is positive, but it is
stable otherwise [4]. Moreover, the perturbed magnetic field associated with the
mode corotates with the electron fluid at the resonant surface [1]. Finally, the mode
grows on a hybrid timescale that is much greater than the hydromagnetic time, τH,
but much less than the resistive evolution time, τR. Note that, in all cases, the growth
rate goes to zero as τ → ∞R . This is not surprising because, as is clear from equation
(5.39), the perturbed helical magnetic flux at the resonant surface, ψ̃ ˆ =x( 0), is
constrained to take the value zero in the limit that → ∞S . In other words, magnetic
reconnection at the resonant surface (which corresponds to a finite ψ̃ at ˆ =x 0) is
impossible in the absence of plasma resistivity [4].

There are three main factors, other than plasma inertia and resistivity, that affect
the growth rate of a tearing mode in a conventional tokamak plasma. First, the
strength of diamagnetic flows in the plasma, which is parameterized by the
diamagnetic frequency, ω* (and by the normalized diamagnetic frequency,

*
Q ).

Second, the anomalous perpendicular diffusion of momentum and particles, which is

Table 6.1. Quantities controlling tearing-mode growth rates in a low-field
tokamak fusion reaction and a high-field tokamak fusion reaction. Here, τ is
the ratio of the electron to the ion pressure gradients at the rational surface, τH the
hydromagnetic timescale, τR the resistive diffusion timescale, τφ the momentum
confinement timescale, τ⊥ the energy confinement timescale, ω* the diamagnetic
frequency, rs the minor radius of the rational surface, and dβ the ion sound radius.

Low field High field

B (T) 5.0 12.0
τ 1.0 1.0
τ (s)H × −1.04 10 6 × −4.31 10 7

τ (s)R ×1.40 103 ×2.43 102

τφ (s) 1.60 0.278

τ⊥(s) 4.89 0.848

ω*
−(krad s )1 1.75 4.19

r (m)s 1.23 0.527

βd (m) × −4.89 10 3 × −2.04 10 3
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parameterized by the momentum and particle confinement timescales, τφ and τ⊥ (and
by the magnetic Prandtl numbers, Pφ and ⊥P ). Third, finite ion sound radius effects,
which are parameterized by the ion sound radius, dβ (and by the normalized ion
sound radius D).

There are four tearing-mode growth-rate regimes—the resistive–inertial, the
viscous–resistive, the semi-collisional, and the diffusive–resistive—and their extents
in

*
Q –P space are illustrated in figure 6.1 [3]. Note that figure 6.1 differs somewhat

from figures 5.1 and 5.2 because in the latter two figures it is assumed that
∣ − − ∣ ∼ ∣ − ∣ ∼ ∣ − − ∣Q Q Q Q Q Q Q QE e E E i ,whereas in the formerfigure it is assumed
that∣ − − ∣ ≪ ∣ − ∣ ∼ ∣ − − ∣Q Q Q Q Q Q Q QE e E E i . This refined ordering eliminates the
nonconstant-ψ response regimes and significantly modifies the extent of the resistive–
inertial growth-rate regime. It is clear from figure 6.1 that a low-field tokamak fusion
reactor lies in the diffusive–resistive growth-rate regime, whereas a high-field tokamak
fusion reactor lies in the viscous–resistive growth-rate regime (see section 5.13).

The absence of nonconstant-ψ response regimes in figure 6.1 should come as no
surprise. As we saw in section 5.12, nonconstant-ψ resonant layers are characterized

by δ δΔ̂ ∼ ˆ =*
− −S r( / )

1 1/3
s s , where δs is the radial layer thickness. Hence, according to

equation (6.2), asymptotic matching of such a layer to the outer solution is only
possible if δ∣ ∣ ∼ ≫E r / 1ss s s (given that resonant layers in tokamak plasmas are
invariably very thin compared to the minor radius of the plasma). However, low-m
tearing modes in conventional tokamak plasmas are characterized by O∣ ∣ ∼E (1)ss
rather than ∣ ∣ ≫E 1ss [6]. (As before, we are neglecting m = 1 modes, which are
characterized by ∣ ∣ ≫E 1ss , because they are not really tearing modes.)

Figure 6.1. Linear tearing-mode growth-rate regimes in *Q –P space. The various regimes are the diffusive–
resistive (DR), the viscous–resistive (VR), the resistive–inertial (RI), and the semi-collisional (SC) regimes. The
× and + markers indicate the location of a low-field and a high-field tokamak fusion reactor, respectively, in

*Q –P space.
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6.5 Resonant-layer thickness
According to equations (3.102) and (3.103), the dispersion relation of a magnetic
perturbation interacting with a thin, rigid, resistive wall can be written as

Ψ γ τ δ ΨΔ =
r

, (6.23)w r
w

w
w

where ΨΔ w is a measure of the current flowing in the wall,Ψw the perturbed magnetic
flux that penetrates the wall, rw the wall minor radius, δw the wall radial thickness,
and τ μ σ= rr 0 s

2
w the time required for magnetic flux to diffuse a distance rw through

the wall material. Here, σw is the electrical conductivity of the wall material. By
analogy with the previous result, we would expect the dispersion relation of a
magnetic perturbation interacting with the thin resistive layer that surrounds the
rational surface to take the form

Ψ γ τ δ ΨΔ =
r

, (6.24)s R
s

s
s

where ΨΔ s is a measure of the current flowing in the layer,Ψs the perturbed magnetic
flux that penetrates the layer, δs the radial thickness of the layer, and τR the time
required for magnetic flux to diffuse a distance rs through the plasma (see equation
(5.49)). Note that, in general, δs is a complex quantity. In fact, the true layer
thickness is δ∣ ∣s . It follows from equation (3.74) that

γ τ δ =
r

E , (6.25)R
s

s
ss

where Ess is the real tearing stability index. Finally, equations (5.48), (5.53), (6.2),
and (6.4) can be combined with the previous equation to give

γ
τ δΔ̂

ˆ
= +

βD d
(1 1/ ) , (6.26)1/2 s

where dβ is the ion sound radius at the rational surface (see equation (4.75)).

6.6 The numerical solution of the resonant-layer equations
Let

=q p D. (6.27)

Equations (6.5)–(6.7) yield

−
ˆ
ˆ =d Y

dq
E q

F q
Y

( )

( )
0, (6.28)

2
e

2 e

where

τˆ = − + ˆ − ˆ ˆ + ˆ + ˆ ˆφ φ
−

* * ⊥ ⊥E q Q Q P P q P P q( ) (1 1/ ) i ( ) , (6.29)1 2 2 4
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τˆ ≃ ˆ − ˆ + + φ̂⊥ *
F q P Q P q( ) i (1 1/ ) , (6.30)2

and

ˆ =
*

*Q
Q

D
, (6.31)

4

ˆ =φ
φP

P

D
, (6.32)

6

ˆ =⊥
⊥P

P
D

. (6.33)
6

Equation (6.28) must be solved subject to the constraint that Y q( )e is bounded as
→ ∞q , and

O⎡
⎣⎢

⎤
⎦⎥

τ δ
π

= − + +
β

Y q Y
q

d
q( ) 1

(1 1/ )
( ) (6.34)e 0

1/2
s 2

as →q 0. Here, use has been made of equations (6.8), (6.26), and (6.27). As can
easily be demonstrated (see section 5.14), the solution of equation (6.28) that is
bounded as → ∞q is

O⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥= +

α−
Y q

A
q q

( )
e

1
1

, (6.35)
q

e

/2

1/2 2

2

where

⎜ ⎟
⎛
⎝

⎞
⎠

α
τ

=
ˆ

+
⊥P

1 1/
, (6.36)

1/2

and A is an arbitrary constant.
Let us again (see section 5.14) use the Riccati transformation [2, 5]

=W q
q

Y
dY
dq

( ) . (6.37)
e

e

Equation (6.28) yields

= − +
ˆ

ˆ
dW
dq

W
q

W
q

q E q

F q

( )

( )
. (6.38)

2

According to equation (6.34), the small-q behavior of the solution to the previous
equation is

Oτ δ
π

= − + +
β

W q
q

d
q( )

(1 1/ )
( ). (6.39)

1/2
s 2
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Likewise, according to equation (6.35), the large-q behavior of the solution is

O⎜ ⎟
⎛
⎝

⎞
⎠

α= − − +W q q
q

( )
1
2

1
. (6.40)2

2

Equation (6.38) can be conveniently solved numerically by launching a solution of
the form (6.40) at large q and then integrating backward to small q [5]. It follows
from equation (6.39) that

⎡
⎣⎢

⎤
⎦⎥

δ π
τ

= −
+β →d

dW
dq

lim
(1 1/ )

. (6.41)
q

s

0 1/2

Table 6.2 gives estimates for the normalized resonant-layer parameters, ˆ
*

Q , φ̂P ,

and ⊥̂P , that appear in equations (6.28)–(6.30), in a low-field tokamak fusion reactor
and a high-field tokamak fusion reactor. These estimates are made using the data
shown in table 6.1. Table 6.2 also gives estimates for the linear layer thicknesses and
tearing-mode growth rates in such reactors. These estimates are obtained via
numerical solution of the resonant-layer equation. It can be seen that the typical
radial thickness of a linear tearing layer in a tokamak fusion reactor is only a few
millimeters. Furthermore, linear tearing modes in tokamak fusion reactors grow on
timescales that typically lie between a tenth of a second and a second (assuming that

O∼E (1)ss ). Finally, the real frequencies of such modes, in a frame of reference that
corotates with the electron fluid at the resonant surface (i.e. the imaginary
components of γ), are very much smaller (by a factor of the order of 106) than a
typical diamagnetic frequency (see table 6.1). In other words, linear tearing modes
do indeed corotate with the electron fluid at the resonant surface to a very high
degree of fidelity.

Table 6.2. Normalized dimensionless layer parameters, layer thicknesses, and
tearing-mode growth rates in a low-field tokamak fusion reactor and a high-field
tokamak fusion reactor. See equations (6.31)–(6.33). Here, δs is the complex layer
thickness, δ∣ ∣s the actual layer thickness, dβ the ion sound radius, γ the complex
growth rate in a frame of reference that corotates with the electron fluid at the
rational surface, and Ess the tearing stability index.

Low field High field

B (T) 5.0 12.0
ˆ
*Q × −2.40 10 2 × −5.77 10 2

φ̂P 1.15 6.62

⊥̂P × −3.77 10 1 × +2.17 10 0

δ βd/s × − ×− −9.60 10 1.45 10 i1 2 × − ×+ −1.44 10 1.80 10 i0 2

δ∣ ∣ (m)s × −4.69 10 3 × −2.95 10 3

γ − E(s )/1
ss × + ×− −1.93 10 2.93 10 i1 3 × + ×− −7.36 10 9.16 10 i1 3
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Figures 6.2 and 6.3 show values of δ βdRe( / )s and δ βdIm( / )s , respectively,

evaluated numerically as functions of ˆ
*

Q and P̂. In producing these figures, it is

assumed that ˆ = ˆ = ˆφ ⊥P P P. The fact that δ >Re( ) 0s for all values of ˆ
*

Q and P̂

Figure 6.2. The real part of δ βd/s calculated as a function of ˆ ≡* *Q Q D/ 4 and ˆ ≡P P D/ 6.

Figure 6.3. The imaginary part of δ βd/s calculated as a function of ˆ ≡* *Q Q D/ 4 and ˆ ≡P P D/ 6.
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confirms that tearing modes are linearly unstable for <E 0ss , but stable otherwise [4]
(see equation (6.25)). It is clear that the layer width increases with increasing
normalized diamagnetic frequency, ˆ

*
Q , and also with increasing normalized mag-

netic Prandtl number, P̂.
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Chapter 7

Error-field penetration in tokamak plasmas

7.1 Introduction
Tokamak plasmas are invariably subject to small-amplitude, static, magnetic
perturbations—known as error fields—that are primarily generated by magnetic
field-coil misalignments. A resonant error field can drive magnetic reconnection in a
plasma that is intrinsically stable against tearing (known as a ‘tearing-stable’
plasma), resulting in the formation of a locked (i.e. nonrotating in the laboratory
frame) magnetic island chain at the resonant magnetic flux surface (see section 5.16).
Tokamak plasmas containing locked magnetic island chains often terminate in
disruptions [14, 15]. Fortunately, error-field-driven magnetic reconnection is
strongly suppressed by the naturally occurring rotation of the electron fluid at the
resonant surface. However, when the error-field amplitude rises above a certain
critical value, the electron fluid rotation at the resonant surface is suddenly arrested,
and error-field-driven reconnection proceeds unhindered. This phenomenon is
known as error-field penetration [4, 6, 7] and has been observed in many tokamak
experiments [3, 8–13, 16, 17].

In this chapter, we shall calculate the critical error-field amplitude required to
trigger penetration on the assumption that, prior to penetration, the rotational
suppression of error-field-driven magnetic reconnection is sufficiently strong that the
resonant plasma response is governed by linear layer physics [2, 4, 6, 7].

7.2 Asymptotic matching
Consider a tearing-stable, cylindrical, tokamak plasma of minor radius a and
simulated major radius R0. In accordance with the analysis given in chapter 3,
suppose that the plasma is surrounded by a concentric, radially thin, rigid, resistive
wall of minor radius r aw > . Likewise, suppose that the wall is surrounded by a
concentric, radially thin, magnetic field coil of minor radius r rc w> that carries a
nonrotating (in the laboratory frame) helical current of amplitude Ic. Let the current
possess m periods in the poloidal direction and n periods in the toroidal direction.
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The static magnetic field generated by the field coil constitutes our error field. The
error field resonates with the plasma at the rational magnetic flux surface, minor
radius rs, at which the safety factor (see section 3.2) takes the value m/n.

Setting d dt/ 0= (because the error field is static) in equations (3.187) and (3.188),
we obtain

I . (7.1)s nw s cΨ ΨΔ ˆ = Δ ˆ + ˜

Here,

⎡
⎣

⎤
⎦

r
R B

B
m

i , (7.2)
z r

s
s

0

r

s

Ψ δˆ = −

r
R B

B[ ] , (7.3)
z

r
r

s
s

0
s
sΨ δΔ ˆ = − θ −
+

where r, θ, z are conventional cylindrical coordinates, Bδ the perturbed magnetic
field, and Bz the equilibrium toroidal magnetic field strength (see sections 3.3, 3.8,
and 3.15). Clearly, sΨ̂ is a measure of the reconnected magnetic flux driven at the
rational surface by the error field, while sΨΔ ˆ is a measure of the helical current sheet
that is induced at the surface. Moreover,

E E
E( )

(7.4)nw pw
sw ws

ww
Δ = Δ +

− ˜

is the (real dimensionless) tearing stability index (of a tearing mode with poloidal
mode number m and toroidal mode number n) in the absence of the wall,

E (7.5)pw ssΔ =

is the (real dimensionless) tearing stability index in the presence of a perfectly
conducting wall at r rw= (see section 3.8), and

⎜ ⎟⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

I
E

r
r

I

R B
. (7.6)

m

z
c

nw pw

ws

w

c

0 c

0

μ˜ =
Δ − Δ

Here, the (real dimensionless) plasma-wall coupling parameter, E 0sw > , and the
(real dimensionless) wall stability index, Eww

˜ , are defined in sections 3.9 and 3.17,
respectively. We expect 0 nw pw> Δ > Δ , because the plasma is assumed to be tearing
stable (see chapter 6), and E 0ww

˜ < . In fact, if we make the approximation that the
equilibrium plasma current external to the rational magnetic flux surface is
negligible (i.e. J 0z′ = in equation (3.77)), then it can easily be demonstrated that

m r r
r r

2 ( / )
1 ( / )

, (7.7)
m

mnw pw
s w

2

s w
2

Δ = Δ +
−

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

I
r
r

I

R B
. (7.8)

m

z
c

s

c

0 c

0

μ˜ =
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In the radially thin, resonant layer that surrounds the rational magnetic flux surface,
equation (5.70) yields

S , (7.9)s
1/3

sΨ ΨΔ ˆ = Δ̂ ˆ

where S is the Lundquist number at the rational surface, and the complex layer-
matching parameter, Δ̂, is defined in equation (5.69). Hence, asymptotic matching
between the inner and the outer regions (see section 4.1) yields

I

S( )
, (7.10)s

c

nw
1/3

Ψ̂ =
˜

−Δ + Δ̂

where use has been made of equations (7.1) and (7.9). The previous equation
specifies the (normalized) reconnected magnetic flux, sΨ̂ , driven at the rational
surface by the (normalized) error-field coil current, Ic̃. The complex layer parameter,
Δ̂, specifies the strength of a shielding current that is induced in the resonant layer
and acts to prevent driven magnetic reconnection. Note that the resistive wall has no
influence on sΨ̂ because no eddy currents are induced in the wall by a static error
field.

7.3 The resonant-layer response
We saw in section 5.13 that the relevant linear resonant response regimes in a low-
field tokamak fusion reactor are the diffusive–resistive regime and the viscous–inertial
regime.

In the diffusive–resistive response regime (see section 5.9),

C
Q Q P

D
e

(1 1/ )
, (7.11)DR DR

i /2 E e
1/4

1/4 1/2τ
Δ̂ =

∣ + ∣
+

σ π ⊥

where Q Qsgn( )E eσ = + , and

C
2 (3/4)

(1/4)
. (7.12)DR

π= Γ
Γ

Here,Q SE
1/3

E Hω τ= andQ Se
1/3

e Hω τ= * , where Hτ is the hydromagnetic timescale
(see equation (5.43)), Eω the E-cross-B frequency (see equation (5.44)), and eω* the
electron diamagnetic frequency (see equation (5.45)). All quantities are evaluated at
the rational surface. Moreover, P /Rτ τ=⊥ ⊥ and D S d r(1 1/ ) /1/3 1/2

sτ= + β
− , where

SR Hτ τ= is the resistive diffusion timescale (see equation (5.49)), τ⊥ the energy
confinement timescale (see equation (5.52)), τ the ratio of the electron to the ion
pressure gradient (see equation (4.5)), and dβ the ion sound radius (see equation
(4.75)). In writing expression (7.11), we have made use of the fact that
Q S 01/3

Hω τ≡ = for a static magnetic perturbation.
In the viscous–inertial response regime (see section 5.11),

C Q Q Pe , (7.13)VI VI
i /8

E e
1/4 1/4Δ̂ = − ∣ + ∣σ π

φ
− − −
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where

C
2

(1/4)
(3/4)

. (7.14)VI
π= Γ

Γ

Here, P /Rτ τ=φ φ, where τφ is the momentum confinement timescale (see equation
(5.50)).

Interpolating between the diffusive–resistive response regime and the viscous–
inertial response regime, we can write

. (7.15)DR VI

DR VI

Δ̂ = Δ̂ Δ̂
Δ̂ + Δ̂

It follows that in a low-field tokamak fusion reactor,

C
Q Q P

D
X

X X
Re( )

(1 1/ )
cos( /8)

1 2 sin( /8)
, (7.16)DR

E e
1/4

1/4 1/2
DI

DI DI
2τ

π
π

Δ̂ = −
∣ + ∣

+ + +
⊥

C
Q Q P

D
X

X X
Im( )

( )

(1 1/ )
1 sin( /8)

1 2 sin( /8)
, (7.17)DR

E e
1/4

1/4 1/2
DI

DI DI
2τ

π
π

Δ̂ =
+

+
+

+ +
⊥

where

X
C
C

Q Q P P

D(1 1/ )
. (7.18)DI

DR

VI

E e
5/4 1/4 1/4

1/4 1/2τ
=

∣ + ∣
+

φ⊥

Figure 7.1 shows the real and imaginary components ofΔ̂ as functions of the normalized
E-cross-B frequency at the rational surface,QE, calculated from equations (7.16)–(7.18)

Figure 7.1. Complex layer-matching parameter, Δ̂, calculated from equations (7.16)–(7.18) for a low-field
tokamak fusion reactor. The vertical dashed line corresponds to Q Q 0E e+ = .
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for a low-field tokamak fusion reactor. The calculation parameters are 1τ = ,Q 1.00e = ,
D 3.02= , P 874=φ , and P 287=⊥ (see table 5.1). If we compare figure 7.1 with the
exact numerical result shown in figure 5.5, then we can see that the analytic
approximation (7.16)–(7.18) captures most of the salient features of the layer
response. In particular, if we had tried to model the layer response using either the
diffusive–resistive or the viscous–inertial response regime alone, then the agreement
with the numerical results would have been very poor. The diffusive–resistive
response regime predicts that Δ̂ is purely imaginary, and that Im( )∣ Δ̂ ∣ is a monotoni-
cally increasing function of Q QE e∣ + ∣. On the other hand, the viscous–inertial

response regime does not predict a resonance (i.e. a point at which 0Δ̂ = ) at
Q Q 0E e+ = (i.e. when the electron fluid at the rational surface is stationary).
Neither of these predictions is consistent with the data shown in figure 5.5. Thus, it is
clear that, in order to be reasonably accurate, an analytical approximation to the
layer response must interpolate between a constant-ψ response regime (in this case,
the diffusive–resistive regime) and a nonconstant-ψ response regime (in this case, the
viscous–inertial regime).

We saw in section 5.13 that the relevant linear resonant response regimes in a
high-field tokamak fusion reactor are the viscous–resistive regime and the viscous–
inertial regime.

In the viscous–resistive response regime (see section 5.9),

C Q Q Pe , (7.19)VR VR
i /2

E e
1/6Δ̂ = ∣ + ∣σ π
φ

where

C
6 (5/6)

(1/6)
. (7.20)VR

2/3 π= Γ
Γ

Interpolating between the viscous–resistive response regime and the viscous–
inertial response regime, we can write

. (7.21)VR VI

VR VI

Δ̂ = Δ̂ Δ̂
Δ̂ + Δ̂

It follows that in a high-field tokamak fusion reactor,

C Q Q P
X
X X

Re( )
cos( /8)

1 2 sin( /8)
, (7.22)VR E e

1/6 RI

RI RI
2

π
π

Δ̂ = − ∣ + ∣
+ +φ

C Q Q P
X

X X
Im( ) ( )

1 sin( /8)
1 2 sin( /8)

, (7.23)VR E e
1/6 RI

RI RI
2

π
π

Δ̂ = + +
+ +φ

where

X
C
C

Q Q P . (7.24)RI
VR

VI
E e

5/4 5/12= ∣ + ∣ φ

Figure 7.2 shows the real and imaginary components of Δ̂ as functions of the
normalized E-cross-B frequency at the rational surface, QE, calculated from
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equations (7.22)–(7.24) for a high-field tokamak fusion reactor. The calculation
parameters are Q 0.75e = and P 874=φ (see table 5.1). As before, if we compare
figure 7.2 with the exact numerical result shown in figure 5.6, then we can see that the
analytic approximation (7.22)–(7.24) captures most of the salient features of the
layer response.

7.4 Torque balance
According to equations (3.185) and (3.186),

k V( ) ( ). (7.25)
p 1,

r rE i p ps ∑ω α βΔ = · Δ = − +
= ∞

=

In other words, the shift in the E-cross-B frequency at the rational surface, EωΔ ,
which develops in response to the electromagnetic torque exerted at the surface by
the error field (see section 3.3), is mirrored by an equal shift in the ion fluid rotation
frequency (as well as in the electron fluid rotation frequency). This is the essence of
the no-slip constraint, (3.185), which follows from equations (2.321) and (2.322)
because the torque modifies the E-cross-B velocity at the rational surface but does
not affect the diamagnetic velocities.

Equations (3.190) and (3.191) yield

⎛

⎝
⎜

⎞

⎠
⎟

j m J j r

J j
1 [ ( )]

[ ( )]
Im( ), (7.26)

1p
2

M
p

2
1 1p s

2

A
2

s
2

2 1p
2 s sτ τ

α
τ ϵ

Ψ Ψ+ =
ˆ

Δ ˆ ˆ
θ

*

Figure 7.2. Complex layer-matching parameter, Δ̂, calculated from equations (7.22)–(7.24) for a high-field
tokamak fusion reactor. The vertical dashed line corresponds to Q Q 0E e+ = .
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j n J j r

J j

[ ( )]

[ ( )]
Im( ), (7.27)0p

2

M
p

2
0 0p s

2

A
2

1 0p
2 s sτ

β
τ

Ψ Ψ=
ˆ

Δ ˆ ˆ *

where we have set d dt/ 0= (because the error field is static). Here,

⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥r

f q
( )

2
, (7.28)

r r

i s
i

i 11 t

2

s

τ τ τ
μ

ϵ= =θ θ

=

r
, (7.29)M

s
2τ

τ
=

ˆ
φ

n s , (7.30)aA s Hτ ϵ τ=

r
r

R
( ) , (7.31)

0
ϵ =

r( )s sϵ ϵ= , a( )aϵ ϵ= , and r r a/s sˆ = . Furthermore, the dimensionless neoclassical
viscosity parameter i 11μ is defined in equation (2.204), iτθ is the ion poloidal flow-
damping timescale, ft the fraction of trapped particles (see equation (2.202)), iτ the
ion–ion collision time (see equation (2.21)), q r( ) the safety-factor profile (see section
3.2), and s s r( )s s= the magnetic shear at the rational surface (see equation (5.28)).
Moreover, J x( )m denotes a Bessel function, while j0p and j1p denote the pth zeros of
the J x( )0 and J x( )1 Bessel functions, respectively.

Let

, (7.32)E E E 0ω ω ωΔ = −

where E 0ω is the E-cross-B frequency at the rational surface in the absence of the
error field. It is helpful to define Q SE 0

1/3
E 0 Hω τ= . Equations (7.25)–(7.27) can be

combined to give

⎜ ⎟⎜ ⎟ ⎜ ⎟

⎡

⎣
⎢⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦
⎥s

q a
r

S
P

Q Q
1

4 ( )
2 ln Im( ) , (7.33)

s s
2

s

s

2 1/2

s

1/2
4/3

s s E 0 Eϵ ϵ
τ
τ

Ψ Ψ+ Δ ˆ ˆ = −θ

φ φ

*

where q m n/s = . Here, use has been made of the results [7]

J j x

J j j x
lim

[ ( )]

[ ( )] (1 )
1

4
, (7.34)

p 1,

0
1 1p

2

2 1p
2

1p
2∑

ϵ

ϵ+
≃

= ∞
ϵ→

⎛
⎝

⎞
⎠

J j x

J j j x

[ ( )]

[ ( )]
1
2

ln
1

. (7.35)
p 1,

0 0p
2

1 0p
2

0p
2∑ =

= ∞

Equations (7.9), (5.129), and (7.33) yield the torque balance equation [4, 6]

Q I

Q Q
Q Q

( )

[ ( )] [ ( )]
, (7.36)i E c

2

r E
2

i E
2 E 0 Eζ

Δ̂ ¯

+ Δ̂ + Δ̂
= −
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where

Re( ), (7.37)rΔ̂ = Δ̂

Im( ), (7.38)iΔ̂ = Δ̂

S ( ), (7.39)1/3
nwζ = −Δ−

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
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⎠
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⎠
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2 ln . (7.40)c

s s

s

s

2 1/2

s

1/2 1/2

cϵ ϵ
τ
τ

¯ = + ˜θ

φ φ

The left-hand side of equation (7.36) represents an electromagnetic braking torque
that develops at the rational surface and acts to halt the local electron fluid rotation.
On the other hand, the right-hand side of the equation represents a viscous restoring
torque that opposes any changes in the electron fluid rotation at the rational surface.
Equation (7.36) can be rearranged to give

I F Q( ), (7.41)c
2

E
¯ =

where

F Q Q Q
Q Q

Q
( ) ( )

[ ( )] [ ( )]

( )
. (7.42)E E 0 E

r E
2

i E
2

i E

ζ
= −

+ Δ̂ + Δ̂
Δ̂

Figure 7.3 shows the torque balance function, F Q( )E , calculated for a low-field
tokamak fusion reactor with Q 2.0E 0 = . The parameters used in the calculation are

1τ = , Q 1.00e = , D 3.02= , P 874=φ , and P 287=⊥ , as well as S 1.35 109= × ,

m = 2, and m2nwΔ = − (see tables 5.1 and 6.1). Note that Re( )rΔ̂ ≡ Δ̂ and
Im( )iΔ̂ ≡ Δ̂ are specified in equations (7.16) and (7.17), respectively. The parameter

ζ takes the value 3.62 10 3× − . As indicated in the figure, when I 2.0c
2¯ = there are

three possible values of the normalized E-cross-B frequency at the rational surface,
QE, that satisfy equation (7.41). However, as is easily demonstrated, the middle
solution is dynamically unstable [4]. We thus conclude that there are two dynam-
ically stable branches of solutions to the torque balance equation, (7.36). On the
high-slip branch (i.e. the rightmost solution in the figure), the electron fluid at the
rational surface rotates with respect to the error field, generating a shielding current
that suppresses driven magnetic reconnection. On the low-slip branch (i.e. the
leftmost solution in the figure), the electron fluid rotation at the rational surface is
arrested, there is no shielding current, and driven magnetic reconnection proceeds
unhindered.

Figure 7.4 shows the torque balance function, F Q( )E , calculated for a high-field
tokamak fusion reactor with Q 2.0E 0 = . The parameters used in the calculation are
Q 0.75e = and P 874=φ , as well as S 5.63 108= × , m = 2, and m2nwΔ = − (see

tables 5.1 and 6.1). Note that Re( )rΔ̂ ≡ Δ̂ and Im( )iΔ̂ ≡ Δ̂ are specified in equations
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Figure 7.3. The torque balance curve in a low-field tokamak fusion reactor with Q 2.0E 0 = . The intersection
of the curve with the horizontal line of height 2.0 shows the possible steady-state values ofQE when I 2.0c

2¯ = .
There are three solutions. Two (indicated by the circular markers) are dynamically stable, and one (indicated
by the cross-shaped marker) is dynamically unstable.

Figure 7.4. Torque balance curve in a high-field tokamak fusion reactor with Q 2.0E 0 = . The intersection of
the curve with the horizontal line of height 3.271 shows the possible steady-state values of QE when
I 3.271c

2¯ = . The circular and cross-shaped markers indicate the high-slip and low-slip solutions, respectively.
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(7.22) and (7.23), respectively. The parameter ζ takes the value 4.84 10 3× − . As
indicated in the figure, when Ic

2¯ attains the critical value of 3.271, the high-slip and
the dynamically unstable solutions of the torque balance equation merge together
and annihilate one another. For I 3.71c

2¯ > , only the low-slip solution branch exists.
Thus, if the system is initially on the high-slip solution branch, and the error-field
amplitude is raised such that Ic

2¯ exceeds the critical value of 3.271, then there is a
bifurcation from the high-slip to the low-slip solution branch. This bifurcation is
associated with the sudden arrest of the electron fluid rotation at the rational surface,
the collapse of the shielding current, and the onset of driven magnetic reconnection
[4, 6]. Of course, the bifurcation corresponds to the error-field penetration phenom-
enon discussed in section 7.1.

7.5 Error-field penetration
If Ic pen¯ is the critical value of the normalized error-field coil current needed to trigger
error-field penetration, then the critical radial magnetic field (in the absence of a
shielding current) that must be generated at the rational surface in order to trigger
penetration is

⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
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⎠
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⎠

⎛
⎝

⎞
⎠

⎤

⎦
⎥ ⎛

⎝
⎞
⎠
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τ
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−Δ

+ ˜θ

φ

φ
−

Here, use has been made of equations (5.27), (5.129), and (7.40). Moreover, the
shielding factor (i.e. the ratio of the magnetic flux that would be driven at the rational
surface in the absence of a shielding current to that which is actually driven) takes
the form

( )
Q

Q Q
( )

[ ( )] [ ( )]
. (7.44)

E

r E
2

i E
1/2

ζ

ζ
Σ =

+ Δ̂ + Δ̂

Finally, the reduced (by a factor of four—see equation (8.1)) width of the locked
magnetic island chain driven at the rational surface is

⎜ ⎟
⎛
⎝

⎞
⎠

w
W

n s
b
B

r
4

1 1
, (7.45)r

zs s

1/2

sϵ
= =

Σ

where use has been made of equations (5.27), (5.129), and (5.27). Figure 7.5 shows
error-field penetration calculations made for a low-field tokamak fusion reactor. The
calculation parameters are 1τ = , Q 1.00e = , D 3.02= , P 874=φ , and P 287=⊥ , as
well as S 1.35 109= × , m = 2, and m2nwΔ = − , and finally, n = 1, s 1s = ,

1.36 10 si
2τ = × − , 1.60 sτ =φ , R 7.590 = m, a R /30= , and r a/2s = (see tables 2.1,

5.1, and 6.1). The top-left panel shows the critical radial magnetic field that must be
induced at the rational surface (in the absence of shielding currents) in order to
trigger error-field penetration as a function of the unperturbed electron fluid rotation
frequency at the rational surface. It can be seen that diamagnetic levels of rotation
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(i.e. e eω ω∼⊥ * —see section 5.15) are sufficient to keep b B( / )r z pen well above 10 4− ,
unless the unperturbed electron fluid rotation frequency at the rational surface,

e 0 E 0 eω ω ω= +⊥ * , falls significantly below the electron diamagnetic frequency, eω* .
The bottom-left panel shows the electron fluid rotation frequency at the rational
surface as a fraction of the unperturbed rotation frequency just before (solid curve)
and just after (dashed curve) penetration. It can be seen that the electron fluid
rotation frequency needs to be reduced by a substantial factor (i.e. at least, a factor
of two) before penetration occurs. However, after penetration, the electron fluid
rotation frequency is effectively reduced to zero. The top-right panel shows the
shielding factors just before (solid curve) and just after (dashed curve) penetration. It
can be seen that, prior to penetration, diamagnetic levels of rotation are sufficient to
reduce the amount of driven magnetic reconnection at the rational surface by factors
that exceed 200 (unless the unperturbed electron fluid rotation frequency at the
resonant surface falls significantly below the electron diamagnetic frequency).
However, after penetration, there is no shielding at all at the rational surface (i.e.

1Σ ≃ ). Finally, the bottom-right panel shows the reduced width of the locked
magnetic island chain driven at the rational surface just before (solid curve) and just
after (dashed curve) penetration. It can be seen that, prior to penetration, the driven
island width is of the order of 0.5 cm, which is about the same as the linear layer

Figure 7.5. Analytically determined error-field penetration threshold in a low-field tokamak fusion reactor.
The top-left panel shows the critical radial field needed to trigger penetration as a function of the unperturbed
electron fluid rotation frequency. The bottom-left panel shows electron fluid rotation frequency before (solid
curve) and after (dashed curve) penetration. The top-right panel shows the shielding factors before (solid curve)
and after (dashed curve) penetration. The bottom-right panel shows the reduced width of the driven locked
island chain before (solid curve) and after (dashed curve) penetration.
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width estimated in table 6.2. It follows that the use of linear theory to determine the
error-field penetration threshold is a reasonable approximation (recall that linear
theory would be completely invalidated were the island width to become much
greater than the linear layer width—see section 5.16). On the other hand, after
penetration, the driven island width typically exceeds 10 cm. Such a substantial
island chain would significantly degrade the energy confinement properties of the
plasma [1, 5] and might even trigger a disruption. It is also clear that, after
penetration, the driven tearing perturbation is governed by nonlinear, rather than
linear, physics. Figure 7.6 shows error-field penetration calculations made for a
high-field tokamak fusion reactor. The calculation parameters are Q 0.75e = and
P 874=φ , as well as S 5.63 108= × , m = 2, and m2nwΔ = − , and finally, n = 1,
s 1s = , 2.36 10 si

3τ = × − , 2.78 10 s1τ = ×φ
− , R 3.160 = m, a R /30= , and r a/2s =

(see tables 2.1, 5.1, and 6.1). It can be seen, by comparison with figure 5.5, that error-
field penetration in a high-field tokamak fusion reactor is fairly similar to that in a low-
field reactor. The main differences are that the shielding factors and driven island
widths are somewhat smaller in the high-field case compared to the low-field case.

7.6 The numerical solution of the layer equations
The low-field error-field penetration calculations shown in figure 7.5 use the
analytical approximations (7.16) and (7.17) to determine the real and imaginary
components of the layer-matching parameter, Δ̂. Likewise, the high-field error-field

Figure 7.6. Analytically determined error-field penetration threshold in a high-field tokamak fusion reactor.
The panels are the same as those described in figure 7.5.
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penetration calculations shown in figure 7.6 use the analytical approximations (7.22)
and (7.23) to determine the layer-matching parameter. An alternative approach
would be to determine the layer-matching parameter directly via numerical solution
of the layer equations, as described in section 5.14. The latter approach is more
accurate than relying on analytic approximations, but is also much more time-
consuming.

Figure 7.7 shows error-field penetration calculations performed for a low-field
tokamak fusion reactor using numerical solutions of the layer equations (with Q = 0,
because the error field is static), rather than analytical approximations, to determine
the layer-matching parameter. The calculation parameters are 1τ = , Q 1.00e = ,
D 3.02= , P 874=φ , and P 287=⊥ , as well as S 1.35 109= × , m = 2, and

m2nwΔ = − , and finally, n = 1, s 1s = , 1.36 10 si
2τ = × − , 1.60 sτ =φ , R 7.590 = m,

a R /30= , and r a/2s = (see tables 2.1, 5.1, and 6.1). It can be seen, by comparison with
figure 7.5, that the analytical approximations (7.16) and (7.17) lead to a slight
underestimate of the shielding factor prior to penetration. The calculations shown in
figure 7.7 also exhibit a slight asymmetry between the positive and negative values of
the unperturbed (by the error field) electron fluid rotation frequency, e 0ω⊥ , at the
rational surface that is not captured by calculations that depend on analytical
approximations. (If 0e 0ω >⊥ , then the tearing mode resonant at the rational surface
would rotate in the electron diamagnetic direction were it naturally unstable. If

0e 0ω <⊥ , then the mode would rotate in the ion diamagnetic direction.) This
asymmetry is due to ion diamagnetic flows. Nevertheless, the level of agreement

Figure 7.7. Numerically determined error-field penetration threshold in a low-field tokamak fusion reactor.
The panels are the same as those described in figure 7.5.
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between the calculations shown in figures 7.5 and 7.7 is sufficiently good to warrant the
use of analytic approximations in calculations that do not require extreme accuracy.

Figure 7.8 shows error-field penetration calculations performed for a high-field
tokamak fusion reactor using numerical solutions of the layer equations, rather than
analytical approximations, to determine the layer-matching parameter. The calcu-
lation parameters are 1τ = ,Q 0.75e = , D 2.26= , P 874=φ , and P 287=⊥ , as well as
S 5.63 108= × , m = 2, and m2nwΔ = − , and finally, n = 1, s 1s = , 2.36 10 si

3τ = × − ,
2.78 10 s1τ = ×φ

− , R 3.160 = m, a R /30= , and r a/2s = (see tables 2.1, 5.1, and 6.1).
Again, it can be seen, by comparison with figure 7.6, that calculations that rely on
analytic approximations lead to a slight underestimate of the shielding factor prior
to penetration and do not capture a slight asymmetry between the positive and
negative values of the electron fluid rotation frequency at the rational surface.

References
[1] Chang Z and Callen J D 1990 Global energy confinement degradation due to macroscopic

phenomena in tokamaks Nucl. Fusion 30 219
[2] Cole A and Fitzpatrick R 2006 Drift-magnetohydrodynamical model of error-field pene-

tration in tokamak plasmas Phys. Plasmas 13 032503
[3] Fishpool G M and Haynes P S 1994 Field error instabilities in JET Nucl. Fusion 34 109
[4] Fitzpatrick R 1993 Interaction of tearing modes with external structures in cylindrical

geometry Nucl. Fusion 33 1049

Figure 7.8. Numerically determined error-field penetration threshold in a high-field tokamak fusion reactor.
The panels are the same as those described in figure 7.5.

Tearing Mode Dynamics in Tokamak Plasmas

7-14

https://doi.org/10.1088/0029-5515/30/2/003
https://doi.org/10.1063/1.2178167
https://doi.org/10.1088/0029-5515/34/1/I08
https://doi.org/10.1088/0029-5515/33/7/I08


[5] Fitzpatrick R 1995 Helical temperature perturbations associated with tearing modes in
tokamak plasmas Phys. Plasmas 2 825

[6] Fitzpatrick R 1998 Bifurcated states of a rotating tokamak plasma in the presence of a static
error-field Phys. Plasmas 5 3325

[7] Fitzpatrick R 2022 Influence of anomalous perpendicular transport on linear tearing mode
dynamics in tokamak plasmas Phys. Plasmas 29 032507

[8] Hender T C et al 1992 Effect of resonant magnetic perturbations on COMPASS-C tokamak
discharges Nucl. Fusion 32 2091

[9] Howell D F, Hender T C and Cunningham G 2007 Locked mode thresholds on the MAST
spherical tokamak Nucl. Fusion 47 1336

[10] Menard J E et al 2010 Progress in understanding error-field physics in NSTX spherical torus
plasmas Nucl. Fusion 50 045008

[11] Scoville J T, La Haye R J, Kellman A K, Osborne T H, Stambaugh R D, Strait E J and
Taylor T S 1991 Locked modes in DIII-D and a method for prevention of the low density
mode Nucl. Fusion 31 875

[12] Wang H-H et al 2018 Density scaling of n = 1 error field penetration in ohmically heated
discharges in EAST Nucl. Fusion 58 056024

[13] Wang N and the J-TEXT Team et al 2014 Study of the penetration of resonant magnetic
perturbations in J-TEXT Nucl. Fusion 54 064014

[14] Wesson J A 2011 Tokamaks 4th edn (Oxford: Oxford University Press) https://global.oup.
com/academic/product/tokamaks-9780199592234

[15] Wesson J A et al 1989 Disruptions in JET Nucl. Fusion 29 641
[16] Wolf R C and the TEXTOR Team et al 2005 Effect of the dynamic ergodic divertor in the

TEXTOR tokamak on MHD stability Nucl. Fusion 1700
[17] Wolfe S M, Hutchinson I H, Granetz R S, Rice J and Hubbard A 2005 Nonaxisymmetric

field effects on Alcator C-Mod Phys. Plasmas 12 056110

Tearing Mode Dynamics in Tokamak Plasmas

7-15

https://doi.org/10.1063/1.871434
https://doi.org/10.1063/1.873000
https://doi.org/10.1063/5.0082331
https://doi.org/10.1088/0029-5515/32/12/I02
https://doi.org/10.1088/0029-5515/47/9/034
https://doi.org/10.1088/0029-5515/50/4/045008
https://doi.org/10.1088/0029-5515/31/5/006
https://doi.org/10.1088/1741-4326/aab5c0
https://doi.org/10.1088/0029-5515/54/6/064014
https://global.oup.com/academic/product/tokamaks-9780199592234
https://global.oup.com/academic/product/tokamaks-9780199592234
https://doi.org/10.1088/0029-5515/29/4/009
https://doi.org/10.1063/1.1883665


IOP Publishing

Tearing Mode Dynamics in Tokamak Plasmas
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Chapter 8

The nonlinear resonant response model

8.1 Introduction
As explained in section 5.1, when we describe the response of a tokamak plasma to a
tearing-mode perturbation, the plasma can be divided into two regions [7]. In the
outer region, which comprises most of the plasma, the tearing perturbation is
governed by the equations of marginally stable ideal magnetohydrodynamics
(MHD). However, these equations become singular at the rational magnetic flux
surface where the safety factor (see section 3.2) takes the value m/n. Here, m and n
are the poloidal and toroidal mode numbers, respectively, of the tearing mode. A
radially thin region forms around the rational magnetic flux surface and constitutes
the inner region. As discussed in section 5.16, the response of the plasma in the inner
region to a rotating tearing perturbation in the outer region is accurately described
by linear theory only when the width of the magnetic island chain that develops at
the rational surface is less than the linear layer width. In the opposite limit, in which
the island width exceeds the layer width, a nonlinear approach is required. The aim
of this chapter is to employ the reduced drift-MHD model derived in chapter 4 to
determine the nonlinear response of the plasma in the inner region to a rotating
tearing perturbation in the outer region.

8.2 The reduced drift-MHD model
Following the approach given in section 5.2, it is convenient to set the normalization
scale length, l, (see section 4.3) in our reduced drift-MHD model equal to the minor
radius of the rational surface, rs. The model evolves four scalar fields. These fields,
which are defined in equations (5.1)–(5.4), are the (normalized) helical magnetic flux,
ψ, the (normalized) perturbed total plasma pressure, N, the (normalized) MHD fluid
stream function, ϕ, and the (normalized) ion parallel velocity, V. It is assumed that
these four fields, as well as the auxiliary field, J, which is defined in equation (5.8),
are only functions of the normalized radial coordinate x r r r( )/s sˆ = − , the helical
angle m nζ θ φ= − , and the normalized time t t r V/( / )s Aˆ = . Here, r, θ, z are
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conventional cylindrical coordinates, z R/ 0φ = a simulated toroidal angle (see
chapter 3), R0 the simulated major radius of the plasma, andVA the Alfvén speed
(see equation (4.23)).

It is convenient to work in a frame of reference that corotates with the island
chain. (This goal can be achieved by making the transformation m x( / )ϕ ϕ ω→ + ˆ ˆ.
See the following paragraph for the definitions of these quantities.) In the corotating
reference frame, the normalized reconnected flux at the rational surface, t( )sΨ̂ ˆ (see
equation (3.184)), is assumed to be a positive real quantity. It is helpful to define the
reduced (by a factor of four) radial width of the magnetic island chain that develops
in the inner region:

w
W

L R
4

( ) (8.1)s 0 s
1/2Ψ≡ = ˆ

(see equation (5.129)). Here, Ls is the magnetic shear length at the rational surface
(see equation (5.27)).

In the following, it is assumed that w rs sδ ≪ ≪ , where sδ is the linear layer width
(see chapter 6). In other words, the width of the island chain is assumed to be much
greater than the linear layer width but much less than the minor radius of the
rational magnetic flux surface. Let w w r/ sˆ = . Reusing the analysis given in section
5.3, we find that

x t
x

L
R t( , , )

2
( ) cos , (8.2)

2

s
0 sψ ζ Ψ ζˆ ˆ → ˆ

ˆ + ˆ ˆ ˆ

N x t V x( , , ) , (8.3)ζˆ ˆ → − ˆ ˆ*

x t
m

V t x V t x( , , ) ( )
4

( ) , (8.4)E E
2⎡

⎣
⎤
⎦

ϕ ζ ω ςˆ ˆ → ˆ − ˆ ˆ ˆ − ˆ ′ ˆ ˆ

V x t V( , , ) , (8.5)ζˆ ˆ → ˜

J x t
s L

( , , )
2

1
1

, (8.6)
s s

⎜ ⎟
⎛
⎝

⎞
⎠

ζˆ ˆ → − − ˆ

in the limit x w/ 1∣ ˆ∣ ˆ ≫ (i.e. many island widths from the rational surface). Here,
L L r/s s s
ˆ = , R R r/0 0 s

ˆ = , V V r V( )/E E s A
ˆ = , V V r V( )/s A

ˆ =* * , V d V r V( )/i i s A
˜ = ˆ , d d r/i i s

ˆ = ,
and s s r( )s s= , where V r( )E is the E-cross-B velocity profile in the outer region (see
equation (5.21)),V r( )* the diamagnetic velocity profile (see equation (5.29)),V r( )i the
ion parallel velocity profile (see equation (5.19)), s r( ) the magnetic shear profile (see
equation (5.28)), and di the collisionless ion skin depth at the rational surface (see
equation (4.24)). Moreover, V r/A sω ω= ˆ is the rotation frequency of the tearing
mode in the laboratory frame,

xsgn( ), (8.7)ς = ˆ
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and

V
V

r
dV
dr

1
. (8.8)

r

r

E
A

E

s

s

⎡
⎣

⎤
⎦

ˆ ′ =
−

+

The parameterVÊ′ is introduced into the analysis in order to take account of the fact
that the E-cross-B velocity profile in the outer region develops a gradient disconti-
nuity at the rational surface in response to the localized electromagnetic torque that
emerges at the surface. Note, finally, that in neglecting any dependence of sΨ̂ on x̂ in
equation (8.2), we are making use of the so-called constant-ψ approximation [7, 8],
which is valid as long as w/ 1s sΨ Ψ∣Δ ˆ ∣ ˆ ˆ ≪ , where sΨΔ ˆ is defined in equations (3.73) and
(3.183) [2, 4].

8.3 The rescaled reduced drift-MHD model
Let

X
x
w

, (8.9)= ˆ
ˆ

T t t , (8.10)ω ω= = ˆ ˆ
* *

where ω* is the diamagnetic frequency at the rational surface (see equation (5.47)),
and V r/( / )A sω ωˆ =* * . It follows that OX (1)∣ ∣ ∼ in the immediate vicinity of the island
chain.

It is helpful to define the rescaled fields X T( , , )Ψ ζ , N X T( , , )ζ , X T( , , )Φ ζ ,
V X T( , , )ζ , and J X T( , , )ζ , where

w

L
, (8.11)

2

s

⎜ ⎟
⎛
⎝

⎞
⎠

ψ Ψ= ˆ
ˆ

NN
w

m
, (8.12)⎛

⎝
⎞
⎠

ω= ˆ ˆ*

w
m

, (8.13)⎛
⎝

⎞
⎠

ϕ ω Φ= ˆ ˆ*

VV V
L

m c
, (8.14)s

2

2 2⎜ ⎟
⎛

⎝

⎞

⎠

ω= ˜ +
ˆ ˆ

β

*

JJ
s L

L
m w

2
1

1
. (8.15)

s s

s
2

2 2⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

ω= − − ˆ +
ˆ ˆ

ˆ
*

Here, cβ is a dimensionless measure of the plasma pressure at the rational surface
(see equation (4.65)).
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The reduced drift-MHD model specified in section 5.2 rescales to give

N Jd w
dT

(ln )
cos

1
, , (8.16)

2

c R
⎧
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⎛
⎝
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τ
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2ϵ ϵ Φ Ψ ϵ ϵ∂
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J1 . (8.20)X
2

cΨ ϵ ϵ∂ = + β

Here, X/X∂ ≡ ∂ ∂ ,

A B
A
X

B A B
X

{ , } , (8.21)
ζ ζ

≡ ∂
∂

∂
∂
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∂

∂
∂

and we have set

E
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2
1 (8.22)

s s

⎜ ⎟
⎛
⎝

⎞
⎠

ηˆ = −
ˆ
ˆ

(see equation (5.32)), where η̂ is the normalized parallel plasma resistivity at the
rational surface (see equation (5.14)). Furthermore,

c , (8.23)2ϵ =β β

L

L
, (8.24)p

p
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2
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ω τ
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, (8.28)s
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2
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⎠
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ω τ
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⊥
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r

s n w
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w( )
, (8.29)

s

s s
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ω τ

ϵ
=

′
=*

where

w
L d

L
, (8.30)c

s

p
= β

w
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Rω τ
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w
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ω τ
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ω τ
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w
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s n( )
. (8.34)

s

s s
2

ω τ
ϵ

=
′*

Here, d c di=β β is the ion sound radius, Rτ the resistive diffusion time (see equation
(5.49)), τφ the toroidal momentum confinement time (see equation (5.50)), and τ⊥ the
energy confinement time (see equation (5.52)). All of these quantities are evaluated
at the rational surface. Moreover,

L c
d p

dr
5
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(8.35)
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−

is the effective pressure gradient scale length at the rational surface, and r R/s s 0ϵ = .
Finally,
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, (8.37)e
t e s

1/2
χ

π
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v L
m2

. (8.38)i
t i s
1/2

χ
π

′ =

Here, vt e and vt i are the electron and ion thermal velocities, respectively (see
equation (2.17)). Note that the parallel electron and ion energy diffusivities have
been estimated from equations (2.319) and (2.320), respectively, on the assumption
that k m L w2 ( / )s≃ ˆ , which is the typical parallel wave number of the tearing
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perturbation at the edge of a magnetic island chain of reduced width w. Note that in
writing equation (8.18), we have made use of the easily proved identity

N N N

N

{ , }
1

2 (1 )
( { , } { , } { , })

1
, .

(8.39)
X X X X

X X

2 2 2 2

⎧
⎨⎩

⎫
⎬⎭

Φ Φ
τ

Φ Φ Φ

Φ
τ

Φ

∂ −
+

∂ + ∂ + ∂

≡ ∂ +
+

∂

Equations (8.16)–(8.20) must be solved subject to the boundary conditions (see
equations (8.2)–(8.6) and (8.11)–(8.15))

X T
X

( , , )
2

cos , (8.40)
2

Ψ ζ ζ→ +

N X T X( , , ) , (8.41)ζ →

v
v

X T T X
T X

( , , ) ( )
( )
2

, (8.42)
2

Φ ζ ς→ + ′

V X T( , , ) 0, (8.43)ζ →

J X T( , , ) 0, (8.44)ζ →

as X∣ ∣ → ∞. Here,

v T
r

( )
( )

, (8.45)E sω ω
ω

= −

*

v T
w

r
d
dr

( )
2

, (8.46)
r

r
E

s

s

⎡
⎣

⎤
⎦ω

ω′ = − ˆ

* −

+

where r m r V r( ) ( / ) ( )E Eω = is the E-cross-B frequency profile. Note that Ψ , N , Φ, V ,
and J are all O(1) quantities in the inner region. Note, further, that the boundary
conditions (8.40)–(8.44), as well as the symmetry of the rescaled, reduced, drift-
MHD equations, (8.16)–(8.20), ensure that Ψ , V , and J are even functions of X,
whereas N and Φ are odd functions.

8.4 The ordering scheme
Let us assume that

, (8.47)Rp cϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ∼ ∼ ∼ ∼ ∼ ∼ ∼β φ ⊥

where 1ϵ ≪ . Table 8.1 gives estimates for the values of the various parameters that
characterize the rescaled reduced drift-MHD model, (8.16)–(8.20), in a low-field
tokamak fusion reactor and a high-field tokamak fusion reactor (see chapter 1).
These estimates are made using the following assumptions: B 5 T= (low field) or
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B 12 T= (high field), 0.02β = , T T 7 keVe i= = , m m m( )/2i D T= + (where mD and
mT are the deuteron and triton masses, respectively), 1 m si e i

2 1χ χΞ = = =⊥ ⊥ ⊥
− ,

m = 2, n = 1, r a/2s = (where a is the minor radius of the plasma), s 1s = , 1τ = ,
1e iη η= = , and dp dr p a/ /= − . It is clear from table 8.1 and equations (8.25)–(8.34)

that all of the ϵ parameters appearing in the rescaled, reduced, drift-MHD equations
are less than unity, in accordance with equation (8.47), provided that the radial
width of the magnetic island chain that develops in the inner region exceeds a few
centimeters.

The orderings 1ϵ ≪β and 1pϵ ≪ are a direct consequence of the fact that
conventional tokamak fusion reactors have large aspect ratios (i.e. R r0 s≫ ) and
confine low-β plasmas (i.e., 0.02β ∼ ). As will become apparent, the ordering 1cϵ ≪
ensures that the island chain is sufficiently wide that ion acoustic waves propagating
parallel to the magnetic field are able to smooth out any variations in the normalized
plasma pressure, N , around magnetic flux surfaces [9]. The orderings 1Rϵ ≪ ,

1ϵ ≪φ , and 1ϵ ≪⊥ ensure that the island chain is sufficiently wide that the
perpendicular diffusions of magnetic flux, momentum, and energy are not dominant
effects in the rescaled, reduced, drift-MHD equations. Finally, the ordering 1ϵ ϵ ≪⊥
ensures that the island chain is sufficiently wide that parallel energy transport
smooths out any variations in the normalized plasma pressure, N , around magnetic
flux surfaces [3].

Finally, suppose that

O
T

( ), (8.48)3ϵ∂
∂

∼

and let us expand the various fields in our rescaled model as follows:

, (8.49)0
2

2
3

3Ψ Ψ ϵ Ψ ϵ Ψ= + + + ⋯

Table 8.1. The parameters characterizing the rescaled reduced drift-MHD
model for a low-field tokamak reactor and a high-field tokamak reactor
(see equations (8.23)–(8.34) and (8.84)).

Low-field High-field

B (T) 5.0 12.0

ϵβ 1.64 10 2× − 1.64 10 2× −

pϵ 7.47 10 2× − 7.47 10 2× −

w (m)c 1.79 10 2× − 7.46 10 3× −

w (m)R 8.09 10 4× − 5.22 10 4× −

w (m)φ 2.39 10 2× − 1.54 10 2× −

w (m)⊥ 1.37 10 2× − 8.84 10 3× −

w (m) 7.21 10 3× − 3.01 10 3× −

w (m)d 6.97 10 3× − 3.89 10 3× −
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, (8.50)0
2

2
3

3Φ Φ ϵ Φ ϵ Φ= + + + ⋯

N N N N , (8.51)0
2

2
3

3ϵ ϵ= + + + ⋯

V V V , (8.52)0 1ϵ= + + ⋯

J J J . (8.53)0 1ϵ= + + ⋯

Here, 0Ψ , 1Ψ , etc. are assumed to be O(1) in the inner region.

8.5 The lowest-order solution
To the zeroth order in ϵ, equation (8.20) yields

1. (8.54)X
2

0Ψ∂ =

Solving this equation subject to the boundary condition (8.40), we obtain

X
X

( , )
2

cos . (8.55)0

2

Ψ ζ ζ= Ω ≡ +

Thus, we conclude that, to the lowest order in our expansion, the magnetic flux
surfaces in the island region have the constant-ψ structure pictured in figure 5.7. The
island O-points correspond to 1Ω = − and k(2 1)ζ π= − (where k is an integer), the
X-points correspond to 1Ω = + and k2ζ π= , and the magnetic separatrix corre-
sponds to 1Ω = + .

To the zeroth order in ϵ, equation (8.19) yields

N{ , } 0, (8.56)0 Ω =

where use has been made of equation (8.55). Given that N is an odd function of X, it
follows that

N NX T T( , , ) ( , ). (8.57)0 (0)ζ ς= Ω

We conclude that parallel ion acoustic waves, whose dynamics are described by
equation (8.19), smooth out any variations in the lowest-order normalized
plasma pressure, N0, around magnetic flux surfaces [9]. By symmetry, N 00 =
inside the magnetic separatrix of the island chain. In other words, the plasma
pressure profile (and, by implication, the electron number density, electron
temperature, and ion temperature profile—see section 4.1) is completely flattened
inside the separatrix.

It is helpful to define

N
L T( , ) . (8.58)(0)Ω =

∂
∂Ω

It follows that L T( 1, ) 0Ω ⩽ = . Furthermore, equations (8.41) and (8.55) imply
that
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L T( , )
1

2
. (8.59)Ω → ∞ =

Ω

To the zeroth order in ϵ, equation (8.16) yields

{ , } 0, (8.60)0Φ Ω =

where use has been made of equations (8.55) and (8.57). Given that Φ is an odd
function of X, it follows that

X T T( , , ) ( , ). (8.61)0 (0)Φ ζ ς Φ= Ω

We conclude that the lowest-order normalized MHD fluid stream function, 0Φ , is
constant on magnetic flux surfaces. By symmetry, 00Φ = inside the magnetic
separatrix of the island chain. In other words, the stream-function profile is
completely flattened inside the separatrix.

It is helpful to define

M T( , ) . (8.62)(0)Φ
Ω =

∂
∂Ω

It follows that M T( 1, ) 0Ω ⩽ = . Furthermore, equations (8.42) and (8.55) imply
that

v
vM T

T
T( , )

( )

2
( ). (8.63)Ω → ∞ =

Ω
+ ′

To the zeroth order in ϵ, equation (8.17) yields

V{ , } 0, (8.64)0 Ω =

where use has been made of equations (8.55), (8.57), and (8.61). Given that V is an
even function of X, we can write

V VX T T( , , ) ( , ). (8.65)0 (0)ζ = Ω

In other words, the lowest-order normalized parallel ion velocity, V0, is also constant
on magnetic flux surfaces.

Finally, to the zeroth order in ϵ, equation (8.18) yields

J N
M M

L
X{ , }

1
,

1
2 1

, , (8.66)X X0 0
0

0
2⎧

⎨⎩
⎫
⎬⎭

⎧
⎨⎩

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎫
⎬⎭

Φ
τ

Φ
τ

Ω = −∂ +
+

∂ = ∂ +
+

ΩΩ

where use has been made of equations (8.55), (8.57), (8.58), (8.61), and (8.62).
Moreover, /∂ ≡ ∂ ∂ΩΩ .

8.6 The flux-surface average operator
The flux-surface average operator, 〈⋯〉, is defined as [8]
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A T

A T A T d

A T d

( , , , )

( , , ) ( , , , )

2 [2 ( cos )] 2
1 1

( , , )

[2 ( cos )] 2
1

,
(8.67)

2

1/2

1/2

0

0⎧

⎨
⎪

⎩
⎪

∫

∮

ς ζ

ς ζ ς ζ
ζ

ζ
π

ς ζ
ζ

ζ
π

〈 Ω 〉

≡

Ω + − Ω
Ω −

− ⩽ Ω ⩽

Ω
Ω −

Ω >

ζ

π ζ−

where cos ( )0
1ζ = Ω− and 0 0ζ π⩽ ⩽ . It follows that

A{ , } 0 (8.68)〈 Ω 〉 =

for any A T( , , , )ς ζΩ . It is helpful to define

A A
A
1

. (8.69)˜ ≡ − 〈 〉
〈 〉

It follows that

A 0 (8.70)〈 ˜〉 =

for any A T( , , , )ς ζΩ . Equation (8.66) yields

J JT T M M
L

X( , , ) ( , )
1
2 1

, (8.71)0 0
2⎡

⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥

ζ
τ

Ω = ¯ Ω + ∂ +
+

˜
Ω

where J T( , )0¯ Ω is an undetermined flux-surface function.

8.7 Fluid velocities
The flux-surface functions M T( , )Ω and L T( , )Ω are directly related to the lowest-
order perpendicular velocities of the various plasma species in the island rest frame.
In fact, as is clear from sections 4.2, 5.2, and 8.2,

V X T
r

m
X Y T( , , ) ( , ), (8.72)e

s
eζ ω= − ∣ ∣ Ωθ⊥

*

V X T
r

m
X M T( , , ) ( , ), (8.73)sζ ω= − ∣ ∣ Ωθ⊥

*

V X T
r

m
X Y T( , , ) ( , ), (8.74)i

s
iζ ω= − ∣ ∣ Ωθ⊥

*

where

Y T M L( , )
1

, (8.75)e ⎛
⎝

⎞
⎠

τ
τ

Ω = −
+

Y T M L( , )
1

1
, (8.76)i ⎛

⎝
⎞
⎠τ

Ω = +
+
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Here,V eθ⊥ ,V θ⊥ , andV iθ⊥ refer to the θ components of the perpendicular electron,
MHD, and ion fluid velocities, respectively. Note that Ye, M, and Yi are all zero
inside the magnetic separatrix of the island chain.

8.8 The need for a higher-order solution
To the lowest order in our expansion scheme, the rescaled, reduced, drift-MHD
equations, (8.16)–(8.20), require the plasma pressure to be a magnetic flux-surface
function. This should come as no surprise. In essence, a magnetic island chain is a
helical magnetic equilibrium that evolves (in its local rest frame) on the very slow
resistive timescale [8]. Hence, we would expect all of the results derived in section
2.25 to apply to the plasma in the immediate region of the island chain. Note,
however, that, while solving the rescaled, reduced, drift-MHD equations to the
lowest order tells us that N N T( , )(0)ς= Ω , T( , )(0)Φ ς Φ= Ω , and V V T( , )(0)= Ω ,
and that the lowest-order current density profile has the form (8.71), the lowest-order
solution leaves the flux-surface functions N T( , )(0) Ω , T( , )(0)Φ Ω , V T( , )(0) Ω , and
J T( , )0¯ Ω completely undetermined. In fact, in order to determine the forms of these
four functions, it is necessary to solve the rescaled, reduced, drift-MHD equations to
a higher order in our expansion scheme. In particular, we need to incorporate the
terms that describe the perpendicular diffusion of magnetic flux, ion momentum,
and energy into our analysis [5]. The essential point is that the magnetic island chain
persists in the plasma for a sufficiently long time that the relatively small
perpendicular diffusion terms are able to relax the lowest-order profiles across the
island region (and, in fact, across the whole plasma).

8.9 The higher-order solution
In order to include the perpendicular transport term, we need to evaluate equation
(8.16) to the third order in ϵ. By doing so, we obtain

Jd w
dT

F
(ln )

cos { , } , (8.77)R

2

e c 0ζ ϵ ϵ ϵ
ˆ = Ω + β

where

N NF T

Y

( , , ) ( )
1

( )

( ),

(8.78)
e

2
2 3

2
2 3

2
e 2 3

⎛
⎝

⎞
⎠

ζ ϵ Φ ϵ Φ ϵ τ
τ

ϵ

ϵ ς Ψ ϵ Ψ

Ω = + −
+

+

− +

and use has been made of equations (8.49)–(8.53), (8.57), (8.58), (8.61), (8.62), and
(8.75). The flux-surface average of equation (5.14) yields

J T
d w

dT
( , )

1 (ln ) cos
1

, (8.79)
R

0
c

2

ϵ ϵ ϵ
ζ¯ Ω = ˆ 〈 〉

〈 〉β

where use has been made of equations (8.68), (8.70), and (8.71). Hence, we can write
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J T
d w

dT
M Y X( , , )

1 (ln ) cos
1

1
2

( ) , (8.80)
R

0
c

2

i
2ζ

ϵ ϵ ϵ
ζΩ = ˆ 〈 〉

〈 〉
+ ∂ ˜

β
Ω

where use has been made of equation (8.76). The first term on the right-hand side of
the previous equation represents the parallel current driven inductively when the
reconnected flux at the rational surface varies in time. The second term on the right-
hand side of the previous equation represents the parallel return current driven by
the perpendicular polarization current associated with the acceleration of the ion
fluid around the magnetic separatrix of the island chain [10, 11]. In fact, it can easily
be seen that if the ion fluid could pass freely through the separatrix (i.e. X0Φ ∝ and
N X0 ∝ ), then the polarization term would be zero.

In order to include the perpendicular transport term, we need to evaluate
equation (8.17) to the first order in ϵ. By doing so, we obtain

V N X L L0 { , } {{ , }, } ( ), (8.81)1
2 1

2
2ϵ ϵ ϵ ϵ ς= Ω + Ω Ω + ∂ +−

⊥ Ω

where use has been made of equations (8.49)–(8.53), (8.55), (8.57), and (8.58). The
flux-surface average of the previous equation yields

X L L X L1 ( ) 0, (8.82)2 2〈 〉 ∂ + 〈 〉 = ∂ 〈 〉 =Ω Ω

where use has been made of equation (8.68). Here, we have made use of the easily
proved result that d X n X( 1)n n 2〈 〉 = − 〈 〉Ω

− , where d d d/≡ ΩΩ . We can solve the
previous equation, subject to the boundary condition (8.59), to give

L T L
X

( , ) ( )
0 1 1
1/ 1

. (8.83)2
⎧
⎨⎩

Ω = Ω =
− ⩽ Ω ⩽

〈 〉 Ω >

Here, we have taken into account the previously mentioned fact that L = 0 within
the island separatrix.

Note that L( )Ω is discontinuous across the island separatrix, which implies that
the pressure gradient—and, hence, the diamagnetic velocity—is also discontinuous
across the separatrix. Of course, there is no real discontinuity. In fact, we would
expect the discontinuity to be resolved in a layer on the separatrix whose width is
obtained by balancing the parallel and perpendicular energy transport terms in
equation (8.17) [3]. In other words, we expect the layer thickness to correspond to
the island width at which 1ϵ ϵ ∼⊥ . Hence, according to equations (8.28) and (8.29),
the characteristic layer thickness is w4 d, where

w
w w

4
, (8.84)d

2 1/3

⎜ ⎟
⎛

⎝

⎞

⎠
= ⊥

andw andw⊥ are specified in equations (8.33) and (8.34), respectively. (The factor of
four ensures thatW w4d d= has the same value as the standard critical island width,
Wc, defined in reference [3].) As is clear from table 8.1, wd is of the order of half a
centimeter in a tokamak fusion reactor.
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In order to include the perpendicular transport term, we need to evaluate
equation (8.18) to the first order in ϵ. By doing so, we obtain

J X X Y0 { , } [ ( )], (8.85)1
3

iϵ ϵ ς= Ω + ∂ ∂ ∂φ Ω Ω Ω

where use has been made of equations (8.49)–(8.53), (8.55), (8.57), (8.58), (8.61),
(8.62), and (8.76). The flux-surface average of the previous equation yields

X d Y( ) 0. (8.86)2 4
i∂ 〈 〉 =Ω Ω

We can solve the previous equation, subject to the boundary conditions (8.59) and
(8.63), to give

v
Y T

T
d
X

d
X

( , )
( )

0 1 1

1 (8.87)i

1 4 1 4

⎧

⎨
⎩∫ ∫Ω = ′

Ω
〈 〉

− ⩽ Ω ⩽
Ω′

〈 〉
Ω >∞

Ω

[5]. Here, we have rejected as unphysical the solution that blows up as 1/2Ω as
Ω → ∞. We have also made use of the fact thatY 0i = within the magnetic separatrix
of the island chain. Finally, we have demanded that the ion fluid velocity—and,
hence, the functionY ( )i Ω —be continuous across the separatrix, because the ion fluid
possesses finite perpendicular viscosity. Note, however, that the discontinuity in the
function L( )Ω across the island separatrix (see equation (8.83)) implies that the
electron and MHD fluid velocities are discontinuous across the separatrix (see
section 8.7). As previously mentioned, these discontinuities are resolved in a layer of
characteristic thickness w4 d on the separatrix.

In order to include the perpendicular transport term, we need to evaluate
equation (8.19) to the second order in ϵ. By doing so, we obtain

V N V V( )M L X0 { , } , (8.88)c 1 2 2 c
2 2

(0) (0)ϵ ϵ ς ϵ ς Ψ ϵ ϵ ϵ= − − + Ω + ∂ + ∂φ Ω Ω

where use has been made of equations (8.49)–(8.53) (8.55), (8.57), (8.58), (8.61),
(8.62), and (8.65). The flux-surface average of the previous equation yields

V V V( )X X1 0. (8.89)2 2
(0) (0)

2
(0)〈 〉 ∂ + 〈 〉 ∂ = ∂ 〈 〉 ∂ =Ω Ω Ω Ω

The previous equation can be solved, subject to the boundary condition (8.43), to give

V T( , ) 0. (8.90)(0) Ω =

Hence, we conclude that the lowest-order ion parallel flow is unaffected by the
presence of the island chain.

8.10 Asymptotic matching
Now that we have found the solution of our rescaled, reduced, drift-MHD equations
in the immediate vicinity of the magnetic island chain, it is necessary to asymptoti-
cally match this solution to the solution in the outer region. Given that sΨ̂ is real, it
follows from equations (3.72), (3.73), (3.183), (3.184), and (8.9) that
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r

R B r
d

dr
w R X

d
dX

Re
2

cos
2

2

cos
2

,

(8.91)z r

r
s

s

s

0 s

2

2
0 s

2

2
s

s

⎜ ⎟
⎛
⎝

⎞
⎠

∫ ∮ ∫ ∮Ψ
Ψ Ψ

ψ ζ ζ
π Ψ

ψ

ζ ζ
π

Δ ˆ
ˆ = ˆ

∂
∂

=
ˆ ˆ ˆ

∂
∂−∞

∞

−

+

r

R B r
d

dr

w R X
d

dX

Im
2

sin
2

2
sin

2
.

(8.92)z r

r
s

s

s

0 s

2

2

0 s

2

2

s

s

⎜ ⎟
⎛
⎝

⎞
⎠

∫ ∮

∫ ∮

Ψ
Ψ Ψ

ψ ζ ζ
π

Ψ
ψ ζ ζ

π

Δ ˆ
ˆ = − ˆ

∂
∂

= −
ˆ ˆ ˆ

∂
∂−∞

∞

−

+

Making use of equations (8.1) and (8.11), we obtain

w
d

dXRe
2

cos
2

, (8.93)X
s

s

2
⎜ ⎟
⎛
⎝

⎞
⎠

∫ ∮Ψ
Ψ

Ψ ζ ζ
π

Δ ˆ
ˆ =

ˆ
∂

−∞

∞

w
d

dXIm
2

sin
2

. (8.94)X
s

s

2
⎜ ⎟
⎛
⎝

⎞
⎠

∫ ∮Ψ
Ψ

Ψ ζ ζ
π

Δ ˆ
ˆ = −

ˆ
∂

−∞

∞

However, according to equations (8.20) and (8.53),

J J1 . (8.95)X
2

c 0 c 1Ψ ϵ ϵ ϵ ϵ ϵ∂ = + +β β

Moreover, it is clear from equations (8.80) and (8.85) that J0 has the symmetry of
cos ζ, whereas J1 has the symmetry of sin ζ. Hence, we deduce that

J
w

d
dXRe

2
cos

2
, (8.96)s

s

c
0⎜ ⎟

⎛
⎝

⎞
⎠

∫ ∮Ψ
Ψ

ϵ ϵ
ζ ζ

π
Δ ˆ

ˆ =
ˆ
β

−∞

∞

J
w

d
dXIm

2
sin

2
. (8.97)s

s

c
1⎜ ⎟

⎛
⎝

⎞
⎠

∫ ∮Ψ
Ψ

ϵ ϵ
ϵ ζ ζ

π
Δ ˆ

ˆ = −
ˆ
β

−∞

∞

The previous two equations can also be written

J
w

dRe
4

cos , (8.98)s

s

c

1
0⎜ ⎟

⎛
⎝

⎞
⎠

∫Ψ
Ψ

ϵ ϵ
ζΔ ˆ

ˆ =
ˆ

〈 〉 Ωβ

−

∞

J J
w

d
w

X dIm
4

sin
4

{ , } . (8.99)s

s

c

1
1

c

1
1⎜ ⎟

⎛
⎝

⎞
⎠

∫ ∫Ψ
Ψ

ϵ ϵ
ϵ ζ

ϵ ϵ
ϵΔ ˆ

ˆ = −
ˆ

〈 〉 Ω = −
ˆ

〈 Ω 〉 Ωβ β

−

∞

−

∞

Here, we have made use of the fact that J0 and J1 are both even functions of X, as
well as the easily proved results X X( , )/ ( , ) 1/ζ ζ∂ ∂ Ω = and J JX{ , } ( / )1 1 ζΩ = − ∂ ∂ Ω.
Equations (8.85) and (8.99) can be combined to give [5]
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w
X X Y d

w
X Y X d Y X d Y d

w
X Y X d Y X d Y

Im
4

[ ( )]

4
( 2 )

4
lim ( 2 ),

(8.100)

s

s

c

1
2 3

i

c

1
i

3
i

5 2
i

c
i

3
i

5 2
i

⎜ ⎟
⎛
⎝

⎞
⎠

∫

∫

Ψ
Ψ

ϵ ϵ ϵ

ϵ ϵ ϵ

ϵ ϵ ϵ

Δ ˆ
ˆ =

ˆ
∂ ∂ ∣ ∣ ∂ Ω

=
ˆ

∂ −〈∣ ∣〉 + 〈∣ ∣ 〉 + 〈∣ ∣ 〉 Ω

=
ˆ

−〈∣ ∣〉 + 〈∣ ∣ 〉 + 〈∣ ∣ 〉

β φ

β φ

β φ

∞
Ω Ω Ω

∞
Ω Ω Ω

Ω→∞ Ω Ω

where use has been made of the facts thatYi is zero inside the island separatrix,Yi is
continuous across the separatrix, and X n Xn n 2∂ =Ω

− . Combining the previous
equation with equation (8.87), we obtain [5]

v
w

Im
4

. (8.101)s

s

c
⎜ ⎟
⎛
⎝

⎞
⎠

Ψ
Ψ

ϵ ϵ ϵΔ ˆ
ˆ = −

′
ˆ

β φ

The previous equation yields

r
d
dr

w

2
Im , (8.102)

r

r
E

4

H
2

s

ss

s

⎜ ⎟⎜ ⎟⎡
⎣

⎤
⎦

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

ω τ
τ

Ψ
Ψ

=
ˆ Δ ˆ

ˆ
φ

−

+

where use has been made of equations (8.23), (8.25), (8.27), and (8.46), as well as

L

L

c d

r
. (8.103)p

s H sω τ
= β β

*

Here, Hτ is the hydromagnetic time (see equation (5.43)). Equation (8.102) can also
be obtained by integrating equation (3.165) across the rational surface, making use
of equation (3.140), as well as the identification

r
d
dr

m r
r

. (8.104)
r

r

r

r
E

s

s

s

s

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

ω = ∂ΔΩ
∂

θ

−

+

−

+

The previous identification merely states that the discontinuity in the MHD fluid
velocity gradient that develops in the outer region at the rational surface is mirrored
by an equal discontinuity in the ion fluid velocity gradient (because the discontinuity
is ultimately due to a discontinuity in the E-cross-B velocity gradient, and there is no
discontinuity in the diamagnetic velocity gradient). Equations (8.80) and (8.98) can
be combined to give

w
d w

dT
d

w
M Y X d

Re
4 (ln ) cos

1

2
( ) cos .

(8.105)R

s

s

2

1

2

c

1
i

2

⎜ ⎟
⎛
⎝

⎞
⎠

∫

∫

Ψ
Ψ ϵ

ζ

ϵ ϵ
ζ

Δ ˆ
ˆ =

ˆ
ˆ 〈 〉

〈 〉
Ω

+
ˆ

∂ ˜ Ωβ

−

∞

+

∞

Ω
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Making use of equations (8.76), (8.83), and (8.87), the previous equation yields

v

v ( )

w

d w

dT
d

w
d

F

X
X d

w
d F X d

Re
4 (ln ) cos

1

2

(1 )
cos

2
cos ,

(8.106)

s

s R

2

1

2 c

1

i
2

2

c
2

1 i
2 2

⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛

⎝

⎞

⎠
∫ ∫

∫

Ψ
Ψ ϵ

ζ ϵ ϵ
τ

ζ

ϵ ϵ
ζ

Δ ˆ
ˆ =

ˆ
ˆ 〈 〉

〈 〉
Ω −

′
+ ˆ 〈 〉

˜ Ω

+
′

ˆ
˜ Ω

β

β

−

∞ ∞
Ω

∞
Ω

where

F
d

X
d

X
( )

( ) ( )
. (8.107)i

1 4 1 4∫ ∫Ω = Ω′
〈 〉 Ω′

Ω
〈 〉 Ω

Ω ∞

Finally, equations (8.10), (8.23)–(8.27), (8.101), (8.103), and (8.106) give [6, 12]

I
d
dt

w
r

I
c L

L

d

r
w
r

I
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r

Re
4

1
Im

Im ,

(8.108)
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φ
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I d2
cos

1
, (8.109)1

1

2

∫ ζ= 〈 〉
〈 〉

Ω
−

∞

I d
F
X

X
X

d
1
4 1

, (8.110)2
1

i
2

4
2 2

⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∫=
〈 〉

〈 〉 − 〈 〉
〈 〉

Ω
∞

Ω

I d F X
X

d
1

16
( )

1
. (8.111)3

1
i

2 4
2 2

⎜ ⎟
⎛
⎝

⎞
⎠

∫= 〈 〉 − 〈 〉
〈 〉

Ω
∞

Ω

8.11 The evaluation of the integrals
In order to evaluate the integrals (8.109)–(8.111), it is helpful to define the new
magnetic flux-surface label k [(1 )/2]1/2= + Ω . It follows from equation (8.55) that
k = 0 at the O-points of the magnetic island chain, and k = 1 on the magnetic
separatrix. It can easily be demonstrated that

A k k
k K k k
K k k

( ) 2 1
2 ( ) 0 1

(1/ ) 1
, (8.112)⎧

⎨⎩π
≡ 〈 〉 =

⩽ ⩽
>

B k X k k
k

( ) (2/ ) sin ( ) 0 1
1 1

, (8.113)
1⎧

⎨⎩
π≡ 〈∣ ∣〉 = ⩽ ⩽

>

−
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, (8.114)
2 2⎧

⎨⎩π
≡ 〈 〉 = + − ⩽ ⩽

>

D k
X
k

k k k

k k
( )

4

(2/ ) sin ( ) [1 1/(2 )] 0 1

1 1/(2 ) 1
, (8.115)

3

2

1 2

2
⎧
⎨⎩

π
≡ 〈∣ ∣ 〉 =

− ⩽ ⩽
− >

−

E k
X

k

k E k k k K k k k

k E k k K k k

( )
8

2
3

[2 (2 1/ ) ( ) (3 5 2/ ) ( )]/ 0 1

[2 (2 1/ ) (1/ ) (1 1/ ) (1/ )] 1
,

(8.116)

4

3

2 2 2

2 2
⎧
⎨⎩π

≡ 〈 〉

=
− + − + ⩽ ⩽
− − − >

where

E k k u du( ) (1 sin ) , (8.117)
0

/2
2 2 1/2∫= −

π

K k k u du( ) (1 sin ) (8.118)
0

/2
2 2 1/2∫= −

π
−

are standard elliptic integrals [1]. It follows that

II k dk( ) , (8.119)n n
0

∫=
∞

for n = 1, 2, 3, where

I A C
A

k
k k

( )
4[(2 1) 2 ]

, (8.120)1

2 2 2

= − −

I A E F C C C A E Fk
k

k k
( )

0 0 1
(1 / )[1/ /( )]/ ( ) 1

, (8.121)2
⎧
⎨⎩

= ⩽ <
− − ∞ ⩾

I F C A E Fk
k

k k
( )

0 0 1
[1 /( )]/ ( ) 1

, (8.122)3 2 2
⎧
⎨⎩

=
⩽ <

− ∞ ⩾

F
E

k
dk

k k
( )

( )
, (8.123)

k

1 2∫= ′
′ ′

and use has been made of the easily proved result C Ad k dk( )/ = .
The integrands I k( )1 , I k( )2 , and I k( )3 are shown in figure 8.1. Note that I k( )1 has

a logarithmic (and therefore integrable) singularity at the island separatrix (k = 1).
The values of the integrals themselves are

I 0.8227, (8.124)1 =
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I 0.048 89, (8.125)2 =

I 0.029 44. (8.126)3 =
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Chapter 9

Nonlinear tearing-mode stability

9.1 Introduction
We saw in chapter 6 that a linear tearing mode is unstable when the (real
dimensionless) tearing stability index, Ess (see section 3.8), is positive, and is
stable otherwise. In the linear regime, an unstable tearing mode grows exponentially
in time on a timescale that is intermediate between the short hydromagnetic time, τH

(see equation (5.43)), and the much longer resistive diffusion time, τR (see equation
(5.49)). The mode reconnects magnetic flux at the so-called rational surface to
produce a helical magnetic island chain (see section 5.16). The rational surface is the
magnetic flux surface at which the tearing mode resonates with the equilibrium
magnetic field (i.e. at which · =k B 0, where k is the wave vector of the mode, and B
is the equilibrium magnetic field). The tearing mode also rotates in the laboratory
frame at the angular frequency

ω ω ω= +⊥ * , (9.1)e E e

where ωE and ω* e are the E-cross-B and electron diamagnetic frequencies,
respectively, at the rational surface (see equations (5.21), (5.29), (5.44), and
(5.45)). In fact, the previous equation implies that the tearing mode corotates with
the electron fluid at the rational surface.

We saw in section 5.16 that linear tearing-mode theory breaks down as soon as
the radial width of the magnetic island chain exceeds the linear layer width and must
then be replaced by nonlinear theory. The aim of this chapter is to employ the
analysis of chapter 8 to determine the nonlinear time evolution of an unstable tearing
mode.

9.2 The Rutherford island-width evolution equation
Suppose that the rigid wall surrounding the plasma is perfectly conducting (i.e.
τ → ∞w , where τw is the time constant of the wall—see section 3.10) and that there is
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no current flowing through the external magnetic field coil (i.e. ˆ =I 0c , where Îc is the
normalized coil current—see equation (3.194)). In this case, equations (3.187),
(3.188), and (7.5), yield

Ψ
Ψ

Δ ˆ
ˆ = Δ , (9.2)s

s
pw

where Δ = Epw ss is the (real dimensionless) perfect-wall tearing stability index, Ψ̂s the
normalized reconnected helical magnetic flux at the rational surface (see equation
(3.184)), and ΨΔ ŝ the normalized helical sheet current density at the rational surface
(see equation (3.183)). It is clear from the previous equation that

⎜ ⎟
⎛
⎝

⎞
⎠

Ψ
Ψ

Δ ˆ
ˆ =Im 0, (9.3)s

s

which implies that zero electromagnetic torque is exerted at the rational surface (see
section 3.13).

Equation (9.2) yields

⎜ ⎟
⎛
⎝

⎞
⎠

Ψ
Ψ

Δ ˆ
ˆ = ΔRe , (9.4)s

s
pw

which can be combined with equations (8.1), (8.108), and (9.3) to give the so-called
Rutherford island-width evolution equation [13]:

⎜ ⎟
⎛
⎝

⎞
⎠

τ = ΔI
d
dt

W
r

. (9.5)1 R
s

pw

Here, W is the full radial width of the magnetic island chain that develops at the
rational surface, rs the minor radius of the surface, and =I 0.82271 (see equation
(8.124)). We conclude that, in the nonlinear regime, the width of the magnetic island
chain grows algebraically in time on the resistive diffusion timescale, τR. Obviously,
this is a much slower time evolution than that predicted in the linear regime.

9.3 The composite linear/nonlinear model
According to equation (6.25), the time evolution of the reconnected magnetic flux (in
a frame of reference that corotates with the magnetic island chain) in the linear
regime is governed by

Ψ τ δˆ
= Δd

dt r
ln

, (9.6)s
R

s

s
pw

where δs is the linear layer width. The previous equation can be rearranged to give

δ τ Ψ Ψ
ˆ

= Δ ˆ
r

d
dt

. (9.7)s

s
R

s
pw s
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Now, given that Ψ∝ ˆW s
1/2

(see equation (8.1)), the Rutherford island-width
evolution equation, (9.5), can be rewritten in the form

τ Ψ Ψ
ˆ

= Δ ˆI W
r

d
dt

/2
. (9.8)1

s
R

s
pw s

It can be seen, via a comparison between the previous two equations, that a
nonlinear magnetic island chain evolves in time in an analogous fashion to a linear
layer whose width is I W /21 . In other words, the essential nonlinearity in the
nonlinear regime comes about because the effective layer width is amplitude
dependent.

Equation (9.7) is valid when δ ≫ Ws (i.e. when the linear layer width is much
greater than the island width), whereas equation (9.8) is valid in the opposite limit.
This observation allows us to formulate a composite time-evolution equation that
encompasses both the linear regime and the nonlinear regime [3, 4, 8, 10]:

δ τ Ψ Ψ+ ˆ
= Δ ˆI W

r
d
dt

/2
. (9.9)s 1

s
R

s
pw s

The previous equation can also be written

δ τ+ = ΔI W
r

dW
dt

W
2

. (9.10)s 1

s
R pw

Let

δ
ˆ =W

I W
2

, (9.11)1

s

⎜ ⎟
⎛
⎝

⎞
⎠δ τ

ˆ =
Δ

t
r

t
2

. (9.12)s pw

s R

Equation (9.10) transforms into

ˆ
ˆ =

ˆ

+ ˆ
dW
dt

W

W1
, (9.13)

which can be solved to give

ˆ + ˆ = ˆW W tln , (9.14)

assuming that ˆ =W 0 at ˆ = −∞t . Figure 9.1 shows the time evolution of the
magnetic island width predicted by the previous equation. It can be seen that the
evolution makes a smooth transition from exponential growth when ˆ ≪W 1 (i.e.
when the island width is much less than the linear layer width) to algebraic growth
when ˆ ≫W 1 (i.e. when the island width is much greater than the linear layer width).
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9.4 Saturated island width
Equation (9.5) gives the impression that if Δ > 0pw , then the width of the magnetic
island chain grows without limit. In fact, this is not the case. Instead, the width of the
island chain eventually stops growing, and the tearing mode attains a saturated
steady state. In order to model this effect, it is necessary to perform asymptotic
matching between the inner and outer regions (see sections 3.8 and 4.1) to a higher
order, taking into account the finite width of the island chain [5, 12, 15, 18].

For the case of an island chain that is sufficiently wide to flatten the plasma pressure
within its magnetic separatrix [6], the appropriate saturation theory is given in Hastie
et al [9]. According to this theory, Δpw in equation (9.5) must be replaced by

α β αΔ − − −( )W
r

(0) 0.8 0.27 0.09 , (9.15)pw s
2

s s
s

where Δ (0)pw denotes the zero-island-width, perfect-wall, tearing stability index,

⎛
⎝

⎞
⎠

α = − ′
=

r q J
s

, (9.16)z

r r
s

s

⎜ ⎟
⎛
⎝

⎞
⎠

β = −
″

=

r q J
s

, (9.17)z

r r
s

s

Figure 9.1. The time evolution of the magnetic island width predicted by the composite linear/nonlinear
model.
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= ′
s r

r q
q

( ) , (9.18)

μ
=J r

R j r

B
( )

( )
. (9.19)z

z

z

0 0

Here, r is a radial coordinate in cylindrical geometry, q r( ) the safety-factor profile
(see section 3.2), j r( )z the equilibrium toroidal current density, R0 the simulated
major radius of the plasma, Bz the equilibrium toroidal magnetic field strength, and ′
denotes d/dr.

Equations (9.5) and (9.15) can be combined to give

⎜ ⎟
⎛
⎝

⎞
⎠

τ α β α= Δ − − −( )I
d
dt

W
r

W
r

(0) 0.8 0.27 0.09 . (9.20)1 R
s

pw s
2

s s
s

If we define

α β α
=

Δ
− −

W
r(0)

0.8 0.27 0.09
, (9.21)pw

pw s

s
2

s s

τ τ=
Δ

I W

r(0)
, (9.22)pw

1 R

pw

pw

s

then equation (9.20) reduces to

⎜ ⎟
⎛
⎝

⎞
⎠

τ = −d
dt

W
W

W
W

1 . (9.23)pw
pw pw

The previous equation can be solved to give

= − τ−W t W( ) (1 e ) , (9.24)t /
pw

pw

assuming that the island width is zero at t = 0. It follows that the width of the island
chain does not grow without limit but instead eventually attains the saturated value
Wpw. Moreover, the time required to achieve saturation, τpw, is of the order of
τ W r( / )R pw s .

Figure 9.2 shows the saturated island width of an = =m n2/ 1 tearing mode,
which is generally the most unstable tearing mode in a conventional tokamak
plasma [16], in a so-called ‘Wesson’ equilibrium [16] characterized by

⎜ ⎟
⎛
⎝

⎞
⎠

= −
ν

J r
q

r
a

( )
2
(0)

1 , (9.25)z

2

2

=
− − ν+q r

q a r a
r a

( )
( ) ( / )

1 (1 / )
, (9.26)

2

2 2 1
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where ν = −q a q( )/ (0) 1. Here, q(0) and q a( ) are the safety-factor values at the
magnetic axis, r = 0, and the plasma boundary, r = a, respectively. In the calculation
shown in figure 9.2, Δ (0)pw is determined by solving the cylindrical tearing-mode
equation, subject to suitable boundary conditions, as described in section 3.8.
Moreover, q(0) is given the plausible value 0.8 [17], while q a( ) is varied in order to
shift the position of the rational surface within the plasma. It can be seen that if the
rational surface lies well inside the plasma boundary, then the 2/1 island chain
saturates at a relatively small width (i.e. ≪W a/ 1pw ). On the other hand, if the
rational surface lies close to the plasma boundary, then the island chain saturates at
a much higher width. However, the presence of a close-fitting perfectly conducting
wall can mitigate this effect to some extent.

Given that the minor radius, a, of a tokamak fusion reactor is a few meters (see
table 1.2), while the typical linear layer width is a few millimeters (see table 6.2), it is
clear from figure 9.2 that the saturated island width of an unstable tearing mode in a
tokamak fusion reactor is bound to be very much larger than the linear layer width.
Thus, we conclude that the time evolution of an unstable tearing mode in such a
reactor will only be governed by linear theory for a comparatively short period of
time after its onset, its subsequent time evolution being governed by nonlinear
theory. Furthermore, it takes a time on the order of the resistive diffusion time, τR,
for the mode to attain its final saturated amplitude.

Note, finally, that a saturated magnetic island chain degrades the overall energy
confinement properties of a tokamak plasma because it flattens the pressure profile

Figure 9.2. Saturated island width of the = =m n2/ 1 tearing mode for a Wesson equilibrium in which
=q(0) 0.8 and q a( ) is varied. Here, rw is the radius of the perfectly conducting wall that surrounds the plasma.
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within its magnetic separatrix (see chapter 8 and section 14.18) [6]. Moreover, the
degree of degradation is roughly proportional toW a/pw [2].

9.5 The island rotation frequency
Equations (5.45) and (9.3) imply that

v′ = 0 (9.27)

for an isolated magnetic island chain (i.e. a chain that is not interacting with a
resistive wall or an error field). It follows from equations (8.75), (8.76), (8.83), and
(8.87) that the stream functions for the electron, magnetohydrodynamic (MHD),
and ion fluids take the respective forms

⎧
⎨⎩

Ω =
− ⩽ Ω ⩽

− 〈 〉 Ω >
Y

X
( )

0 1 1
1/ 1

, (9.28)e 2

⎛
⎝

⎞
⎠

⎧
⎨⎩τ

Ω =
+

− ⩽ Ω ⩽
− 〈 〉 Ω >

M
X

( )
1

1

0 1 1
1/ 1

, (9.29)2

Ω =Y ( ) 0, (9.30)i

in the vicinity of the island chain. Here, Ω is a magnetic flux-surface label that takes
a value of zero at the island O-points, a value of unity on the magnetic separatrix,
and a value much larger than unity far from the island chain (see equation (8.55)).
Moreover, τ is ratio of the electron and ion pressure gradients at the rational surface
(see equation (4.5)). The function 〈 〉 ΩX ( )2 is specified in section 8.11. Finally, the
poloidal components of the perpendicular velocities of the three fluids in the island
rest frame are related to their stream functions according to equations (8.72)–(8.74).

Figure 9.3 shows typical normalized perpendicular velocity profiles of the
electron, MHD, and ion fluids across the O-points and the X-points of an isolated
magnetic island chain in the island rest frame, as determined from equations (8.72)–
(8.74) and (9.28)–(9.30) [7]. Here, ωˆ =θ θ⊥ *V m r V( / ) /s , where m is the poloidal mode
number of the tearing mode, and ω* is the diamagnetic frequency at the rational
surface (see equation (5.47)). It can be seen that all three fluids corotate with the
island chain inside the magnetic separatrix. The ion fluid velocity profile is
completely unaffected by the presence of the chain. On the other hand, the electron
and MHD fluid velocity profiles are modified by the island chain. In particular, both
profiles are discontinuous across the magnetic separatrix. As explained in section
8.9, these discontinuities are resolved in a thin layer of thickness w4 d on the
separatrix (see equation (8.84) and table 8.1). It is clear from the figure that the
island chain rotates in the ion diamagnetic (i.e. negative) direction with respect to the
unperturbed E-cross-B frame at the rational surface [7].

Equations (8.45), (8.63), (9.27), and (9.29) yield v τ= − +1/(1 ), or

ω ω= ⊥ , (9.31)i
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where

ω ω ω= +⊥ * , (9.32)i E i

and

⎛
⎝

⎞
⎠

ω
τ

ω ω
τ

= −
+

= −* *
*1

1
(9.33)i

e

is the ion diamagnetic frequency at the rational surface (see equations (5.45) and
(5.46)). We conclude that, unlike a linear tearing mode, which is convected by the
electron fluid at the rational surface (see section 6.2), a nonlinear tearing mode is
convected by the ion fluid [7]. The reason for this difference is discussed in section
1.12. Incidentally, there is clear experimental evidence that wide magnetic island
chains in tokamak plasmas rotate in the ion diamagnetic direction relative to the
E-cross-B frame at the rational surface [1, 11].

Finally, it is reasonable to suppose that the critical island width that must be
exceeded before a magnetic island chain switches from rotating in the electron
direction (with respect to the unperturbed local E-cross-B frame) to rotating in the
ion direction is that above which the pressure profile flattens within the separatrix [14].
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Chapter 10

Rotation braking in tokamak plasmas

10.1 Introduction
An unstable tearing mode in a tokamak plasma reconnects magnetic flux at the so-
called rational magnetic flux surface, where the mode resonates with the equilibrium
magnetic field (see section 3.7), to produce a rotating (in the laboratory frame)
magnetic island chain (see sections 5.16 and 9.5).

Mode locking is a process by which the rotation of a slowly growing magnetic
island chain in a tokamak plasma is braked due to electromagnetic interaction with
a rigid electrically conducting wall surrounding the plasma (see sections 3.9 and
3.10), causing the chain to eventually lock (i.e. become stationary in the laboratory
frame) to a static error field (see section 7.1) [2–4, 6, 9–14]. Locked magnetic island
chains are strongly correlated with disruptions (i.e. sudden, catastrophic losses of
thermal and magnetic energy) in tokamak plasmas [5]. In most tokamaks, the role of
the conducting wall is played by the metallic vacuum vessel that surrounds the
plasma.

As we saw in the previous chapter, the growth of a magnetic island chain in a
tokamak fusion reactor is only governed by linear theory for a comparatively short
period of time after its onset, its subsequent time evolution being governed by
nonlinear theory. Hence, it is reasonable to suppose that the slowing down and
locking of a magnetic island chain in such a reactor is governed by nonlinear theory.
The aim of this chapter is to employ the nonlinear resonant response model derived
in chapter 8 to investigate rotation braking in tokamak fusion reactors. It is assumed
that, once the rotation frequency of the island chain has been reduced to a small
value by rotation braking, even the smallest residual error field would be sufficient to
completely arrest the chain’s rotation.

10.2 Rotation braking by a thin conducting wall
Let us, first of all, investigate the rotation braking of a nonlinear magnetic island
chain due to electromagnetic interaction with a thin conducting wall (in the absence
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of an error field). Note that, by a ‘thin’ wall, we mean one in which the skin depth in
the wall material is greater than the wall’s radial thickness.

Assuming that the chain possesses the rotation frequency ω in the laboratory
frame, so that ω≡ −d dt/ i , and that ˆ =I 0c (i.e. there is no error field), equation
(3.188) yields

Ψ Ψ
τ ω

ˆ = − ˜ ˆ
−

E E/( )
1 i

. (10.1)w
sw ww s

LR

Here, Ψ̂s is the normalized reconnected magnetic flux at the rational surface (see
equations (3.72) and (3.184)), Ψ̂w is the normalized helical magnetic flux that
penetrates the wall (see equations (3.82) and (3.192)), the real dimensionless
parameters Esw and Ẽww are defined in equations (3.87) and (3.195), respectively,

τ τ=
−Ẽ( ) (10.2)LR

w

ww

is the effective L/R time of the wall, and τw the time constant of the wall (see
equation (3.103)). Note that equation (10.1) is only valid in the so-called thin-wall
limit,

δ
ω τ

≪
∣ ∣r

1
(10.3)w

w w

(see equation (3.104)), where δw is the radial thickness of the wall and rw its minor
radius. The previous inequality ensures that the perturbed radial magnetic field only
exhibits weak radial variation across the wall.

Equations (3.187) and (10.1) yield

Ψ
Ψ

τ ω
τ ω

Δ ˆ
ˆ = Δ + Δ − Δ +

+
⎜ ⎟
⎛
⎝

⎞
⎠

( )
1 i
1

, (10.4)s

s
pw nw pw

LR

LR
2 2

where use has been made of equations (7.4) and (7.5). Here, Δpw is the (real,
dimensionless) tearing stability index when the wall is perfectly conductive (i.e.
τ → ∞w ), whereas Δnw is the (real, dimensionless) tearing stability index when there
is no wall (i.e. τ → 0w ). We expect Δ − Δ > 0nw pw . In other words, we expect the
magnetic island chain to be stabilized by the presence of a perfectly conducting wall
[3, 10].

It follows from the previous equation that

Ψ
Ψ τ ω

Δ ˆ
ˆ = Δ + Δ − Δ

+
⎜ ⎟ ⎜ ⎟
⎛
⎝
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Finally, making use of the island saturation theory presented in section 9.4, we obtain

Ψ
Ψ τ ω
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ˆ = Δ − + Δ − Δ
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Here, Δ (0)pw is the perfect-wall tearing stability index when the width of the
magnetic island chain at the rational surface is zero. Likewise, Δ (0)nw is the no-
wall tearing stability index when the width of the magnetic island chain at the
rational surface is zero. Finally, =w W /4pw pw , where Wpw is the saturated radial
magnetic island width when the wall is perfectly conducting (see equation (9.21)).

Equations (8.108), (10.7), and (10.8) yield the following modified Rutherford
island-width evolution equation [13]:
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Here, rs is the minor radius of the rational surface, τR the resistive evolution time (see
equation (5.49)), τH the hydromagnetic time (see equation (5.43)), τφ the toroidal
momentum confinement time (see equation (5.50)), cβ a dimensionless measure of
the plasma pressure at the rational surface (see equation (4.65)), τ the ratio of the
electron and ion pressure gradients at the rational surface (see equation (4.5)), w4
the radial width of the magnetic island chain, =β βd c di the ion sound radius, di

the collisionless ion skin depth at the rational surface (see equation (4.24)), Ls the
magnetic shear length at the rational surface (see equation (5.27)), and Lp the
effective pressure gradient scale length at the rational surface (see equation (8.35)).
Furthermore, =I 0.82271 , =I 0.048 892 , and =I 0.029 443 (see section 8.11).

The first term on the right-hand side of the previous equation governs the growth
and saturation of the magnetic island chain when its rotation frequency is
sufficiently large that the wall acts as a perfect conductor. The second term describes
the loss of wall stabilization when the chain’s rotation frequency is sufficiently small
that the perturbed magnetic field can penetrate through the wall [3, 10]. The third
and fourth terms represent the destabilizing effect of the ion polarization current
induced in the vicinity of the rational surface when the ion fluid is diverted around
the island chain’s magnetic separatrix [7, 13]. Unlike the case of an isolated island
chain (see chapter 9), the polarization effect is nonzero because, according to
equations (8.74), (8.87), (8.101), and (10.8), the electromagnetic braking torque
exerted on the plasma in the immediate vicinity of the rational surface due to
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interaction with the conducting wall generates a finite ion flow in the island rest
frame.

Assuming that the island chain corotates with the ion fluid at the rational surface
(see section 9.5), equations (3.189) and (9.31) imply that

∑ω ω α β= − +
= ∞

⊥ ( ), (10.10)
p 1,

i p p

where ω⊥ i, which is defined in equation (9.32), is the unperturbed (by any electro-
magnetic torques that develop at the rational surface) rotation frequency. Here, we
are treating αp and βp as constants because the electromagnetic torque that develops
at the rational surface has no explicit time dependence (assuming that the width of
the island chain grows on a timescale that is much greater than τLR and τφ).
Equations (3.180), (3.190), (3.191), (4.23), (5.27), (5.43), (5.50), (7.28), and (7.34)–
(7.35) can be combined to give
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Here, τθ is the poloidal flow-damping time (see equation (7.28)), ϵ = r R/s s 0, R0 is the
simulated major radius of the plasma, a the minor radius of the plasma, =q m n/s , m
is the poloidal mode number of the island chain, and n the toroidal mode number of
the island chain. Equations (10.8), (10.10), and (10.11) can be combined to give the
torque balance equation [6]
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The left-hand side of the previous equation represents the viscous restoring torque
that acts to prevent changes in the plasma rotation at the rational surface, while the
right-hand side represents the electromagnetic braking torque acting on the plasma
in the vicinity of the rational surface due to the eddy current induced in the
conducting wall.

Let

=x
w

w
, (10.14)

pw

ω
ω

=
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y , (10.15)
i
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τ
=T

t
, (10.16)

pw

where τpw is defined in equation (9.22). Thus, x is the width of the magnetic island
chain relative to its saturated width when the wall is perfectly conducting, y is the
island rotation frequency relative to its value when there is no interaction with the
wall, and T is time normalized to the typical time required for the island chain to
attain is final saturated width. The modified Rutherford equation, (10.9), and the
torque balance equation, (10.13), can be written in the non-dimensional forms [13]
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and ζ< ≪0 1. Here, we have added artificial plasma inertia (i.e. the ζ dy dT/ term)
into the torque balance equation, (10.18), in order to distinguish between dynam-
ically stable and dynamically unstable solutions [6].

The steady-state solutions of the torque balance equation, (10.18), correspond to
the roots of the cubic polynomial

α α ϵ− + + − =y y x y(1 ) 1 0. (10.24)l
2 3

l
2 2

l
4

If α < 27l , then the previous equation only possesses one real root. In this
situation, the normalized island rotation frequency, y, slows down in a smooth
reversible fashion as the normalized island width, x, increases [6]. On the other hand,
if α > 27l , then the previous equation possesses three real roots. However, the
intermediate root is dynamically unstable. In this situation, the torque balance
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equation possesses two branches of dynamically stable solutions [6]. The high-
rotation solution branch is characterized by ⩽ ⩽y1/3 1. On the other hand, the low-
rotation solution branch is characterized by ⩽ ⩽y0 1/3. The two solution branches
are separated by a forbidden band of island rotation frequencies. The existence of this
forbidden band has been verified experimentally [8]. The high-rotation solution
branch ceases to exist when the normalized island width exceeds a critical value, and
there is a bifurcation to the low-rotation solution branch. Likewise, the low-rotation
solution branch ceases to exist when the normalized island width falls below a
different critical value, and there is a bifurcation to the high-rotation solution
branch. Thus, if α > 27l , then the slowing down of the island rotation frequency
with increasing island width is neither smooth nor reversible [6]. The steady-state
solutions of the torque balance equation are illustrated in figure 10.1.

In the limit α ≫ 27l , we can find approximate solutions of the torque balance
equation, (10.18). The high-rotation solution branch is characterized by ⩽ ⩽y1/2 1
and is such that

≃ + − ⎜ ⎟
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1 1 , (10.25)
h

4 1/2

Figure 10.1. Steady-state solutions of the torque balance equation, (10.18). The solid lines show solution
curves for various different values of αl. The dashed line shows the critical solution curve, α = 27l . The dash–
dotted line shows the boundary of the forbidden band of island rotation frequencies. The high-rotation
solution branch lies above the critical solution curve, to the right of the forbidden band. The low-rotation
solution branch lies above the critical solution curve, to the left of the forbidden band. Within the forbidden
band, all of the solutions of the torque balance equation are dynamically unstable. When a high-rotation/low-
rotation solution reaches the boundary of the forbidden band, a bifurcation takes place to a low-rotation/high-
rotation solution with the same value of ϵ x /8l

4 .
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The high-rotation solution branch ceases to exist when the normalized island width,
x, exceeds the critical value, xh—at which point, the island rotation frequency has
been reduced to half of its original value—and there is a bifurcation to the low-
rotation solution branch. The low-rotation solution branch is characterized by

α⩽ ⩽y0 1/ l and is such that
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The low-rotation solution branch ceases to exist when the normalized island width
falls below the critical value xl, and there is a bifurcation to the high-rotation
solution branch. Note that ≫x xh l, which indicates that once the width of the island
chain has grown sufficiently wide to trigger a high-rotation to low-rotation
bifurcation, the chain is unlikely to ever attain a high-rotation state again (because
its width would have to shrink by a considerable factor to trigger the reverse
bifurcation). In the limit α ≫ 27l , the forbidden band of normalized island
rotation frequencies corresponds to α < <y1/ 1/2l (see figure 10.1).

It is clear from equation (10.17) that the slowing down of the island chain’s
rotation due to the eddy current induced in the conducting wall has a destabilizing
effect on the chain. In fact, if there is no substantial slowing down, then the
normalized modified Rutherford equation (10.17) reduces to

≃ −dx
dT

x1 , (10.29)

assuming that α β≫l l
1/2, γl

1/2, δl
1/4, indicating that the normalized island width, x,

saturates at its perfect-wall value, unity. On the other hand, on the low-rotation
solution branch, assuming that α ≫ 27l and ≫x xl, equation (10.17) reduces to

β
γ

ϵ
δ

ϵ
≃ − + + +dx

dT
x

x x
1 , (10.30)l

l

l
2

l

l
2

indicating that the normalized island width saturates at a value that is greater than
unity (because βl, γl, δl, and ϵl are all positive quantities). The island chain is
destabilized by the loss of wall stabilization and also by the ion polarization effect
associated with rotation braking.
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Figure 10.2 shows numerical solutions of equations (10.17) and (10.18) obtained
for a low-field tokamak fusion reactor and a high-field tokamak fusion reactor (see
chapter 1). The simulation parameters are determined using the following assump-
tions: =B 5 T (low field) or =B 12 T (high field), β = 0.02, = =T T 7 keVe i ,

= +m m m( )/2i D T (where mD and mT are the deuteron and triton masses, respec-
tively), χ χΞ = = =⊥ ⊥ ⊥

−1 m si e i
2 1, τ = 1, η η= = 1e i , = −dp dr p a/ / , ω ω=⊥ *4i e.

Here, ω* e is the electron diamagnetic frequency (see equation (5.45)). The poloidal
and toroidal mode numbers of the magnetic island chain are m = 2 and n = 1,
respectively. The wall parameters are τ = −10 sw

1 and =r a/ 1.1w , which correspond
to a moderately conducting, close-fitting wall. The plasma equilibrium is assumed to
be of the Wesson type (see section 9.4), with =q(0) 0.8 and =q a( ) 6.0. It follows
that =r a0.560s . The perfect-wall saturated island width is =W a/ 0.264pw . Finally,
the various dimensionless parameters appearing in equations (10.17) and (10.18)
take the values α = ×7.21 10l

1 (low field) or α = ×1.73 10l
2 (high field), β = 0.104l ,

γ = 7.98l , δ = ×8.61 10l
6, ϵ = ×2.05 10l

4, and ζ = 0.1.
It can be seen from figure 10.2 that as the normalized width, x, of the island chain

grows over time, the chain’s normalized rotation frequency, y, is gradually reduced
until it has been reduced to about half of its original value, at which point there is a
sudden collapse in the rotation frequency to a very low value. The collapse in the
rotation frequency causes the chain to be further destabilized due to the loss of wall
stabilization and ion polarization effects. Consequently, the final saturated width of
the island chain is greater than the perfect-wall saturated island width (i.e. >x 1).
Note that a low-field tokamak fusion reactor is more susceptible to rotation braking
than a high-field fusion reactor because of its lower diamagnetic frequency (see
table 6.1) and consequent lower ion fluid rotation. The slowing-down curves shown
in the figure are similar in form to those observed experimentally when a wide
magnetic island chain interacts electromagnetically with a resistive wall in a toroidal
confinement device [4].

Figure 10.2. Simulations of island rotation braking in a low-field tokamak fusion reactor (left panel) and a
high-field tokamak fusion reactor (right panel), both of which have thin walls. Here, x and y are the
normalized island width and the rotation frequency, respectively.
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Figure 10.3 displays the results of a series of simulations of the type shown in
figure 10.2 in which the radius of the rational surface is scanned over a range of
values (by changing q a( ) while keeping =q(0) 0.8 fixed). The wall parameters are

=r a/ 1.2w and τ = × −5 10 sw
2 . It can be seen that if the rational surface lies well

inside the plasma boundary, then the island chain attains its final, perfect-wall
saturated width without a collapse in its rotation frequency. On the other hand, if the
rational surface lies closer to the plasma boundary, then a collapse in the rotation
frequency is triggered before the chain attains its final saturated width. The critical
island width at which the rotation collapse is triggered lies between 20% and 10% of
the plasma’s minor radius. Moreover, the final saturated width of the island chain
exceeds the perfect-wall value due to the loss of wall stabilization and ion polar-
ization effects. Finally, it is again clear that a low-field tokamak fusion reactor is
more susceptible to rotation braking than a high-field fusion reactor.

Figure 10.4 shows the results of a series of simulations of the type shown in
figure 10.2 in which the unperturbed island chain rotation frequency is scanned over
a range of values for various different wall time constants. The plasma parameters
are =q(0) 0.8 and =q a( ) 7.0, which correspond to =r a0.517s , while the wall
radius is =r a1.2w . It is clear that if the wall is very resistive (i.e. τ ≲ −10w

3 s), then
the critical island width above which the chain’s rotation frequency collapses is only
weakly dependent on the unperturbed rotation frequency and is about 10% of the
plasma’s minor radius. On the other hand, for the case of a highly conducting wall
(i.e. τ ≲ 1w s), the diamagnetic levels of plasma rotation are sufficient to completely
suppress the collapse in the island rotation frequency, unless the unperturbed
rotation frequency lies close to zero. As before, it is clear that a low-field tokamak
fusion reactor is more susceptible to rotation braking than a high-field fusion
reactor.

Figure 10.3. The results of a series of simulations of the type shown in figure 10.2 in which the radius of the
rational surface is scanned over a range of values (by changing the edge safety factor).Wcrit is the critical island
chain width above which the chain’s rotation frequency collapses. Wpw is the perfect-wall saturated island
width. ∞W is the final saturated island width. ∞y is the final normalized island rotation frequency. The left-
hand/right-hand panels correspond to a low-field tokamak fusion reactor and a high-field tokamak fusion
reactor, respectively.
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10.3 Rotation braking by a thick conducting wall
The calculation presented in the previous section has a number of deficiencies. The
first and most important deficiency is that the criterion (10.3) for the validity of the
thin-wall approximation (i.e. that the radial variation of the perturbed magnetic flux
across the wall is relatively weak) is not always satisfied in practice. For instance, in
a low-field tokamak fusion reactor (see section 1.5) with diamagnetic levels of ion
fluid rotation (i.e. ω ω≃⊥ *i e), the critical wall thickness above which the thin-wall
approximation fails is δ τ≃ × −9.7 10 / (s)w max

4
w m. In the case of a high-field reactor,

the critical wall thickness is δ τ≃ × −1.7 10 / (s)w max
4

w m. It follows that the thin-wall
approximation holds for resistive walls (i.e. τ < −10 sw

1 ) but not for highly conduct-
ing walls (i.e. τ > −10 sw

1 ), because the latter type of wall would have to be
impossibly thin.

A second deficiency in our previous calculation is that it neglects plasma inertia.
This neglect is reasonable when the magnetic island chain is rotating steadily but not
when the chain’s rotation frequency collapses, because such a collapse is associated
with a rapid deceleration of the chain and a consequent rapid deceleration of the
plasma in the vicinity of the resonant surface.

A third deficiency in our previous calculation is that it assumes that the eddy
current excited in the wall has a simple ω−e ti time dependence, where ω is the
instantaneous rotation frequency of the island chain. This assumption is reasonable
when the island chain is rotating steadily, but not when its rotation frequency
collapses, in which case we expect the rapid deceleration of the chain to excite a
transient eddy current in the wall [4].

The aim of this section is to generalize the analysis given in the previous section in
order to take into account thick walls, plasma inertia, and a transient component of
the wall eddy current. Note that, by a ‘thick’ wall, we mean one in which the skin
depth in the wall material is less than the wall’s radial thickness. It is still reasonable
to assume that the wall’s thickness, δw, is much less than its minor radius, rw.

Figure 10.4. The results of a series of simulations of the type shown in figure 10.2 in which the unperturbed
island rotation frequency is scanned over a range of values for various different wall time constants.Wcrit is the
critical island chain width above which the chain’s rotation frequency collapses. The left-hand/right-hand
panels correspond to a low-field tokamak fusion reactor and a high-field tokamak fusion reactor, respectively.
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Suppose that the wall extends from =r rw to δ= +r rw w, where δ ≪ rw w. Here, r
is a conventional cylindrical coordinate. Let δψ δψ= ˆr t R B r t( , ) ( , )z0 be the
perturbed magnetic flux within the wall (see equation (3.20)). Here, Bz is the
equilibrium toroidal magnetic field strength. Ohm’s law inside the wall yields (see
equation (3.101))

δψ μ
η

δψ∂ ˆ
∂

≃ ∂ ˆ
∂r t

, (10.31)
2

2
0

w

where ηw is the electrical resistivity of the wall material. The previous equation must
be solved subject to the boundary conditions

δψ Ψˆ = ˆr t t( , ) ( ), (10.32)w w

δψ δ∂ ˆ +
∂

= −r t
r

m
ln ( , )

ln
. (10.33)w w

The first boundary condition follows from equations (3.82) and (3.192). Note that
we have effectively redefined Ψ̂w to be the normalized helical magnetic flux that
penetrates the inner (in r) boundary of the wall. The second boundary condition
follows because, in the vacuum region outside the wall, a well-behaved solution of
the cylindrical tearing-mode equation, (3.60), varies as −r m.

Let

ρ
δ

= −r r
, (10.34)

w

w

δψ Ψ ρˆ = ˆr t t F t( , ) ( ) ( , ). (10.35)w

Equations (10.31)–(10.33) yield

ρ
τ ζ γ∂

∂
= + ∂

∂
⎛
⎝

⎞
⎠

F
F

F
t

, (10.36)
2

2 w w

=F t(0, ) 1, (10.37)

ρ
ζ∂

∂
≃ −F t

m
ln (1, )

, (10.38)w

where

γ Ψ=
ˆd

dt
ln

, (10.39)w

τ
μ δ

η
=

r
, (10.40)w

0 w w

w
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ζ δ= ≪
r

1. (10.41)w
w

w

Let us first search for a solution of

ρ
γ τ ζ=d F

d
F , (10.42)

2
0

2 w w 0

subject to the boundary conditions

=F (0) 1, (10.43)0

ρ
ζ= −d F

d
m

ln (1)
. (10.44)0

w

We obtain

ρ α α ρ ζ α ρ
α α ζ α

= − − −
+

F
m
m

( )
cosh[ ( 1)] sinh[ ( 1)]

cosh sinh
, (10.45)0

w w w w

w w w w

where

α γ τ ζ= . (10.46)w w w

However, in the physically relevant limit,

γ τ ζ∣ ∣ ≫ , (10.47)w w

expression (10.45) simplifies to give

ρ α ρ
α

≃ −
F ( )

cosh[ ( 1)]
cosh

. (10.48)0
w

w

Incidentally, it is clear from equation (10.48) that if the inequality (10.47) is satisfied,
then the boundary condition (10.44) effectively reduces to

ρ
≃dF

d
(1)

0. (10.49)0

Let us write

ρ ρ ρ= +F t F F t( , ) ( ) ( , ), (10.50)0 1

where

=F t(0, ) 0, (10.51)1

ρ
ζ∂

∂
= −F t

m
ln (1, )

. (10.52)1
w
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Expression (10.50) automatically satisfies the boundary conditions (10.37) and
(10.38). It is clear, by analogy with equation (10.49), that if the inequality (10.47)
is satisfied, then the boundary condition (10.52) effectively reduces to

ρ
∂

∂
≃F t(1, )

0. (10.53)1

Let us write

∑ρ
β ρ
β

=
= ∞

F t f t( , ) ( )
sin( )

, (10.54)
j 1,

j
j

j
1

w

w

where

β π= −⎛
⎝

⎞
⎠

j
1
2

. (10.55)jw

Expression (10.54) automatically satisfies the boundary conditions (10.51) and
(10.53). Equations (10.36) and (10.50) can be combined to give

∑ ∑β ρ
β

γ λ
β ρ
β

α
γ

γ ρ α ρ
α

α ρ α
α

β ρ

= − +

− − − − −
= ∞ = ∞

⎧
⎨⎩

⎫
⎬⎭

df

dt
f

d
dt

sin( )
( )

sin( )

2
( 1) sinh[ ( 1)]

cosh
cosh[ ( 1)] sinh

cosh

sin( ),

(10.56)
k k1, 1,

k k

k
k k

k

k

k

w

w

w

w

w w

w

w w
2

w

w

where

λ π
τ ζ

= −j( 1/2)
. (10.57)j

2 2

w w

Finally, multiplying equation (10.56) by β ρ2 sin( )jw and integrating from ρ = 0 to
ρ = 1, we obtain [4]

γ λ σ γ+ + =
df

dt
f

d
dt

( ) , (10.58)j
j j j

where

σ
λ

γ λ
=

+
2

( )
. (10.59)j

j

j
2

Here, use has been made of the easily demonstrated results:

∫ β ρ β ρ ρ δ=d2 sin( ) sin( ) , (10.60)j k jk
0

1

w w

Tearing Mode Dynamics in Tokamak Plasmas

10-13



∫ ρ α ρ
α

α ρ α
α

β ρ ρ

α β

α β

− − − −

= −
+

⎧
⎨⎩

⎫
⎬⎭

d
( 1) sinh[ ( 1)]

cosh
cosh[ ( 1)] sinh

cosh
sin( )

2

( )
.

(10.61)
j

j

j

0

1
w

w

w w
2

w
w

w w

w
2

w
2 2

Equation (3.83) generalizes to give

Ψ δψ Ψ
ζ ρ

Δ ˆ = ∂ ˆ
∂

≃
ˆ ∂

∂

δ

ρ

ρ

=

= +

=

=

⎡
⎣

⎤
⎦

⎡
⎣⎢

⎤
⎦⎥

r
r

F
, (10.62)

r r

r r

w
w

w 0

1

w

w w

where use has been made of equations (3.192), (3.193), (10.34), (10.35), and (10.41).
Note that ΨΔ ŵ is a measure of the normalized net eddy current induced in the wall.
It follows from equations (10.48), (10.46), (10.50), and (10.54) that [4]

Ψ
Ψ

Δ ˆ
ˆ = G t( ), (10.63)w

w

where

∑γ τ
ζ

γ τ ζ
ζ

= −
= ∞

( )G t f t( ) tanh
1

( ). (10.64)
j 1,

j
w

w
w w

w

Clearly, equation (10.63) specifies the relation between the net eddy current induced
in the wall and the helical magnetic flux that penetrates the inner boundary of the
wall.

The first term on the right-hand side of equation (10.64),

γ γ τ
ζ

γ τ ζ= ( )G ( ) tanh , (10.65)0
w

w
w w

specifies the net eddy current induced in the wall by a steadily rotating island chain.
In the thin-wall limit (see equations (3.104), (10.39), (10.41), and (10.47)) [4],

ζ γ τ
ζ

≪ ∣ ∣ ≪ 1
, (10.66)w w

w

the steady-state wall response reduces to (see equation (3.102))

γ γ τ≃G ( ) , (10.67)0 w

which is consistent with the analysis employed in the previous section. On the other
hand, in the thick-wall limit [4],

γ τ
ζ

∣ ∣ ≫ 1
, (10.68)w

w
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we obtain

γ γ τ
ζ

≃G ( ) . (10.69)0
w

w

The previous expression represents a steady-state wall response in which the eddy
current only penetrates a distance of the order of the skin depth into the wall from its
inner boundary.

The second term on the right-hand side of equation (10.64),

∑
ζ

= −
= ∞

G t f t( )
1

( ), (10.70)
j 1,

j1
w

specifies the transient eddy current excited in the wall. As is clear from equation
(10.58), a transient eddy current is excited when the island rotation frequency (which
is proportional to γ) changes in time.

Equation (3.188) (with ˆ =I 0c , because there is no error field) and equation (10.63)
yield

Ψ Ψˆ =
ˆ

+ − ˜
E

G E( )
. (10.71)w

sw s

ww

Writing

∫Ψ Ψ ωˆ = ˆ − ′ ′⎛
⎝

⎞
⎠

t t t dt( ) ( ) exp i ( ) , (10.72)
t

s s
0

where ω t( ) is the instantaneous island rotation frequency, equations (10.39) and
(10.71) imply that

γ ω= − + −
+ − ˜t

d w
dt

dG dt
G E

( ) i 2
ln /

( )
. (10.73)

ww

Here, we have made use of the fact that Ψ∝ ∣ ˆ ∣w s
1/2 (see equation (8.1)). Equations

(3.187) and (10.71) give

Ψ
Ψ

Δ ˆ
ˆ = Δ − + Δ − Δ − ˜

+ − ˜⎜ ⎟
⎛
⎝

⎞
⎠

⎡⎣ ⎤⎦
⎡
⎣⎢

⎤
⎦⎥

w
w

E
G E

(0) 1 (0) (0)
( )

( )
, (10.74)s

s
pw

pw
nw pw

ww

ww

where use has been made of equations (7.4) and (7.5) as well as the island saturation
theory presented in section 9.4. Hence,

R
R I

Ψ
Ψ

Δ ˆ
ˆ = Δ − + Δ − Δ

+
⎜ ⎟⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡⎣ ⎤⎦⎛
⎝

⎞
⎠

w
w

Re (0) 1 (0) (0) , (10.75)s

s
pw

pw
nw pw 2 2

I
R I

Ψ
Ψ

Δ ˆ
ˆ = Δ − Δ

+
⎜ ⎟
⎛
⎝

⎞
⎠

⎡⎣ ⎤⎦⎛
⎝

⎞
⎠

Im (0) (0) , (10.76)s

s
nw pw 2 2
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where

R = +
− ˜

G
E

1
Re( )
( )

, (10.77)
ww

I = −
− ˜

G
E

Im( )
( )

. (10.78)
ww

Equations (8.108), (10.75), and (10.76) yield the following modified Rutherford
island-width evolution equation, which is a generalization of equation (10.9):

R
R I

I
R I

I
R I

τ

τ
τ
τ

τ
τ

= Δ − + Δ − Δ
+

+ Δ − Δ
+ +

+ Δ − Δ
+

β β φ

φ

⎜ ⎟

⎜ ⎟⎜ ⎟

⎜ ⎟

⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛

⎝

⎞

⎠
⎡⎣ ⎤⎦⎛

⎝
⎞
⎠

⎡⎣ ⎤⎦⎛
⎝

⎞
⎠

⎛

⎝

⎞

⎠
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡⎣ ⎤⎦
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

I
d
dt

w
r

w
w

I
c L

L

d

r
w
r

I
w
r

4
(0) 1 (0) (0)

(0) (0)
1

(0) (0) .

(10.79)

1 R
s

pw
pw

nw pw 2 2

2 nw pw
s

p s H s

2

2 2

3 nw pw
2

H

2

s

7

2 2

2

All of the parameters appearing in this equation are defined in the previous section.
As in the previous section, the instantaneous island rotation frequency can be

written (see equation (10.10))

∑ω ω α β= − +
= ∞

⊥ ( ). (10.80)
p 1,

i p p

However, according to equations (3.190) and (3.191), the time evolution of the
quantities αp and βp is specified by

τ
α

ζ α
τ
τ

Ψ
Ψ

+ + = Δ ˆ
ˆθ θ

φ
⎜ ⎟⎜ ⎟⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )d

dt
j g

w
r

Im , (10.81)M
p

1p
2

p p
H

2
s

4
s

s

τ
β

β ϵ τ
τ

Ψ
Ψ

+ = Δ ˆ
ˆφ

φ
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

d

dt
j g

q
w
r

Im , (10.82)M
p

0p
2

p p
s

s

2

H
2

s

4
s

s

where all of the parameters appearing in the previous two equations are defined in
the previous section, except for

τ τ= φ⎜ ⎟
⎛
⎝

⎞
⎠

a
r

, (10.83)M
s

2

ζ τ
τ

=θ
θ

, (10.84)
M
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=θ
⎡

⎣
⎢

⎤

⎦
⎥g

J j r a

J j

( / )

( )
, (10.85)p

1 1p s

2 1p

2

=φ
⎡

⎣
⎢

⎤

⎦
⎥g

J j r a

J j

( / )

( )
. (10.86)p

0 0p s

1 0p

2

Here, J z( )0 and J z( )1 are standard Bessel functions, and jnp denotes the pth zero of
the J z( )n Bessel function [1]. Note that the terms involving d/dt in equations (10.81)
and (10.82) represent plasma inertia.

Let =x w w/ pw, ω ω= ∣ ∣⊥y / i , and ω= ∣ ∣⊥T t i . Thus, x is the width of the magnetic
island chain relative to its saturated width when the wall is perfectly conducting, y is
the island rotation frequency relative to the magnitude of its value when there is no
interaction with the wall, and T is time normalized to the typical time required for
the island chain complete a full rotation. Equations (10.73) and (10.75)–(10.82) can
be converted into the following closed set of normalized equations that govern the
time evolution of the island chain’s rotation frequency:

∑ω α β= − ˆ + ˆ
= ∞

⊥y sgn( ) ( ), (10.87)
p 1,

i p p

where

R
R I

I
R I

I
R I

τ β γ

δ

ˆ = − +
+

+ ′
+

+ ′
+

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

dx
dT

x x

x

1

,

(10.88)
pw l 2 2 l

2
2 2

l
7

2 2

2

I
R I

τ
α

ζ α ϵˆ
ˆ

= − + ˆ + ′
+θ θ ⎛

⎝
⎞
⎠

( )d

dT
j g x , (10.89)M

p
1p

2
p p l

4
2 2

I
R I

τ
β

β θˆ
ˆ

= − ˆ +
+φ ⎛

⎝
⎞
⎠

d

dT
j g x . (10.90)M

p
0p

2
p p l

4
2 2

Here,

R G= Re( ), (10.91)

I G= −Im( ), (10.92)

where

G ∑γ τ
ζ

γ τ ζ= + ˆ ˆ
ˆ ˆ ˆ ˆ − ˆ

= ∞
( ) f1 tanh . (10.93)

j 1,
j

w

w
w w
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Moreover,

Gγ̂ = − + −y
d x

dT
d

dT
i 2

ln ln
, (10.94)

γ λ σ γˆ
= − ˆ + ˆ ˆ + ˆ ˆ( )

df

dT
f

d
dT

, (10.95)j
j j j

λ π
τ ζ

ˆ = −
ˆ ˆ

j( 1/2)
, (10.96)j

2 2

w w

σ
λ

ζ γ λ
ˆ =

ˆ
ˆ ˆ + ˆ

2

( )
. (10.97)j

j

jw
2

Finally, βl is specified in equation (10.20), ζθ is specified in equation (10.84), and

τ τ ωˆ = ∣ ∣
− ˜

⊥

E( )
, (10.98)w

w i

ww

τ τ ωˆ = ∣ ∣⊥ , (10.99)M M i

τ τ ωˆ = ∣ ∣⊥ , (10.100)pw pw i

ζ δˆ = −Ẽ
r

( )
, (10.101)w

w ww

w

γ β
τ

τ
τ

′ =
+

β β φ
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

I
c L

L

d

r

w

r1
, (10.102)l 2 l

s

p s H

pw

s

2

δ β
τ
τ

′ = Δ φ
⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

I
w

r
(0) , (10.103)l 3 pw l

2

H

2
pw

s

7

ϵ
τ

τ ω
′ = Δ − Δ

∣ ∣
φ

⊥
⎜ ⎟⎜ ⎟⎡⎣ ⎤⎦
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

w

r
(0) (0) , (10.104)l nw pw

H
2

i

pw

s

4

θ ϵ ϵ= ′⎜ ⎟
⎛
⎝

⎞
⎠q

. (10.105)l
s

s

2

l

Note that x, y, α̂p, and β̂p are real quantities, whereas γ̂ and fj are complex.
The type of rotation braking calculation discussed in this section is far more

computationally intensive than the type discussed in the previous section, because the
former involves the solution of a great many more differential equations than
the latter. However, the new calculation is an improvement on the previous one
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because it allows us to determine the timescale on which rotating braking occurs. Our
previous calculation is unable to achieve this goal because it neglects plasma inertia.

Let us investigate a specific example. Consider a high-field tokamak fusion
reactor (see chapter 1) characterized by =B 12 T, β = 0.02, = =T T 7 keVe i ,

= +m m m( )/2i D T (where mD and mT are the deuteron and triton masses, respec-
tively), χ χΞ = = =⊥ ⊥ ⊥

−1 m si e i
2 1, τ = 1, η η= = 1e i , = −dp dr p a/ / , andω ω=⊥ *4i e.

The wall parameters are η = × Ω− m6.9 10w
7 (which is the electrical resistivity of

stainless steel), =r a1.2w , and δ = a0.1w . The plasma equilibrium is assumed to be
of the Wesson type (see section 9.4), with =q(0) 0.8 and =q a( ) 6.0. The poloidal
and toroidal mode numbers of the tearing mode are m = 2 and n = 1, respectively. It
follows that =r a0.560s . The perfect-wall saturated island width is =W a/ 0.272pw ,
the poloidal flow-damping time is τ = ×θ

−4.59 10 5 s, the wall time constant is
τ = 0.24 sw , the momentum confinement time is τ = 1.1 sM (see equation (3.180)),
and the typical type required for the magnetic island to attain its final saturated
width is τ = ×6.6 10 spw

1 . The normalized parameters that characterize our model
take the values τ̂ = 431w , τ̂ = ×8.33 10M

3, τ̂ = ×4.95 10pw
5, ζ = ×θ 2.42 104,

ζ̂ = 0.352w , β = × −6.95 10l
2, γ ′ = × −3.28 10l

2, δ ′ = ×1.66 10l
2, ϵ ′ = ×1.72 10l

4,
and θ = ×1.50 10l

2. We conclude that the effective L/R time of the wall is about 500
times larger than the typical time required for the unperturbed magnetic island chain
to complete a full rotation (i.e. τ̂ ∼ 500w ), the momentum confinement time is about
104 times larger than the island rotation time (i.e. τ̂ ∼ 10M

4), and the island
saturation time is about ×5 105 times larger than the island rotation time (i.e.,
τ̂ ∼ ×5 10pw

5).
It turns out that 100 poloidal and toroidal velocity harmonics are sufficient to

describe the time evolution of the plasma poloidal and toroidal rotation profiles in a
reasonably accurate manner. Consequently, we shall neglect all αp and βp variables
with > =p p 100max in our calculation. In order to compensate for the truncation of
the sum in equation (10.87), we shall replace this equation by

∑ω
α β

= −
ˆ

+
= θ φ

⊥ ⎜ ⎟
⎛
⎝

⎞
⎠

y
S S

sgn( ) , (10.106)
p p1,

i
p p

max

where

∑ζ
ζ

=
+=

θ θ
θ

θ
⎛
⎝

⎞
⎠

S
r
a

g

j
4 , (10.107)

p p1,

s p

1p
2

max

∑=
=

φ
φS

a r

g

j
2

ln( / )
. (10.108)

p p1,s

p

0p
2

max

(See equations (7.34) and (7.35).) For the calculation in hand, =θS 0.708 and
=φS 0.997.
For the transient wall harmonics, an examination of equations (10.95) and (10.97)

implies that, roughly speaking, all harmonics in the range ⩽ <j j1 2 crit, where
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λ γˆ ∼ ∣ ˆ∣jcrit
, are important in the calculation. Hence, given that γ∣ ˆ∣ ⩽ 1, we deduce from

equation (10.96) that τ ζ π∼ ˆ ˆ ∼j ( ) / 7crit w w
1/2 . This result merely implies that when the

island chain is rotating at its unperturbed rotation frequency, the transient eddy
current induced in the wall only penetrates radially into about the inner 7th part of
the wall. Hence, we need to retain all transient wall harmonics up to those of order
j = 14 in order to resolve this relatively thin current distribution. In the following, we
shall keep all transient wall harmonics up to j = 20 (i.e. we shall neglect f̂j variables
with > =j j 20max in our calculation), so as to ensure that all important transient
wall harmonics are retained in the calculation. It follows that the final set of coupled,
first-order, ordinary differential equations that makes up our model consists of 243
real equations.

Figure 10.5 shows the numerical solution of our set of differential equations. The
solution is qualitatively similar to that obtained for a thin wall (see figure 10.2). As
before, it can be seen that as the normalized width, x, of the island chain grows in
time, the chain’s normalized rotation frequency, y, is gradually reduced, until it has
been reduced to about half of its original value, at which point there is a sudden
collapse in the rotation frequency to a very low value. The rotation collapse occurs
when =x 0.69, which corresponds to =W a/ 0.19. It is clear from the right-hand
panel of figure 10.5 that the rotation collapse takes place over a time interval of
about 100 normalized time units, which corresponds to about 15 ms. This timescale
is similar to the hybrid timescale τ τ =θ( ) 7M

1/2 ms. Hence, it is plausible that the
timescale for the rotation collapse is determined by a combination of poloidal flow
damping and perpendicular viscosity.

We can construct a torque balance diagnostic:

T I
R I

ξ= − +
+

⎛
⎝

⎞
⎠

T y x( ) 1 , (10.109)l
4

2 2

Figure 10.5. A simulation of island rotation braking in a high-field tokamak fusion reactor with a thick wall.
Here, x and y are the normalized island width and the rotation frequency, respectively.
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where

ξ ϵ τ
τ ω

= Δ − Δ
∣ ∣⊥
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⎞
⎠
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⎞
⎠

⎛
⎝

⎞
⎠q

w

r
(0) (0) , (10.110)V

l nw pw
s

s

2

H
2

i

pw

s

4

and τV is specified in equation (10.12). The quantity T takes the value zero when the
plasma is in torque balance—in other words, when the electromagnetic braking
torque exerted at the rational surface is exactly balanced by the viscous restoring
torque. Obviously, plasma inertia plays no role in the rotation braking process when
the plasma is in torque balance. On the other hand, if T is nonzero, then the
electromagnetic braking torque is not balanced by the viscous restoring torque,
which indicates that plasma inertia is playing a role in the braking process.
Figure 10.6 displays the time evolution of the torque balance diagnostic in the
rotation braking simulation shown in figure 10.5. It can be seen that the plasma is in
torque balance to a very good approximation both before and after the rotation
collapse. However, during the rotation collapse, the plasma is clearly not in torque
balance, indicating that plasma inertia plays an important role in the rotation
collapse. According to the right-hand panel of figure 10.6, after torque balance
breaks down during the rotation collapse, it takes a time interval of the order of 4000
normalized time units, which corresponds to about 0.53 s, for torque balance to be
reestablished. This timescale is similar to the momentum confinement timescale,
τ = 1.1 sM . Hence, it is plausible that torque balance is reestablished by plasma
viscosity.

Figure 10.7 shows the time evolution of the quantities

∑ αˆ =
ˆ

=
θ

θ
V T

S
( ) , (10.111)

p p1,

p

max

∑
βˆ =
ˆ

=
φ

φ
V T

S
( ) , (10.112)

p p1,

p

max

Figure 10.6. A simulation of island rotation braking in a high-field tokamak fusion reactor with a thick wall.
Here, y and T are the normalized rotation frequency and a torque balance diagnostic, respectively.
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in the rotation braking simulation shown in figure 10.5. The rotation braking
process causes the normalized rotation frequency of the island chain, y, to decrease
from unity (assuming that ω >⊥ 0i ) to a value that is very much smaller than unity.
In other words, Δ ≃ −y 1. Hence, it is clear from equations (10.106), (10.111), and
(10.112) that Δ ˆ + Δ ˆ =θ φV V 1. Here, Δ θ̂V is the fraction of the decrease in the island
rotation frequency that is due to a shift in the poloidal ion fluid angular velocity at
the rational surface, while Δ φ̂V is the fraction of the decrease that is due to a shift in
the toroidal ion fluid angular velocity at the rational surface. In fact, it is apparent
from figure 10.7 that about 53% of the decrease in the rotation frequency is due to a
poloidal velocity shift, the remaining 47% being due to a toroidal velocity shift. It is
also apparent from the figure’s right-hand panel that the rotation collapse, which
takes place on a timescale of about 100 normalized time units (i.e. τ τθ( )M

1/2), is due
to a sudden shift in the poloidal angular velocity at the rational surface. In fact, this
sudden shift is responsible for the loss of torque balance during the rotation collapse.
The corresponding shift in the toroidal angular velocity at the rational surface takes
place on a timescale of 4000 normalized time units (i.e. τM). Note that after the
sudden shift that is associated with rotation collapse, the poloidal velocity sub-
sequently readjusts to its final value on the τM timescale.

Figure 10.8 shows the time evolution of the transient wall harmonics in the
rotation braking simulation shown in figure 10.5. It can be seen that the transient
wall harmonics are only important (i.e. ∣ ∣ ∼f O(1)j ) during the rotation collapse.
Note that ∣ ∣ ≪ ∣ ∣f fj 1max

, ∣ ∣fjcrit
at all times, indicating that our calculation has included

all of the important transient wall harmonics. Prior to the rotation collapse,
∣ ∣ ≫ ∣ ∣f fj 1crit

, indicating that the (very small) transient eddy current induced in the
wall is localized to within a skin depth of the inner boundary of the wall. However,
during the rotation collapse, the low-j transient wall harmonics become dominant,
indicating that the transient eddy current has penetrated to the outer boundary of
the wall. It can been seen from the right-hand panel of figure 10.8 that the longest-
wavelength f1 transient wall harmonic excited by the rotation collapse decays away

Figure 10.7. A simulation of island rotation braking in a high-field tokamak fusion reactor with a thick wall.
Here, θ̂V and φ̂V are measures of the poloidal and toroidal ion fluid velocities, respectively, at the rational
surface.
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after a time interval of about 1000 normalized time units, which corresponds to 0.13
s. This timescale is similar to the time constant of the wall, τ = 0.24 sw . Hence, it is
plausible that the transient eddy current induced by the rotation collapse decays
away after a time interval of the order of the wall time constant.

10.4 An improved torque balance model
It is clear from the calculation presented in the previous section that plasma inertia
and the transient wall eddy current are only important during the rotation collapse.
At all other times, it should be possible to accurately model the wall response using
equation (10.65), which specifies the response of a wall of arbitrary thickness to a
steadily rotating island chain, with γ ω= −i . This observation leads us to formulate
the following generalization of the torque balance model presented in section 10.2:

R
R I

I
R I

I
R I

β γ δ= − +
+

+ ′
+

+ ′
+

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

dx
dT

x x x1 , (10.113)l 2 2 l
2

2 2 l
7

2 2

2

I
R I

ζ ξ= − −
+

⎛
⎝

⎞
⎠

dy
dT

y x1 , (10.114)l
4

2 2

where

G τ
ζ

τ ζ= + − ˆ
ˆ − ˆ ˆy

y1
i

tanh i . (10.115)w

w
w w

Here, x is the width of the magnetic island chain relative to its saturated width when
the wall is perfectly conducting, y is the island rotation frequency relative to its value
when there is no interaction with the wall, and T is time normalized to the typical
time required for the island chain to attain its final saturated width. Moreover, βl, γ ′l ,
δ ′l , ξl, R, I , τ̂w, and ζ̂w are defined in equations (10.20), (10.102), (10.103), (10.110),
(10.91), (10.92), (10.98), and (10.101), respectively. The improved torque balance
model should be capable of accurately predicting the critical island width that must

Figure 10.8. A simulation of island rotation braking in a high-field tokamak fusion reactor with a thick wall.
Here, y and fj are the normalized rotation frequency and wall transient harmonics, respectively.
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be exceeded in order to trigger a collapse in the island rotation frequency, even when
the thin-wall approximation breaks down, despite not being able to accurately
predict the timescale on which the rotation collapse occurs.

Figure 10.9 shows the critical island width required to trigger a rotation collapse
calculated as a function of the wall thickness for various different unperturbed island
rotation frequencies using the improved torque balance model. Separate calculations
are performed for a low-field tokamak fusion reactor and a high-field tokamak
fusion reactor (see chapter 1). The calculation parameters are determined using the
following assumptions: =B 5 T (low field) or =B 12 T (high field), β = 0.02,

= =T T 7 keVe i , = +m m m( )/2i D T (where mD and mT are the deuteron and triton
masses, respectively), χ χΞ = = =⊥ ⊥ ⊥

−1 m si e i
2 1, τ = 1, η η= = 1e i , and = −dp dr p a/ / .

The plasma equilibrium is assumed to be of the Wesson type (see section 9.4), with
=q(0) 0.8 and =q a( ) 6.0. The poloidal and toroidal mode numbers of the tearing

mode are m = 2 and n = 1, respectively. It follows that =r a0.560s . The perfect-wall
saturated island width is =W a/ 0.272pw . The wall radius and resistivity are assumed
to be =r a1.2w and η = × Ω− m6.9 10w

7 (which is the electrical resistivity of
stainless steel), respectively.

As is clear from figure 10.9, the critical island width required to trigger rotation
collapse increases with increasing wall thickness (because the wall becomes less
electrically resistive) until a critical thickness is reached above which the critical
island width becomes independent of the wall thickness. Of course, the critical wall
thickness is that above which the thin-wall approximation breaks down. The eddy
current induced by the rotating island chain in a wall whose thickness is greater than
the critical thickness (which corresponds to a skin depth in the wall material) only
penetrates a skin depth into the wall from its inner boundary, which implies that the
effective thickness of the wall becomes the skin depth, rather than its actual
thickness. According to the figure, for a plasma with diamagnetic levels of ion fluid
rotation (i.e. ω ω∼⊥ *i e), the critical island width is less than 10% of the plasma’s

Figure 10.9. The critical island width required to trigger rotation collapse calculated as a function of the wall
thickness for various unperturbed island rotation frequencies using the improved torque balance model. The
left-hand/right-hand panels correspond to a low-field tokamak fusion reactor and a high-field tokamak fusion
reactor, respectively.
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minor radius for thin (i.e. δ ∼ −a/ 10w
3) resistive walls. On the other hand, the critical

island width is about twice this value for thick (i.e. δ ∼ −a/ 10w
1) conducting walls. As

before, it is apparent that a low-field tokamak fusion reactor is more susceptible to
rotation braking than a high-field fusion reactor because of its lower diamagnetic
frequency and consequent lower ion fluid rotation.
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Chapter 11

The nonlinear neoclassical resonant
response model

11.1 Introduction
In chapters 4 and 8, we derived a reduced model that describes the nonlinear
response of a tokamak plasma to a tearing perturbation in the inner region, which is
situated in the immediate vicinity of the so-called rational magnetic flux surface at
which the perturbation resonates with the equilibrium magnetic field (see chapter 3).
Our derivation employs the simplifying approximation of ignoring the specifically
neoclassical terms (e.g. the terms associated with ion poloidal flow damping [22] and
the bootstrap current [1]) in the neoclassical fluid equations, (2.370)–(2.374). Our
justification for this approximation is that the terms in question have their origin in
friction between trapped and passing particles. However, trapped ions make radial
excursions from magnetic flux surfaces that are of the order of the ion banana width
(see section 2.7). This width is a few centimeters in a tokamak fusion reactor (see
table 2.4). Hence, if the radial width of the inner region is much less than the ion
banana width, then we would not expect ion neoclassical effects to contribute to the
plasma response in the inner region (because the trapped ions would average over
the spatial structure of the inner region). The electron banana width is of the order of
a few tenths of a centimeter in a tokamak fusion reactor (see table 2.4). Thus, we
would not expect electron neoclassical effects to contribute to the plasma response in
the radially thin resistive layers characteristic of the linear response regime (see
chapter 6). On the other hand, in the nonlinear response regime, a tearing mode
generates a magnetic island chain at the rational surface whose radial width (which
constitutes the effective width of the inner region) can easily exceed the ion banana
width (see section 5.16). Under these circumstances, there is no justification for
neglecting the specifically neoclassical terms in the neoclassical fluid equations. The
aim of this chapter is to repeat the analyses given in chapters 4 and 8 while including
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the neoclassical terms in equations (2.370)–(2.374), in order to produce a reduced
model that is suitable for analyzing the dynamics of wide magnetic island chains.

11.2 The neoclassical drift-magnetohydrodynamic equations
As before, we adopt definitions (4.1)–(4.6) for the constants n0, p0, ηe, ηi, τ, and τ′ that
parameterize the equilibrium plasma density, pressure, and temperature and their
gradients at the rational surface. We also make the simplifying assumption that
perturbed electron and ion temperature profiles in the inner region are functions of
the perturbed electron number density profile. Our neoclassical fluid equations,
(2.370)–(2.374), reduce to the following set of neoclassical drift-magnetohydrody-
namic (MHD) fluid equations:
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Here, the E-cross-B, diamagnetic, MHD, and ion fluid velocities, VE, *V , V, and Vi,
respectively, are defined in equations (4.10)–(4.13). Moreover, the dimensionless
parameter λ, the ion perpendicular momentum diffusivity Ξ⊥, the parallel energy
diffusivity χ , and the perpendicular energy diffusivity χ⊥, are defined in equations
(4.16)–(4.19). Finally,

τ τ=θ θ r( ), (11.4)i s
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α α α= −θ f(1 ), (11.5)1 2 t s
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Here, r is a radial cylindrical coordinate, θe is a unit vector in the poloidal direction
(see section 3.2), rs is the minor radius of the rational surface, =q q r( )s s is the safety
factor at the rational surface (see equation (3.2)), ϵ ϵ= r( )s s is the inverse aspect ratio
at the rational surface (see equation (3.18)), the ion neoclassical poloidal flow-
damping time τθ r( )i is defined in equation (2.332), the fraction of trapped particles
f r( )t is defined in equation (2.202), the dimensionless neoclassical parameters μe 11,
α1, α2, β11, β12, γ11, δ11, ϵ3, and ϵ4 are defined in equations (2.209), (2.217), (2.218),
(2.243), (2.244), (2.247), (2.251), (2.347), and (2.348), respectively, and the plasma
perpendicular electrical conductivity σ⊥ r( ) is defined in equation (2.41). As before, e
is the magnitude of the electron charge, mi the ion mass, n0 the equilibrium electron
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number density at the rational surface, p0 the equilibrium total plasma pressure at
the rational surface, E the electric field strength, B the magnetic field strength, j the
current density, p the total plasma pressure, and = Bb B/ z. Finally, = ·E E b,

= ·j j b, and = −⊥ jj j b.
If we compare equation (11.1) with its non-neoclassical concomitant, (4.7), then

we can see that the former equation contains an additional term that is due to the
action of ion neoclassical poloidal flow damping. The term in question involves τθ,
which is the ion neoclassical poloidal flow-damping time at the rational surface. If
we compare equation (11.2) with its non-neoclassical counterpart, (4.8), then we can
see that the former equation contains an additional term that is due to the action of
the bootstrap current. The term in question involves jbs, which is the parallel
bootstrap current density at the rational surface. Finally, if we compare equation
(11.3) with its non-neoclassical counterpart, (4.9), then we can see that the former
equation contains many additional terms that are due to neoclassical parallel
momentum and heats flows.

11.3 The reduced neoclasssical drift-MHD model
The Alfvén speed, VA, and the collisionless ion skin depth, di, are defined in
equations (4.23) and (4.24), respectively. Let l be a typical variational length scale in
the inner region. It is convenient to adopt the following normalization scheme that
renders all quantities in the neoclassical drift-MHD fluid equations dimensionless:
∇̂ = ∇l , ˆ =t t l V/( / )A , ˆ =d d l/i i , ˆ = B VE E/( )z A , μˆ = B lj j/( / )z 0 , μˆ =j j B l/( / )zbs bs 0 ,

μˆ =j j B l/( / )znc e,i nc e,i 0 , μˆ =p p B/( / )z
2

0 , μˆ =p p B/( / )z0 0
2

0 , ˆ = VV V/ A, ˆ =* * VV V /,i,E ,i,E A,
ˆ =V V V/i A, ˆ = −x r r l( )/s , τΞ̂ =θ θl V/( )A , Ξ̂ = Ξ⊥ ⊥ l V/( )A , η η μˆ =⊥ ⊥ l V/( ), , e , , e 0 A ,
χ χˆ =⊥ ⊥ l V/( ), , A . Here, V i is the ion parallel fluid velocity (see equation (2.321)).
Equations (11.1)–(11.3) yield the following set of normalized neoclassical drift-
MHD fluid equations:
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+

· ∇̂ ˆ − ˆ ×

= ˆ ˆ − × ∇̂ ˆ + ˆ ˆ − ˆ
⊥ ⊥

⎡
⎣

⎤
⎦

d p p

p j j

E V b b b j b

j b b

1
1

( )

( ) ( ) ,

(11.17)
i

bs
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λ

τ
τ η

τ
τ η

τ
τ

χ χ

∇∂ ˆ
∂ˆ + ˆ · ∇̂ ˆ + ˆ ˆ · ˆ + ˆ ∇̂ · ˆ

− ′
+ ′

ˆ ˆ ∇̂ · ˆ +
ˆ

ˆ

− ′
+ ′

ˆ ˆ ∇̂ · ˆ +
ˆ

ˆ
− ′

+ ′
ˆ ˆ ∇̂ · ˆ

− ˆ · ∇̂ · ∇̂ ˆ − ˆ ∇̂ ˆ =

*

⊥

⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥

⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥

p
t

p p p

d p j
E

d p j
E

d p j

p p

V V V

b

b b

b b

3
2

3
2

5
2

5
2

5
2 1

1
5
2 1

( )

( ) 0,

(11.18)

0 0

i 0 bs

i 0 nc e
e

i 0 nc i

2

where

αˆ = − ∂ ˆ
∂ ˆ

j
p
x

, (11.19)bs bs

αˆ = − ∂ ˆ
∂ ˆ

j
p
x

, (11.20)nc e,i nc e,i

ˆ = ˆ ×V E b, (11.21)E

ˆ = ˆ × ∇̂ ˆ* d pV b , (11.22)i

ˆ = ˆ + V̂V V b, (11.23)E

τ
ˆ = ˆ +

+
ˆ
*V V V

1
1

. (11.24)i

Finally, Maxwell’s equations yield

∇̂ · =b 0, (11.25)

∇̂ × ˆ = − ∂
∂t̂

E
b

, (11.26)

ˆ = ∇̂ ×j b. (11.27)

As before (see section 4.4), all quantities in the inner region are assumed to be
functions of x̂, ζ θ φ= −m n , and t̂ only. Here, θ and φ are the poloidal and
toroidal angles, respectively, while m and n are the poloidal and toroidal mode
numbers, respectively, of the tearing mode (see sections 3.2 and 3.3). We can write

δˆ = ˆ +p p p , (11.28)0
(1)

δ ψ= + + ∇̂ ×bb n n(1 ) ( ), (11.29)(1) (1)

ϕ ψ χˆ = ∇̂ + ˆ − ∂
∂ˆ + ∇̂ × ∂

∂ˆ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

E
t t

E n n , (11.30)(1) (2) (1) (1) (1) (1)
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ϕ χˆ = ∇̂ × − ∇̂ ∂
∂ˆ⎜ ⎟

⎛
⎝

⎞
⎠t

V b , (11.31)E
(1)

(1) (1)

δˆ = ˆ × ∇̂* d pV b , (11.32)i
(1)

ˆ = ˆ + ˆ + ∇̂ϒVV V b , (11.33)E
(1) (2)

τ
ˆ = ˆ +

+
ˆ
*V V V

1
1

, (11.34)i

where n is defined in equation (4.37), Ê
(2)

is the (normalized) constant inductive
component of the parallel electric field that maintains the equilibrium parallel current
density in the inner region against ohmic decay, and χ δ∇̂ = b2 (1) (1). The superscript (1)
indicates a quantity that is first order in our ordering scheme. Zeroth-order terms are
left without superscripts, while second-order terms are given the superscript (2).

Evaluating the normalized neoclassical drift-MHD fluid equations, (11.16)–
(11.18), up to the second order, we obtain

δ δ ϕ ψ δ

ϕ ϕ δ
τ

τ
δ δ ϵ ϵ

ϕ ϕ
τ

ϕ δ δ ϕ ψ

ϵ ϕ
τ

α
η

η
δ

∇̂ + +
∂ ˆ

∂ ˆ + ˆ +

+ ∇̂ ∂
∂ ˆ −

ˆ

+
×

+ ∇̂ ˆ · ˆ +
ˆ · ˆ

+
+ +

− ∇̂ ∇̂ +
ˆ

+
∇̂ ∇̂ + ∇̂ ∇̂ + ∇̂

+ Ξ̂ ˆ − ∂
∂ ˆ

−
ˆ

+
−

+
− Ξ ∇̂ =θ θ θ

⊥ ⊥ *

⊥

⎜ ⎟

⎜ ⎟

⎛

⎝
⎜⎜

⎡
⎣

⎤
⎦

⎞

⎠
⎟⎟

⎛

⎝

⎞

⎠

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥

⎞

⎠
⎟

( )

p b
V

t
V b

t
d p

b b
q

d
p p J

q
V

x
d

p

n

n

V V
V V

e V

( ) , [ , ]

[ , ]
2 (1 )

1
2 1

2

2 (1 )

1
1

1
0,

(11.35)

(1) (1)
(1) (1)

(1) (1) (1) (1)

(1) (1)
i

(1) (1)

(1) (1) E
(1) (1)

(1) (1)
(1) (1)

s
2

2 (1) (1) i 2 (1) (1) 2 (1) (1) (1) (1)

(1) (1)

s

(1) (1) i i

i

(1) (1) 2
i
(1)

δ δ ψ ψ ϕ
τ

ψ δ

ψ δ η η α δ

η δ δ δ δ ϵ ϵ

ψ δ ϕ

ˆ ∇̂ + + ˆ − ∂
∂ˆ − +

ˆ

+

+ ˆ + ˆ − ˆ ∂
∂ ˆ

+ ∇̂ ϒ − ˆ − × +
ˆ

∇̂ +

+ ˆ ∇̂ − ∇̂ =

⊥ ⎜ ⎟

⎜

⎟

⎛

⎝

⎞
⎠

⎡⎣ ⎤⎦
⎛

⎝

⎞

⎠

d p b E
t

d
p

d b J
p
x

b p
d

b b
q

d J b

n

n

( ) [ , ]
1

[ , ]

[ , ]

( )
2

2

2 0,

(11.36)

i
(1) (1) (2) (1) (1)

(1) (1) i (1) (1)

i
(1) (1) (1) (1) (1)

bs

(1)

(2) (1) (1) (1) i (1) (1)
(1) (1)

s
2

i
(1) (1) (1) (1)
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δ
δ ϕ

δ δ δϕ ψ

λ δ δ α
δ

ψ

α

η
ψ ψ

χ δ ψ ψ χ δ

∂
∂ˆ +

+ ˆ − ∂
∂ˆ + + ˆ + ∇̂ ϒ

+ ˆ ˆ + ˆ ˆ ∂
∂ ˆ

+
ˆ ˆ

ˆ
∂

∂ˆ

− ˆ − ˆ ∇̂ =−
⊥

⎜ ⎟
⎛
⎝

⎡
⎣

⎤
⎦

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

p

t
p

p
b
t

b V

p d p b d p
p

x

d p

t

p p

3
2

3
2

[ , ]

5
2

[ , ] ,

5
2

[ , ]
5
2

,

5
2

,

[[ , ], ] 0,

(11.37)

(1) (1)
(1) (1)

0

(1) (1)
(1) (1) (1) (1) 2 (2)

0 i
(1) (1)

i 0 nc

(1)
(1)

i 0
(1)

(1) (1)
(1)

( 1) (1) (1) (1) (1) 2 (1)

where J (1) is defined in equation (2.332), ≡ ∇̂ × ∇̂ ·A B A B n[ , ] , and

α τ
τ

α τ
τ

α
τ

α= ′
+ ′

+ ′
+ ′

+
+ ′1

2
5 1

1
1

, (11.38)nc bs nc e nc i

α τ
τ

η
η

= ′
+ ′

+
ˆ

ˆ
⎛

⎝
⎜

⎞

⎠
⎟1

1
2
5

. (11.39)
e

To the first order, equations (11.35) and (11.36) again give the equilibrium force
balance constraint

δ δ= −b p . (11.40)(1) (1)

(see section 4.4). The scalar product of equation (11.35) with n yields

ϕ δ ψ

ϵ ϵ ϕ
τ

α η
η

δ

∂ ˆ

∂ˆ = ˆ −

− Ξ̂ ˆ − ∂
∂ ˆ

−
ˆ

+
−

+

+ Ξ̂ ∇̂ ˆ

θ θ

⊥

⎜ ⎟

⎡
⎣

⎤
⎦

⎛

⎝
⎜

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥

⎞

⎠
⎟

V

t
V p

q q
V

x
d

p

V

, [ , ]

1
1

1

.

(11.41)

(1) (1)

(1) (1) (1) (1)

(1) (1)

s

(1)

s

(1) (1) i i

i

(1)

(1) 2 (1)

The scalar product of equation (11.36) with n gives

ψ ϕ ψ τ
τ

δ ψ

η α δ

∂
∂ˆ = + ˆ

+

+ ˆ −
∂ ˆ

+ ˆ⎜ ⎟
⎛
⎝

⎞
⎠

t
d p

J
p
x

E

[ , ]
1

[ , ]

.
(11.42)

(1) (1)
(1) (1)

i
(1) (1)

(1) (1)
bs

(1) (2)

The scalar product of the curl of equation (11.35) with n yields
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ϕ ϕ ϕ

τ
ϕ δ ϕ δ δ ϕ

ψ ϵ ϕ
τ

α
η

η
δ

ϕ
τ

δ

∂ ∇̂
∂ˆ = ∇̂

+
ˆ

+
∇̂ + ∇̂ + ∇̂

+ + Ξ̂ ∂
∂ ˆ

ˆ − ∂
∂ ˆ

−
ˆ

+
−

+

+ Ξ̂ ∇̂ −
ˆ

+

θ θ

⊥ ⎜ ⎟

⎜ ⎟

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

⎡
⎣

⎤
⎦

⎛

⎝
⎜

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥

⎞

⎠
⎟

⎛

⎝

⎞

⎠

( )
t

d
p p p

J
x q

V
x

d
p

d
p

,

2 (1 )
[ , ] , ,

[ , ]
1

1
1

1
.

(11.43)

(1) 2 (1)
(1) 2 (1)

i 2 (1) (1) 2 (1) (1) 2 (1) (1)

(1) (1) (1) (1)

s

(1) (1) i i

i

(1)

(1) 4 (1) i (1)

Finally, the scalar product of the curl of equation (11.36) with n gives

δ ϕ ψ∇̂ ϒ = + ˆp d J2[ , ] [ , ]. (11.44)2 (2) (1) (1)
i

(1) (1)

The previous equation can be combined with equations (11.37) and (11.40) to
produce

δ ϕ δ ψ

ψ α δ ψ

α
η

ψ ψ χ δ ψ ψ

χ δ

∂
∂ˆ = − ˆ

− ˆ − ˆ ∂
∂ ˆ

− ˆ
ˆ

∂
∂ˆ + − ˆ

+ − ˆ ∇̂

β

β β

β β

β

−

⊥

⎡
⎣

⎤
⎦

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢

⎤

⎦
⎥

p
t

p c V

c d J c d
p
x

c d
t

c p

c p

[ , ] ,

[ , ] ,

,
2
3

(1 ) [[ , ], ]

2
3

(1 ) ,

(11.45)

(1) (1)
(1) (1) 2 (1) (1)

2
i

(1) (1) 2
i nc

(1)
(1)

2
i (1)

(1) (1)
(1) 2 ( 1) (1) (1) (1)

2 (1) 2 (1)

where cβ is defined in equations (4.65) and (4.66).
Our final reduced neoclassical drift-MHD model takes the form [7, 8, 10]

ψ ϕ ψ τ
τ

δ ψ η α δ∂
∂ˆ = + ˆ

+
+ ˆ − ∂

∂ ˆ
+ ˆ⎛

⎝
⎞
⎠t

d p J
p

x
E[ , ]

1
[ , ] , (11.46)i bs

δ
ϕ δ ψ ψ

α
δ

ψ
α
η

ψ ψ

χ δ ψ ψ χ δ

∂
∂ˆ = − ˆ − ˆ

− ˆ ∂
∂ ˆ

− ˆ
ˆ

∂
∂ˆ

+ − ˆ + − ˆ ∇̂

β β

β β

β β ⊥

⎡⎣ ⎤⎦

⎡
⎣

⎤
⎦

⎡
⎣⎢

⎤
⎦⎥

p

t
p c V c d J

c d
p

x
c d

t

c p c p

[ , ] , [ , ]

, ,

2
3

(1 ) [[ , ], ]
2
3

(1 ) ,

(11.47)

2 2
i

2
i nc

2
i

2 2 2

ϕ
τ

ϕ δ δ δ ϕ

ψ ϵ ϕ
τ

α η
η

δ

ϕ
τ

δ

∂
∂ˆ = +

ˆ

+
∇̂ + + ∇̂

+ + Ξ̂ ∂
∂ ˆ

ˆ − ∂
∂ ˆ

−
ˆ

+
−

+

+ Ξ̂ ∇̂ −
ˆ

+

θ θ

⊥ ⎜ ⎟

⎜ ⎟

⎡⎣ ⎤⎦

⎛

⎝
⎜

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥

⎞

⎠
⎟

⎛

⎝

⎞

⎠

( )U
t

U
d

p U p p

J
x q

V
x

d
p

d
p

[ , ]
2 (1 )

[ , ] [ , ] ,

[ , ]
1

1
1

1
,

(11.48)

i 2 2

s

s

i i

i

4 i
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ϕ δ ψ ϵ ϵ ϕ
τ

α η
η

δ
∂ ˆ

∂ˆ = ˆ − − Ξ̂ ˆ − ∂
∂ ˆ

−
ˆ

+
−

+

+ Ξ̂ ∇̂ ˆ

θ θ

⊥

⎜ ⎟⎡⎣ ⎤⎦
⎛

⎝
⎜

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥

⎞

⎠
⎟

V

t
V p

q q
V

x
d

p

V

, [ , ]
1

1
1

,

(11.49)
s

s

s

s

i i

i

2

where

ϵ ψ= − + ∇̂J
q

2
, (11.50)

s

s

2

ϕ= ∇̂U . (11.51)2

Here, we have suppressed the ordering superscripts. If we compare equations
(11.46)–(11.51) to our previous reduced non-neoclassical drift-MHD equations,
(4.67)–(4.74), then we can see that the former set of equations contains many
additional terms. The additional term involving the parameter αbs in equation
(11.46) is due to the bootstrap current. The additional terms involving the
parameters αnc and α in equation (11.47) are due to neoclassical parallel momentum
and heat fluxes. Finally, the additional terms involving the parameter Ξθ in
equations (11.48) and (11.49) are due to neoclassical poloidal flow damping.

11.4 Magnetic field-line curvature
As mentioned in section 1.14, the bootstrap current has a destabilizing effect on wide
magnetic island chains [2, 5, 16]. It turns out that the mean curvature of magnetic
field lines in the inner region has a stabilizing effect on such chains that is similar in
magnitude to the destabilizing effect of the bootstrap current [11, 15]. Hence, it is not
consistent to include the bootstrap current in our analysis without also including
curvature effects. The appropriate curvature terms are derived in reference [13]. We
shall simply incorporate them into our model, which generalizes to give:

ψ ϕ ψ τ
τ

δ ψ η α δ∂
∂ˆ = + ˆ

+
+ ˆ − ∂

∂ ˆ
+ ˆ⎛

⎝
⎞
⎠t

d p J
p

x
E[ , ]

1
[ , ] , (11.52)i bs

δ ϕ δ ψ ψ

α δ ψ
α
η

ψ ψ

ϕ τ
τ

δ χ δ ψ ψ

χ δ

∂
∂ˆ = − ˆ − ˆ

− ˆ ∂
∂ ˆ

− ˆ
ˆ

∂
∂ˆ

− + ˆ
+

+ − ˆ

+ − ˆ ∇̂

β β

β β

β β

β ⊥

⎡⎣ ⎤⎦

⎡
⎣

⎤
⎦

⎡

⎣
⎢

⎤

⎦
⎥

⎡
⎣

⎤
⎦

p
t

p c V c d J

c d
p

x
c d

t

c d p H c p

c p

[ , ] , [ , ]

, ,

1
,

2
3

(1 ) [[ , ], ]

2
3

(1 ) ,

(11.53)

2 2
i

2
i nc

2
i

2
i

2

2 2
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ϕ
τ

ϕ δ δ δ ϕ

ψ δ

ϵ ϕ
τ

α
η

η
δ

ϕ
τ

δ

∂
∂ˆ = +

ˆ

+
∇̂ + + ∇̂

+ +

+ Ξ̂ ∂
∂ ˆ

ˆ − ∂
∂ ˆ

−
ˆ

+
−

+

+ Ξ̂ ∇̂ −
ˆ

+

θ θ

⊥ ⎜ ⎟

⎜ ⎟
⎛

⎝
⎜

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥

⎞

⎠
⎟

⎛

⎝

⎞

⎠

U
t

U
d

p U p p

J p H

x q
V

x
d

p

d
p

[ , ]
2 (1 ) ( [ , ] [ , ] [ , ])

[ , ] [ , ]

1
1

1

1
,

(11.54)

i 2 2

s

s

i i

i

4 i

ϕ δ ψ
τ

δ

ϵ ϵ ϕ
τ

α η
η

δ

∂ ˆ

∂ˆ = ˆ − +
ˆ

+
ˆ −

− Ξ̂ ˆ − ∂
∂ ˆ

−
ˆ

+
−

+
+ Ξ̂ ∇̂ ˆ

β

θ θ ⊥⎜ ⎟

⎡⎣ ⎤⎦

⎛

⎝
⎜

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥

⎞

⎠
⎟

V

t
V p

c d
V H p

q q
V

x
d

p V

, [ , ]
1

[ , 2 ]

1
1

1
.

(11.55)

2
i

s

s

s

s

i i

i

2

Here,

= ˆ
ˆH
x

L

2
, (11.56)

c

and ˆ =L L l/c c , where

=
−

L
R

r q(1 1 )
(11.57)c

0
2

s s
2

is the magnetic curvature length (i.e. the mean radius of curvature of magnetic field
lines at the rational surface) [12, 17]. Note that the previous expression for Lc is only
valid in a large-aspect-ratio, low-β plasma with circular magnetic flux surfaces. A
more general expression is given in section A.8.

11.5 The rescaled reduced neoclassical drift-MHD model
Following the approach adopted in sections 5.2 and 8.2, it is convenient to set the
normalization scale length, l, in our reduced neoclassical drift-MHD model equal to
the minor radius of the rational surface, rs. It is also convenient to work in a frame of
reference that corotates with the magnetic island chain that develops in the inner
region. This goal can be achieved by making the transformations ϕ ϕ ω→ + ˆ ˆm x( / )
and ϵ ωˆ → ˆ + ˆV V q m( / ) ( / )s s , where ω ω= ˆ V r/A s is the rotation frequency of the
tearing mode in the laboratory frame. In the corotating reference frame, the
normalized reconnected flux at the rational surface, Ψ̂ t̂( )s (see equations (3.72) and
(3.184)), is assumed to be a positive real quantity. It is helpful to define the reduced
(by a factor of four) radial width of the magnetic island chain: Ψ= ˆw L R( )s 0 s

1/2 (see
equation (5.129)). Here, R0 is the plasma major radius (see section 3.2), and Ls is the
magnetic shear length at the rational surface (see equation (5.27)).
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As before (see section 8.2), it is assumed that δ ≪ ≪w rs s, where δs is the linear
layer width (see chapter 6). In other words, the width of the island chain is assumed
to be much greater than the linear layer width but much less than the minor radius of
the rational magnetic flux surface. Let ˆ =w w r/ s. Reusing the analyses given in
sections 5.3 and 8.2, we find that

ψ ζ Ψ ζˆ ˆ → ˆ
ˆ + ˆ ˆ ˆx t

x

L
R t( , , )

2
( ) cos , (11.58)

2

s
0 s

δ ζˆ ˆ →
ˆ
ˆ ˆ*p x t

V

d
x( , , ) , (11.59)

i

ϕ ζ ω ςˆ ˆ → ˆ − ˆ ˆ ˆ − ˆ ′ ˆ ˆ⎡
⎣

⎤
⎦

x t
m

V t x V t x( , , ) ( )
4

( ) , (11.60)E E
2

ζ
ϵ

ω
τ

α
η

η
ςˆ ˆ ˆ → ˆ − ˆ ˆ −

ˆ
+

−
+

− ˆ ′ ˆ ˆθ
*

⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥V x t

q

m
V t

V
V t x( , , ) ( )

1
1

1 2
( ) , (11.61)s

s
E

i

i
E

ζˆ ˆ → − − ˆ⎜ ⎟
⎛
⎝

⎞
⎠

J x t
s L

( , , )
2

1
1

, (11.62)
s s

in the limit ∣ ˆ∣ ˆ ≫x w/ 1 (i.e. many island widths from the rational surface). Here,
ˆ =L L r/s s s, ˆ =R R r/0 0 s, ˆ =V V r V( )/E E s A, ˆ =* *V V r V( )/s A, and =s s r( )s s , whereV r( )E is the
E-cross-B velocity profile in the outer region (see equation (5.21)), *V r( ) the diamag-
netic velocity profile (see equation (5.29)), and s r( ) the magnetic shear profile (see
equation (5.28)). Moreover, ς = x̂sgn( ), and ˆ ′ = −

+V r dV dr V[ / ] /r
r

E E As
s . The parameter ˆ ′VE

is introduced into the analysis in order to take account of the fact that the E-cross-B
velocity profile in the outer region (i.e. everywhere in the plasma apart from the
immediate vicinity of the magnetic island chain) develops a gradient discontinuity at
the rational surface in response to the localized electromagnetic torque that emerges at
the surface (see section 8.2). Note, finally, that in neglecting any dependance of Ψ̂s on x̂
in equation (11.58), we are making use of the so-called constant-ψ approximation [9,
19], which is valid as long as Ψ Ψ∣Δ ˆ ∣ ˆ ˆ ≪w/ 1s s [4, 6]. Here, ΨΔ ŝ is defined in equations
(3.73) and (3.183).

Equations (11.58)–(11.62) are analogous to the boundary conditions in our
previous reduced non-neoclassical drift-MHD model, (8.2)–(8.6), apart from equa-
tion (11.61). The latter equation is derived on the assumption that ion neoclassical
poloidal flow damping relaxes the ion poloidal velocity profile to its neoclassical
value (see section 2.18) many island widths away from the rational surface.

Let = ˆ ˆX x w/ and ω ω= = ˆ ˆ
* *T t t , where ω* is the diamagnetic frequency at the

rational surface (see equation (5.47)), and ω ωˆ =* * V r/( / )A s . It follows that O∣ ∣ ∼X (1)
in the immediate vicinity of the island chain. It is helpful to define the rescaled fields
Ψ ζX T( , , ), N ζX T( , , ), Φ ζX T( , , ), V ζX T( , , ), and J ζX T( , , ), where
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ψ Ψ= ˆ
ˆ⎜ ⎟

⎛
⎝

⎞
⎠

w

L
, (11.63)

2

s

Nδ ω= − ˆ ˆ
ˆ

*
⎜ ⎟
⎛
⎝

⎞
⎠

p
w

m d
, (11.64)

i

ϕ ω Φ= ˆ ˆ*⎛
⎝

⎞
⎠

w
m

, (11.65)

Vωˆ =
ˆ ˆ

ˆ
β

*⎛

⎝
⎜

⎞

⎠
⎟V

L

m c d
, (11.66)s

2

2 2
i

Jω= − − ˆ +
ˆ ˆ

ˆ
*

⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

J
s L

L
m w

2
1

1
. (11.67)

s s

s
2

2 2

These fields are (essentially) the same as those used in our previous rescaled reduced
non-neoclassical drift-MHD model (see section 8.2).

Equations (11.50)–(11.56) rescale to give

N J Nζ Φ τ
τ

Ψ ϵ ϵ ϵ ζ ϵ ϵ ϵ
ˆ

= −
+

+ + ∂ −β β{ }d w
dT

(ln )
cos

1
, ( 1), (11.68)X

2

c R bs c R

N N V J

N

N N N

Φ Ψ ϵ ϵ Ψ

ζ ϵ ϵ Φ τ
τ

ζ ϵ ϵ Ψ ϵ Ψ Ψ ϵ

∂
∂

= + +

+ −
+

− ∂ + + ∂−
⊥

{ }
T

X

{ , } { , } { , }

1
,

{ , } {{ , }, } ,

(11.69)

X X

p c

g p c

nc p c
1 2

N J N

V N

N

Φ
Φ

τ
Φ Ψ ζ

ϵ
ϵ

ξ Φ
τ

α
η

η

ϵ Φ
τ

∂ ∂
∂

= ∂ +
+

∂ + −

+ ∂ − ∂ +
+

−
+

+ ∂ +
+

θ
θ

φ

−
⎜ ⎟

⎜ ⎟

⎧
⎨⎩

⎫
⎬⎭

⎛

⎝
⎜

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥

⎞

⎠
⎟

⎛
⎝

⎞
⎠

T
X

( )
1

, { , } { , }

1
1

1
1

1
,

(11.70)

X
X X

X X

X

2

g

q

1 i

i

4

V V N V N

V N V

ϵ ϵ Φ Ψ
τ

ζ ϵ ϵ ϵ ϵ

ϵ ϵ ξ Φ
τ

α
η

η
ϵ ϵ

∂
∂

= + +
+

+

− − ∂ +
+

−
+

+ ∂

β

θ θ φ⎜ ⎟
⎛

⎝
⎜

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥

⎞

⎠
⎟

T
X{ , } { , }

1
1

{ , 2 }

1
1

1
1

,
(11.71)

X X

c c g p c
2

c

c
i

i
c

2
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JΨ ϵ ϵ∂ = + β1 . (11.72)X
2

c

Here, ∂ ≡ ∂ ∂X/X , ζ ζ≡ ∂ ∂ ∂ ∂ − ∂ ∂ ∂ ∂A B A X B A B X{ , } ( / ) ( / ) ( / ) ( / ), and we have set

α ηˆ = − ˆ +
ˆ
ˆ ˆ*

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

E
s L

V

d

2
1

1
. (11.73)

s s
bs

i

We have also made use of the identity (8.39). Furthermore,

ϵ ϵ= ⎜ ⎟
⎛
⎝

⎞
⎠q

, (11.74)q
s

s

2

ϵ ϵ
ω τ

=θ
θ*

⎜ ⎟
⎛
⎝

⎞
⎠q

1
, (11.75)s

s

2

and

ξ
ϵ
ϵ ϵ

= =
L

L

q
, (11.76)

p

q

p

s

s

s

ζ ξ β α
τ

η
η

β τ
τ

η
η

= −
+ +

−
+ +

=
β

⎜ ⎟⎜ ⎟ ⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

f
w
d

w
w

1
1

1 1 1 1
, (11.77)bs t s 11 1

i

i
12

e

e

2

bs

2

ζ ξ β ϵ α
τ

η
η

β ϵ τ
τ

η
η

α
τ

= + −
+ +

− +
+ +

−
′

=

β
⎜ ⎟

⎜ ⎟

⎜ ⎟

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦
⎥

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

f

w
d

w
w

2
5

1
1

1 1

2
5 1 1

,

(11.78)

nc t s 11 1 1
i

i

12 2
e

e

2
2

nc

2

ζ = =
β

⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

L

L
w
d

w
w

2 , (11.79)g
p

c

2

g

2

where

ξ β α
τ

η
η

β τ
τ

η
η

= −
+ +

−
+ +β

−

⎜ ⎟
⎧
⎨
⎩

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥

⎫
⎬
⎭

w d f 1
1

1 1 1 1
, (11.80)bs t s 11 1

i

i
12

e

e

1 2

ξ β ϵ α
τ

η
η

β ϵ τ
τ

η
η

α
τ

= + −
+ +

− +
+ +

−
′β

−

⎜ ⎟
⎧
⎨⎩

⎡

⎣
⎢⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦
⎥

⎫
⎬⎭

w d f
2
5

1
1

1 1
2
5 1 1

, (11.81)nc t s 11 1 1
i

i
12 2

e

e

2
1 2
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= β⎜ ⎟
⎛
⎝

⎞
⎠

w d
L
L2

. (11.82)g
c

p

1 2

Here, Lp is the effective pressure gradient scale length at the rational surface (see
equation (8.35)), dβ is the ion sound radius (see equation (4.75)), and the
dimensionless quantities ϵβ, ϵp, ϵc, ϵR, ϵφ, ϵ⊥, and ϵ are defined in section 8.3.

Equations (11.68)–(11.72) must be solved subject to the boundary conditions (see
equations (11.58)–(11.62) and (11.63)–(11.67))

Ψ ζ ζ→ +X T
X

( , , )
2

cos , (11.83)
2

N ζ →X T X( , , ) , (11.84)

v
vΦ ζ ς→ + ′

X T T X
T X

( , , ) ( )
( )
2

, (11.85)
2

V v vζ ξ
τ

α
η

η
ς→ +

+
−

+
+ ′θ⎜ ⎟

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥X T T T X( , , ) ( )

1
1

1
1

( ) , (11.86)i

i

J ζ →X T( , , ) 0, (11.87)

as ∣ ∣ → ∞X . Here,

v
ω ω

ω
= −

*

T( ) , (11.88)
E

v
ω

ω′ = − ˆ

* −

+

⎡
⎣

⎤
⎦

T
w

r
d
dr

( )
2

, (11.89)
r

r
E

s

s

where ω = m r V r( / ) ( )E s E s is the E-cross-B frequency at the rational surface. Note that
Ψ , N , Φ, V , and J are allO(1) quantities in the inner region. Note, further, that the
boundary conditions (11.83)–(11.87), as well as the symmetry of the rescaled reduced
neoclassical drift-MHD equations, (11.68)–(11.72), ensure thatΨ , V , andJ are even
functions of X, whereas N and Φ are odd functions.

Finally, asymptotic matching between the inner region and the surrounding
plasma yields (see section 8.10)

J∫ ∮Ψ
Ψ

ϵ ϵ
ζ ζ

π
Δ ˆ

ˆ =
ˆ
β

−∞

∞
⎜ ⎟
⎛
⎝

⎞
⎠ w

d
dXRe

2
cos

2
, (11.90)s

s

c

J∫ ∮Ψ
Ψ

ϵ ϵ
ζ ζ

π
Δ ˆ

ˆ = −
ˆ
β

−∞

∞
⎜ ⎟
⎛
⎝

⎞
⎠ w

d
dXIm

2
sin

2
. (11.91)s

s

c
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11.6 The ordering scheme
Tables 8.1 and 11.1 give estimates for the values of the various parameters that
characterize our rescaled reduced neoclassical drift-MHD model, (11.68)–(11.72), in
a low-field tokamak fusion reactor and a high-field tokamak fusion reactor (see
chapter 1). These estimates are made using the following assumptions: =B 5 T (low
field) or =B 12 T (high field), β = 0.02, = =T T 7 keVe i , = +m m m( )/2i D T (where
mD and mT are the deuteron and triton masses, respectively),

χ χΞ = = =⊥ ⊥ ⊥
−1 m si e i

2 1, m = 2, n = 1, =r a/2s (where a is the minor radius of
the plasma), =s 1s , τ = 1, τ′ = 1, η η= = 1e i , and = −dp dr p a/ / .

Let us adopt the orderings

ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ ϵ∼ ∼ ∼ ∼ ∼ ∼ ∼ ∼β θ ⊥ , (11.92)p q c R

where ϵ ≪ 1. As is clear from tables 8.1 and 11.1, these orderings are reasonable
provided that the radial width of the magnetic island chain that develops in the inner
region exceeds a few centimeters.

Let us also adopt the orderings

ξ ζ ζ ζ∼ ∼ ∼ ∼ 1. (11.93)bs nc g

As is clear from tables 8.1 and 11.1, the ordering ξ ∼ 1 is consistent with the
orderings (11.92). Unfortunately, the orderings ζ ζ ζ∼ ∼ ∼ 1bs nc g are not consistent
with the orderings (11.92). (It would actually be more consistent to adopt the
orderings ζ ζ ζ∼ ∼ ≫ 1bs nc g .) Nevertheless, we are forced to adopt the orderings
ζ ζ ζ∼ ∼ ∼ 1bs nc g in order to make further progress. (By adopting these orderings,
we are essentially ensuring that the bootstrap current and curvature terms in our
analysis are not so large that they lead to a breakdown of the constant-ψ
approximation.)

Table 11.1. The parameters that characterize the rescaled reduced
neoclassical drift-MHD equations for a low-field tokamak reactor and a
high-field tokamak reactor (see equations (11.6), (11.74), (11.75), and
(11.80)–(11.82)).

Low field High field

B (T) 5.0 12.0

ft s
0.565 0.565

ϵq × −6.94 10 4 × −6.94 10 3

ϵθ × −1.79 10 2 × −4.30 10 2

w (m)bs × −3.89 10 3 × −1.62 10 3

w (m)nc × −3.42 10 3 × −1.42 10 3

w (m)g × −1.32 10 2 × −5.51 10 3
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Finally, suppose that

O ϵ∂
∂

∼
T

( ), (11.94)3

and let us expand the various fields in our rescaled model as follows:

Ψ Ψ ϵ Ψ ϵ Ψ= + + + ⋯, (11.95)0
2

2
3

3

Φ Φ ϵ Φ ϵ Φ= + + + ⋯, (11.96)0
2

2
3

3

N N N Nϵ ϵ= + + + ⋯, (11.97)0
2

2
3

3

V V Vϵ= + + ⋯, (11.98)0 1

J J Jϵ= + + ⋯. (11.99)0 1

Here, Ψ0, Ψ1, etc. are assumed to be O(1) in the inner region.

11.7 The zeroth-order solution
To the zeroth order in ϵ, equation (11.72) yields

Ψ∂ = 1. (11.100)X
2

0

Solving this equation subject to the boundary condition (11.83), we obtain

Ψ ζ ζ= Ω ≡ +X
X

( , )
2

cos . (11.101)0

2

Thus, we again conclude that, to the lowest order in our expansion, the magnetic
flux surfaces in the island region have the constant-ψ structure pictured in figure 5.7.
The island O-points correspond to Ω = −1 and ζ π= −k(2 1) (where k is an
integer), the X-points correspond to Ω = +1 and ζ π= k2 , and the magnetic
separatrix corresponds to Ω = +1.

To the zeroth order in ϵ, equation (11.71) yields

N Ω ={ , } 0, (11.102)0

where use has been made of equation (11.101). Given that N is an odd function of
X, it follows that

N Nζ ς= ΩX T T( , , ) ( , ). (11.103)0 (0)

By symmetry, N = 00 inside the magnetic separatrix of the island chain. Let

N
Ω =

∂
∂Ω

L T( , ) . (11.104)(0)

Note that Ω ⩽ =L T( 1, ) 0. Equations (11.84) and (11.101) imply that
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Ω → ∞ =
Ω

L T( , )
1

2
. (11.105)

To the zeroth order in ϵ, equation (11.68) yields

Φ Ω ={ , } 0, (11.106)0

where use has been made of equations (11.101) and (11.103). Given that Φ is an odd
function of X, it follows that

Φ ζ ς Φ= ΩX T T( , , ) ( , ). (11.107)0 (0)

By symmetry, Φ = 00 inside the magnetic separatrix of the island chain. Let

Φ
Ω =

∂
∂Ω

M T( , ) . (11.108)(0)

Note that Ω ⩽ =M T( 1, ) 0. Equations (11.85) and (11.101) imply that

v
vΩ → ∞ =

Ω
+ ′M T

T
T( , )

( )

2
( ). (11.109)

To the zeroth order in ϵ, equation (11.69) yields

V Ω ={ , } 0, (11.110)0

where use has been made of equations (11.101), (11.103), and (11.107). Given that V
is an even function of X, we can write

V Vζ = ΩX T T( , , ) ( , ). (11.111)0 (0)

Finally, to the zeroth order in ϵ, equation (11.70) gives

J

V

ζ
τ

ϵ
ϵ

ξ

Ω = − ∣ ∣ Ω + ∂ +
+

Ω

− ∂ −θ

Ω

Ω
−

⎧
⎨⎩

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎫
⎬⎭

( )

L X M M
L

X

X X F

{ , } { , }
1
2 1

,

,
(11.112)

0 g
2

q

1
(0)

where

τ
α

η
η

Ω = Ω +
+

−
+

Ωθ⎜ ⎟
⎛
⎝

⎞
⎠

F T M T L T( , ) ( , )
1

1
1

1
( , ), (11.113)i

i

and use has been made of equations (11.101), (11.103), (11.104), (11.107), and
(11.108). Moreover, ∂ ≡ ∂ ∂ΩΩ / . Note that Ω ⩽ =F T( 1, ) 0.

Let us write

J J Jζ ζ ζΩ = Ω + ΩT T T( , , ) ( , , ) ( , , ), (11.114)0 0
(c)

0
(s)

where J 0
(c) has the symmetry of ζcos , whereas J 0

(s) has the symmetry of ζsin . It
follows from equations (11.112) and (11.114) that
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J ζ
τ

Ω = − ∣ ∣ Ω + ∂ +
+

ΩΩ
⎧
⎨⎩

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎫
⎬⎭

L X M M
L

X{ , } { , }
1
2 1

, , (11.115)0
(c)

g
2

which implies that

J J � �ζ ζ
τ

Ω = Ω − + ∂ +
+Ω ⎡

⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥

T T L X M M
L

X( , , ) ( , )
1
2 1

, (11.116)0
(c)

0 g
2

where the X͠ operator is defined in section 8.6, and J̄ Ω T( , )0 is an undetermined
flux-surface function.

Equations (11.112) and (11.114) also yield

J Vϵ
ϵ

ξΩ = − ∂ −θ
Ω

−( )X X F{ , } . (11.117)0
(s)

q

1
(0)

The flux-surface average (see section 8.6) of the previous equation gives

Vξ∂ − =Ω
−X X F( ) 0. (11.118)1

(0)

Inside the separatrix of the magnetic island chain, recalling that Ω ⩽ =F T( 1, ) 0,
the previous equation reduces to

V∂ =ΩX 0, (11.119)(0)

whereas outside the separatrix, it gives

Vξ∂ − =Ω
−( )X X F 0, (11.120)1

(0)
2

where use has been made of the easily proved identity 〈 ∂ 〉 ≡ ∂ 〈 〉Ω ΩX G X G . Thus, we
conclude that

V Ω =T c T( , ) ( ) (11.121)(0) 0

inside the separatrix, and

V ξΩ = Ω +T X F T c T( , ) ( , ) ( ) (11.122)(0)
2

1

outside the separatrix. Here, use has been made of 〈∣ ∣〉 =X 1 outside the separatrix.
However, the boundary condition (11.86), combined with equations (11.101),
(11.105), (11.109), and (11.113), implies that =c T( ) 01 . Finally, equations
(11.117), (11.121), and (11.122) yield

J ϵ
ϵ

Ω = − ∂ −θ
ΩX X X F{ , } [( ) ]. (11.123)(s)

q

2

11.8 The higher-order solution
Our zeroth-order solution is characterized by three undetermined flux-surface
functions: J̄ Ω T( , )0 , ΩL T( , ), and ΩF T( , ). In order to determine the forms of
these functions, we need to expand our model to a higher order (see section 8.8).
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Expanding equation (11.68) to the third order in ϵ, we obtain

Jζ ϵ ϵ ϵ ζ ϵ ϵ ϵ
ˆ = Ω + + −β β

d w
dT

F X L
(ln )

cos { , } ( 1), (11.124)
2

e c R 0 bs c R

where

N Nζ ϵ Φ ϵ Φ ϵ τ
τ

ϵ ϵ ς Ψ ϵ ΨΩ = + −
+

+ − +⎛
⎝

⎞
⎠
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2 3
2

2 3
2

e 2 3

and use has been made of equations (8.75), (11.95)–(11.99), (11.103), (11.104),
(11.107), and (11.108). The flux-surface average of equation (11.124) yields

J
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1 1
1 , (11.126)0
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where use has been made of equations (8.68), (8.70), (11.114), and (11.116). Note
that J〈 〉 = 00

(s) , by symmetry. Hence,
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(11.127)
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where use has been made of equation (11.116).
Expanding equation (11.69) to the first order in ϵ, we obtain

V Nϵ ϵ ϵ ϵ ς= Ω + Ω Ω + ∂ +−
⊥ ΩX L L0 { , } {{ , }, } ( ), (11.128)1

2 1
2

2

where use has been made of equations (11.95)–(11.99), (11.101), (11.103), and
(11.104). The flux-surface average of the previous equation yields

∂ =Ω X L( ) 0. (11.129)2

We can solve the previous equation, subject to the boundary condition (11.105), to
give

Ω = Ω =
− ⩽ Ω ⩽

Ω >
⎧
⎨⎩

L T L
X

( , ) ( )
0 1 1
1 1

. (11.130)2

Here, we have taken account of the previously mentioned fact that L = 0 within the
island separatrix. Note that ΩL( ) is discontinuous across the island separatrix, which
implies that the pressure gradient is also discontinuous across the separatrix. As
discussed in section 8.9, we expect this discontinuity to be resolved in a layer of
characteristic thickness w4 d on the separatrix (see equation (8.84) and table 8.1).

Expanding equation (11.71) to the second order in ϵ, we obtain

V N V

V V

ϵ ϵ ς ϵ ς Ψ ϵ ϵ ϵ ξ

ϵ ϵ
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M L X F

X

0 { , } ( )

,
(11.131)
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c
2 2

(0) (0)

Tearing Mode Dynamics in Tokamak Plasmas

11-19



where use has been made of equations (11.95)–(11.99), (11.101), (11.103), (11.104),
(11.107), (11.108), (11.111), and (11.113). The flux-surface average of the previous
equation yields

V Vϵ ϵ ξ∂ ∂ = −φ θΩ Ω( ) ( )X F1 . (11.132)2
(0) (0)

According to equation (11.121), recalling that Ω ⩽ =F T( 1, ) 0, we get

ϵ= θ c T0 1 ( ) (11.133)0

inside the separatrix, which implies that =c T( ) 00 . Hence, given that we have
already concluded that =c T( ) 01 , equations (11.121) and (11.122) yield

V ξΩ = ΩT X F T( , ) ( , ). (11.134)(0)
2

The previous equation can be combined with equation (11.132) to produce

ϵ ϵ∂ ∂ = −φ θΩ ΩX X F X F[ ( )] ( 1 1) . (11.135)2 2 2

It is apparent from the previous equation that there is no discontinuity in F across
the separatrix. Thus, given that Ω ⩽ =F T( 1, ) 0, it follows that =+F T(1 , ) 0. It is
also clear from equations (11.105), (11.109), and (11.113) that

vΩ → ∞ = ′F T T( , ) ( ). Thus, we can write

FvΩ = ′ − ⩽ Ω ⩽
Ω Ω >

⎧
⎨⎩

F T T( , ) ( )
0 1 1

( ) 1
, (11.136)

where

F Fϵ ϵ= −φ θΩ Ωd X d X X[ ( )] ( 1 1) , (11.137)2 2 2

and

F =(1) 0, (11.138)

F Ω → ∞ =( ) 1. (11.139)

Here, ≡ ΩΩd d d/ .

11.9 Asymptotic matching
The asymptotic matching relations (11.90) and (11.91) can be re-expressed in the
forms (see section 8.10),
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Equations (11.123), (11.136), and (11.141) yield
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where use has been made of equations (11.138), (11.139), as well as the fact that
〈 〉 − 〈∣ ∣ 〉 ∼ Ω −X X2 2 3 1 as Ω → ∞. However, according to equation (11.137),
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where use has been made of equations (11.138) and (11.139). The previous equation
yields
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where use has been made of equations (8.23), (8.25), (8.27), and (8.46), and (8.103).
Here, τH is the hydromagnetic time (see equation (5.43)), and τφ is the toroidal
momentum confinement time (see equation (5.43)). Equation (11.145) can also be
obtained by integrating equation (3.165) across the rational surface, making use of
equation (3.165) as well as the identification
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If we compare equation (11.145) with equation (8.102), then we can see that the
discontinuity in the MHD fluid velocity gradient that develops at the rational
surface is a factor of ϵ q( / )s s

2 smaller in our neoclassical drift-MHD model than the
corresponding discontinuity in our non-neoclassical drift-MHD model. The
reason for this reduction is that the strong poloidal flow damping present in
the former model prevents the poloidal plasma rotation profile from being
modified by the localized electromagnetic torque produced at the rational
surface. Instead, only the toroidal plasma rotation profile is modified by the
electromagnetic torque [4, 18].

It follows from equations (11.113), (11.127), (11.130), (11.136), and (11.140) that
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Here,
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Ω >{( ) 0 1 1

1 1
, (11.148)

and use has been made of the fact that F Ω( ) is continuous across the separatrix. The
previous equation can be combined with equations (8.10), (8.23)–(8.27), (8.103),
(11.77), (11.79), and (11.144) to give [2, 3, 7, 14, 15, 20, 21, 23]
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11.10 The evaluation of the integrals
It is helpful to define the new magnetic flux-surface label = + Ωk [(1 )/2]1/2 (see
section 8.11). It follows from equation (11.101) that k = 0 at the O-points of the
magnetic island chain, and k = 1 on the magnetic separatrix. Hence, we can write
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C C F A C Fλ= −θφd d k k[ ( )] ( 1) , (11.160)k k
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, (11.161)

F =(1) 0, (11.162)

F ∞ =( ) 1. (11.163)

Here, the functionsA k( ), C k( ), D k( ), and E k( ) are defined in section 8.11. Note that
the factor π2 /3 in equation (11.157) is generated by the discontinuity in the function
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ΩL( ) (i.e. the discontinuity in the pressure gradient) across the separatrix of the
magnetic island chain [23]. If this contribution is omitted, then the sign of the
integral I3 is reversed.

The values of the first three integrals are

=I 0.8227, (11.164)1

=I 1.5835, (11.165)2

=I 1.3814. (11.166)3

Figure 11.1 shows the values of the integrals I4 and I5 as functions of λθφ. Note that
I4 and I5 are both only very weak functions of λθφ.
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Chapter 12

Neoclassical tearing modes

12.1 Introduction
A nonlinear tearing mode in a tokamak plasma reconnects magnetic flux (see section
5.16), leading to the generation of a helical magnetic island chain at the so-called
rational magnetic flux surface at which the mode resonates with the equilibrium
magnetic field. As we saw in chapters 8 and 11, if the full radial width of the island
chain exceeds the critical value of w4 d (see equation (8.84) and table 8.1), then the
plasma pressure profile is flattened in the region lying within the chain’s magnetic
separatrix [1]. The flattening of the pressure profile causes a reduction in the
bootstrap current [2] inside the separatrix that has a destabilizing effect on the
chain [3]. A tearing mode that is driven into instability by this mechanism, rather
than the usual free energy sources for a tearing mode (i.e. global current and
pressure gradients), is known as a neoclassical tearing mode [4].

Neoclassical tearing modes were originally identified experimentally in the
Tokamak Fusion Test Reactor (TFTR) [5] and have subsequently been observed
in many other tokamaks [6–10]. The flattening of the pressure profile within the
magnetic separatrix of a neoclassical tearing mode leads to a degradation of the
energy confinement properties of the plasma [11] that limits the maximum attainable
β value (see equation (1.23)) [9]. Consequently, neoclassical tearing modes are
nowadays regarded as the main obstacle to obtaining β values in tokamak plasmas
that are adequate for the achievement of thermonuclear fusion [4, 12, 13].

The fact that a magnetic island chain can only locally flatten the plasma pressure
profile (thereby generating a destabilizing local reduction in the bootstrap current)
when its radial width exceeds the critical value w4 d leads to the conclusion that
neoclassical tearing modes are actually metastable [1]. In other words, some sort of
seed perturbation must be applied to the relevant rational magnetic flux surface in
order to trigger a neoclassical tearing mode. In practice, the seed perturbation
usually takes the form of a transient magnetic perturbation that is resonant at the
rational surface [14]. Such perturbations arise naturally in tokamak plasmas as a
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consequence of plasma instabilities such as internal kink modes and edge localized
modes [15].

Neoclassical tearing modes can be stabilized by driving a parallel (to the magnetic
field) current in the vicinity of the rational surface by means of radio-frequency (rf)
electromagnetic waves injected into the plasma; the idea is to replace the missing
bootstrap current within the island chain’s magnetic separatrix [7, 16–20].

The aim of this chapter is to use the nonlinear neoclassical resonant response
model derived in the previous chapter to investigate the physics of neoclassical
tearing modes.

12.2 The isolated magnetic island chain
Suppose that the rigid wall surrounding the plasma is perfectly conducting (i.e.

wτ → ∞, where wτ is the time constant of the wall—see section 3.10) and that there is
no current flowing through the external magnetic field coil (i.e. I 0ĉ = , where Iĉ is the
normalized coil current—see equation (3.194)). In this situation, the magnetic island
chain that develops at the rational surface is said to be isolated (because it is not
subject to any outside influence). For an isolated island chain, equations (3.187),
(3.188), (7.5), as well as the analysis of section 9.4, lead to the relation

W
W

, (12.1)s

s s

Ψ
Ψ

Δ ˆ
ˆ = Δ −

where (0)pwΔ ≡ Δ is the (real dimensionless) perfect-wall tearing stability index

evaluated at zero island width, sΨ̂ the normalized reconnected helical magnetic flux
at the rational surface (see equation (3.184)), sΨΔ ˆ the normalized helical sheet
current density at the rational surface (see equation (3.183)),W w4= the full radial
width of the magnetic island chain, and

W
r

0.8 0.27 0.09
. (12.2)s

s

s
2

s sα β α
=

− −

Here, rs is the minor radius of the rational surface, and the dimensionless parameters
sα and sβ are defined in equations (9.16) and (9.17), respectively. It is clear from the

previous equation that

Im 0, (12.3)s

s
⎜ ⎟
⎛
⎝

⎞
⎠

Ψ
Ψ

Δ ˆ
ˆ =

which implies that zero electromagnetic torque is exerted at the rational surface (see
section 3.13).

12.3 The island rotation frequency
Equations (11.144) and (12.3) yield

v 0. (12.4)′ =
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It follows from equation (11.136) that F ( ) 0Ω = . Hence, equations (11.113) and
(11.130) imply that the magnetohydrodynamic (MHD) stream function of an
isolated magnetic island chain takes the form

M
X

( )
1

1
1

1

0 1 1
1/ 1

. (12.5)i

i
2⎜ ⎟

⎛
⎝

⎞
⎠

⎧
⎨⎩τ

α
η

η
Ω = −

+
−

+
− ⩽ Ω ⩽

〈 〉 Ω >θ

Here, Ω is a magnetic flux-surface label that takes the value zero at the island
O-points, unity on the magnetic separatrix, and a value much larger than unity far
from the island chain (see equation (11.101)). Moreover, iη is a dimensionless
measure of the ion temperature gradient at the rational surface (see equation (4.4)),
and τ is the ratio of the electron and ion pressure gradients at the rational surface
(see equation (4.5)). The quantity

f f(1 ) 1.17 (1 0.461 ), (12.6)1 2 t s t sα α α= − = −θ

where ft s is the fraction of trapped particles at the rational surface (see equation
(2.202)), parameterizes the influence of ion neoclassical poloidal flow damping (see
equations (2.217), (2.218), and (11.5)). Finally, the function X ( )2〈 〉 Ω is specified in
section 8.11. Note that X ( ) 22〈 〉 Ω → Ω as Ω → ∞. It follows from equation (12.5)
that

M( )
1

1
1

1
1

2
. (12.7)i

i

⎜ ⎟
⎛
⎝

⎞
⎠τ

α
η

η
Ω → ∞ = −

+
−

+ Ω
θ

However, equations (11.109) and (12.4) yield

v
M( )

2
, (12.8)Ω → ∞ =

Ω

where (see equation (11.88))

v . (12.9)
Eω ω

ω
= −

*

Here, ω is the rotation frequency of magnetic island chain in the laboratory frame
(see section 5.4), Eω the E-cross-B frequency at the rational surface (see equation
(5.44)), and ω* the diamagnetic frequency at the rational surface (see equation
(5.47)). The previous three equations give

v
1

1
1

1
, (12.10)i

i
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⎛
⎝

⎞
⎠τ

α
η

η
= −

+
−

+θ

which implies that

1
1

, (12.11)E
i

i
i⎜ ⎟

⎛
⎝

⎞
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ω ω α
η

η
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where

1
1

(12.12)i ⎛
⎝

⎞
⎠

ω
τ

ω= −
+* *

is the ion diamagnetic frequency at the rational surface (see equation (5.46)). We
conclude that, as a result of ion neoclassical poloidal flow damping (i.e. 0α ≠θ ), an
isolated magnetic island chain does not exactly corotate with the unperturbed ion
fluid at the rational surface (i.e. E iω ω ω≠ + * ). (Recall that non-neoclassical theory
leads to the prediction that a wide magnetic island chain does exactly corotate with
the unperturbed ion fluid at the rational surface. See section 9.5.) Instead, assuming
that 0 iη< < ∞, and given that 0 1α< <θ under most circumstances (see equation
(12.6)), we deduce that a wide magnetic island chain propagates in the electron
diamagnetic direction with respect to the unperturbed ion fluid at the rational
surface, but in the ion diamagnetic direction with respect to the unperturbed MHD
fluid [21–23]. This behavior should be contrasted with that of a linear tearing mode,
which propagates in the electron diamagnetic direction with respect to the
unperturbed MHD fluid (see chapter 6).

According to equations (8.75), (8.76), (11.130), and (12.5), the electron and ion
fluid stream functions take the respective forms

Y
X

( ) 1
1

1 1
1

, (12.13)e
i

i
2

α
τ

η
η

Ω = − +
+ + 〈 〉θ

Y
X

( )
1

1 1
1

. (12.14)i
i

i
2

α
τ

η
η

Ω =
+ + 〈 〉θ

The poloidal components of the perpendicular velocities of the electron, MHD, and
ion fluids in the island rest frame are related to their respective stream functions,Ye,
M, andYi , according to equations (8.72)–(8.74).

Figure 12.1 shows typical normalized perpendicular velocity profiles of the
electron, MHD, and ion fluids across the O-points and the X-points of an isolated
magnetic island chain in the island rest frame, as determined from equations (8.72)–
(8.74), (12.5), (12.13), and (12.14). Here, r is the magnetic flux-surface minor radius,
V m r V( / ) /s ωˆ =θ θ⊥ *, andm is the poloidal mode number of the tearing mode. It can be
seen that all three fluids corotate with the island chain inside the magnetic separatrix.
However, unlike the non-neoclassical case (see figure 9.3), ion neoclassical poloidal
flow damping (i.e. 0α ≠θ ) causes the ion fluid velocity profile to be modified by the
presence of the island chain. In fact, all three velocity profiles are discontinuous
across the magnetic separatrix. As explained in section 8.9, these discontinuities are
resolved in a thin layer of thickness w4 d on the separatrix. It is clear from the
figure that the island chain rotates in the ion diamagnetic (i.e. negative) direction
with respect to the unperturbed E-cross-B frame (i.e. the unperturbed MHD fluid) at
the rational surface, but in the electron diamagnetic (i.e. positive) direction with
respect to the unperturbed ion fluid.
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12.4 The generalized Rutherford equation
Equations (11.149), (12.1), and (12.3) lead to the so-called generalized Rutherford
equation [4] which governs the time evolution of the width of an isolated magnetic
island chain:

I
d
dt

W
r

W
W

c c
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L
r
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c c
L
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c c
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(12.15)
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η
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Here, I 0.82271 = , I 1.58352 = , I 1.38143 = (see section 11.10), 1.171α = (see equa-
tion (2.217)), 1.6411β = (see equation (2.243)), and 1.2312β = (see equation (2.244)).
Moreover, Rτ is the resistive diffusion time (see equation (5.49)), eη a dimensionless
measure of the electron temperature gradient at the rational surface (see equation (4.3)),

Figure 12.1. Normalized perpendicular velocity profiles across the O-points (left-hand panel) and the X-points
(right-hand panel) of an isolated magnetic island chain in the island rest frame. The solid, dashed, and dotted
lines correspond to the electron, MHD, and ion fluids, respectively. Here, 1τ = , 1iη = , and f 0.565t s = (see
table 11.1).
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q q r( )s s= the safety factor at the rational surface (see equation (3.2)), r( )s sϵ ϵ= the
inverse aspect ratio at the rational surface (see equation (3.18)), c 2

β a dimensionless
measure of the plasma pressure at the rational surface (see equations (4.65) and (4.66)),
Ls the magnetic shear length at the rational surface (see equation (5.27)), Lp the
effective pressure gradient scale length at the rational surface (see equation (8.35)),
Lc the magnetic curvature length at the rational surface (see equation (11.57)), and dβ
the ion sound radius (see equation (4.75)).

The first term on the right-hand side of equation (11.149) is the linear tearing
stability index, Δ [24]. A classical (i.e. non-neoclassical) tearing mode is
unstable when 0Δ > and stable otherwise [25]. The free energy that drives a
classical tearing mode is derived from equilibrium current gradients within the
plasma (see chapter 3).

The second term on the right-hand side of equation (11.149) is a stabilizing (i.e.
negative) saturation term that prevents an unstable classical tearing mode from
growing indefinitely [26].

The third term on the right-hand side of equation (11.149) is a destabilizing (i.e.
positive) term that is due to the loss of the bootstrap current within the magnetic
separatrix of the island chain consequent on the flattening of the plasma pressure
profile in this region [3].

The fourth term on the right-hand side of equation (11.149) is a stabilizing term
due to magnetic field-line curvature [27, 28]. Note that this term also crucially
depends on the flattening of the pressure profile within the magnetic separatrix.

The final term on the right-hand side of equation (11.149) represents the
stabilizing effect of the ion polarization current induced in the vicinity of the
rational surface when the ion fluid is diverted around the island chain’s magnetic
separatrix [29, 23, 30, 31]. Note that the polarization term is stabilizing because it is
generally the case that

0
1

1. (12.19)
i

i

α
η

η
<

+
<θ

In other words, it is generally the case that the magnetic island chain rotates in the
ion diamagnetic direction with respect to the unperturbed MHD fluid at the rational
surface but in the electron diamagnetic direction with respect to the unperturbed ion
fluid (see section 12.3). Note, further, that the dominant contribution to the
polarization term comes from a discontinuity in the ion fluid velocity across the
magnetic separatrix [31] (see figure 12.1). This discontinuity only occurs because ion
neoclassical poloidal flow damping prevents the island chain from exactly corotating
with the ion fluid (see section 12.3). Furthermore, the discontinuity is resolved in a
layer of thickness w4 d on the separatrix, indicating that the polarization term is
unlikely to survive if the island width falls below w4 d. Note, finally, that our
polarization term does not exhibit the so-called neoclassical enhancement of inertia
[30, 32] (according to which it would be a factor q( / )s s

2ϵ larger). As shown in
reference [21], the neoclassical enhancement of inertia is only operative when the
neoclassical ion poloidal flow-damping term is the dominant term in the ion
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equation of parallel motion. However, as is clear from the estimates made in the
previous chapter, this is not likely to be the case in a tokamak fusion reactor.

Given that the plasma pressure profile is only flattened within the separatrix of the
magnetic island chain when W w4 d> and that the bootstrap, curvature, and
polarization terms depend crucially on this flattening, it is conventional to modify
equation (12.15) as follows [1, 4, 33]:
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where W w4d d= , and wd is defined in equation (8.84). The fact that the bootstrap
term scales as W1 at small island widths, while the curvature term scales as W0, can
be established analytically [1, 33]. The small-island-width behavior of the polar-
ization term is a guess (that is irrelevant because the term turns out to be negligible).
Other modifications are possible. For instance, if the island width were to fall below
the ion banana width, then we would expect the ion contribution to the destabilizing
bootstrap term to disappear (because the trapped ions would average over the
flattening of the pressure profile within the separatrix, so there would be no
reduction in the ion contribution to the bootstrap current in this region) [34].

We can write the generalized Rutherford equation in the form

I
a
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dW
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Here, a is the plasma minor radius.
Table 12.1 shows estimates for the various dimensionless parameters that

characterize the right-hand side of the generalized Rutherford equation, (12.22),
for the cases of a low-field tokamak fusion reactor and a high-field tokamak fusion
reactor (see chapter 1). These estimates are made using the following assumptions:
B 5 T= (low field) or B 12 T= (high field), 0.02β = , T T 7 keVe i= = ,
m m m( )/2i D T= + (where mD and mT are the deuteron and triton masses, respec-
tively), 1 m si e i

2 1χ χΞ = = =⊥ ⊥ ⊥
− , m = 2, n = 1, 1τ = , 1e iη η= = , and

dp dr p a/ /= − . The plasma equilibrium is assumed to be of the Wesson type with
q(0) 0.8= , r a/ 0.5s = , and r a/ 1.2w = (see section 9.4). It can be seen from the
table that the parameters in the generalized Rutherford equation all take the same
values for low-field reactors and high-field reactors, apart from the critical
normalized island width above which the plasma pressure is flattened within the
island chain’s magnetic separatrix,Wd

ˆ , which is smaller in the former reactor type.
Figure 12.2 shows the various terms on the right-hand side of the generalized

Rutherford equation, (12.22), plotted as functions of the normalized island width,
Ŵ , for a low-field tokamak fusion reactor and a high-field tokamak fusion reactor
(using the parameters given in table 12.1). It can be seen that the destabilizing
bootstrap term is the dominant term. Moreover, the stabilizing curvature term is
much smaller than the bootstrap term, but is important at small island widths.
Furthermore, the stabilizing saturation term is only important at large island widths.
Finally, the stabilizing polarization term is completely negligible (because there is no
neoclassical enhancement of inertia). It is clear that a high-field tokamak fusion

Table 12.1. Parameters characterizing the generalized Rutherford equation in a
low-field tokamak fusion reactor and a high-field tokamak fusion reactor.

Low field High field

B (T) 5.0 12.0

fsat
7.47 7.47

fbs
0.712 0.712

fcurv
3.99 10 2× − 3.99 10 2× −

fpolz
9.34 10 7× − 9.34 10 7× −

Wd
ˆ 1.27 10 2× − 1.70 10 2× −
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reactor is slightly less susceptible to a neoclassical tearing mode than a low-field
reactor (because the destabilizing bootstrap term is smaller in the former case).

Figure 12.3 shows the function F W( )ˆ calculated for an m = 2/n = 1 tearing mode
(m is the poloidal mode number, while n is the toroidal mode number) in a low-field
tokamak fusion reactor (using the parameters given in the left-hand column of

Figure 12.2. The various terms on the right-hand side of the generalized Rutherford equation calculated for a
low-field tokamak fusion reactor (left-hand panel) and a high-field tokamak fusion reactor (right-hand panel)
as functions of the normalized island width. Here, ‘sat’, ‘bs’, ‘curv’, and ‘polz’, refer to the saturation,
bootstrap, curvature, and polarization terms, respectively, while ‘tot’ refers to the sum of all of these terms.

Figure 12.3. Right-hand side of the generalized Rutherford equation plotted as a function of the normalized
island width for an m n2/ 1= = neoclassical tearing mode in a low-field tokamak fusion reactor. The linear
tearing stability index is assumed to take the value 5Δ = − .
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table 12.1) on the assumption that the linear tearing stability index takes the value
5Δ = − . The fact that 0Δ < implies that the classical 2/1 tearing mode is stable. On

the other hand, as is clear from the figure, the neoclassical 2/1 tearing mode is
potentially unstable because there exists a range of island widths for which
F W( ) 0ˆ > . According to equation (12.21), the roots of F W( ) 0ˆ = correspond to
possible steady-state island widths. There are two such roots shown in the figure,
marked with an X and an O. The smaller root (marked with an X) corresponds to a
dynamically unstable equilibrium (because dF dW/ 0ˆ > ), whereas the larger root
(marked with an O) corresponds to a dynamically stable equilibrium (because
dF dW/ 0ˆ < ). In fact, the smaller root specifies a ‘seed’ island width that must be
exceeded in order to trigger the neoclassical tearing mode, whereas the larger root
corresponds to the mode’s final saturated island width [4]. It can be seen that, in the
example shown in the figure, the seed island width is about 0.2% of the plasma’s
minor radius, while the final saturated island width is about 11% of the minor radius.

12.5 Stabilization via rf-driven current
When rf electromagnetic waves (e.g. electron cyclotron waves [35]) are injected into
a tokamak plasma and are absorbed in the vicinity of the rational surface of an
unstable neoclassical tearing mode, they can potentially stabilize the mode by one of
three different mechanisms. First, the current driven by the absorbed waves [36] can
locally modify the equilibrium toroidal current profile, leading to a decrease in the
linear tearing stability index, Δ [37]. Second, the heating of the plasma due to the
absorbed waves can locally decrease the plasma resistivity, leading to a local
enhancement of the inductive toroidal plasma current that offsets the destabilizing
reduction in the bootstrap current consequent on the flattening of the pressure
profile within the mode’s magnetic separatrix [7]. Third, the current driven by the
absorbed waves can directly fill in the hole in the bootstrap current profile left by the
flattening of the pressure profile within the separatrix [7, 19]. We shall concentrate
on the third stabilization mechanism, which is the only practical one in a tokamak
fusion reactor.

In the presence of rf-driven current, equation (11.2) generalizes such that

j j j j jb b( ) ( ) . (12.27)bs bs rfη η− → − −

Here, jrf is the parallel current density generated by absorbed rf waves. If
j j B r/( / )zrf rf 0 sμˆ = , where Bz is the equilibrium toroidal magnetic field strength,
then it is convenient to write

j c
r

L
F x( , ). (12.28)rf rf bs

2 s

p
rfζ α ζˆ = ˆβ

Here, bsα is defined in equation (11.10); x r r r( )/s sˆ = − , where r is a radial cylindrical
coordinate; and m nζ θ φ= − , where θ and φ are poloidal and toroidal angles,
respectively. Moreover, F x( , )rf ζˆ is the rf-driven current density profile, normalized
such that the maximum value of Frf is unity. Finally, rfζ is the ratio of the maximum
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rf-driven current density to the equilibrium bootstrap current density at the rational
surface.

In the presence of rf current drive, equation (11.68) generalizes to give
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Hence, equation (11.126) becomes
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and, after some straightforward analysis, the right-hand side of the generalized
Rutherford equation, (12.22), is modified such that
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Here, the flux-surface average operator 〈⋯〉 is defined in section 8.6,
k [(1 )/2]1/2= + Ω , and the functions A k( ) and C k( ) are defined in section 8.11.

We can think of the dimensionless parameter rfη as a sort of rf current drive
efficiency. If 1rfη = , then the destabilizing bootstrap term (i.e. the third term) on the
right-hand side of the modified generalized Rutherford equation, (12.31), can be
completely suppressed (assuming thatW Wd

ˆ ≫ ˆ ) by driving a current density at the
rational surface that matches the missing bootstrap current density (i.e. 1rfζ = ). In
this case, the rf current drive is 100% efficient at stabilizing the neoclassical tearing
mode. On the other hand, if 0.5rfη = , then the destabilizing bootstrap term in the
generalized Rutherford equation can only be completely eliminated by driving a
current density at the rational surface that is twice the missing bootstrap current
density (i.e. 2rfζ = ). In this case, the rf current drive is only 50% efficient.

Suppose that the normalized rf-driven current density profile is such that

F X

X
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exp
( ) 1 (1 ) (1 )

0 otherwise
,

(12.33)
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where X r r W4 ( )/s= − . In other words, the profile is a Gaussian whose full width at
half maximum (in r) is W0.416 rfΔ ; it is centered on the magnetic flux surface whose
minor radius is offset from that of the rational surface by W0.25 rfδ . Moreover, the
driven current is concentrated at the island chain O-points. The degree of concen-
tration is measured by the so-called duty cycle parameter, rfτ . ( 1rfτ = corresponds to
no concentration, whereas 0rfτ → corresponds to complete concentration.) In
practice, the concentration is achieved by modulating the rf power such that it is
turned on each time an island O-point rotates past the source and turned off each
time an island X-point rotates past the source. The duty cycle parameter, rfτ , is the
fraction of time that the rf power is turned on.

It can easily be demonstrated that
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Figures 12.4 and 12.5 illustrate how the current drive efficiency parameter, rfη , varies
with the current drive profile width parameter, rfΔ , and the duty cycle parameter, rfτ ,
in cases in which there is no misalignment between the current drive profile and the
rational surface (i.e. 0rfδ = ). It can be seen that rfη attains a maximum value of
about 0.94 when 2rfΔ ≃ and 0.6rfτ ≃ [38]. Thus, the optimal full width at half
maximum of the current drive profile is about 83% of the width of the magnetic
island chain. It can also be seen that optimal modulation of the driven current
increases the maximum achievable current drive efficiency by about 50%, while
reducing the required rf power by 40% [38].

Figure 12.6 illustrates what happens when the current drive profile is misaligned
with the rational surface (i.e. when the peak driven current density does not lie on the
rational surface). It can be seen that misalignment decreases the current drive
efficiency. Indeed, if the misalignment becomes too great, then the efficiency
becomes negative (indicating that the current drive destabilizes, rather than
stabilizes, the neoclassical tearing mode) [38]. When 2rfΔ ≃ , the maximum tolerable
misalignment is about 2.5rfδ ≃ , which corresponds to a misalignment in minor
radius of about 63% of the island width [38].
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Figure 12.4. Rf current drive efficiency parameter, rfη , calculated as a function of the current drive profile
width parameter, rfΔ , for various different values of the duty cycle parameter, rfτ . Here, 0rfδ = .

Figure 12.5. Rf current drive efficiency parameter, rfη , calculated as a function of the duty cycle parameter,

rfτ , for various different values of the current drive profile width parameter, rfΔ . Here, 0rfδ = .
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The broad conclusion that can be drawn from figures 12.4–12.5 is that the
maximum current drive efficiency is achieved when the driven current profile
matches the profile of the missing bootstrap current (i.e. when it is centered on
the rational surface, has the radial extent of about an island width, and is slightly
concentrated at the island O-points).

Consider a neoclassical tearing mode for which the right-hand side of the
generalized Rutherford equation case is specified in figure 12.3. Suppose that the
magnetic island chain has achieved its final steady-state width, W 0.110

ˆ ≃ . Let us
apply an rf current drive profile whose width and misalignment parameters are rf 0Δ
and rf 0δ , respectively. The applied current drive causes the island chain to shrink in
width. Assuming that the current drive profile remains constant, the effective width
and misalignment parameters when the normalized island width has shrunk to the
value Ŵ are

W

W
, (12.38)rf

rf 0 0Δ = Δ ˆ
ˆ

W

W
, (12.39)rf

rf 0 0δ δ=
ˆ

ˆ

respectively.
Figure 12.7 shows how the right-hand side of the generalized Rutherford equation

specified in figure 12.3 is modified by an rf current drive profile with optimal width,

Figure 12.6. Rf current drive efficiency parameter, rfη , calculated as a function of the current drive profile
misalignment parameter, rfδ , for various different values of the current drive profile width parameter, rfΔ .
Here, 1rfτ = .
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2.0rf 0Δ = (i.e. a full width at half maximum of 9.2% of the plasma’s minor radius),
optimal alignment, 0.0rf 0δ = , and optimal duty cycle, 0.6rfτ = . It can be seen that
the neoclassical tearing mode is completely stabilized (i.e. F W( ) 0ˆ < for allŴ ) once
the peak amplitude of the driven current density exceeds 75% of the equilibrium
bootstrap current density at the rational surface (i.e. 0.75rfζ > ). Of course, as soon
as the island width has shrunk to a value less than the seed island width shown in
figure 12.3 (i.e. W 0.02ˆ = ), the rf power can be switched off, and the neoclassical
tearing mode will not return (unless it is triggered again by a transient resonant
magnetic perturbation).

Figure 12.8 shows how the right-hand side of the generalized Rutherford equation
specified in figure 12.3 is modified by an unmodulated (i.e. 1rfτ = ) rf current drive
profile with optimal width, 2.0rf 0Δ = , and optimal alignment, 0.0rf 0δ = . It can be
seen that the neoclassical tearing mode is completely stabilized once the peak
amplitude of the driven current density exceeds 291% of the equilibrium bootstrap
current density at the rational surface (i.e. 2.91rfζ > ). The large increase in the
requisite driven current density, relative to the modulated case shown in figure 12.7,
comes about because unmodulated current drive becomes very inefficient at
stabilizing a neoclassical tearing mode once the island width shrinks to such an
extent that it is much less than the current drive profile width. In other words,

0rfη → as rfΔ → ∞ for unmodulated current drive, whereas rfη remains finite as
rfΔ → ∞ for modulated current drive [4, 39]. To be more specific, in the case of

Figure 12.7. The right-hand side of the generalized Rutherford equation, plotted as a function of the
normalized island width for an m n2/ 1= = neoclassical tearing mode in a low-field tokamak fusion reactor
and evaluated for various different current drive amplitudes. The linear tearing stability index is assumed to
take the value 5Δ = − . Moreover, 2.0rf 0Δ = , 0.0rf 0δ = , and 0.6rfτ = .
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unmodulated current drive, the stabilizing effect of the current driven at the island
O-points is partially canceled by the destabilizing effect of the current driven at the
island X-points [18]. This cancellation becomes almost exact when the island width
is much less than the current drive profile width [4]. Of course, there is no such
cancellation in the case of modulated current drive because no current is driven at
the X-points.

Figure 12.9 shows how the right-hand side of the generalized Rutherford equation
specified in figure 12.3 is modified by an rf current drive profile with optimal width,

2.0rf 0Δ = , non-optimal alignment, 2.0rf 0δ = , and optimal duty cycle, 0.6rfτ = . It
can be seen that the misalignment of the current drive profile causes the critical peak
current density required to stabilize the neoclassical tearing mode to rise to 261% of
the equilibrium bootstrap current density at the rational surface.

The broad conclusion that can be drawn from figures 12.7–12.9 is that a
neoclassical tearing mode can be stabilized by a properly aligned, modulated,
current drive in which the driven current density profile has a similar width to the
magnetic island chain and a similar peak magnitude to the equilibrium bootstrap
current density at the rational surface.

Finally, the successful stabilization of neoclassical tearing modes via electron
cyclotron wave current drive has been achieved in many tokamak experiments,
including ASDEX Upgrade [20], DIII-D [16], and JT-60U [17].

Figure 12.8. The right-hand side of the generalized Rutherford equation, plotted as a function of the
normalized island width for an m n2/ 1= = neoclassical tearing mode in a low-field tokamak fusion reactor
and evaluated for various different current drive amplitudes. The linear tearing stability index is assumed to
take the value 5Δ = − . Moreover, 2.0rf 0Δ = , 0.0rf 0δ = , and 1.0rfτ = .
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Chapter 13

Mode locking in tokamak plasmas

13.1 Introduction
A tearing mode in a tokamak plasma reconnects magnetic flux at the so-called
rational magnetic flux surface, where the mode resonates with the equilibrium
magnetic field, to produce a rotating (in the laboratory frame) helical magnetic
island chain.

As previously mentioned in chapter 10, mode locking is a process by which the
rotation of a slowly growing magnetic island chain in a tokamak plasma is braked
due to electromagnetic interaction with a rigid, electrically conducting wall
surrounding the plasma, causing the chain to eventually lock (i.e. become stationary
in the laboratory frame) to a static resonant magnetic perturbation (e.g. an error
field) [2, 3, 5, 6, 9, 14, 15, 17, 20, 22, 24, 27, 28]. Locked magnetic island chains are
strongly correlated with disruptions (i.e. sudden, catastrophic losses of thermal and
magnetic energy) in tokamak plasmas [8].

In chapter 10, we investigated the interaction of a rotating magnetic island chain
with a conducting wall in the absence of a magnetic perturbation. In this chapter, we
shall concentrate on the interaction of a rotating magnetic island chain with a static
resonant magnetic perturbation in the absence of a wall. The generalization to the case
in which there is both a wall and a magnetic perturbation is straightforward [28].

13.2 Asymptotic matching
Let us assume that the helical magnetic island chain possesses m periods in the
poloidal direction and n periods in the toroidal direction. Let rs be the minor radius
of the rational surface.

Let us reuse the analysis given in sections 3.17, 7.2, and 9.4. In the absence of a
wall (i.e. 0wτ = ) but in the presence of a static magnetic perturbation generated by a
steady helical current, Ic, with m periods in the poloidal direction and n periods in
the toroidal direction, running through an external magnetic field coil located
outside the plasma at minor radius rc, we find that [9]
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Here, (0)nwΔ Δ≡ is the (real dimensionless) no-wall tearing stability index evaluated
at zero island width (see equation (7.4)), sΨ̂ the normalized reconnected helical
magnetic flux at the rational surface (see equation (3.184)), sΔΨ̂ the normalized
helical sheet current density at the rational surface (see equation (3.183)), W the full
radial width of the magnetic island chain (see equation (5.129)), φ the helical phase
of the island chain measured with respect to that of the static resonant magnetic
perturbation, ω the instantaneous island rotation frequency in the laboratory frame
(see equation (3.189)), Ls the magnetic shear length at the rational surface (see
equation (5.29)), and Bz the equilibrium toroidal magnetic field strength. Moreover,
Ws is specified in equation (12.2), and Wc is a measure of the width of the locked
magnetic island chain that the resonant magnetic perturbation would induce at the
rational surface in the absence of localized shielding currents. Finally, we have made
the simplifying approximation that the equilibrium plasma current external to the
rational surface is negligible (see section 7.2).

13.3 The Rutherford island width evolution equation
Equations (11.149) and (13.1) yield the generalized Rutherford equation for a
rotating magnetic island chain interacting with a static resonant magnetic perturba-
tion (see section 12.4):
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c
I
2

1
1

1 2
1

, (13.5)polz1
4
4

i

i
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η

η
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+
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+θ

Tearing Mode Dynamics in Tokamak Plasmas

13-2



c
I
2

. (13.6)polz2
5
14

=

Moreover, I 0.82271 = , Rτ is the resistive diffusion time (see equation (5.49)),
q q r m n( ) /s s= = the safety factor at the rational surface (see equation (3.2)),

r( )s sϵ ϵ= the inverse aspect ratio at the rational surface (see equation (3.18)), c 2
β a

dimensionless measure of the plasma pressure at the rational surface (see equations
(4.65) and (4.66)), Lp the effective pressure gradient scale length at the rational
surface (see equation (8.35)), Lc the magnetic curvature length at the rational surface
(see equation (11.57)), dβ the ion sound radius (see equation (4.75)), Hτ the hydro-
magnetic time (see equation (5.43)), τφ the toroidal momentum confinement time
(see equation (5.50)), τ the ratio of the electron and ion pressure gradients at the
rational surface (see equation (4.5)), and iη a dimensionless measure of the ion
temperature gradient at the rational surface (see equation (4.3)). Finally, the
dimensionless ion neoclassical poloidal flow-damping parameter αθ is defined in
equation (12.6), and the dimensionless integrals I4 and I5 are specified in figure 11.1.
Note that, in writing equation (13.4), we have assumed thatW Wd≫ (see equation
(12.20)) (i.e. that the island chain is sufficiently wide that the plasma pressure profile
is flattened within its magnetic separatrix).

The first term on the right-hand side of equation (13.4) is the linear tearing
stability index, Δ [11]. The second term is a stabilizing (i.e. negative) saturation term
[12]. The third term is a destabilizing (i.e. positive) term that is due to the loss of the
bootstrap current within the magnetic separatrix of the island chain consequent on
the flattening of the plasma pressure profile in this region [4]. The fourth term is a
stabilizing term due to magnetic field-line curvature [13, 18]. The fifth term
represents the stabilizing effect of the ion polarization current induced in the vicinity
of the rational surface when the ion fluid is diverted around the island chain’s
magnetic separatrix [7, 25–27]. The sixth and seventh terms are additional ion
polarization terms that arise from the modified ion flow in the immediate vicinity of
the island chain when the chain is subject to an externally generated electromagnetic
torque [10, 27]. The final term is due to the direct interaction between the island
chain and the resonant magnetic perturbation [9].

It is convenient to rewrite equation (13.4) in the form

dW
dt

f W
f

W

f

W

f

W
f W f W W

W

W

sin sin

cos .

(13.7)

R sat
bs curv polz

3 polz1 c
2

polz2 c
4 3 2

c
2

2

τ Δ φ φ

φ

˜
ˆ

= − ˆ + ˆ − ˆ −
ˆ

+ ˆ + ˆ ˆ

+
ˆ

ˆ

Here, I a r( / )R 1 R sτ τ˜ = , W W a/ˆ = , and W W a/c c
ˆ = , where a is the plasma’s minor

radius. Moreover, fsat, fbs, fcurv, and fpolz are defined in equations (12.23)–(12.26),
respectively, while

f c c
q

L
L

d

r
a
r

, (13.8)polz1 polz1
s

s

2
s

p s H s
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f c
q

a
r

. (13.9)polz2 polz2
s

s

4

H

2

s

7

⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

ϵ τ
τ

= φ

Table 13.1 gives estimates for the various dimensionless parameters that
characterize the right-hand side of the generalized Rutherford equation, (13.7), for
the cases of a low-field tokamak fusion reactor and a high-field tokamak fusion
reactor (see chapter 1). These estimates are made using the following assumptions:
B 5 T= (low field) or B 12 T= (high field), 0.02β = , T T 7 keVe i= = ,
m m m( )/2i D T= + (where mD and mT are the deuteron and triton masses, respec-
tively), 1 m si e i

2 1χ χΞ = = =⊥ ⊥ ⊥
− ,m = 2, n = 1, 1τ = , 1e iη η= = , and dp dr p a/ /= − .

The plasma equilibrium is assumed to be of the Wesson type with q(0) 0.8= ,
r a/ 0.5s = , and r a/w → ∞ (see section 9.4).

13.4 Island phase evolution equations
It can easily be demonstrated that

W
L R

W
W

Im( ) Im
2

sin . (13.10)s s
s

s
s

2
4

8
s

2
0

2
c

2

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

ΔΨ Ψ ΔΨ
Ψ

Ψ φˆ ˆ =
ˆ

ˆ ∣ ˆ ∣ =*

Here, R0 is the major radius of the plasma, and use has been made of equations
(5.129) and (13.1). The previous equation can be combined with equations (3.189)–
(3.191) and (13.2) to give the following set of equations that govern the time
evolution of the magnetic island chain’s helical phase:

t t t( ) ( ) ( ) , (13.11)
p 1,

0 p p⎡⎣ ⎤⎦∑ω ω α β= − +
= ∞

t t dt( ) ( ) , (13.12)
t

0
∫φ ω= ′ ′

d

dt

j a
r

W W
J j r a

J j
1 1

2

[ ( / )]

[ ( )]
sin , (13.13)p 1p

2

M
p 8

H
2

s

2

c
2 2 1 1p s

2

2 1p
2

⎜ ⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝

⎞
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α
τ τ

α
τ

φ+ + = ˆ ˆ
θ

d

dt

j a
r q

W W
J j r a

J j
1

2

[ ( / )]

[ ( )]
sin . (13.14)p 0p

2

M
p 8

H
2

s

2
s

s

2

c
2 2 0 0p s

2

1 0p
2⎜ ⎟⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

β
τ

β
τ

ϵ φ+ = ˆ ˆ

Here, 0ω is the natural frequency of the magnetic island chain (i.e. the chain’s
rotation frequency in the absence of the resonant magnetic perturbation), r( )i sτ τ=θ θ
the ion neoclassical poloidal flow-damping time at the rational surface (see equation
(2.332)), and a r( / )M s

2τ τ= φ. Moreover, J z( )m is a Bessel function, and jmp denotes its
pth zero [1]. In deriving the previous equations, use has been made of equations
(4.23), (5.43), and (5.129).
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13.5 The analytic solution of the phase evolution equations
Table 13.2 gives estimates for the characteristic timescales that govern the time
evolution of the width and phase of a magnetic island chain interacting with a static
resonant magnetic perturbation in a low-field tokamak fusion reactor and a high-
field tokamak fusion reactor. These estimates are made using the same assumptions
used to produce the estimates shown in table 13.1. In addition, the natural frequency
of the tearing mode is assumed to be equal to the diamagnetic frequency, ω* (see
equation (5.47)) (see section 5.15). The island phase evolves on the timescale 0

1ω − ,
while the island width evolves on the timescale Rτ̃ . It can be seen that the former
timescale is very much shorter than the latter. Thus, to a first approximation, it is
reasonable to suppose that the island width remains constant as the island phase
evolves. This implies that the island phase evolution equations, (13.11)–(13.14), can
be solved independently of the island width evolution equation, (13.7).

Table 13.2. Characteristic parameters governing the time evolution of the width
and phase of a magnetic island chain in a low-field tokamak fusion reactor and a
high-field tokamak fusion reactor.

Low field High field

B (T) 5.0 12.0

(s)Hτ 6.72 10 7× − 2.80 10 7× −

(s)Rτ̃ 2.30 103× 4.00 102×
(s)τφ 1.60 0.278

(s)Mτ 6.41 1.11

(s)τθ 2.22 10 4× − 3.85 10 5× −

(s)0
1ω − 5.72 10 4× − 2.38 10 4× −

q/s sϵ 8.33 10 2× − 8.33 10 2× −

r a/s 0.5 0.5

Table 13.1. Dimensionless parameters characterizing the generalized Rutherford
equation in a low-field tokamak fusion reactor and a high-field tokamak fusion
reactor.

Low field High field

B (T) 5.0 12.0

fsat
7.47 7.47

fbs
0.712 0.712

fcurv
3.99 10 2× − 3.99 10 2× −

fpolz
9.34 10 7× − 9.34 10 7× −

fpolz1
1.77 10 2× − 7.38 10 3× −

fpolz2
6.71 104× 1.17 104×
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In this section, we shall solve the island phase evolution equations, (13.11)–
(13.14), analytically via an expansion in a dimensionless small parameter,

W Wc
2 2δ ∝ ˆ ˆ , that is defined in equation (13.29). To the lowest order, equations

(13.13) and (13.14) yield 0p pα β= = . Hence, equations (13.11) and (13.11) give

, (13.15)0ω ω=

t, (13.16)0φ ω=

respectively. Of course, this lowest-order solution corresponds to steady rotation of
the island chain at its natural frequency.

To the first order, equations (13.13), (13.14), and (13.16) yield

d

dt

j a
r

W W
J j r a

J j
t

1 1
2

[ ( / )]
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sin( ), (13.17)p 1p
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r q

W W
J j r a

J j
t

1
2

[ ( / )]

[ ( )]
sin( ). (13.18)p 0p
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⎠
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β
τ

β
τ

ϵ ω+ = ˆ ˆ

Let us write

( )t( ) Re e , (13.19)t
p p 1

i 0α α= ˆ ω−

( )t( ) Re e . (13.20)t
p p 1

i 0β β= ˆ ω−

It follows that

a
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2
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[ ( )] [( i 1/ ) ]
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Equations (13.11), (13.19), and (13.20) give

( )Re e . (13.23)
p 1,

t
0 p 1 p 1

i 0
⎡

⎣
⎢

⎤

⎦
⎥∑ω ω α β= − ˆ + ˆ

= ∞

ω−

However, according to equations (13.21) and (13.22),
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. (13.25)
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It can be demonstrated that

J j r a
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(13.26)
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2
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ω τ τ ω τ τ− + +
≃

− += ∞ θ θ φ

in the limit that ( i 1/ ) 10 Mω τ τ∣ − + ∣ ≫θ . As is clear from table 13.2, the previous
inequality is easily satisfied in a tokamak fusion reactor. Likewise, it can be
demonstrated that

J j r a
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in the limit that 10 Mω τ ≫ . As is apparent from table 13.2, the previous inequality is
also easily satisfied in a tokamak fusion reactor. Thus, we obtain
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According to equation (13.28), the electromagnetic locking torque exerted by the
static magnetic perturbation on the island chain generates a periodic modulation in
the chain’s rotation frequency that oscillates at the natural frequency. Equations
(13.11) and (13.28) give

t t S S t C t( ) cos( ) sin( ). (13.32)0 1 1 0 1 0φ ω δ δ ω δ ω= − + +

Finally, we obtain
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To the second order, equations (13.13), (13.14), and (13.33) yield
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Equations (13.37)–(13.44) can be combined with equations (7.34), (7.35), (13.11),
(13.26), and (13.27) to give
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Let us define the period-average operator:

A
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where T 2 / 0π ω= . It is clear from equation (13.45) that
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In other words, the electromagnetic locking torque exerted by a static resonant
magnetic perturbation on the rotating island chain causes an average reduction in

the chain’s rotation frequency that is proportional toW Wc
4 4ˆ (i.e. to the square of

the current flowing in the external magnetic field coil that generates the perturba-
tion) (see equations (13.3) and (13.29)).

Equation (13.33) yields

OSsin
1
2

( ). (13.51)1
2φ δ δ〈 〉 = +

The electromagnetic locking torque exerted on the island chain is proportional to
sin φ− . Furthermore, as the island chain rotates past the static resonant magnetic

perturbation, its rotation is alternately accelerated (when sin 0φ < ) and decelerated
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(when sin 0φ > ) by this torque. However, as is apparent from the previous equation,
the uneven rotation of the island chain in the presence of the perturbation (see
equation (13.45)) causes it to spend more time in the helical phase relative to the
perturbation in which it is decelerated by the torque than in the phase in which it is
accelerated [9, 14, 24, 28]. This explains the net slowing of the chain’s rotation
indicated in equation (13.50).

Equation (13.34) yields

OCcos
1
2

( ). (13.52)1
2φ δ δ〈 〉 = − +

The direct interaction between the static magnetic perturbation and the island chain
generates a term in the Rutherford island width evolution equation that is propor-
tional to cos φ (see equation (13.7)). Furthermore, as the island chain rotates past the
static resonant magnetic perturbation, this term alternately destabilizes (when
cos 0φ > ) and stabilizes (when cos 0φ < ) the chain. However, as is apparent
from the previous equation, the uneven rotation of the island chain in the presence of
the perturbation (see equation (13.45)) causes it to spend more time in the helical
phase relative to the perturbation in which it is stabilized by the interaction term
than in the phase that it is destabilized [9, 14, 24, 28]. Thus, there is a net stabilizing
effect when a rotating magnetic island chain interacts directly with a static resonant
magnetic perturbation.

13.6 A numerical solution of the phase evolution equations
Unfortunately, in the case of a rotating island chain, no further meaningful progress
regarding the solution of the island phase evolution equations can be achieved via
analysis. Figure 13.1 shows a numerical solution of the island phase evolution
equations, (13.11)–(13.14), obtained for a low-field tokamak fusion reactor (i.e.
using the parameters given in the left-hand column of table 13.2), for a case in which
the mode-locking parameter, δ, is ramped linearly in time. It can be seen that the
numerical solution is consistent with the approximate analytic solution described in
the previous section. As the mode-locking parameter increases, the electromagnetic
locking torque exerted by the static resonant magnetic perturbation on the island
chain causes the chain to rotate in an increasingly irregular manner (see equation
(13.45)). Close inspection of the figure reveals that the irregular rotation leads the
island chain to spend more time in the helical phase relative to the perturbation in
which sin 0φ > , rather than the phase in which sin 0φ < , and more time in the
phase in which cos 0φ < , rather than the phase in which cos 0φ > , as is consistent
with equations (13.51) and (13.52), respectively. The distortions of the initially
sinusoidal oscillations shown in the bottom two panels of figure 13.1 as δ increases
are known as mode-locking distortions, and have been observed (by means of
magnetic pickup coil data) in many tokamak experiments [6, 14, 24, 28].

Figure 13.1 indicates that as soon as the mode-locking parameter, δ, exceeds a
critical value that is of order unity, the island chain locks to the static resonant
magnetic perturbation. In other words, the island chain ceases to rotate and instead
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maintains a fixed phase relation with respect to the perturbation. It can be seen that
the island chain locks in a helical phase relative to the perturbation such that
sin 0φ > —that is, such that the electromagnetic locking torque opposes the viscous
torque that acts to maintain the chain’s rotation—and cos 0φ > —that is, such that
the resonant magnetic perturbation destabilizes the island chain [9, 14, 24, 28] (see
section 13.7). Thus, we conclude that the direct interaction of a static resonant
magnetic perturbation with a magnetic island chain is stabilizing when the chain is
rotating, but becomes destabilizing as soon as the chain locks to the perturbation
[9, 14, 24, 28].

Figure 13.2 shows the critical value of the locking parameter, δ, at which a
rotating island chain locks to a static resonant magnetic perturbation, calculated as a
function of the chain’s natural frequency, for a low-field tokamak fusion reactor and
a high-field tokamak fusion reactor. The calculations are performed using the
parameters given in table 13.2, except that 0ω is varied. It can be seen that the critical
δ value exhibits some dependence on the exact phase at which the island chain locks.
However, this dependence becomes less marked in the physically relevant limit in
which the timescale on which the locking parameter is ramped is much longer than
the rotation period of the chain (i.e. in the limit in which the ramp rate is decreased).
It can also be seen that the critical δ value is approximately unity and only exhibits a
fairly weak dependence on the natural frequency, 0ω . Adopting the rule of thumb

Figure 13.1. A numerical solution of the island phase evolution equations for a low-field tokamak fusion
reactor.
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that 1lockδ ≃ , we deduce from equation (13.29) and table 13.2 that that the criterion
for the locking of a rotating island chain to a static resonant magnetic perturbation
is

W W 0.040 (13.53)c
0

1/4

⎜ ⎟
⎛
⎝

⎞
⎠

ω
ω

ˆ ˆ ≳
*

in a low-field tokamak fusion reactor, and

W W 0.050 (13.54)c
0

1/4

⎜ ⎟
⎛
⎝

⎞
⎠

ω
ω

ˆ ˆ ≳
*

in a high-field tokamak fusion reactor.

13.7 Locked magnetic island chains
In the case of a locked magnetic island chain, we can set d dt/ 0= in equations
(13.13) and (13.14). It follows that

a
r

W W
J j r a

J j j2

[ ( / )]

[ ( )] ( / )
sin , (13.55)p 8

H
2

s

4

c
2 2 1 1p s

2

2 1p
2

M 1p
2

⎜ ⎟
⎛
⎝

⎞
⎠

α
τ
τ τ τ

φ= ˆ ˆ
+

φ

φ

a
r q

W W
J j r a

J j j2

[ ( / )]

[ ( )]
sin . (13.56)p 8

H
2

s

4
s

s

2

c
2 2 0 0p s

2

1 0p
2

0p
2⎜ ⎟⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

β
τ
τ

ϵ φ= ˆ ˆφ

Making use of equations (7.34) and (7.35), we get

a
r

W W
2

sin , (13.57)
p 1,

p 10
H

2
s

4

c
2 2

⎜ ⎟
⎛
⎝

⎞
⎠

∑ α
τ τ

τ
φ= ˆ ˆ

= ∞

φ θ

Figure 13.2. The critical value of the locking parameter, δ, at which a rotating island chain locks to a static
resonant magnetic perturbation as a function of the chain’s natural frequency for a low-field tokamak fusion
reactor (left-hand panel) and a high-field tokamak fusion reactor (right-hand panel). The rate at which the
locking parameter is ramped is either 0.5, 1, or 2 times that shown in figure 13.1.
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a
r q

a
r

W W
2

ln sin . (13.58)
p 1,

p 9
H

2
s
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s
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⎜ ⎟⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠
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⎞
⎠

⎛
⎝
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ϵ φ= ˆ ˆ
= ∞
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Finally, setting 0ω = in equation (13.11), we obtain the torque balance criterion [9]

S sin 1. (13.59)0δ φ =

Here, use has been made of equations (13.29) and (13.46).
The left-hand side of the previous equation is the normalized electromagnetic

locking torque that acts to maintain a fixed helical phase relation between the island
chain and the static resonant magnetic perturbation, whereas the right-hand side is
the normalized viscous torque that attempts to force the island chain to rotate with
respect to the perturbation [9]. In general, the previous equation possesses two
solutions. However, only the solution in which 0 /2φ π⩽ ⩽ is dynamically stable [9].
Hence, we conclude that the island chain locks in a helical phase relative to the
perturbation such that sin 0φ > and cos 0φ > , which is consistent with the
numerical simulation shown in figure 13.1.

Actually, the previous equation only possesses solutions when unlockδ δ> , where

S
1

. (13.60)unlock
0

δ =

If the locking parameter, δ, falls below the critical value, unlockδ , then torque balance
breaks down, and the island chain is forced to rotate with respect to the static
resonant magnetic perturbation.

Making use of the data given in table 13.2, we can now estimate that S 1.810 = for
both low-field tokamak fusion reactors and high-field tokamak fusion reactors. It
follows that 0.55unlockδ ≃ in such reactors. According to figure 13.2, this value is
about half the critical value of the locking parameter above which a rotating
magnetic island chain locks to a static resonant magnetic perturbation. In other
words, once the locking parameter has exceeded the critical value required to cause a
rotating island chain to lock to a static resonant magnetic perturbation, it must be
reduced by a factor of about two before the island chain will unlock from the
perturbation and start to rotate again. This hysteresis between rotating and locked
island states has been observed experimentally [14].

Finally, we deduce from equations (13.29) and (13.60) and table 13.2 that that the
criterion for the unlocking of a rotating island chain from a static resonant magnetic
perturbation is

W W 0.035 (13.61)c
0

1/4

⎜ ⎟
⎛
⎝

⎞
⎠

ω
ω

ˆ ˆ ≲
*

in a low-field tokamak fusion reactor, and

W W 0.043 (13.62)c
0

1/4

⎜ ⎟
⎛
⎝

⎞
⎠

ω
ω

ˆ ˆ ≲
*

in a high-field tokamak fusion reactor.
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13.8 Island width evolution
Let us write the generalized Rutherford island width evolution equation, (13.7), in
the form

dW
dt

f W
f

W

f

W

f

W
F W W( , ), (13.63)R sat

bs curv polz
3 cτ Δ˜

ˆ
= − ˆ + ˆ − ˆ −

ˆ
+ ˆ ˆ

where

F W W f W f W W
W

W
( , ) sin sin cos (13.64)c polz1 c

2
polz2 c

4 3 2 c
2

2φ φ φˆ ˆ = ˆ + ˆ ˆ +
ˆ
ˆ

represents the three additional terms that appear on the right-hand side of the
equation when an island chain interacts with a static resonant magnetic
perturbation.

First, let us consider a rotating magnetic island chain. Given that the island width
evolves on a much longer timescale than the island phase (see table 13.2), it is a good
approximation to replace F W W( , )c

ˆ ˆ by its period average in the generalized
Rutherford equation [9, 10] (see equation (13.49)). We can now write

F W W f W f W W
W

W
( , ) sin sin cos . (13.65)c polz1 c

2
polz2 c

4 3 2 c
2

2φ φ φ〈 ˆ ˆ 〉 = ˆ 〈 〉 + ˆ ˆ 〈 〉 +
ˆ
ˆ

〈 〉

However, to the lowest order, sin 1/22 φ〈 〉 = , Ssin (1/2) 1φ δ〈 〉 = , and
Ccos (1/2) 1φ δ〈 〉 = − (see equations (13.51) and (13.52)). Thus, we obtain

F W W f W S f W W
W

W
C( , )

1
2

1
2

1
2

. (13.66)c polz1 c
2

1 polz2 c
4 3 c

2

2 1δ δ〈 ˆ ˆ 〉 = ˆ + ˆ ˆ −
ˆ
ˆ

As is clear from table 13.1 and equations (13.29)–(13.31), the first two terms on the
right-hand side of the previous equation, which are ion polarization terms that arise
from the modified ion flow in the immediate vicinity of the island chain when the chain
is subject to an electromagnetic locking torque, are destabilizing (i.e. positive). On the
other hand, the third term, which is due to the direct interaction between the island
chain and the static resonant magnetic perturbation, is stabilizing (i.e. negative).

If we use the data given in tables 13.1 and 13.2 to estimate the sizes of the three
terms on the right-hand side of the previous equation in a tokamak fusion reactor,
then we discover that the first two terms are completely negligible compared with the
third. In other words, the polarization terms associated with the modified ion flow in
the vicinity of the island chain are much smaller than the term due to the direct
interaction between the island chain and the static resonant magnetic perturbation.
In this limit, we can use equation (13.29) to write

F W W
a
r

C W( , )
1
2

. (13.67)c 11
s 0 H

2 1 c
4

⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

τ τ
ω τ

〈 ˆ ˆ 〉 ≃ − ˆθ φ
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Thus, we conclude that the interaction between a rotating island chain and a static
magnetic perturbation gives rise to a stabilizing term in the chain’s Rutherford
equation that is independent of the island width and scales as the square of the
current flowing in the magnetic field coil that generates the perturbation (see
equation (13.3)). Making use of the data given in table 13.2, we deduce that the
stabilizing term takes the form

F W W
W

( , )
0.109

(13.68)c
c

4

⎜ ⎟
⎛
⎝

⎞
⎠

〈 ˆ ˆ 〉 ≃ −
ˆ

in a low-field tokamak fusion reactor (with 0ω ω= *), and

F W W
W

( , )
7.33 10

(13.69)c
c

2

4

⎜ ⎟
⎛
⎝

⎞
⎠

〈 ˆ ˆ 〉 ≃ −
ˆ
× −

in a high-field tokamak fusion reactor. Of course, these estimates are only valid as
long as the locking criteria (13.53) and (13.54) are not satisfied. Equations (13.53),
(13.54), (13.68), and (13.69) suggest that the stabilizing effect of the interaction of a
rotating magnetic island chain with a static resonant magnetic perturbation could
completely stabilize a relatively narrow island chain but would not be able to
completely stabilize a wide island chain, because the chain would lock to the
perturbation before complete stabilization was achieved. The complete stabilization
of a narrow rotating magnetic island chain by a static resonant magnetic perturba-
tion has been observed experimentally [16].

Let us now consider a locked magnetic island chain. Equations (13.59), (13.60),
and (13.64) yield

F W W f W f W W

W

W

( , )

1 .

(13.70)

c polz1
unlock

c
2

polz2
unlock

2

c
4 3

unlock
2 1/2

c
2

2

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

δ
δ

δ
δ

δ
δ

ˆ ˆ = ˆ + ˆ ˆ

+ −
ˆ
ˆ

Of course, the previous equation is only valid when unlockδ δ> (i.e. provided that the
island chain remains locked to the static resonant magnetic perturbation). Assuming
that unlockδ δ∼ ,W 0.1c

ˆ ≲ , andW 0.1ˆ ≲ , it is clear from the data given in table 13.1
that the first two terms on the right-hand side of the previous equation are
completely negligible compared to the third. In other words, as in the case of a
rotating island chain, the polarization terms in the Rutherford equation associated
with the modified ion flow in the vicinity of the island chain are much smaller than
the term due to the direct interaction between the island chain and the static resonant
magnetic perturbation. In this case, we can write

F W W
W

W
( , ) 1 . (13.71)c

unlock
2 1/2

c
2

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎛
⎝

⎞
⎠

δ
δ

ˆ ˆ ≃ −
ˆ
ˆ
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Thus, it is clear that the destabilizing effect of a static resonant magnetic
perturbation on a locked island chain can be significant, especially in the limit in
whichW Wc

ˆ ≪ ˆ . This destabilizing effect has been observed experimentally [14].
Finally, experiments have been performed in which the rotation frequency of a

magnetic island chain in a tokamak plasma is controlled by locking the chain to a
rotating resonant magnetic perturbation [23]. More ambitious experiments have
been performed in which the helical phase of a rotating resonant magnetic
perturbation is actively controlled in such a manner that a magnetic island chain
in a tokamak plasma is held in a permanent stabilizing phase relation with respect to
the perturbation [19, 21]. Unfortunately, neither of these control schemes is practical
in a tokamak fusion reactor because the magnetic field coils that generate the
rotating magnetic perturbation would have to be placed inside the vacuum vessel
(otherwise the oscillating magnetic field generated by the coils would be shielded
from the plasma by eddy currents excited in the vessel), where they would be
unacceptably vulnerable to neutrons produced by fusion reactions within the plasma
as well as large electromagnetic forces generated by plasma disruptions.
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Chapter 14

Toroidal tearing modes

14.1 Introduction
All of the analysis contained in chapters 3–13 is premised on the assumption that the
geometry of a tokamak plasma can be adequately approximated by a periodic
cylinder. In this final chapter, we shall move beyond this simplistic approach and
take into account the fact that tokamak plasmas are actually toroidal in shape.
Moreover, as illustrated in figure 14.1, the poloidal cross section of the equilibrium
magnetic flux surfaces in a typical tokamak plasma are not circular, as assumed in
the cylindrical model. Instead, they are highly elongated in the vertical direction and
somewhat triangular. Finally, the outermost closed magnetic flux surface in a
tokamak plasma possesses a magnetic X-point (see figure 14.1), which implies that
the corresponding value of the safety factor is infinite (see figure 14.2). The aim of
this chapter is to explore how the true geometry of the equilibrium magnetic flux
surfaces in a tokamak plasma affects the dynamics of any tearing modes to which
the plasma is subject.

14.2 Coordinate systems
Let X, Y, Z be a conventional right-handed Cartesian coordinate system (where Z
measures vertical height).

Let R, φ, Z be the corresponding cylindrical coordinate system, where
≡ +R X Y( )2 2 1/2 and φ ≡ − Y Xtan ( / )1 . It follows that

φ∣∇ ∣ =
R
1

. (14.1)

Finally, let us define a flux coordinate system: r R Z( , ), θ R Z( , ), φ, where [5, 14]

Jθ φ∇ · ∇ × ∇ =−r( ) , (14.2)1
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J =R Z
r R
R

( , ) . (14.3)
2

0

(Note that R, Z, θ, and φ are the same as the corresponding quantities defined in
section 2.10). Here, R0 is the major radius of the magnetic axis, the magnetic

Figure 14.1. Poloidal magnetic flux contours in KSTAR discharge #18594 at time t = 6450 ms. R, φ, Z is a
cylindrical coordinate system with a vertical axis, and =R 1.80 m. The bold solid line shows the last closed
magnetic flux surface. The bold dashed line shows the plasma-facing components.
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flux-surface label r has units of length, and θ is is an angular coordinate that
increases by 2π radians for every poloidal circuit of the magnetic axis. Let r = 0
correspond to the magnetic axis of the plasma, and let =r r100 correspond to the last
closed magnetic flux surface. Suppose that θ = 0 at the outboard midplane of the
plasma. It follows that θ π< <0 below the midplane.

14.3 Useful identities
The following identities are useful:

J J Jθ φ φ θ= ∇ × ∇ + ∇ × ∇ + ∇ × ∇θ φA A r A rA , (14.4)r

θ φ= ∇ + ∇ + ∇θ φA r A AA , (14.5)r

· = + + = + +θ
θ

φ
φ θ

θ
φ

φA B A B A B A B A B A BA B , (14.6)r
r r

r

J× = −θ φ φ θA B A BA B( ) ( ), (14.7)r

J× = −θ
φ φA B A BA B( ) ( ), (14.8)r r

J× = −φ
θ θA B A BA B( ) ( ), (14.9)r r

J × = −θ φ φ θA B A BA B( ) , (14.10)r

J × = −θ
φ φA B A BA B( ) , (14.11)r r

J × = −φ
θ θA B A BA B( ) , (14.12)r r

J J J J
θ φ

∇ · = ∂
∂

+ ∂
∂

+ ∂
∂

θ φA
r

A A
A

( ) ( ) ( )
, (14.13)

r

Figure 14.2. Experimental normalized pressure ( μˆ =p p B/0 0
2) and safety-factor profiles in KSTAR discharge

#18594 at time t = 6450 ms. The points in the right-hand panel show the locations of the n = 1 rational
surfaces.

Tearing Mode Dynamics in Tokamak Plasmas

14-3



J
θ φ

∇ × =
∂
∂

− ∂
∂

φ θA A
A( ) , (14.14)r

J
φ

∇ × = ∂
∂

−
∂
∂

θ φA A

r
A( ) , (14.15)r

J
θ

∇ × = ∂
∂

− ∂
∂

φ θA
r

A
A( ) . (14.16)r

Here, A and B are arbitrary vector fields. Moreover, subscript/superscript r, θ, and φ
refer to covariant/contravariant components of a vector in the r, θ, φ coordinate system.

14.4 The equilibrium magnetic field
The equilibrium magnetic field is written [5, 14] (see equation (2.130))

φ φ= ∇ × ∇ + ∇B R f r r g rB [ ( ) ( ) ], (14.17)0 0

where B0 is the vacuum toroidal magnetic field strength at the magnetic axis, and

=q r
r g

R f
( ) (14.18)

0

is the safety-factor profile (see equation (2.128)). Here, g r( ) and f r( ) are dimension-
less functions.

It follows from equations (14.1)–(14.5), (14.17), and (14.18) that

=B 0, (14.19)r

=θB B R
f

r R
, (14.20)0 0

2
2

= =φB B R
g

R
B R

f q
r R

, (14.21)0 0 2 0 0
2

2

θ= − ∇ · ∇B B r f r , (14.22)r 0

= ∣∇ ∣θB B r f r , (14.23)0
2

=φB B R g. (14.24)0 0

The equilibrium poloidal magnetic flux (divided by 2π), Ψ r( )p , satisfies,

Ψ
=

d

dr
B R f r( ), (14.25)p

0 0

where, by convention, Ψ =r( ) 0p 100 . (Note that Ψp is equivalent to the quantity ψ
defined in equation (2.130).) The normalized poloidal magnetic flux,Ψ r( )N , is defined
such that
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Ψ
Ψ
Ψ

= −r
r

( ) 1
( )

(0)
. (14.26)N

p

p

Hence, Ψ =(0) 0N and Ψ =r( ) 1N 100 . In general, = ∞q r( )100 . Finally, if Ψ =r( ) 0.95N 95 ,
then =q q r( )95 95 . Thus, q95 is the safety factor of the magnetic flux surface that
encloses 95% of the poloidal magnetic flux enclosed by the last closed magnetic flux
surface.

14.5 The equilibrium plasma current density
Let j be the equilibrium electric current density. The Maxwell equation μ = ∇ ×j B0
yields

Jμ =j 0, (14.27)r
0

Jμ = −θj B R
dg
dr

, (14.28)0 0 0

Jμ
θ

θ= ∂
∂

∣∇ ∣ + ∂
∂

∇ · ∇φj B
r

r f r B r f r( ) ( ), (14.29)0 0
2

0

where use has been made of equations (14.14)–(14.16) and (14.22)–(14.24).

14.6 The Grad–Shafranov equation
Let p r( ) be the equilibrium plasma pressure profile. The equilibrium force balance
relation (see section 2.25)

× = ∇pj B (14.30)

gives

J − =θ φ φ θj B j B
dp
dr

( ) , (14.31)

where use has been made of equations (14.5) and (14.7). The previous equation
reduces to the Grad–Shafranov equation [19, 26, 32],

θ
θ

μ∂
∂

∣∇ ∣ + ∂
∂

∇ · ∇ + + =⎜ ⎟
⎛
⎝

⎞
⎠

f
r r

r f r
f
r

r f r g
dg
dr B

R
R

dp
dr

( ) ( ) 0, (14.32)2 0

0
2

0

2

where use has been made of equations (14.20), (14.21), (14.28), and (14.29). The
Grad–Shafranov equation can be written in the alternative form

Ψ Ψ Ψ
Ψ Ψ

∂ ˆ

∂ ˆ
− ˆ

∂ ˆ

∂ ˆ +
∂ ˆ

∂ ˆ
+ ˆ + ˆ ˆ

ˆ =
R R R Z

g
dg

d
R

dp

d

1
0, (14.33)

2
p
2

p
2

p
2

p

2

p

where Ψ Ψˆ = B R/( )p p 0 0
2 , ˆ =R R R/ 0, ˆ =Z Z R/ 0, and μˆ =p p B/0 0

2.
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14.7 The perturbed magnetic field
Let δB be the perturbed magnetic field associated with a tearing mode to which the
plasma is subject. Since δ∇ · =B 0, we obtain

J J Jδ δ
θ

δ
φ

∂
∂

+ ∂
∂

+ ∂
∂

=
θ φB

r
B B( ) ( ) ( )

0, (14.34)
r

where use has been made of equation (14.13).
It can easily be demonstrated from equations (14.1)–(14.5) that

δ δ θ δ=
∣∇ ∣

− ∇ · ∇
∣∇ ∣ θ⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

B
r

B
r

r
B

1
, (14.35)r

r
2 2

δ θ δ δ= ∇ · ∇
∣∇ ∣

+
∣∇ ∣

θ
θ⎜ ⎟⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

B
r

r
B

R
r R r

B . (14.36)r
2

0
2

2 2 2

Suppose, for the moment, that the tearing perturbation has m periods in the
poloidal direction and n periods in the toroidal direction. Let us adopt the
simplifying approximation that the perturbed current density, δ j, is negligible in
the regions lying between the various rational surfaces in the plasma [16]. Given that
μ δ δ= ∇ ×j B0 , it follows from equations (14.13)–(14.15) that

δ
θ

δ
φ

∂
∂

≃ ∂
∂

φ θB B
, (14.37)

δ
φ

δ∂
∂

≃
∂

∂
φB B

r
, (14.38)r

δ δ
θ

∂
∂

≃ ∂
∂

θB
r

B
. (14.39)r

Assuming that ∂ ∂ ∼r m r/ / , the previous three equations imply that

δ δ δ∼ ∼θ φr B B
m
n

B . (14.40)r

Hence, we deduce that

δ δ δ∼ ∼θ φr B r B
m
n

R B . (14.41)r 2 2

Consequently, the final term on the left-hand side of equation (14.34) is of the order
of n m r R( / ) ( / )2 2 smaller than the other two terms. Let us assume that this final term
is negligible, as would be the case in a large-aspect-ratio (i.e. ≫R r0 100) torus. It
follows that

δ
θ

θ δ δ∂
∂

≃ − ∂
∂

∇ · ∇
∣∇ ∣

+
∣∇ ∣ θ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦
⎥r

r
r R B

R
r r

r
r R B

R r
B

1
, (14.42)

r r2

0
2 2

2

0
2 2
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where use has been made of equation (14.3), (14.35), and (14.36). Finally, equations
(14.35) and (14.39) yield

δ
θ

δ θ δ∂
∂

≃ ∂
∂ ∣∇ ∣

− ∇ · ∇
∣∇ ∣

θ
θ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤

⎦
⎥r

B
r

R
R r

r R B
R

r r
r

B . (14.43)
r

0
2

2 2

2

0
2 2

Let

∑δ θ φ ψ= θ φ−r R B r t
R

r t
( , , , )

i ( , ) e , (14.44)
j

r

j
m n

2

0
2

i ( )j

∑δ θ φ χ= −θ
θ φ−B r t r t( , , , ) ( , ) e , (14.45)

j
j

m ni ( )j

where the sum is over all relevant poloidal harmonics of the perturbed magnetic
field. Here, we are now taking account of the fact that a tearing mode in a toroidal
tokamak plasma possesses a unique toroidal mode number, but consists of many
coupled poloidal harmonics with different poloidal mode numbers [5, 6, 11, 14, 22,
31]. By operating on equations (14.42) and (14.43) with ∮ θ π⋯ θ− d( ) e /(2 )mi j , we
obtain

∑
ψ

ψ χ
∂
∂

≃ − +
′

′ ′ ′ ′( )r
r

m c a , (14.46)
j

j
j jj j jj j

∑
χ

χ ψ
∂
∂

≃ − +
′

′ ′ ′ ′( )r
r

m c b , (14.47)
j

j
j jj j jj j

where

∮ θ
π

=
∣∇ ∣

θ
′

− − ′a r
r

d
( )

1
e

2
, (14.48)jj

m m
2

i ( )j j

∮ θ
π

=
∣∇ ∣

θ
′

− − ′b r
R

R r
d

( ) e
2

, (14.49)jj
m m0

2

2 2
i ( )j j

∮ θ θ
π

= ∇ · ∇
∣∇ ∣

θ
′

− − ′c r
r r

r
d

( )
i

e
2

. (14.50)jj
m m

2
i ( )j j

Incidentally, we can recover the approximate relations (14.46) and (14.47) from the
completely general analysis of reference [11] by neglecting the equilibrium plasma
current as well as by taking the limit that ≪n m r R( / ) ( / ) 12

0
2 . This procedure is

roughly equivalent to neglecting the term involving ′Jz in the cylindrical tearing-
mode equation, (3.60). Hence, by analogy with this equation, we would expect our
toroidal tearing mode to be classically stable (given that the drive for the classical
tearing instability in the cylindrical tearing-mode equation derives from the term
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involving ′Jz ). However, this does not preclude the possibility that our toroidal
tearing mode could be unstable as a neoclassical tearing mode (see chapter 12).

Finally, can readily be demonstrated that

∑δ θ φ ψ
= −

∂
∂

θ
θ φ−r R B r t

R m r
( , , , ) 1

e , (14.51)
j j

j m n
2

0
2

i ( )j

∑δ θ φ
χ

=φ θ φ−R B r t n
m

( , , , ) e , (14.52)
j

j

j

m n2 i ( )j

∑δ θ φ
χ

=
∂
∂

θ φ−B r t
m r

( , , , ) i
1

e , (14.53)
j

r
j

j m ni ( )j

∑δ θ φ
χ

=φ
θ φ−B r t n

m
( , , , ) e . (14.54)

j

j

j

m ni ( )j

14.8 The perturbed current density
Let δ j be the perturbed current density associated with the tearing mode. We can
write

J μ δ
δ
θ

δ
φ

=
∂

∂
− ∂

∂
φ θj

B B
, (14.55)r

0

J μ δ δ
φ

δ
= ∂

∂
−

∂
∂

θ φj
B B

r
, (14.56)r

0

J μ δ δ δ
θ

= ∂
∂

− ∂
∂

φ θj
B
r

B
. (14.57)r

0

Normally, according to our previous assumptions, all three contravariant compo-
nents of δ j are zero. Consider, however, the behavior in the vicinity of the kth
rational surface, =r rk, at which =n q r m( )k k (see section 3.7). In general, ψk, ψ ≠j k,
and χ ≠j k are continuous across the surface, while χk is discontinuous [11, 14]. Hence,
we deduce that

J μ δ θ φ =j r t( , , , ) 0, (14.58)r
0

J ∑μ δ θ φ χ δ= − −
=

θ θ φ−
−
+j r t

n
m

r r( , , , ) [ ] ( ) e , (14.59)
k K1, k

k r
r

k
m n

0
i ( )

k
k k

J ∑μ δ θ φ χ δ= − −
=

φ θ φ−
−
+j r t r r( , , , ) [ ] ( ) e , (14.60)

k K1,
k r

r
k

m n
0

i ( )
k
k k
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where use has been made of equations (14.45) and (14.54). Here, it is assumed that
there are K rational surfaces in the plasma, numbered sequentially from one to K
from the innermost to the outermost. It can easily be demonstrated from equations
(14.7)–(14.9), (14.19)–(14.22), and (14.58)–(14.60) that δ × =j B 0 at a given
rational surface. Thus, we conclude that a current sheet forms at each rational
surface in the plasma. Moreover, each sheet is made up of current filaments that flow
parallel to the local equilibrium magnetic field.

14.9 Electromagnetic torques
The flux-surface integrated poloidal and toroidal electromagnetic torque densities
acting on the plasma can be written as

J∮ ∮ δ δ θ φ= ×θ θT r t d dj B( , ) ( ) , (14.61)

J∮ ∮ δ δ θ φ= ×φ φT r t d dj B( , ) ( ) , (14.62)

respectively. Equations (14.3), (14.8), (14.9), (14.44), and (14.58)–(14.60) yield

∑π
μ

χ ψ δ= − −
=

θ *
−
+( )T

R
r r

2
Im [ ] ( ), (14.63)

k K1,
k r

r
k k

2
0

0
k
k

∑π
μ

χ ψ δ= −
=

φ *
−
+

⎜ ⎟
⎛
⎝

⎞
⎠

T
R n

m
r r

2
Im [ ] ( ). (14.64)

k K1, k
k r

r
k k

2
0

0
k
k

Let

Ψ
ψ

=t
r t

m
( )

( , )
, (14.65)k

k k

k

Ψ χΔ = −
+t( ) [ ] . (14.66)k k r

r
k
k

Note that these quantities are, in general, complex. It follows that [11, 14, 16]

∑ δ= −
=

θ θT r t T t r r( , ) ( ) ( ), (14.67)
k K1,

k k

∑ δ= −
=

φ φT r t T t r r( , ) ( ) ( ), (14.68)
k K1,

k k

where

π
μ

Ψ Ψ= − Δθ *T
R m2

Im( ), (14.69)k
k

k k

2
0

0
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π
μ

Ψ Ψ= Δφ *T
R n2

Im( ). (14.70)k k k

2
0

0

It can be seen, by analogy with the analysis of sections 3.3, 3.8, and 3.13, that Ψk is
the reconnected magnetic flux at the kth rational surface, while ΨΔ k parameterizes
the amplitude and phase of the current sheet flowing (parallel to the equilibrium
magnetic field) at the same surface.

14.10 Magnetic island chains
The analysis of section 5.16 suggests that a nonzero value of the reconnected
magnetic flux at the kth rational surface, Ψk, causes a helical magnetic island chain,
which hasmk periods in the poloidal direction and n periods in the toroidal direction,
to open in the immediate vicinity of the surface. Let us investigate the properties of
such a chain.

We can write

δ δ= ∇ ×B A, (14.71)

where

δ∇ · =A 0. (14.72)

Suppose that all terms in the previous equation are of equal importance. It follows
from equation (14.13) that

δ δ δ∼ ∼θ φr A r A
n
m

r A , (14.73)r 2 2

and hence that

δ δ δ∼ ∼θ φr A A
n
m

r
R

A . (14.74)r

2

2

Thus, equations (14.14)–(14.16) and (14.71) yield

J δ
δ
θ

≃
∂

∂
φB

A
, (14.75)r

J δ
δ

≃ −
∂

∂
θ φB

A

r
, (14.76)

J δ ≃φB 0, (14.77)

where the neglected terms are at least of order n m r R( / ) ( / ) smaller than the retained
terms. The previous three equations are consistent with equations (14.44), (14.51),
and (14.52) provided that

∑δ θ φ
ψ

≃φ
θ φ−A r t R

r t

m
( , , , )

( , )
e . (14.78)

j

j

j

m n
0

i ( )j
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Let us search for a function, θ φF r t( , , , ), such that

δ+ · ∇ =FB B( ) 0. (14.79)

It follows from equations (14.2), (14.4), and (14.6) that

δ δ
θ

δ
φ

+ ∂
∂

+ + ∂
∂

+ + ∂
∂

=θ θ φ φB B
F
r

B B
F

B B
F

( ) ( ) ( ) 0. (14.80)r r

Equations (14.3), (14.19)–(14.21), and (14.75)–(14.77) yield

δ
θ

δ
θ θ φ

∂
∂

∂
∂

−
∂

∂
∂
∂

+ ∂
∂

+ ∂
∂

=φ φ
⎜ ⎟
⎛
⎝

⎞
⎠

F
r

A A

r
F

B R f
F

q
F

0. (14.81)0 0

Suppose that

θ φ δ θ φ= + φF r t F r A r t( , , , ) ( ) ( , , , ). (14.82)0

The previous two equations give

δ
θ

δ
θ

δ
φ

∂
∂

+
∂

∂
+

∂
∂

=φ φ φ
⎜ ⎟
⎛
⎝

⎞
⎠

dF
dr

A
B R f

A
q

A
0. (14.83)0

0 0

According to equation (14.78), we can write

δ θ φ
ψ

≃φ
θ φ−A r t R

r t

m
( , , , )

( , )
e (14.84)k

k

m n
0

i ( )k

in the vicinity of the kth rational surface, where we have neglected the nonresonant
components of δ φA (because we do not expect them to open up an island chain at
this surface) [26]. The previous two equations yield

= − − ≃ −⎜ ⎟
⎛
⎝

⎞
⎠

dF
dr

B R f
m

m n q B
s g
q

r r( ) ( ), (14.85)
k

k

r

k
0 0 0

0

k

where =s d q d rln / ln is the magnetic shear, and use has been made of equation
(14.18) as well as the fact that =q r m n( ) /k k . Finally, equations (14.65), (14.82),
(14.84), and (14.85) can be combined to give

θ φ Ψ ξ= − + ∣ ∣⎜ ⎟
⎛
⎝

⎞
⎠

F r t
B s g

q
r r R( , , , )

2
( ) cos , (14.86)

r

k k
0 2

0

k

where ξ θ φ Ψ= − +m n arg( )k k . Here, we have taken the (physical) real part of F,
and use has been made of the constant-ψ approximation that ψ Ψ≃r t m t( , ) ( )k k k in
the immediate vicinity of the kth rational surface (see chapter 5).

The previous equation can be written

ξ
Ψ

ξ
∣ ∣

= − +⎜ ⎟
⎛
⎝

⎞
⎠

F r t
R

r r
W

( , , )
8 cos , (14.87)

k

k

k0

2
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where

Ψ= ∣ ∣
⎜ ⎟

⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥W R

q
g s B R

4 . (14.88)k

r

k
0

0 0

1/2

k

According to equation (14.79), the contours of the function ξF r t( , , ) map out the
perturbed magnetic flux surfaces in the immediate vicinity of the kth rational
surface. These contours are shown in figure 5.7 (with −r r W( )/k k playing the role of
ˆ ˆx W/ ). It can be seen that the reconnected magnetic flux at the kth rational surface
has indeed opened up a helical magnetic island chain, which has mk periods in the
poloidal direction and n periods in the toroidal direction, at the surface. Moreover,
the full radial width of the island chain (in r) is Wk. Incidentally, the previous
equation is the toroidal generalization of the cylindrical result, (5.129).

14.11 The inductance matrix
In chapter 3, we investigated a tearing mode in a cylindrical tokamak plasma. We
found that such a mode resonates with the equilibrium magnetic field at a single
magnetic flux surface, known as the rational surface. The minor radius of the
rational surface, rs, satisfies =n q r m( )s , where m and n are the unique poloidal and
toroidal mode numbers, respectively, of the mode. We also found that the mode
reconnects magnetic flux at the rational surface and simultaneously generates a
current sheet at the surface that flows parallel to the local magnetic field.

In this chapter, we started to investigate a tearing mode in a toroidal tokamak
plasma. We found that such a mode possesses a unique toroidal mode number but
consists of many coupled poloidal harmonics (see equations (14.46) and (14.47)).
Moreover, the mode resonates at multiple rational surfaces lying within the plasma.
The kth rational surface, whose minor radius is rk, satisfies =m n q r( )k k , where mk is
a positive integer. In principle, the mode can reconnect magnetic flux at each
rational surface in the plasma and can also generate a current sheet flowing parallel
to the equilibrium magnetic field at each surface. We wish to find the relationship
between the reconnected magnetic fluxes and the current sheet strengths at the
various rational surfaces in the plasma.

Let

J∮ ∮Φ
π

δ θ φ= · ∇ θ φ− −

=

t
m

r d dB( )
1

2
i e (14.89)k

k

m n

r r

i ( )k

k

be the (complex) m n/k helical component of the radial magnetic flux at the kth
rational surface. It follows from equations (14.2)–(14.4), (14.44), and (14.65) that

Φ π Ψ= − R2 . (14.90)k k0

Thus, Φk is related to the reconnected magnetic flux, Ψk (which is actually a flux per
unit length), at the kth rational surface. Let
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J∫ ∮ ∮π
δ φ θ φ= · ∇

−

+

I t dr d dj( )
1

2
(14.91)k

r

r

k

k

be the (complex) m n/k helical component of the localized toroidal plasma current
flowing at the kth rational surface. It follows from equations (14.2)–(14.4), (14.60),
and (14.66) that

π
μ

Ψ= − ΔI
2

. (14.92)k k
0

Thus, Ik is related to the parallel current sheet strength, ΨΔ k, at the kth rational
surface.

In general, we expect Φk and Ik to be related to one another via a complex
inductance matrix:

∑Φ =
′=

′ ′L I , (14.93)
k K1,

k kk k

for =k K1, . Equations (14.90), (14.92), and (14.93) yield [6, 14]

∑Ψ Ψ= Δ
′=

′ ′F , (14.94)
k K1,

k kk k

where

μ=′ ′L R F . (14.95)kk kk0 0

Hence, we deduce that the complex matrix, ′Fkk , which relates the reconnected fluxes
to the current sheet strengths at the various rational surfaces within the plasma, can
be regarded as a dimensionless inductance matrix.

The magnetic energy associated with the tearing perturbation is written as

E J∫ ∮ ∮μ
δ δ θ φ= ·

∞
*t dr d dB B( )

1
4

. (14.96)
0 0

Making use of equations (14.6), (14.44), (14.45), and (14.51)–(14.54), we obtain

E ∫ ∫∑ ∑π
μ

χ ψ π
μ

χ= ∂
∂

+ ∣ ∣
∞

*
∞R

m r
dr

n
R m

r dr
1

( )
1

. (14.97)
j jj

j j
j

j

2
0

0 0

2 2

0 0
2

0

2

The second term on the right-hand side of the previous equation is negligible
compared to the first, because we are assuming that ≪n m r R( / ) ( / ) 1j

2
0

2 . We expect
that χ ψ →*r t r t( , ) ( , ) 0j j as →r 0. Furthermore, assuming that the plasma is
isolated (i.e. it is not interacting with a resistive wall or an externally generated
resonant magnetic perturbation), we also expect that χ ψ →*r t r t( , ) ( , ) 0j j as → ∞r .
Recalling, however, that χ r t( , )k is discontinuous across the kth rational surface,
while χ ≠ r t( , )j k and ψ r t( , )j are continuous, and making use of equations (14.65),
(14.66), (14.90), and (14.92), we arrive at
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E ∑ ∑π
μ

Ψ Ψ Φ≃ Δ =
= =

* *R
I

1
4

. (14.98)
k K k K1, 1,

k k k k

2
0

0

Finally, making use of equation (14.93) and (14.94), we get

E ∑ ∑π
μ

Ψ Ψ≃ Δ Δ =
′= ′=

′
*

′
*

′
*

′
*R

F I L I
1
4

. (14.99)
k k K k k K, 1, , 1,

k kk k k kk k

2
0

0

Now, E is a manifestly real quantity. Hence, it follows from the previous equation
that the inductance matrix, ′Lkk , must be Hermitian, which implies that the
normalized inductance matrix, ′Fkk , is also Hermitian: that is,

=′ ′
*F F . (14.100)k k kk

There is another reason why the F-matrix, ′Fkk , must be Hermitian. According to
equations (14.70) and (14.94), the net toroidal electromagnetic torque acting on the
plasma is

∑ ∑ ∑π
μ

Ψ Ψ π
μ

Ψ Ψ= Δ = Δ Δφ * ′* ′*

= = ′=

T
R n R n

F
2

Im( )
2

Im( ). (14.101)k k k k kk k

2
0

0

2
0

0k K k K k k K1, 1, , 1,

However, given that we are assuming that the plasma is isolated, and given that the
plasma equilibrium is axisymmetric, this torque must be zero, otherwise toroidal
angular momentum would not be conserved [14]. The fact that the F-matrix is
Hermitian ensures that the net toroidal torque is indeed zero.

14.12 The calculation of the inductance matrix
In principle, we could determine the relationship between ΨΔ k and Ψk (which is
equivalent to determining the relationship between Ik and Φk) by solving equations
(14.46) and (14.47) subject to suitable spatial boundary conditions at r = 0 and

=r r100 [11, 14, 22]. However, in this chapter, we shall adopt a more direct approach
[12, 13, 15, 16].

According to the Biot–Savart law [27]:

∫δ
μ
π

δ φ= ′ ′ · ∇
∣ − ′∣

′φA t
R R t

dx
j x
x x

x( , )
4

( , )
. (14.102)0 3

Let us assume that

δ φ δ=φ φ
φ−A R Z t A R Z t( , , , ) ( , 0, , ) e . (14.103)ni

It follows that we can evaluate the integral on the right-hand side of equation
(14.102) at φ = 0 without loss of generality. We can now write

δ φ φ δ φ′ ′ ′ · ∇ = ′ ′ ′φ φ− ′R Z t j R Z tj( , , , ) ( , 0, , ) e cos , (14.104)ni
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so that we get

J

∫ ∮δ
μ
π

δ

θ

= ′ ′ ′

′ ′ ′ ′ ′

φ
φ

∞
A R Z t R R j R Z t

G R Z R Z dr d

( , 0, , )
4

( , 0, , )

( , ; , ) ,
(14.105)

0

0

where

∮ φ φ φ
φ

′ ′ = − ′ + + ′ ′
+ ′ + − ′ − ′ ′

G R Z R Z
n n d

R R Z Z R R
( , ; , )

1
2

(cos[( 1) ] cos[( 1) ])

[ ( ) 2 cos ]
. (14.106)

2 2 2 1/2

Finally, making use of the standard definition of a toroidal function [23],

∮η
π

φ φ
η η φ

= − Γ Γ +
−−P

n n d
(cosh )

( 1) (1/2) (1/2 )
2

cos( )
(cosh sinh cos )

, (14.107)n
n

1/2 2 1/2

where Γ x( ) denotes a gamma function [1], we arrive at

π η

η
η

′ ′ = −
Γ Γ + + ′ + − ′

× − +
+

+

−
− −

+

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

G R Z R Z
n R R Z Z

n P
P

n

( , ; , )
( 1)

(1/2) ( 1/2)
cosh

( )

( 1/2) (cosh )
(cosh )

1/2
,

(14.108)

n

n
n

1 2

2 2 2

1/2

1/2
1 1/2

1

where

η = ′
+ ′ + − ′

− ⎡
⎣⎢

⎤
⎦⎥

R R
R R Z Z

tanh
2

( )
. (14.109)1

2 2 2

According to equations (14.60) and (14.66),

J ∑μ δ θ Ψ δ= − Δ −
=

φ θj r t t r r( , , 0, ) ( ) ( ) e . (14.110)
k K1,

k k
m

0
i k

Furthermore, equations (14.65) and (14.78) yield

∮Ψ δ θ θ
π

= φ
θ−t

R
A r t

d
( )

1
( , , 0, ) e

2
. (14.111)k k

m

0

i k

Hence, combining the previous two expressions with equation (14.105), we obtain
the expected normalized inductance relation (see equation (14.94)),

∑Ψ Ψ= Δ
′=

′ ′F , (14.112)
k K1,

k kk k

for =k K1, , where [12, 13, 15, 16]

G∮ ∮ θ
π

θ
π

= θ θ
′ ′ ′

− − ′′ ′F R Z R Z
d d

( , ; , ) e
2 2

, (14.113)kk k k k k
m m k ki ( )k k k k
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and

G π η

η
η

= −
Γ Γ + + + −

× − +
+

′ ′
′ ′

′ ′

−
−

′
−

+
′

⎡

⎣
⎢

⎤

⎦
⎥

⎡

⎣
⎢

⎤

⎦
⎥

R Z R Z
R R R

n R R Z Z

n P
P

n

( , ; , )
( 1) /
2 (1/2) ( 1/2)

cosh

( )

( 1/2) (cosh )
(cosh )

1/2
,

(14.114)

k k k k

n
k k kk

k k k k

n
kk

n
kk

2
0

2 2 2

1/2

1/2
1 1/2

1

with

η =
+ + −′

− ′

′ ′

⎡
⎣⎢

⎤
⎦⎥

R R
R R Z Z

tanh
2

( )
. (14.115)kk

k k

k k k k

1
2 2 2

Here, k and ′k index the various rational surfaces in the plasma. Moreover, the
double integral in equation (14.113) is taken around the kth rational surface
(cylindrical coordinates Rk, 0, Zk; flux coordinates rk, θk, 0, with rk constant;
resonant poloidal mode number mk) and the ′k th rational surface (cylindrical
coordinates ′Rk , 0, ′Z ;k flux coordinates ′rk , θ ′k , 0, with ′rk constant; resonant poloidal
mode number ′mk ).

Note that

G G=′ ′ ′ ′R Z R Z R Z R Z( , ; , ) ( , ; , ), (14.116)k k k k k k k k

which, from equation (14.113), implies that the F-matrix is Hermitian (see equation
(14.100)), as must be the case.

Finally, according to equations (14.95) and (14.113), the unnormalized induc-
tance matrix takes the form

G∮ ∮μ θ
π

θ
π

= θ θ
′ ′ ′

− − ′′ ′L R R Z R Z
d d

( , ; , ) e
2 2

. (14.117)kk k k k k
m m k k

0 0
i ( )k k k k

The Hermitian L-matrix, ′Lkk , specifies the self and mutual inductances of the helical
current sheets that flow at the various rational surfaces within the plasma.

Note that the calculation of the F-matrix outlined in this section is only
approximate. The exact calculation is specified in references [11] and [22].

14.13 The toroidal tearing-mode dispersion relation
The toroidal tearing-mode dispersion relation

∑Ψ Ψ= Δ
′=

′ ′F , (14.118)
k K1,

k kk k

for =k K1, (see equation (14.112)), can also be written in the form [6, 14]

∑Ψ ΨΔ =
′=

′ ′E , (14.119)
k K1,

k kk k
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for =k K1, , where the E-matrix, ′Ekk , is the inverse of the F-matrix. Because the F-
matrix is Hermitian, so is the E-matrix. Given that the F-matrix is a dimensionless
inductance matrix, it is clear that the E-matrix is a dimensionless reluctance matrix.

In cylindrical geometry, the tearing-mode dispersion relation takes the form

Ψ ΨΔ = E , (14.120)k kk k

for =k K1, (see equation (3.74)). Here, Ekk is the tearing stability index at the kth
rational surface [20]. A comparison between the previous two equations reveals that
the main difference between the tearing-mode dispersion relation in toroidal
geometry and that in cylindrical geometry is the presence of nonzero off-diagonal
elements of the E-matrix in the former case. These off-diagonal elements couple
different poloidal harmonics.

The nonzero off-diagonal elements of the E-matrix are a consequence of nonzero
off-diagonal elements of the F-matrix. (If the F-matrix were diagonal, then the E-
matrix would also be diagonal.) The off-diagonal elements of the F-matrix are
determined by double integrals of the form (14.113) which is used to calculate the
normalized mutual inductances of current sheets flowing parallel to the local
equilibrium magnetic field at different rational magnetic flux surfaces. In the case
of a cylindrical plasma, the rational surfaces are concentric cylindrical surfaces of
circular cross section, and the current sheets have different poloidal periods.
Consequently, the mutual inductance integrals all average to zero. The same is
not generally true in a toroidal plasma, for two reasons. First, in a toroidal plasma,
the different rational magnetic flux surfaces are not concentric, as a consequence of
toroidicity and pressure gradients [19, 34] (see figure 14.1). This effect, which is
known as the Shafranov shift [34], gives rise to a coupling between poloidal
harmonics whose poloidal mode numbers differ by unity [5, 14]. Second, in a
realistic tokamak plasma, the rational magnetic flux surfaces do not have circular
cross sections. Instead, they are highly elongated in the vertical direction and slightly
triangular (see figure 14.1). These shaping effects give rise to couplings between
poloidal harmonics whose poloidal mode numbers differ by two and three,
respectively [14]. Of course, there is no coupling between toroidal harmonics with
different toroidal mode numbers because the rational magnetic flux surfaces are all
axisymmetric. This accounts for the fact that a general toroidal tearing mode
possesses a unique toroidal mode number but does not possess a unique poloidal
mode number.

Suppose that a toroidal tearing mode reconnects an amount of magnetic flux, Ψk,
at the kth rational surface and generates a current sheet of normalized strength, ΨΔ k

at the same surface. What is the response of the other rational surfaces in the
plasma? In fact, the response at the ′k th rational surface (where ′ ≠k k) can fall
between two extremes. Either the response can be such as to induce a current sheet at
the ′k th rational surface that completely suppresses driven magnetic reconnection at
the surface (i.e.Ψ =′ 0k ), or the response can be such that no current sheet is induced
at the ′k th rational surface (i.e. ΨΔ =′ 0k ), with the result that the maximum amount
of reconnection is driven at the surface. We shall refer to the first type of response as
full shielding and to the second type as no shielding.
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Suppose that the responses at all of the other rational surfaces in the plasma are of
the full shielding type: that is, Ψ =′≠ 0k k . It follows from equation (14.119) that [14]

Ψ ΨΔ = E . (14.121)k kk k

In other words, in this limit, we essentially reproduce the cylindrical result, (14.120).
We conclude that if all of the rational surfaces in the plasma are fully shielded from
one another, then a toroidal tearing mode does, in fact, possess a unique poloidal
mode number, which is the mode number of the single rational surface in the plasma
at which it reconnects magnetic flux. (Note that we are not saying that the magnetic
perturbation associated with the mode consists of a single poloidal harmonic.)
Moreover, the diagonal element of the E-matrix at that surface is the effective
tearing stability index for the mode.

Suppose that the responses at all of the other rational surfaces in the plasma are of
the no-shielding type: that is, ΨΔ =′≠ 0k k . It follows from equation (14.118) that [14]

Ψ ΨΔ =
F
1

. (14.122)k
kk

k

In other words, in this limit, we again reproduce the cylindrical result, (14.120). We
conclude that if there is no shielding in the plasma, then a toroidal tearing mode
does, in fact, possess a unique poloidal mode number, which is the mode number of
the single rational surface in the plasma at which it generates a current sheet.
Moreover, the inverse of the diagonal element of the F-matrix at that surface is the
effective tearing stability index for the mode. In general, we expect >F E1/ kk kk [14].
In other words, in the absence of shielding, we expect the mutual coupling of the
different resonant surfaces in the plasma to destabilize the tearing mode relative to
the case in which there is full shielding.

The question that we now need to address is which of the two extreme response
regimes just outlined most accurately describes a tearing mode in a realistic tokamak
plasma. In order to determine the answer to this question, let us examine an example
tokamak discharge.

14.14 An example tokamak discharge
KSTAR discharge #18594 [29] is a typical H-mode [34] discharge in a midsized
tokamak. Figure 14.1 shows the equilibrium magnetic flux surfaces in this discharge
at time t = 6450 ms, at which time =B 1.790 T, =R 1.800 m, =r 0.596100 m, and

=q 4.0495 . Figures 14.2 and 14.3 show the corresponding pressure, safety-factor,
and g profiles [29]. Of course, the equilibrium flux surfaces shown in figure 14.1,
combined with the p and g profiles specified in figures 14.2 and 14.3, constitute a
solution of the Grad–Shafranov equation, (14.33). Note that the safety factor
becomes infinite at the edge of the plasma due to the presence of a magnetic X-point
on the bounding magnetic flux surface (see figure 14.1). In principle, there are an
infinite number of n = 1 rational surfaces lying within the plasma. However, if we
truncate the plasma at Ψ = 0.995N (i.e. at the magnetic flux surface that contains
99.5% of the poloidal magnetic flux contained by the last closed flux surface), which
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is the standard approach, then there are only four such surfaces. The properties of
these surfaces are listed in table 14.1.

Table 14.2 specifies the elements of the n = 1 E-matrix in KSTAR discharge
#18594 at time t = 6450 ms, calculated according to the procedure set out in section
14.12. As expected, it can be seen that the matrix is Hermitian. Moreover, all of the
diagonal elements of the matrix are negative, which indicates that the n = 1 tearing
modes are all classically stable. (This is not surprising, because the classical drive is
absent from our calculation.) Finally, the off-diagonal elements of the matrix are all
substantial, indicating that there is significant coupling between different poloidal
harmonics.

In order to determine the effective tearing stability index for an n = 1 toroidal
tearing mode that reconnects magnetic flux at a particular rational surface in the

Figure 14.3. Experimental electron number density, electron temperature, majority ion number density,
majority ion temperature, E-cross-B frequency, and g profiles in KSTAR discharge #18594 at time t = 6450
ms. The vertical dotted lines show the locations of the n = 1 rational surfaces.

Tearing Mode Dynamics in Tokamak Plasmas

14-19



plasma, let us assume that the responses of the other rational surfaces exhibit strong
shielding. This assumption can be justified a posteriori. Our assumption implies that
very little magnetic reconnection is driven at the other rational surfaces. In this case,
it is reasonable to calculate the responses of these surfaces using linear theory. (The
linear approximation is valid as long as the widths of the magnetic island chains
driven at the other rational surfaces are less than the corresponding linear layer
widths. See section 5.16.)

According to the analysis given in chapter 5, the linear response of the kth
rational surface is characterized by

Ψ τ ΨΔ = Δ̂ φ ⊥S Q Q Q Q D P P( , , , , , , , ) , (14.123)k k k k k k k k k k k
1/3

E e i

where

τ
τ

=S , (14.124)k
k

k

R

H

Qτ μ σ= r r r( ) ( ), (14.125)k k k kR 0
2

ee ee

σ τ=r
n r e r

m
( )

( ) ( )
, (14.126)ee

e
2

ee

e

Table 14.1. Properties of the n = 1 rational surfaces in KSTAR discharge #18594
at time t = 6450 ms. Here, s r( ) is defined in equation (14.129). Only those surfaces
with Ψ <r( ) 0.995N k are listed.

k mk r r/k 100 Ψ r( )N k s r( )k g r( )k

1 2 0.692 0.669 1.51 0.998
2 3 0.852 0.862 2.53 0.999
3 4 0.938 0.947 3.06 0.999
4 5 0.993 0.993 1.27 0.999

Table 14.2. Elements of the n = 1 E-matrix in KSTAR discharge #18594 at time t = 6450 ms.

k ′k ′ERe( )kk ′EIm( )kk k ′k ′ERe( )kk ′EIm( )kk

1 1 −4.81 +0.00 3 1 +0.589 +1.22
1 2 −0.133 +1.41 3 2 +2.04 −3.19
1 3 +0.589 −1.22 3 3 −15.3 +0.00
1 4 +1.02 −0.646 3 4 +8.13 +2.84
2 1 −0.133 −1.41 4 1 +1.02 +0.646
2 2 −7.92 +0.00 4 2 −0.726 +0.399
2 3 +2.04 +3.19 4 3 +8.13 −2.84
2 4 −0.726 −0.399 4 4 −17.4 +0.00
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Here, Sk is the Lundquist number, τ kR the resistive diffusion time (see equation
(5.49)), and τ kH the hydrodynamic time (see equation (5.43)) at the kth rational
surface. Moreover, n r( )e , n r( )i , and n r( )I are the equilibrium number density profiles
of the electrons, majority ions, and impurity ions, respectively, whileT r( )e ,T r( )i , and
T r( )I are the corresponding temperature profiles, and me, mi, and mI the correspond-
ing species masses. Furthermore, ω is the real frequency of the tearing mode in the
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laboratory frame, while the E-cross-B, electron diamagnetic, and majority ion
diamagnetic frequency profiles, Ω r( )E , Ω r( )e , and Ω r( )i , respectively, are defined in
equations (A.77) and (A.78). The electron–electron collision time, τ r( )ee , is specified
in equation (A.23), and e is the magnitude of the electron charge. The dimensionless
function Q r( )ee , defined in equation (A.81), specifies the reduction in the plasma’s
electrical conductivity due to the presence of impurity ions and trapped particles (see
section 2.20). In addition, τφ k and τ⊥ k are the toroidal momentum confinement time
(see equation (5.50)) and the particle confinement time, respectively, at the kth
rational surface, while Ξ⊥ r( )i and ⊥D r( ) are the ion perpendicular momentum
diffusivity and perpendicular particle diffusivity profiles, respectively.

Equation (14.123) states that the linear response of the kth rational surface to a
magnetic perturbation generated at another rational surface is governed by nine
dimensionless parameters. These parameters are the Lundquist number, Sk, the
normalized mode frequency, Qk, the normalized E-cross-B frequency, Q kE , the
normalized electron diamagnetic frequency, Q ke , the normalized ion diamagnetic
frequency, Q ki , the pressure gradient ratio parameter, τk, the semi-collisional
parameter, Dk, and the two magnetic Prandtl numbers, φP k and ⊥P k. (Note that
these parameters are called Q,QE,Qe,Qi, τ, D, φP , and ⊥P , respectively, in chapter 5).

The dimensionless layer response index, Δ̂k, can be calculated numerically as a
function of these nine parameters by solving the Riccati differential equation,
(5.121), subject to the boundary conditions (5.122) and (5.123).

Figure 14.3 shows the experimental number density, temperature, and E-cross-B
frequency profiles in KSTAR discharge #18594 at time t = 6450 ms [29]. The
majority ions are deuterium, while the impurity ions are carbon-VI (i.e. =Z 6I ). The
majority ion and impurity ion number density profiles are calculated from the
measured electron number density profile (see equations (A.4) and (A.5)) on the
assumption that the effective ion charge number, Zeff (see equation (A.3)), takes the
value 2.0 throughout the plasma. (This value is a best guess based on the measured
stored energy.) The impurity ions are assumed to have the same temperature as the
measured temperature of the majority ions. The E-cross-B frequency profile is
deduced from the measured impurity ion toroidal angular velocity profile using the
neoclassical theory outlined in appendix A [15]. In particular, the impurity ion
poloidal angular velocity profile is assumed to take its neoclassical value (see section
A.7). Furthermore, the ion perpendicular momentum and perpendicular particle
diffusivities are given the plausible values of −1.0 m s2 1 and −0.2 m s2 1, respectively,
throughout the plasma [34]. Finally, the values of the various n = 1 resistive-layer
parameters, determined from the data shown in figure 14.3, as well as the
aforementioned assumptions, are given in table 14.3.

14.15 Linear calculation
Consider an n = 1 tearing mode that principally reconnects magnetic flux at the kth
rational surface in our example tokamak plasma. Let us suppose that the amount of
reconnected magnetic flux is sufficiently small that the plasma response at this
surface lies in the linear regime, which is equivalent to supposing that the magnetic
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island width at the kth rational surface is much less than the linear layer width (see
section 5.16). Given that the mode is assumed not to interact strongly with the other
rational surfaces in the plasma, due to the assumed strong shielding present at these
surfaces, the analysis given in chapter 6 implies that the frequency of the mode can
be written as

ω γ ω= +i , (14.141)k klinear

where γ ω∣ ∣ ≪ ∣ ∣k klinear , and

ω = − Ω + Ω* =n( ) . (14.142)k r rlinear E e k

The previous two equations, which are equivalent to equation (6.1), imply that a
linear tearing mode corotates with the electron fluid at the kth rational surface. It
follows from equation (14.130) that the normalized mode rotation frequency at the

′k th rational surface, where ′ ≠k k, is

ω τ τ
τ

= = +′ ′ ′
′ ′Q S

S

S
Q Q( ) . (14.143)k k k k
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k
k k

k

k
linear H

1/3

1/3 E e
H

H

Here, we have neglected the comparatively small growth rate of the mode with
respect to its comparatively large real frequency in the laboratory frame.

According to equations (14.120) and (14.123), the linear dispersion relation of our
tearing mode can be written as

∑Ψ Ψ ΨΔ = +
′=

′≠

′ ′E E , (14.144)
k K

k k

1,

k kk k kk k

with

∑Ψ Ψ ΨΔ − = +
″=

″≠ ′

′ ′ ′ ′ ′ ′ ″ ″E E E( ) , (14.145)
k K

k k k

1,

,

k k k k k k k k k k

for ′ ≠k k, where

τΔ = Δ̂ φ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ⊥ ′S Q Q Q Q D P P( , , , , , , , ). (14.146)k k k k k k k k k k k
1/3

E e i

Table 14.4 shows the dimensionless layer-matching parameters, Δ ′k , where
′ ≠k k, calculated from the layer parameters given in table 14.3, with ′Qk as specified

by equation (14.143). It can be seen that all Δ ′k have magnitudes that are much

Table 14.3. The n = 1 resistive-layer parameters in KSTAR discharge #18594 at time t = 6450 ms.

k mk τ kH Sk τk ⊥P k φP k Dk Q kE Q ke Q ki

1 2 × −2.41 10 7 ×1.52 107 1.51 8.05 40.24 2.41 −3.85 1.11 −0.735
2 3 × −1.34 10 7 ×2.87 107 0.917 5.67 28.4 1.96 −1.96 0.475 −0.518
3 4 × −1.06 10 7 ×3.98 107 1.00 4.91 24.5 1.86 −0.78 1.78 −1.78
4 5 × −1.30 10 8 ×5.34 107 0.877 0.513 2.57 1.13 +0.33 0.959 −1.09
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greater than unity, indicating a strong shielding response at the rational surfaces
other than the kth surface. This strong shielding is a consequence of sheared rotation
in the plasma [14]. Roughly speaking, a given rational surface can only reconnect
magnetic flux that corotates with the local electron fluid. However, as a consequence
of sheared rotation, if a tearing perturbation corotates with the local electron fluid at
a given rational surface in the plasma, then it does not corotate with the local
electron fluids at any of the other surfaces. This is illustrated in table 14.5, which
specifies the linear natural frequencies, ω klinear , associated with the various n = 1
rational surfaces present in the plasma. It is clear that the natural frequencies all
differ substantially from one another. Consequently, a linear n = 1 tearing mode can
only reconnect magnetic flux at one rational surface at a time in the plasma.

Treating ∣Δ − ∣′ ′ ′
−Ek k k

1 as a small parameter, equation (14.145), yields

Ψ
Ψ

≃
Δ −

′ ′

′ ′ ′

E
E

, (14.147)k

k

k k

k k k

for ′ ≠k k, which implies that Ψ Ψ∣ ∣ ∣ ∣ ≪′ / 1k k . In other words, the strong rotational
shielding present at the ′k th rational surface does indeed ensure that very little
magnetic flux is reconnected at that surface compared to that reconnected at the kth
surface (i.e. the rational surface at which the mode corotates with the local electron
fluid). The previous equation can be substituted back into equation (14.144) to give

Ψ
Ψ

δΔ ≃ +E E , (14.148)k

k
kk kk

Table 14.4. The n = 1 layer-matching parameters in KSTAR discharge #18594 at time t = 6450 ms.

k ′k Δ ′Re( )k Δ ′Im( )k k ′k Δ ′Re( )k Δ ′Im( )k

1 2 −47.5 +234 3 1 −21.2 −128
1 3 −713 +249 3 2 +18.2 −257
1 4 −419 +826 3 4 −229 +830
2 1 −57.1 −206 4 1 +0.06 −39.0
2 3 −728 +243 4 2 +0.41 −73.7
2 4 −403 +830 4 3 −0.07 −95.9

Table 14.5. Natural frequencies of the n = 1 tearing modes in KSTAR discharge
#18594 at time t = 6450 ms.

k mk
−w (krad s )klinear

1 −w (krad s )knonlinear
1

1 2 −45.9 −72.4
2 3 −36.2 −55.9
3 4 +27.6 −56.6
4 5 +263 −114
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where

∑δ = ∣ ∣
Δ −′=

′≠
′

′ ′ ′
E

E
E

. (14.149)
k K

k k

1,

kk
kk

k k k

2

Here, Ekk is the tearing stability index of the mode that reconnects magnetic flux at
the kth rational surface in the limit of full shielding (i.e. ΨΔ =′ 0k ) at the other
rational surfaces, while δEkk is the correction to this index due to the fact that the
shielding is not actually perfect. Table 14.6 gives the Ekk and δEkk values calculated
from the data in tables 14.2 and 14.4 for the four possible linear n = 1 tearing modes
in our example tokamak discharge. It can be seen that δ∣ ∣ ≪ ∣ ∣E Ekk kk for all modes.
In other words, in all cases, the correction due to residual reconnection at the other
rational surfaces is essentially negligible.

14.16 Nonlinear calculation
Let us again consider an n = 1 tearing mode that principally reconnects magnetic
flux at the kth rational surface in our example tokamak plasma. Let us now suppose
that the amount of reconnected magnetic flux is sufficiently large that the plasma
response at this surface lies in the nonlinear regime, which is equivalent to supposing
that the magnetic island width at the kth rational surface is much greater than the
linear layer width (see section 5.16). Given that the mode is assumed not to interact
strongly with the other rational surfaces in the plasma, due to the assumed strong
shielding present at these surfaces, the analysis given in chapter 12 implies that the
frequency of the mode can be written as [10, 18]

ω γ ω= +i , (14.150)k knonlinear

where γ ω∣ ∣ ≪ ∣ ∣k knonlinear , and

L Lω = − Ω + Ω − Ω − Ω* * * =n( ) . (14.151)k r rnonlinear E i ii i iI I k

Here, the impurity ion diamagnetic frequency profile, Ω* r( )I , is defined in equation
(A.78). Moreover, the dimensionless neoclassical quantities, L r( )ii and L r( )iI , are
defined in equation (A.80). The previous two equations are a generalization of
equation (12.11) that takes the presence of impurity ions in the plasma into account,
does not assume a small fraction of trapped particles, and does not assume that the
plasma at the kth rational surface is in the banana collisionality regime [11, 14, 16].

Table 14.6. Linear n = 1 tearing stability indices in KSTAR discharge #18594 at
time t = 6450 ms.

k Ekk δERe( )kk δEIm( )kk

1 −4.81 − × −4.43 10 3 − × −1.05 10 2

2 −7.92 − × −2.07 10 2 + × −2.26 10 3

3 −15.2 − × −1.75 10 2 − × −1.45 10 2

4 −17.4 + × −1.24 10 1 + × −8.01 10 1
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The previous two equations imply that a nonlinear tearing mode is entrained by the
ion fluid at the kth rational surface. It follows from equation (14.130) that the
normalized mode rotation frequency at the ′k th rational surface, where ′ ≠k k, is

ω τ=′ ′ ′Q S , (14.152)k k k knonlinear H

where the nonlinear natural frequencies, ω knonlinear , are specified in table 14.5. Here,
we have again neglected the comparatively small growth rate of the mode with
respect to its comparatively large real frequency in the laboratory frame. Note that
the nonlinear natural frequencies are all significantly different from one another and
are also significantly different from the linear natural frequencies.

If we repeat the calculation performed in the previous section, replacing the ′Qk
values specified in equation (14.143) with those specified in equation (14.152), then
we obtain the results shown in table 14.7. As before, it can be seen that δ∣ ∣ ≪ ∣ ∣E Ekk kk

for all possible nonlinear n = 1 tearing modes. Thus, the fact that nonlinear tearing
modes effectively corotate with the ion fluid, rather than the electron fluid, does not
change the conclusion of the previous section that there is sufficient rotational shear
present in the plasma to ensure that a nonlinear n = 1 tearing mode can only
reconnect magnetic flux at one rational surface at a time.

Thus, we have effectively answered the question posed at the end of section 14.13.
The full shielding response model most accurately describes a tearing mode in a
realistic tokamak plasma. Note that plasmas in tokamak fusion reactor reactors are
likely to undergo significantly less rotational shear than KSTAR plasmas (because
they do not rotate as fast as KSTAR plasmas—see section 5.15) but are likely to
possess much larger Lundquist numbers. The two effects largely offset one another.
Hence, we conclude that the full shielding response model is also likely to apply to
tokamak fusion reactors.

14.17 The effect of electromagnetic torques
We have seen that a nonlinear n = 1 tearing mode that principally reconnects
magnetic flux at a given rational surface in our example tokamak discharge
generates comparatively small reconnected fluxes at the other rational surfaces, as
a consequence of sheared plasma rotation. However, the small, but nonzero,
reconnected fluxes driven at the other surfaces give rise to localized electromagnetic
torques (see equations (14.69) and (14.70)). In principle, such torques can modify the
plasma rotation and may even lead to the collapse of the rotation shear that is

Table 14.7. Nonlinear n = 1 tearing stability indices in KSTAR discharge #18594
at time t = 6450 ms.

k Ekk δERe( )kk δEIm( )kk

1 −4.81 − × −4.60 10 3 − × −5.57 10 3

2 −7.92 − × −2.00 10 2 − × −1.40 10 2

3 −15.2 − × −5.30 10 2 − × −1.07 10 1

4 −17.4 − × −2.66 10 3 − × −1.38 10 1
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responsible for the strong shielding of different rational surfaces from one another
[14]. Let us investigate this effect.

We shall adopt model plasma equations of poloidal and toroidal angular motion
that are analogous to those introduced in section 3.14. Let us write

Ω = Ω + ΔΩθ θ θr t r r t( , ) ( ) ( , ), (14.153)0

Ω = Ω + ΔΩφ φ φr t r r t( , ) ( ) ( , ). (14.154)0

Here, r is the flux-surface label introduced in section 14.2. Moreover, Ωθ r t( , ) and
Ωφ r t( , ) are the majority ion poloidal and toroidal angular velocity profiles,
respectively. Furthermore, Ωθ r( )0 and Ωφ r( )0 are the majority ion poloidal and
toroidal angular velocity profiles, respectively, in the absence of electromagnetic
torques at the rational surfaces, while ΔΩθ r t( , ) and ΔΩφ r t( , ) are the respective
changes in these profiles induced by the electromagnetic torques. The modifications
to the angular velocity profiles are governed by poloidal and toroidal angular
equations of motion that take the respective forms [8, 16]:

∑π ρ
ρ
τ

ρ δ∂ΔΩ
∂

+ ΔΩ − ∂
∂

Ξ ∂ΔΩ
∂

= −θ

θ
θ

θ
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⎛
⎝

⎞
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k K1,

k k
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and are subject to the spatial boundary conditions

∂ΔΩ
∂

=
∂ΔΩ

∂
=θ φt

r

t

r
(0, ) (0, )

0, (14.157)

ΔΩ = ΔΩ =θ φr t r t( , ) ( , ) 0. (14.158)100 100

Here,

τ τ
μ

=θ r
r

q R
( ) , (14.159)

2

2
0

2
ii

i 11

where τii and μi 11 are defined in equations (A.23) and (A.53), respectively, and τθ(r) is
the poloidal flow-damping time profile. Equation (14.159) is a generalization of
equation (2.332) that does not assume that the faction of trapped particles is small or
that the plasma is in the banana collisionality regime. Finally, the electromagnetic
torques, θT t( )k and φT t( )k , are specified in equations (14.69) and (14.70),
respectively.

Following the analysis of section 3.15, it is convenient to write

∑ΔΩ = ΔΩ
=

θ θr t r t( , ) ( , ), (14.160)
k K1,

k

Tearing Mode Dynamics in Tokamak Plasmas

14-27



∑ΔΩ = ΔΩ
=

φ φr t r t( , ) ( , ), (14.161)
k K1,
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and

∂ΔΩ
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=
∂ΔΩ

∂
=θ φt
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(0, ) (0, )

0, (14.164)k k

ΔΩ = ΔΩ =θ φr t r t( , ) ( , ) 0. (14.165)k k100 100

The modified angular velocity profiles, ΔΩθ k and ΔΩφ k, are mostly localized in
the vicinity of the kth rational surface. Hence, it is a reasonable approximation to
express equations (14.162) and (14.163) in the simplified forms [16]
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where ρ ρ= r( )k k , τ τ=θ θ r( )k k , and Ξ = Ξ⊥ r( )k ki .
Let us write [4, 16, 17]

∑ αΔΩ = −
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Here, J z( )m is a Bessel function, and jmp denotes its pth zero [1]. Note that equations
(14.168)–(14.171) automatically satisfy the boundary conditions (14.164) and
(14.165).

It can easily be demonstrated that [33]
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Equations (14.69), (14.70), and (14.166)–(14.175) yield
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The values of τ kA , τ kM , τθ k, and ϵk at the n = 1 rational surfaces in our example
tokamak discharge are specified in table 14.8. Incidentally, equations (14.176) and
(14.177) are the toroidal generalizations of the cylindrical equations (3.190) and
(3.191), respectively.

Let us define the frequency shifts that develop at the various rational surfaces in
the plasma in response to the electromagnetic torques:

ΔΩ = ΔΩ − ΔΩθ φt m r t n r t( ) ( , ) ( , ). (14.183)k k k k

It follows from equations (14.160), (14.161), and (14.168)–(14.171) that
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The frequency shifts are ultimately due to changes in the E-cross-B rotational
frequency at the various rational surfaces (because the diamagnetic components of
the majority ion poloidal and toroidal rotation frequencies are not directly affected
by the electromagnetic torques) (see section A.7). It follows that

− ΔΩ = ΔΩn r t t( , ) ( ) (14.185)k kE

at each rational surface in the plasma. This is the essence of the no-slip constraint
introduced in section 3.16 [8].

Consider an n = 1 tearing mode that principally reconnects magnetic flux at the
kth rational surface in our example tokamak discharge. Let Ψ̂k be the normalized
magnetic flux reconnected at the kth surface, and let us suppose that Ψ∣ ˆ ∣k is
sufficiently large that the plasma response at the kth surface lies in the nonlinear
regime. Because of the assumed strong shielding at the other rational surfaces in the
plasma, we expect the plasma responses at these surfaces to lie in the linear regime.

We can determine the normalized reconnected magnetic fluxes, Ψ̂ ′k , driven at the
other rational surfaces from equations (14.119), (14.123), (14.146), and (14.182). We
find that

Table 14.8. Alfvén times, momentum confinement times, poloidal flow-damping
times, and inverse aspect ratios at the n = 1 rational surfaces in KSTAR discharge
#18594 at time t = 6450 ms.

k τ (s)kA τ (s)kM τθ (s)k ϵk

1 × −1.21 10 7 × −3.55 10 1 × −2.30 10 5 0.229
2 × −1.11 10 7 × −3.55 10 1 × −1.81 10 5 0.282
3 × −1.07 10 7 × −3.55 10 1 × −1.74 10 5 0.311
4 × −5.47 10 8 × −3.55 10 1 × −5.22 10 5 0.329

Tearing Mode Dynamics in Tokamak Plasmas

14-30
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The normalized electromagnetic torque acting at the ′k th (where ′ ≠k k) rational
surface is

Ψ Ψ Ψ ΨΔ ˆ ˆ = Δ ∣ ˆ ∣ = Δ ∣ ∣ ∣ ˆ ∣′ ′
*

′ ′ ′ ′pIm( ) Im( ) Im( ) , (14.189)k k k k k k k
2 2 2

where use has been made of equations (14.123), (14.146), (14.181), (14.182), and
(14.187). The normalized electromagnetic torque acting at the kth rational surface is
obtained from angular momentum conservation (see section 14.11):
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k k k k k k k
2 2

According to equation (14.151), the frequency shift at the kth rational surface
modifies the real frequency of the tearing mode. In fact,

ω ω= + ΔΩ . (14.191)k knonlinear

The normalized linear layer response indices, Δ ′k (where ′ ≠k k), that appear in
equation (14.188) are functions of nine normalized layer parameters (see table 14.3).
Two of these parameters, ′Qk and ′Q kE , are modified by the frequency shifts induced
by the electromagnetic torques. In fact, it is clear from equations (14.130), (14.131),
(14.185), and (14.191) that

τ= + ΔΩ′ ′ ′ ′Q Q S , (14.192)k k k k k
(0) 1/3

H

τ= + ΔΩ′ ′ ′ ′ ′Q Q S , (14.193)k k k k kE E
(0) 1/3

H

where the superscript (0) indicates a quantity that is unaffected by the electro-
magnetic torques.

Equations (14.176), (14.177), (14.184), (14.188)–(14.190), (14.192), and (14.193)
—together with the numerical solution of the Riccati differential equation, (5.121),
subject to the boundary conditions (5.122) and (5.123) which determine
Δ ′ ′ ′Q Q( , )k k kE —form a closed set of equations that allow us to determine the
reconnected magnetic fluxes driven at the various rational surfaces in our example
tokamak discharge by a tearing mode that primarily reconnects magnetic flux at the
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kth rational surface. The only free parameter in the model is the normalized
reconnected magnetic flux at the kth rational surface, Ψ∣ ˆ ∣ t( )k .

Consider an n = 1 tearing mode in our example tokamak discharge that
principally reconnects magnetic flux at the m = 2 (i.e. k = 1) rational surface.
Such a mode could represent an = =m n2/ 1 neoclassical tearing mode. It is helpful
to define the natural frequencies at the various n = 1 rational surfaces in the plasma:

ω ω= + ΔΩ , (14.194)0 1 nonlinear 1 1

ω ω= + ΔΩ′ ′ ′, (14.195)k k k0 linear

for ′ =k 2, 3, 4, where ω knonlinear and ω klinear are specified in table 14.5. Here, we are
taking into account the fact that the plasma response at the m = 2 rational surface
lies in the nonlinear regime (because the = =m n2/ 1 island width is assumed to be
greater than the corresponding linear layer width), while the plasma responses at the
other rational surfaces lie in the linear regime (because the driven island widths are
assumed to be less than the corresponding linear layer widths). Moreover, we are
also taking into account the modifications to the natural frequencies generated by
the electromagnetic torques that develop at the rational surfaces. Recall that the
natural frequency at a given rational surface is the preferred rotational frequency of
reconnected magnetic flux at that surface.

Figure 14.4 shows the n = 1 natural frequencies in our example tokamak
discharge calculated as functions of the normalized = =m n2/ 1 magnetic island
width,W r/1 100, in a simulation in which the island width is slowly ramped up. This

Figure 14.4. Natural n = 1 frequencies in KSTAR discharge #18594 at time t = 6450 ms calculated as
functions of the normalized = =m n2/ 1 magnetic island width.
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calculation is made using the previously mentioned closed set of equations, as well as
the data given in tables 14.1, 14.2, 14.3, 14.5, and 14.8. It can be seen that ifW r/1 100

lies close to zero, then the natural frequencies all take the unperturbed values
specified in table 14.5. On the other hand, asW r/1 100 increases, the electromagnetic
torques that develop at the rational surfaces modify the natural frequencies. In
particular, the torques cause the m = 2 natural frequency, ω0 1, and the m = 3 natural
frequency, ω0 2, to approach one another. At a critical value of W r/1 100, which is
approximately 0.41, the two natural frequencies suddenly snap together, indicating a
sudden loss of shielding at the m = 3 rational surface [14].

The aforementioned sudden loss of shielding is illustrated in figure 14.5, which
shows the driven normalized magnetic island widths at the m = 3, 4, and 5 rational
surfaces in our example discharge as functions of the normalized m = 2 island width.
It can be seen that, prior to the loss of shielding, comparatively narrow magnetic
island chains are driven at the m = 3, 4, and 5 rational surfaces. However, as soon as
the shielding at them = 3 rational surface is lost, there is a very significant increase in
the width of the magnetic island chain driven at the m = 3 surface.

Finally, figure 14.6 shows the normalized electromagnetic torques that develop at
the n = 1 rational surfaces in our example discharge close to the time at which
shielding is lost at the m = 3 rational surface. It can be seen that the sudden loss of
shielding is due to comparatively large transient electromagnetic torques that
develop at the m = 2 and m = 3 rational surfaces and drive the corresponding
natural frequencies together.

The calculation that we have just performed indicates that the shielding of n = 1
rational surfaces from one another, as a consequence of sheared rotation, is a very

Figure 14.5. Normalized n = 1 magnetic island widths in KSTAR discharge #18594 at time t = 6450 ms
calculated as functions of the normalized = =m n2/ 1 magnetic island width.
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robust effect in our example tokamak discharge. In fact, the shielding only breaks
down when a tearing mode grows to a sufficient amplitude that the width of its
magnetic island chain becomes a substantial fraction of the plasma’s minor radius.
However, when shielding breaks down, it does so in a sudden and catastrophic
manner [14]. In fact, in our example calculation, the loss of shielding at the m = 3
rational surface drives a magnetic island chain at that surface whose width is
sufficient that the chain would overlap with the chain at the m = 2 rational surface,
leading to the sudden destruction of magnetic flux surfaces [26], which could quite
conceivably trigger a disruption [7].

14.18 Neoclassical tearing modes
The aim of this section is to provide accurate expressions for the bootstrap and
curvature terms appearing in the generalized Rutherford equation that controls the
growth of a magnetic island chain in a toroidal tokamak plasma (see section 12.4).

Consider a magnetic island chain of widthWk that reconnects magnetic flux at the
kth rational surface in the plasma. The toroidal equivalent of the cylindrical island
width evolution equation, (12.15), is

τ = + +⎜ ⎟
⎛
⎝

⎞
⎠

I
d
dt

W
r

E I D
r

W
I D

r
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4 4 , (14.196)k
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k
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1 R 2 B 2 R

where =I 0.82271 , =I 1.58352 , τ kR is specified in equation (14.125), =D D r( )k kR R ,
where D r( )R is defined in equation (A.98), and

Figure 14.6. Normalized electromagnetic torques, Ψ Ψ≡ Δ ˆ ˆ *T Im( )k k k , at the n = 1 rational surfaces in KSTAR
discharge #18594 at time t = 6450 ms calculated as functions of the normalized = =m n2/ 1 magnetic island
width.
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Here, jbs denotes the noninductive ‘bootstrap’ component (i.e. the component that is
driven by pressure gradients, rather than the parallel electric field) of the equilibrium
plasma current (see section 2.20), 〈⋯〉 is a flux-surface average operator (see
equation (A.82)), and =I r B R g r( ) ( )0 0 . In writing equation (14.196), we have
neglected the relatively unimportant (for neoclassical tearing modes) island satu-
ration term in the Rutherford equation (see section 12.2). We have also neglected the
ion polarization term (because we have previously shown that this term is negligible)
(see section 12.4). Finally, in accordance with the previous analysis in this chapter,
we have assumed that there is perfect shielding at all of the other rational surfaces in
the plasma (i.e. Ψ =′ 0k for ′ ≠k k).

Equation (14.196) states that the width of the magnetic island chain evolves on
the local (to the kth rational surface) resistive timescale, τ kR , in response to the
effective tearing stability index, Ekk [20], the destabilizing (because D kB is usually
positive) effect of the loss of the bootstrap current inside the chain’s magnetic
separatrix [3], and the stabilizing (because D kR is usually negative) effect of magnetic
field-line curvature [28].

Making use of equation (A.99), it can be seen that the curvature term (i.e. the
third term on the right-hand side) in equation (14.196) is entirely consistent with the
corresponding term in equation (12.15). However, our new curvature term is more
general than our previous cylindrical version because the calculation of the
dimensionless curvature parameter D r( )R outlined in section A.8 makes no assump-
tions about the geometry of the equilibrium magnetic flux surfaces (other than that
they are axisymmetric) [21].

Making use of equation (14.197), the bootstrap term (i.e. the second term on the
right-hand side) in equation (14.196) is equivalent to the corresponding term in
equation (12.15) provided that the parallel bootstrap current takes the form (see
equation (2.265))
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Here, f r( )t is the fraction of trapped particles (see equation (2.202)), θB r( ) the
equilibrium poloidal magnetic field, =p r n T( )s s s the species-s equilibrium pressure
profile, α = 1.171 (see equation (2.217)), β = 1.6411 (see equation (2.243)), and
β = 1.2312 (see equation (2.244)). The previous expression is only valid when the
fraction of trapped particles is small, the magnetic flux surfaces have circular cross
sections, there are no impurity ions, and the plasma lies in the banana collisionality
regime. However, we can formulate a more general expression for the bootstrap
current using the analysis given in section A.7. If we define

ω =
〈 · 〉

r
n e I

j B
( ) , (14.199)B
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e
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which has the dimensions of a frequency, then we find that
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Here, ZI is the impurity ion charge number, the species-s number densities, n r( )s , are
defined in equations (A.4) and (A.5), the diamagnetic frequencies, Ω* r( )s , are
specified in equation (A.78), and the dimensionless neoclassical parameters,
L ′ r( )ss , are defined in equation (A.80). Moreover, use has been made of the quasi-
neutrality constraint (A.1). The previous expression makes no assumption about the
geometry of the equilibrium magnetic flux surfaces, does not assume that the
fraction of trapped particles is small or that the plasma is in the banana collisionality
regime, and allows for the presence of impurity ions. Equations (14.197) and
(14.199) yield

ω
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has the dimensions of frequency. Finally, =D D r( )k kB B . As mentioned in section
12.4, the bootstrap and curvature terms in the generalized Rutherford equation,
(14.196), depend crucially on an assumed flattening of the plasma pressure profile
inside the magnetic separatrix of the island chain. However, if the island width falls
below a certain threshold value, then the transport of heat and particles along
magnetic field lines cannot compete with the anomalous transport of heat and
particles across magnetic flux surfaces, and the pressure flattening within the
magnetic separatrix is lost [9]. Under these circumstances, we would expect a
modification of the bootstrap and curvature terms in the generalized Rutherford
equation [9, 30]. According to the analysis of reference [9], the critical value of Wk

below which the electron temperature fails to flatten inside the magnetic separatrix of
our magnetic island chain can be written as
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Here, τ r( )e is the electron–ion collision time (see equation (2.20)), v r( )t e the electron
thermal speed (see equation (2.17)), χ⊥ r( )e the (anomalous) electron perpendicular
energy diffusivity, and χ r( )e the electron parallel energy diffusivity. Equation
(14.205) specifies the parallel diffusivity predicted by the short mean-free-path
theory of Braginskii [2] (see equation (2.54)). Note that this expression has been
corrected into order to account for the presence of impurity ions in the plasma.
Equation (14.206) specifies the parallel diffusivity predicted by the long mean-free-
path theory of section 2.23 [24, 25] on the assumption that

≃k
n s
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r2
, (14.207)T k
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e

which is the typical parallel wavenumber of the resonant harmonic of the tearing
mode at the edge of a magnetic island chain, centered on the kth rational surface, of
width WT ke

. Finally, equation (14.204) ensures that the parallel electron energy
diffusivity never exceeds the limiting value set by long mean-free-path theory.
Equations (14.203)–(14.206) can be solved forWT ke

via iteration.
According to the analysis given in [9], the critical value ofWk below which the ion

temperature fails to flatten inside the magnetic separatrix of our magnetic island
chain can be written as

χ
χ ϵ

= ⊥⎡

⎣
⎢

⎤

⎦
⎥

⎡
⎣⎢

⎤
⎦⎥

W

r

r

r r s r n
8

( )

( )
1

( ) ( )
, (14.208)T k

k

k

k k k

i

i

1/4 1/2
i

where

χ
χ χ

χ χ
=

+
r( ) , (14.209)i

i
smfp

i
lmfp

i
smfp

i
lmfp

v
χ

τ=r
Z

( )
1.953

, (14.210)i
smfp i t i

2

eff

vχ
π

=r
R

n s
r

W
( )

2
. (14.211)k

T k
i

lmfp 0 t i
1/2

i

Here, τ r( )i is the ion–ion collision time (see equation (2.21)), v r( )t i the ion thermal
speed (see equation (2.17)), χ⊥ r( )i the (anomalous) ion perpendicular energy
diffusivity, and χ r( )i the ion parallel energy diffusivity. The previous four equations
must be solved iteratively to determineWT ki

.
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Finally, according to the analysis given in [9], the critical value ofWk below which
the electron number density fails to flatten inside the magnetic separatrix of our
magnetic island chain can be written as
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Here, ⊥D r( ) is the (anomalous) perpendicular particle diffusivity, and we have taken
account of the fact that parallel particle transport is constrained by the need to
maintain amipolarity (which implies that the parallel particle diffusivity cannot
exceed the parallel ion diffusivity).

Table 14.9 specifies the critical n = 1 island widths below which the local electron
temperature, the ion temperature, and the electron number density profiles fail to
flatten in our example tokamak discharge. These critical widths are calculated from
the equilibrium and profile data shown in figures 14.1–14.3. It can be seen that the
critical island width below which the electron temperature profile fails to flatten,
WT ke

, is of the order of 2% of the plasma’s minor radius. On the other hand, the
critical island width below which the ion temperature profile fails to flatten,WT ki

, is
significantly larger than WT ke

(because ions stream along magnetic field lines at a
considerably slower rate than electrons) [9]. Finally, the critical island width below
which the electron number density fails to flatten,Wn ke

, lies betweenWT ke
andWT ki

.
Let us generalize the right-hand side of the generalized Rutherford equation,

(14.196), to take account of the incomplete flattening of the electron temperature,

Table 14.9. Critical n = 1 island widths below which the local electron
temperature, the ion temperature, and the electron number density profiles fail
to flatten in KSTAR discharge #18594 at time t = 6450 ms.

k W r/T k 100e W r/T k 100i W r/n k 100e

1 × −1.83 10 2 × −7.34 10 2 × −4.31 10 2

2 × −1.72 10 2 × −6.77 10 2 × −3.97 10 2

3 × −1.69 10 2 × −6.91 10 2 × −4.06 10 2

4 × −1.40 10 2 × −4.74 10 2 × −2.78 10 2
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ion temperature, and electron number density profiles within the magnetic separatrix
of the island chain. In order to achieve this goal, we need to identify the components
of the bootstrap and curvature terms that are associated with the flattening of the
electron temperature, ion temperature, and electron number density profiles and
then modify these components in the appropriate manner. We shall assume that the
majority ion and impurity ion temperature profiles both fail to flatten below the
same critical island width. Likewise, we shall assume that the electron, majority ion,
and impurity ion number density profiles all fail to flatten below the same critical
island width. Taking these considerations into account, and making use of the
analysis of references [9] and [30], we arrive at
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Here, η r( )s is defined in equation (A.76), and the dimensionless neoclassical matrix
elements ′L r( )ijss are specified in section A.6. Of course, =D D r( )T k T kB Be e

, etc.
Table 14.10 specifies the bootstrap and curvature parameters that appear on the

right-hand sides of the generalized Rutherford equations, (14.216), of the n = 1
tearing modes in our example tokamak discharge. These parameters are calculated
from the equilibrium and profile data shown in figures 14.1–14.3 as well as the
neoclassical theory set out in appendix A. It can be seen that the D T kB e

, D T kB i
, and

D n kB e
parameters are all positive, indicating that the bootstrap terms in the

Rutherford equations are destabilizing. On the other hand, the D T kR e
, D T kR i

, and
D n kR e

parameters are all negative, indicating that the curvature terms in the

Table 14.10. Parameters that characterize the right-hand sides of the generalized Rutherford equations of
n = 1 tearing modes in KSTAR discharge #18594 at time t = 6450 ms.

k D TB e D TB i D nB e D TR e D TR i D nR e

1 × −8.75 10 2 × −2.94 10 2 × −9.96 10 2 − × −3.18 10 2 − × −1.46 10 2 − × −3.13 10 2

2 × −4.15 10 2 × −3.01 10 2 × −5.70 10 2 − × −2.20 10 2 − × −2.17 10 2 − × −2.80 10 2

3 × −1.59 10 1 × −1.26 10 1 × −2.49 10 1 − × −9.09 10 2 − × −9.09 10 2 − × −1.40 10 1

4 × −4.49 10 2 × −1.07 10 2 × −6.47 10 2 − × −5.32 10 2 − × −1.92 10 2 − × −1.12 10 1
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Rutherford equations are stabilizing. It is also clear that the magnitudes of the
D T kB e

, D T kB i
, and D n kB e

parameters generally exceed those of the D T kR e
, D T kR i

,
and D n kR e

parameters, which implies that the destabilizing effect of the perturbed
bootstrap current is larger than the stabilizing effect of magnetic field-line curvature.

Finally, the right-hand sides of the generalized Rutherford equations of the n = 1
tearing modes in our example tokamak discharge are plotted as functions of the
normalized island widths in figure 14.7. These right-hand sides are calculated from
equation (14.216) using the data set out in tables 14.2, 14.9, and 14.10. It can be seen
that only the m = 2 (i.e. k = 1) mode has a right-hand side that rises above zero. It
follows that only the = =m n2/ 1 neoclassical tearing mode is potentially
unstable (see section 12.4). The critical island width above which the mode is
triggered (i.e. the smaller zero crossing of the right-hand side) is about 1% of the
plasma’s minor radius. The saturated island width (i.e. the larger zero crossing of the
right-hand side) is about 17% of the plasma’s minor radius.
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Appendix A

Neoclassical theory

A.1 Introduction
The main aim of this appendix is to generalize the neoclassical theory introduced in
chapter 2 in order to take account of the presence of impurity ions in the plasma. We
shall make no assumptions about the geometry of the equilibrium magnetic flux
surfaces in this study, neither shall we assume that the plasma lies in the banana
collisionality regime.

A.2 Plasma species
The plasma is assumed to consist of three (charged) species; namely, electrons (e),
majority ions (i), and impurity ions (I). The charges of the three species are = −e ee ,

=e ei , and =e Z eI I , respectively, where e is the magnitude of the electron charge.
Quasi-neutrality [1] demands that

= +n n Z n , (A.1)e i I I

where n r( )s is the species-s number density. Here, r is the flux-surface label
introduced in section 14.2. Let

α = −
−

r
Z Z

Z Z
( )

( 1)
, (A.2)I

I eff

I eff

where

= +
Z r

n Z n
n

( ) (A.3)eff
i I

2
I

e

is the effective ion charge number (see section 1.6). It follows that

= −
−

n
n

Z Z
Z 1

, (A.4)i

e

I eff

I
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= −
−

n
n

Z
Z Z

1
( 1)

. (A.5)I

e

eff

I I

Finally, let

= −
−

Z r
Z Z

Z
( )

1
, (A.6)eff i

I eff

I

= −
−

Z r
Z Z

Z
( )

( 1)
1

. (A.7)eff I
I eff

I

Note that = +Z Z Zeff eff i eff I.

A.3 Collisionality parameters
Consider an equilibrium magnetic flux surface whose label is r. Let

∮γ
θ
π

=
r

q
g

B R
B R

d1
( ) 2

, (A.8)
2

0 0
2

where = ∣ ∣B B , and B is the equilibrium magnetic field. Here, q r( ), g r( ), R, θ, B0, and
R0 are specified in sections 14.2 and 14.4. It is helpful to define a new poloidal angle
Θ such that

θ
γΘ =d

d
q

g
B R

B R
. (A.9)

2

0 0
2

Let

∮ π
= Θ

I r
B
B

d
( )

2
, (A.10)1

0

∮ π
= Θ

I r
B
B

d
( )

2
, (A.11)2

0

∮ π
= ∂

∂Θ
Θ

I r
B

B B
d

( )
1

2
, (A.12)3

2

0
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∮ π
= Θ Θ

I r j
j

B B
d
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/ 2
, (A.13)j4,

0

∮ π
= Θ Θ

I r j
j

B B
d

( ) 2
cos( )

2 ( / ) 2
, (A.14)j5,

0
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∮λ
λ

π
=

− Θ
I r

B B

B B
d

( , )
1 /

/ 2
, (A.15)6

max

0
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where the integrals are taken at constant r, B r( )max is the maximum value of B on the
magnetic flux surface, and j is a positive integer. The species-s transit frequency is
written [7]

vω γ=r K( ) , (A.16)t s t t s

where

=
∑ = ∞

K r
I I

I I I
( ) , (A.17)

j 1, j j
t

1
2

3

2
2

4, 5,

and

v =r
T

m
( )

2
. (A.18)t s

s

s

Here, ms is the species-smass, andT r( )s is the species-s temperature (in energy units).
The fraction of passing particles is [7]

∫ λ λ
λ

=f r
I B

B
d

I r
( )

3
4 ( , )

(A.19)p
2 0

2

max
2

0

1

6

(see equation (2.200)). Finally, the dimensionless species-s collisionality parameter
(see equation (2.95)) is written [7]

ν
ω τ

=*
*r

K g
( ) , (A.20)s

t

t s ss

where

=
−

g r
f

f
( )

1
, (A.21)t

p

p

π
=*K r

I
I

K( )
3

8
, (A.22)2

3
t

2

vτ π
π
π ϵ

= Λ
r

n e

m
1
( )

4
3

4 ln

(4 )
. (A.23)

ss

s s
4

0
2

s
2

t s
3

(See equation (2.190).) Here, the Coulomb logarithm, Λln [1], is assumed to take the
same large constant value (i.e. Λ ≃ln 16), independent of species.

A.4 Friction force matrices
Let

v
v

=′
′x . (A.24)ss

t s

t s
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In the following, all quantities that are of order m m( / )e i
1/2, m m( / )e I

1/2, or smaller are
neglected with respect to unity. The 2 × 2 dimensionless ion collisional friction force
matrices, F r[ ]( )ii , F r[ ]( )iI , F r[ ]( )Ii , and F r[ ]( )II are defined to have the following
elements (see section 2.16) [7, 9]:

α= +
+

F
m m

x
(1 / )

(1 )
, (A.25)ii 11

I i I
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2 3/2
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+
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+
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+
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I
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⎫
⎬⎭

The 2 × 2 dimensionless electron collisional friction force matrices, F r[ ]( )ee , F r[ ]( )ei ,
and F r( )]eI are defined to have the following elements (see section 2.16) [7, 9]:

=F Z , (A.41)ee 11 eff

=F Z
3
2

, (A.42)ee 12 eff

=F Z
3
2

, (A.43)ee 21 eff

= +F Z2
13
4

, (A.44)ee 22 eff

=F Z , (A.45)ei 11 eff i

=F 0, (A.46)ei 12

=F Z
3
2

, (A.47)ei 21 eff i

=F 0, (A.48)ei 22

=F Z , (A.49)eI 11 eff I

=F 0, (A.50)eI 12

=F Z
3
2

, (A.51)eI 21 eff I

=F 0. (A.52)eI 22

A.5 Neoclassical viscosity matrices
The 2 × 2 dimensionless species-s neoclassical viscosity matrix, μ r[ ]( )s (see section
2.17), is defined to have the following elements [7]:
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μ = K , (A.53)s 11 s 11

μ = −K K
5
2

, (A.54)s 12 s 11 s 12

μ = −K K
5
2

, (A.55)s 21 s 11 s 12

μ = − +K K K5
25
4

. (A.56)s 22 s 22 s 12 s 11

(Note that the viscosity matrix elements defined here differ from those defined in
section 2.17 by a factor of gt.) Here,
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=
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Furthermore,
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and finally,
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=
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Note that our expressions for the neoclassical viscosity matrices interpolate between
the three standard neoclassical collisionality regimes (i.e. the banana, plateau, and
Pfirsch–Schlüter regimes [8]) in the most accurate manner possible [7].

A.6 Parallel force and heat balance
Let

μ α μ˜ = T
T

x[ ] [ ]. (A.69)I I
2 i

I
Ii I

The requirement of equilibrium force and heat balance parallel to the magnetic field
(see sections 2.18 and 2.19) leads us to define four 2 × 2 dimensionless ion matrices,
L r[ ]( )ii , L r[ ]( )iI , L r[ ]( )Ii , and L r[ ]( )II , where [7, 9]

μ
μ

=
+ −

− + ˜
−

−

−L L
L L

F F
F F

F F
F F

[ ], [ ]
[ ], [ ]

[ ], [ ]
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[ ], [ ]
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, (A.70)ii iI

Ii II

ii i iI

Ii II I
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ii iI

Ii II
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⎠
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⎝

⎞
⎠

⎛
⎝

⎞
⎠

and the 2 × 2 dimensionless electron matrices, Q r[ ]( )ee , L r[ ]( )ee , L r[ ]( )ei , and L r[ ]( )eI ,
where

μ= + −Q F[ ] [ ] , (A.71)ee ee e
1

=L Q F[ ] [ ] [ ], (A.72)ee ee ee

= − +L Q F L F F L[ ] [ ]{[ ] [ ] [ ] [ ] [ ]}, (A.73)ei ee ei ii ei eI Ii

= − +L Q F L F F L[ ] [ ]{[ ] [ ] [ ] [ ] [ ]}. (A.74)eI ee eI II eI ei iI

A.7 Neoclassical fluid velocities
Let

=I r B R g( ) , (A.75)0 0
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η =r
d T
d n

( )
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, (A.76)s
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s
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r
d
d

( ) , (A.77)E
p
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Ω = −* r
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d
( )

1
, (A.78)s

s s

s

p

Ω = 〈 〉
r

e B
m

( ) , (A.79)s
s

s

where Φ r( ) is the equilibrium electric scalar potential, Ψ r( )p the equilibrium poloidal
magnetic flux (see equation (14.25)), and =p r n T( )s s s the species-s pressure. Note
that ΩE, Ω* s, and Ωs all have the dimensions of frequency. Furthermore, let

L η
η

= −
+′ ′

′

′
′r L L( )

1
, (A.80)ss ss 11

s

s
ss 12

Q =r Q( ) . (A.81)ee ee 11

Finally,

∮ ∮ ∮ ∮θ θ
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θ
π π π

〈 〉 = = Θ Θ Θ
A r R A r

d
R

d A r
B

d
B

d
( ) ( , )

2 2
( , )

2
1

2
. (A.82)2 2

(See equation (2.148).)
As described in reference [7] and illustrated in a simplified form in sections 2.14–

2.20, we can determine the equilibrium fluid velocities of the various species that
make up the plasma by balancing the parallel viscous force density against the
parallel friction force density and the force density due to the parallel component of
the electric field. We obtain [2–5]:

L Lθ
θ

· ∇
· ∇

〈 〉 = − Ω − Ω* *
B
I

V
B

, (A.83)i
2

ii i iI I

L L〈 · 〉 = Ω + Ω − Ω − Ω* * *I
V B

, (A.84)i
E i ii i iI I

L Lθ
θ

· ∇
· ∇

〈 〉 = − Ω − Ω* *
B
I

V
B

, (A.85)I
2

II I Ii i

L L〈 · 〉 = Ω + Ω − Ω − Ω* * *I
V B

, (A.86)I
E I II I Ii i
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L L L Qθ
θ

τ· ∇
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B
I I B

V
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Q τ

⟨ · ⟩ = Ω + Ω − Ω − Ω − Ω
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⟨ ⟩

* * * *I

I B
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E B
.

(A.88)

e
E e ee e ei i eI I

ee e ee

Here, Vs is the species-s equilibrium fluid velocity. The previous equations are
generalizations of equations (2.219), (2.221), (2.255), and (2.257). The additional
effects included in the generalized equations are a frictional drag due to impurity
ions, a fraction of trapped particles that is not necessarily small, and a plasma
collisionality that is not necessarily in the banana regime.

A.8 The Glasser–Greene–Johnson parameters
It is convenient to add to this appendix a generalized calculation of the magnetic
curvature length, Lc, that appears in the Rutherford island width evolution
equation, (12.15). Let ˆ = ∣ ∣B BB / 0, ∇̂ = ∇R0 , and ψ =d dr f r R/ ( )/p 0. Furthermore, let

∮ π
= ˆ

Θ
J r

B

d
( )

1
2

, (A.89)1
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2

, (A.90)2
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B

d
( )

1
2

, (A.91)3 3
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It follows that [6]

ψ
ψ γ ψ γ ψ
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dq d
d

d
J

g
dq
d

J
J
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/
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1
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ψ
ψ γ

= −H r
dP d

dq d
g

J
J J
J

( )
/

/
, (A.97)
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p
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1 5
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⎜ ⎟
⎛
⎝

⎞
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where μ=P r p r B( ) ( )/0 0
2, and p r( ) is the equilibrium plasma pressure. Finally,

= + +D r E F H( ) . (A.98)R
2

The value of the dimensionless parameter D r( )R s at a given rational magnetic flux
surface is related to the magnetic curvature length, Lc, introduced in section 11.4,
according to

= − β
D r

c L

L L
( )

2
. (A.99)R

2
s

2

c p

Here, βc 2 is a dimensionless measure of the plasma pressure at the rational surface
(see equations (4.65) and (4.66)), Ls the magnetic shear length at the rational surface
(see equation (5.27)), and Lp the effective pressure gradient scale length at the
rational surface (see equation (8.35)). The previous equation is a generalization of
equation (11.57). The latter equation only holds in a large-aspect-ratio, low-β,
tokamak plasma with magnetic flux surfaces of circular cross section.
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