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Preface

Radio frequency plasmas provide the underlying technology for many of today’s
critical semiconductor industries. The demand for larger and more uniform plasma
sources is reaching the limits of conventional capacitive and inductive RF plasma
reactors, due to standing wave effects and the asymptotic impedance of large-area
reactors. The inherent properties of resonant network antennas can overcome these
limitations because of their spatially distributed internal resonances and real input
impedance.

This book aims to show that resonant network antennas are versatile, alternative
sources for inductively coupled and wave-driven plasma. The theory has developed
alongside the technology (see also https://www.helyssen.com) to the extent that it is
timely to document the progress in an accessible way, to aid antenna design for
future RF plasma applications.

To maximize the usefulness of this book for the physicist, engineer, and student,
we have taken care to provide all the necessary details for the reader. In particular:

• Equations are derived in full with all intermediate steps.
• Unfamiliar techniques, such as partial inductance calculations, the complex
image method, and partial image theory are developed step-by-step from
elementary principles by means of explanatory figures.

• The most useful and recurring antenna calculations are provided using a link
to programs which reproduce the tensor solutions and many of the book’s
figures in appendix K.

• Basic concepts in plasma physics are explained, occasionally using a novel
approach.

We assume an undergraduate science level familiar with complex numbers, complex
impedance, and Maxwell’s equations. The chapters and appendixes are cross-
referenced throughout the book, but for the most part, the chapters can be read
independently of each other. MKS SI units are used throughout. We use ‘antennas’
for the plural of ‘antenna’, with apologies to Latin scholars.

The readers will be grateful to Alex Howling, our illustrator, for bringing a touch
of comic relief to each chapter.

Dr Philippe Guittienne
Dr Alan Howling

Professor Ivo Furno
Lausanne, Switzerland,

26 October 2023
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in helicon plasmas. As part of the new SPC activities beyond fusion, he started
collaborating with CERN in the field of wakefield acceleration for the next-
generation particle accelerator. The SPC is today an active member of the
AWAKE Consortium. A new laboratory for societal, e.g. biological, applications
of plasmas, such as plasma agriculture and plasma sterilization, was launched by
Furno to expand the SPC infrastructure into atmospheric pressure plasmas for
fundamental life science projects. It was Furno who originally proposed writing this
book, titled Resonant Network Antennas for Radio-Frequency Plasma Sources.
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Glossary

Greek terms

α attenuation constant per section
mα a Fourier coefficient

β phase change per section (rad)

mβ a Fourier coefficient

1, 2β wavenumber for H, TG modes (m−1)
γ propagation constant

fΔ FWHM bandwidth (Hz)
δ Dirac delta function
δω a small difference in angular frequency from the resonance frequency (rad s−1)

ωΔ the FWHM half-power bandwidth in angular frequency (rad s−1)
0ε permittivity of free space (F m−1)
pε relative permittivity of unmagnetized plasma (–)
pε̄ tensor relative permittivity of magnetized plasma (–)
mζ a Fourier coefficient
η power transfer efficiency
θ angle of propagation with respect to the magnetic field
λ wavelength (m)

0μ permeability of free space (H m−1)
ν effective collision frequency (s−1)

mν electron–neutral collision frequency (s−1)
mξ a Fourier coefficient
ρ free charge density (C m−3)

dcρ DC electrical resistivity (Ω m)

pρ plasma complex electrical resistivity (Ω m)
dcσ DC electrical conductivity (S m−1)
enσ electron–neutral collision cross-section (m2)
pσ complex electrical conductivity of unmagnetized plasma (S m−1)
pσ̄ tensor electrical conductivity of magnetized plasma (S m−1)
τ RF period 2 /π ω= (s)
Φ total magnetic flux linkage (Wb)
ϕ azimuthal angle in cylindrical coordinates r z( , , )ϕ
ω angular (RF) frequency (rad s−1)
ω̂ j( )ω ν+

0ω resonance angular frequency for an ideal (lossless) circuit (rad s−1)
0′ω resonance angular frequency for a real (lossy) circuit (rad s−1)
mω angular frequency of the mth normal mode (rad s−1)
ciω ion cyclotron angular frequency (rad s−1)
ceω electron cyclotron angular frequency (rad s−1)

Symbols, abbreviations, and subscripts

1̄ N × N identity matrix
1D, 2D one-dimensional, two-dimensional
A vector magnetic potential (Wb m−1)
A vector column of upper-node voltages (V)
acw anti-clockwise
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ALD atomic layer deposition
An voltage phasor at the nth node of the upper stringer (V)
B (wavefield) magnetic flux density vector (T)
B vector column of lower-node voltages (V)
B magnetic flux density magnitude (T)

BB ,0 0 externally imposed constant, uniform magnetic flux density (T)
Bn voltage phasor at the nth node of the lower stringer (V)
C capacitance (F)
Ĉ capacitance matrix per unit length (F m−1)
CCD charge-coupled device (CCD camera)
CCP capacitively coupled plasma
c contour
c speed of light in vacuum
c (subscript) collisional
cw clockwise
CW continuous wave; steady state
d reactor height between a top-plate and a baseplate
ds source height above an interface
ds elemental length vector along a contour
D connection configuration term
DC direct current, time-constant value
DLC diamond-like carbon
e the base of natural logarithms, Euler’s number (2.718…)
e electron (subscript)
E (wavefield) electric field intensity vector (V m−1)
E-mode coupling via the E field; see CCP
EM electromagnetic
EM-mode coupling via EM fields; see EMCP
EMC electromagnetic compatibility
EMCP electromagnetically coupled plasma
eq equivalent circuit value
FTIR Fourier transform infrared
FWHM full width at half maximum
f current feed point (subscript)
f frequency (Hz)
fRF RF frequency (Hz)
fpe electron plasma frequency (Hz)
fpi ion plasma frequency (Hz)
fp plasma frequency (Hz)
Ĝ conductance per unit length (S m−1)
g ground point (subscript)
h height of an antenna above a baseplate
H magnetic field strength vector (A m−1)
H helicon
H-mode coupling via the H field; see ICP
I leg current column vector (A)
I current (A)
ICP inductively coupled plasma
Im imaginary part
ISM International Scientific and Medical standard
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In current phasor in the nth leg (A)
iline current phasor of current along the line (A)
irf current phasor of injected RF current (A)
i0 amplitude of the first harmonic of shell current density (A m−1)
is shell current density (A m−1)
Jm first kind of Bessel function, of order m (see Ym)
Jn current in the nth upper stringer section (A)
j 1−
Kn current in the nth lower stringer section (A)
k wavenumber vector (m−1)
k magnitude of the wavenumber vector k (m−1)
k0 wavenumber in vacuum; k c/0 ω= (m−1)
kd wavenumber in a dielectric (m−1)
kz axial wavenumber, along z (m−1)
k⊥ perpendicular wavenumber, perpendicular to z (m−1)
kB Boltzmann’s constant (1.38 10 23· − J K−1)
LHS left-hand side
L self partial inductance (H)
L̂ self partial inductance per unit length (H m−1)
Lleg self partial inductance of a leg (H)
Lstr self partial inductance of a stringer segment (H)
Lloop loop self inductance of a wire loop, coil, or solenoid (H)
L

loopˆ loop self inductance per unit length of a transmission line (H)
Li

loop contribution to loop self inductance of the ith wire segment (H)
l length of a wire, or an antenna leg
leg leg (or rung) across the ladder width; or a birdcage leg
MRI magnetic resonance imaging
M̂ mutual partial inductance matrix per unit length (H m−1)
Mij mutual partial inductance between wire filaments i and j (H)
m mode number
m azimuthal periodicity
me electron mass (kg)
mes measured, or measurement
NMR nuclear magnetic resonance
N total number of legs
N refractive index
nc (subscript) non-collisional, or collisionless
ne0 time-constant electron number density (m−3)
OTR oxygen transmission rate (c.c. m−2 atm −1 day−1)
PEC perfect electric conductor
PECVD plasma-enhanced chemical vapour deposition
Prf RF input power (W)
P̄ Maxwell’s potential coefficient matrix (V)
p.u.l. per unit length (signified by a hat above the symbol)
q magnitude of the electron charge; q 1.602 10 19= + · − C
Q quality factor
RAID Resonant Antenna Ion Device
Re real part
res resonance (subscript or superscript)
RF, rf radio frequency
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RHS right-hand side
R resistance, real impedance (Ω)
R̂ resistance per unit length ( /mΩ )
R r, radius (m)
r resistance (Ω)
S Poynting’s vector E H× (W m−2)
S area (m2)
Sn

J source current at the nth node of the upper stringer (A)
Sn

K source current at the nth node of the lower stringer (A)
sccm a gas mass flow rate in standard cubic centimetres per second
Scrn algebraic terms depending on currents induced in a PEC screen
SiOx silicon oxide with intermediate stoichiometry; x = 1–2
SLM a gas mass flow rate in standard litres per second
str stringer, along the length of a ladder
T absolute temperature (K)
Te electron temperature
T Trivelpiece–Gould mode (subscript)
T–G Trivelpiece–Gould mode
TM transverse magnetic
UL̄ lower shift matrix
Vpp peak-to-peak voltage (V)
Vrf phasor of the applied RF voltage (V)
v velocity (m s−1)
υ phase velocity (m s−1)
W-mode coupling via helicon wave fields
X̄ N × N matrix for parameters Xnm

X column vector array for parameters Xn

X reactive (imaginary) impedance (Ω)
x̂ unit vector along the x-axis
Y complex admittance (S)
Yeq complex equivalent circuit admittance at resonance (S)
ŷ unit vector along the y-axis
Ym second kind of Bessel function, of order m (see Jm)
Z complex impedance (Ω)
Zstr stringer complex impedance (Ω)
Zleg leg complex impedance (Ω)
Zc characteristic impedance of a transmission line (Ω)
Zin

eq equivalent circuit complex input impedance (Ω)
Zin

res complex input impedance at resonance (Ω)
ẑ unit vector along the z-axis
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