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IOP Publishing

An Introduction to Photonics and Laser Physics

with Applications

Prem B Bisht

Chapter 4

Spontaneous and stimulated emission

The full form of the acronym laser is ‘light amplification by stimulated emission of
radiation’. Historically, the term ‘radiation’ referred to the ‘quantum’ of energy emitted
by a hot body. The radiation density when plotted against the wavelength had its
maximum shifted to shorter wavelengths at higher temperatures. The theoretical model
based on Wein’s law was unable to explain this in the ultraviolet region. Planck
explained this ‘ultraviolet catastrophe’ by suggesting an empirical formula known as
‘Planck’s radiation law’, which stated that the number of radiation emitters in an
energy state is given by the Boltzmann distribution at room temperature. The
relationship between spontaneous and stimulated emission was given by Einstein in
his famous paper of 1917. The diagram shows how an incident photon stimulates an
atom in the excited state to emit a photon of the same frequency. You will learn in this
chapter why and how the amplification of EM radiation was achieved in the micro-
wave region (in the form of the maser) before the laser came into existence.

Learning objectives
Describe the temperature dependence of radiation density;
Identify the Boltzmann distribution;
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Write down the rate equations for a two-level system;
Differentiate between spontaneous and stimulated emission rates;
Describe Einstein’s A and B coefficients;
Relate Planck’s law of radiation to the radiation density in a two-level system;
Understand the concept of the lifetime of an excited state;
Illustrate the frequency dependence of the ratio of stimulated and spontaneous
emission.

4.1 Thermal radiation and Planck’s law
4.1.1 Radiation density in a cavity

According to the first law of thermodynamics, a hot body tries to be in thermal
equilibrium with its surroundings. Heat is radiated in the forms of temperature and
EM radiation. Generally, black-body radiation is the EM radiation emitted by a
body in thermodynamic equilibrium with its surroundings. For example, mosquitoes
and other insects are able to sense the heat of the human body. IR-based temper-
ature sensors are used in monitoring fever as well as in night-vision equipment. Stars
with different temperatures appear in various colors. For example, Betelgeuse in the
constellation of Orion is a red star with a temperature of about 3500 °C, while Rigel
is blue (10 000 °C). Apart from the Sun, fire was also the source of heat and light that
was directly accessible to humans on earth. Edison’s incandescent filament bulb is a
source of photons from the visible (light) region to the IR region (heat).

♣ If you have ever come across a bonfire or a furnace in a laboratory, you may be
able to identify the different colors of fire, predominantly red (burning coals) to
yellow (flames). Occasionally, part of the flame can be bluish as well—suggesting
higher temperatures.

4.1.2 Density of modes in a closed container

We consider a cubic box with perfectly reflecting walls in 3D (figure 4.1). In such a
cavity, a standing wave can be formed if the width (L) of the cube is an integral
number of half wavelengths (λ/2) of the radiation present. For the wave vector k, this
can be expressed as λ/2 ≡ qπ/k, with q = 1, 2, 3,… . The corresponding frequency (ν )q

is qc
L2
. The components of wave vector along the three axes are given by = π

k
q

Lx
x ,

=
π

k
q

Ly
y , and = π

k
q

Lx
z . Each mode characterized by the integers (qx, qy, and qz) is

represented by a point in k-space.
The frequency ν and the wave vector k satisfy the resonance condition

= + + = πν( )k k k k
c

2
x y z

2 2 2 2 2
. Here, the surface of the constant frequency ν is a

sphere of radius k. The number of modes (N) within the frequency range is equal to the
number of points within the radius k. N can be large, but it can be approximated by
the volume of one portion of the cube in the positive quadrant of a sphere of radius q

(=kπ/L) as π( )q1
8

4
3

3 . For two states of polarization, it is multiplied by a factor of two.

Therefore, the number of available modes in terms of ν can be given by
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Here, L3 is the volume (V) of the cavity. Differentiating this expression gives the
number of modes per unit frequency interval

ν
πν=N
c

V
d
d

8
. (4.1)

2

3

⎛
⎝⎜

⎞
⎠⎟

The number of modes per unit frequency bandwidth per unit volume πν( )c

8 2

3 is

known as the Jeans number. It is also known as the number of oscillators or the
‘density of modes’.

Exercise 4.1. Find the mode density for a 1D cavity.
Solution: Let the length of the 1D cavity be L in the x direction. We have

= λ λL ;
2

2
2

x x ; λ ;3
2
x so that for any number n,

=λ Ln
2
x ; λ = L

n
2

ν = nc
L2n , ν ν ν− ≡ ∂ =+( ).c

L2n n1

The mode density in a length L for two polarizations

ν ν ν ν ν
ν

ν= + −
∂

=g
L c

( )d
2 ( d ) 4d⎛

⎝⎜
⎞
⎠⎟

4.1.3 Wein’s displacement law

The black-body radiation intensity I(T ) emitted from an opening in the cavity of a
black body of temperature T is given by an empirical relation obtained by Stefan (in
1879), and later theoretically derived by Boltzmann (in 1884). According to this law,
the total radiation intensity (W m−2) emitted by a body is proportional to the fourth
power of T, as follows:

Figure 4.1. Cubic box of length L with perfectly reflecting walls called a cavity, which can contain integral
multiples of half wavelengths (λ/2).
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σ=I T T( ) 4

where σ = 5.68 × 10−8 W m−2 K−4 is known as the Stefan–Boltzmann constant. This
formula also includes another constant known as emissivity (ϵ ν( )M ), a quantity
specific to the material. The value of ϵ ν( )M ranges from zero to one. Here, for a
perfect black body, its value is taken to be one.

Classically, the average energy per mode is k TB . Here, kB is the Boltzmann
constant. The energy density of radiation per unit volume within a frequency range
between ν and ν + dν is given by the Rayleigh–Jeans (RJ) law, as described below.
From equation (4.1), the RJ law gives the energy density per unit frequency ρ(ν) as
k TB multiplied by the number of modes per unit frequency interval per unit volume as

ρ ν πν=
c

k T( )
8

, (4.2)
2

3 B

⎛
⎝⎜

⎞
⎠⎟

where the emitted radiation intensity is expressed as a function of frequency and
temperature I(ν, T), as follows:

∫ν ρ ν ν=I T( , ) ( )d .

As shown in figure 4.2, the experimentally obtained values of I(ν,T) show a peak
wavelength that follows the classic Wein’s displacement law given by

λ = × −T 2.8978 10 m K.max
3

The I(ν, T) spectra obtained for a black body at three temperatures are shown in
figure 4.2. The maximum of the curves (λmax) shifts to lower wavelengths (higher
frequencies) as the temperature of the body is increased. This reveals the fact that

Figure 4.2. Plot of radiation intensity I(ν,T) versus frequency (ν) for a body at three temperatures < <T T T1 2 3.
The dashed line shows the theoretical prediction obtained via the RJ law.
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cold objects emit at longer wavelengths (or lower frequencies). Hot objects emit
many more frequencies with a shift of the peak to shorter wavelengths.

The attempts to explain these results using classical theories were unsuccessful.
Figure 4.2 also shows the curve of Ι(ν, Τ) predicted by the RJ law (equation (4.2)).
One can see that it agrees with the experimental values at lower frequencies, but
deviates drastically from the experimental values at higher frequencies or in the UV
region. This deviation was popularly known as the ‘ultraviolet catastrophe’ and was
later explained by Planck (♠ see section 4.3).

Exercise 4.2. An optoelectronics engineer in the department of climate protection
has to design a device for animal detection to be used in the forest at night. What
typical wavelength (λmax) of radiation should be considered for the components of
the device?

Solution: The body temperatures of animals range between 37 °C and 41 °C. For
example, for humans, the typical body temperature is above 35 °C (or 308 K). Using
Wein’s law, we can obtain the wavelength, as follows:

λ = × = ×
−

−2.8978
10 m K

308K
9.40 10 m.max

3
6

Therefore, the device must have sensitivity in the IR region.

4.2 Boltzmann statistics
As described in chapter 2, in an atomic or molecular system, there are infinite set of
discrete energy levels. The population (Nj) of an energy level with energy Ej in
thermal equilibrium is given by Boltzmann statistics, as follows:

∑
=

−

−
N

g N e

ge
. (4.3)j

j

i

E k T

i
E k T

0
/

/

j

j

B

B

Here, ∑ −g e
i

i
E k T/j B is known as the partition function (z). Equation (4.3) shows that

when Ej increases, Nj decreases, as shown in figure 4.3. Here, gi and gj are the
degeneracies, or the statistical weights of the two states. For high-density materials
such as solids, the energy levels may be continuously distributed or separated—
depending upon the state of the matter. The probability per unit energy g(E) of
finding a fraction of atoms excited to energy level E is given by

= −g E
KT

e( )
1

.E k T/ B

The distribution of the population (N) in a state at temperature T is given by the
Boltzmann distribution:
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= −N E N e( ) (4.4)E k T
0

/ B

Here, N0 is the population in the ground state and kB is the Boltzmann constant
(= 1.3806488 × 10−23 J K−1). The higher particle states are also populated,
depending on the temperature, as shown in figure 4.3.

We can write the ratio of the populations in two levels, 1 and 2, with energies E1

and E2 such that Δ = −E E E2 1, as follows:

= ΔN
N

g

g
e . (4.5)E k T1

2

1

2

/ B

Exercise 4.3. Find the population of first thermally excited level for a visible
wavelength (600 nm) at room temperature.

Solution:Wemust convert the wavelength (in nm) to energy (eV) (♠ see exercise 2.1).
For 600 nm, E = 2.268 eV, the population is given by equation (4.4). Let the
populations in the ground and excited states be N0 and N1, respectively. Using
equation (4.5),

= ΔN
N

E k Texp( / )0

1
B

Figure 4.3. Boltzmann distribution of the population. The dashed lines correspond to the populations (N0, N1,
N2, and N3) for indicated energy states ( < < <E E E E0 1 2 3).
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=
× ×

× ×

−

−{ }
N
N

exp
2.268 (1.6 10 )

(1.3 806 488 10 ) 300
0

1

19

23

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= e87.6

= ×1.1 10 .38

This shows that ∼N N100
38

1. At room temperature, the thermally populated value of
the first excited state is smaller by a factor of −10 38 than that of the ground state. The
ground-state population is dominant in this case.

Exercise 4.4. The wavelength of a ruby laser is 694.3 nm. What are the ratios of the
populations in the ground (N0) and excited states (N1) corresponding to this
wavelength at 300 K and 600 K?

Solution: We again use equation (4.5), = ΔE k Texp( / )N
N

0

1
B .

For the temperature of 300 K, the value of the ratio

λ
= −N

N
hc
K T

exp1

0 B

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥

= − = − = ×× × ×
× × × ×

− −

− − −
−exp , exp[ 69.27] 8.26 106.64 10 Js 3 10 ms

694.3 10 m 1.38 10 JK 300 K

34 8 1

9 23 1
31⎡

⎣⎢
⎤
⎦⎥ . Similarly,

at the higher temperature of 600 K, the ratio N
N

1

0
is − = × −exp[ 34.63] 9 10 16. It can be

estimated that at higher temperatures it will be easier to obtain population inversion
(i.e. >N N )1 0 .

4.3 Planck’s law of radiation
Apart from the ultraviolet catastrophe described in section 4.1.3, another problem
with classical theory is that it predicts the total energy1 density to be infinite, since all
frequencies are possible. Physically, an infinite-energy EM field is not possible. In the
year 1900, Planck described the spectral distribution of thermal radiation by
introducing the idea of a quantum of energy E at a given transition frequency ν
between two levels E2 and E1:

ν=E h .

Here, h is known as Planck’s constant (h = 6.62 × 10-34 Js). The empirical function
proposedbyPlanck for the radiationdensitywithin the frequency interval νd is as follows:

ρ ν ν π ν ν=
−ν

h
c e

( )d
8 1

1
d . (4.6)

h k T

3

3 / B

⎛
⎝⎜

⎞
⎠⎟

The factor −νe1/( 1)h k T/ B was reintroduced for the ideal Bose gas by Einstein in the
form of Bose–Einstein statistics for identical and indistinguishable particles (called
bosons, with integral spins) for a number density ρ(E) at an energy E as

1The total power per unit area I ∫ ν ν=
∞

I T d( , )
0

diverges to ∞ when all frequencies are allowed.
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ρ =
−μ−E

e
( )

1
( 1)

. (4.7)E k T( )/ B

Here, μ is known as the chemical potential for identical particles, and for photons,
μ = 0. Planck’s law fits the experimental results shown in figure 4.2 quite well.

♣ Fermions, i.e. particles such as electrons (whose spin is multiples of 1/2) follow
the Fermi–Dirac statistics given by ρ =

+μ−( )
E( )

e

1

1E k T( )/ B
.

Exercise 4.5. (a) Show that for long wavelengths, Planck’s law reduces to the RJ law.
(b) What happens at shorter wavelengths?
Solution: (a) The exponential function in Planck’s formula (equation (4.6)) can be

expanded using a Taylor series for =f x e( ) x i.e. = + + + + …
! !

e x1 x x
2 3

x
2 3

.
For longer wavelengths, or low frequencies, i.e. for small x (ignoring the higher

terms in the expansion), = +e x1x .
Therefore, for hνk TB , we have

ν−
≅νe

k T
h

1
( 1)

.
h k T/

B

B

Thus, at low frequencies, Planck’s formula becomes ρ ν ν ν= πν( )k T( )d d
c

8 2

3 B , which is

the RJ law (equation (4.2)).
(b) For shorter wavelengths or higher frequencies, Planck’s law behaves as Wein’s

law. This is the case because, for hνkT, we can rewrite equation (4.7) as

ρ ν ν π ν ν=
ν−h

c
e( )d

8
d .

h
k T

3

3
B

The radiation intensity follows an exponential behavior, as shown in figure 4.2. This
equation can be written in terms of wavelength as

π
λ

=λ λ−E
hc

e
8

.
hc
k T

5
B

To find the maxima, we can differentiate this expression with respect to λ and equate

λ
λEd

d
to zero. This is left as an exercise; it yields Wein’s displacement law, λT = constant.

4.4 Einstein’s A and B coefficients
4.4.1 Stimulated absorption coefficient

With reference to the Boltzmann distribution (figure 4.3), the exited states cannot
have higher populations than the ground state. Nevertheless, there are ways in which
the populations of the upper energy states can be made larger than that of the
ground state. For example, on absorption of a photon by an atom, the thermal
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equilibrium is disturbed. In 1917, Einstein combined Planck’s law and the
Boltzmann statistics and further developed the idea of light absorption and emission.
To obtain the correct energy density of radiation, one must include a stimulated
emission probability in dealing with the interaction of radiation with matter.

As shown in figures 4.4–4.6, consider the two energy levels of an atomic system E1
and E2 with populations of atoms denoted by N Nand ,1 2 respectively. An atom can
be placed in its higher level E2 on absorption of a photon. The absorption of a
photon is in addition to the thermal population, and hence it is also referred to as
‘stimulated absorption’. This is due to the fact that EM radiation is required to
stimulate the electrons to produce the short-lived entity—the excited state denoted
by E2 in figure 4.4.

The rate of change of the population in the lower state due to absorption is
proportional to the population in the state E1 and the incident photon density ρ(ν):

ρ ν∝N
t

N
d
d

( ) .1
1

The rate of change of N1 can be rewritten by introducing a rate constant B12, known
as the Einstein’s B coefficient of stimulated absorption, as follows:

ρ ν=N
t

B N
d
d

( ) . (4.8)1
12 1

4.4.2 Spontaneous emission

Consider figure 4.5, in which the atom is now in the higher state E2. As >E E2 1, the
atom decays to the lower state E1 by emitting a photon of frequency ν. This process
is known as spontaneous emission.

In the condensed phase, the emission following optical excitation is also known as
fluorescence or photoluminescence2. Overall, the population decay of the state E2 in
terms of another constant of proportionality known as the rate coefficient of
spontaneous emission (A21), is written as

Figure 4.4. Process of absorption in an atomic system with two energy levels (E1 and E2): an atom before (left)
and after (right) interacting with an incident photon.

2♣To distinguish it from other types of emissions, see appendix A.
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= −N
t

A N
d
d

. (4.9)2
21 2

The negative sign in this equation expresses the decrease of the population over time.
Here, A21 is also known as Einstein’s A coefficient and has units of −s 1. The photons
in the spontaneous emission process are emitted in random directions with arbitrary
polarization and within a broad range of frequencies for allowed transitions.

The solution of differential equation (4.9) is a first-order decay that is well known
in physics:

= −N N e .A t
2 2

0 21

Here, N2
0 is the population of the upper state at t = 0. The time in which the

population falls to 1/e of its initial value is known as the lifetime of the spontaneous

emission (τ )0 . It is the inverse of the decay rate =( )A
1

21
and is similar to that

described in chapter 2 (♠ see section 2.9.7.8). For most molecules and semi-
conductors, τ0 is of the order of nanoseconds (10−9 s). For several other laser
materials, such as rare-earth ions (e.g. Cr+3 and Nd+3), the lifetimes are found to be
of the order of milliseconds (10−3 s).

4.4.3 Coefficient of stimulated emission

The excited state can be populated by the absorption of a photon as well as by
thermal excitation. The phenomenon of stimulated absorption (from a lower state)
suggests that a process that is the reverse of stimulated emission should exist for the
excited state.

Let us consider a situation in which an atom is in the higher state E2 and a photon
of same frequency ν is incident on the system, as shown in figure 4.6. There is a finite
probability that the incident photon will stimulate the atom to resonantly undergo a
transition to the lower state E1 by emitting another photon. If this happens, then the
two emitted photons will possess properties analogous to each other. This means
that light consisting of these photons has one frequency (the property of

Figure 4.5. Schematic of the process of spontaneous emission in an atomic system with two energy levels (E1

and E2): an atom before (left) and after (right) spontaneously emitting a photon.
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monochromaticity) and is in phase (the property of coherence). These properties are
not associated with spontaneously emitted photons.

Let us also consider the coefficient of spontaneous emission (A21), which is
independent of the external field. It is a statistical function of space and time and
there is no phase relationship in the light emitted by the atoms. The fluorescence
lifetime of the excited state (τ0, ♠ see equation (2.13)) is an experimentally
measurable quantity. On the other hand, the depletion of E2 by B21 is given by its
dependence on external factors. In this case, the rate of change of population of the
upper state due to absorption is proportional to the population in the state E1 and
the incident photon density ρ(ν). It is given by

ρ ν∝N
t

N
d
d

( ) .2
2

By introducing the rate coefficient of stimulated emission B21, we can write this as

ρ ν= −N
t

B N
d
d

( ) . (4.10)2
21 2

The unit of energy density ρν( ) per unit frequency interval is J s m−3. Therefore,
comparing the units of A21 and ρ νB ( )21 , the unit of Einstein’s B coefficient is m3 J−1 s−2.

4.4.4 Rate equation analysis

The rates of stimulated absorption ( ρ νB N( )12 1), spontaneous emission (A N21 2), and
stimulated emission ( ρ νB N( )21 2) of a two-state system are indicated in figure 4.7. We
now have sufficient information to work on the rate equations for a two-level
system, as follows.

Using equations (4.8)–(4.10), we can write the rates of change of the populations
of states E2 and E1 as

ρ ν= − −N
t

B N A N
d
d

( )2
21 2 21 2

and

Figure 4.6. Schematic diagram of the process of stimulated emission in an atom when a photon of the same
frequency (ν) is incident on it, showing the situations before (left) and after (right) the photon strikes the
system.
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ρ ν=N
t

B N
d
d

( ) ,1
12 1

respectively.
At equilibrium, the rate of increase of the upper state E( )2 via induced absorption

is equal to its decay to the lower state E( )1 via the sum of the spontaneous and
stimulated emission rates, as follows

ρ ν ρ ν= +B N B N A N( ) ( ) .12 1 21 2 21 2

Dividing this by ρ νB N( )21 2 gives

ρ ν
= −A

B
B N
B N( )

1.21

21

12 1

21 2

From the Boltzmann distribution, substituting the value of N1/N2 from equation
(4.5), we get

ρ ν
= −

ΔA
B

B
B

g

g
e

( )
1. (4.11)

E
k T21

21

12

21

1

2

B
⎜ ⎟⎛
⎝

⎞
⎠

This can be rewritten as

ρ ν = −
ΔA

B
B
B

g

g
e( ) 1 . (4.12)

E
k T21

21

12

21

1

2

B

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎜ ⎟⎛
⎝

⎞
⎠

By comparing this to the energy density of radiation at frequency ν in a cavity
using Planck’s law (equation (4.6)), we obtain

π ν=A
B

h
c

8
(4.13)21

21

3

3

⎛
⎝⎜

⎞
⎠⎟

and

=B
B

g

g
1.12

21

1

2

Figure 4.7. Two-level system used for analysis of the rate equation. ρ νB N( )12 1, A N21 2, and ρ νB N( )21 2 are the
rates of stimulated absorption, spontaneous emission, and stimulated emission, respectively.
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We assume here that either the split of the energy states is the same or that there is
no split. Therefore, for the same degeneracies, i.e. = 1

g

g
1

2
, we obtain =B B .12 21 This

indicates that the probabilities of absorption and stimulated emission for the
transitions between the two states are equal. This is an important message, as it
suggests that materials characterized by strong absorption coefficients can be
expected to have strong emission coefficients, which is to say that they can be
excellent laser materials. For example, organic dyes (such as rhodamine 6G) have
strong absorption in the visible region and are excellent stimulated emitters. Two
profound consequences of Einstein’s coefficients are highlighted on rewriting the
equations, as shown in the following subsections.

4.4.4.1 Relation between spontaneous and stimulated emission
From the relation given in equation (4.13), the lifetime of the upper level (τ = A1/0 21)
can be related to the stimulated emission, as follows:

π ν τ
=B

c
h8

. (4.14)21

3

3
0

Therefore, if a material can be characterized by a spontaneous rate (by estimating
the value of τ0), the stimulated rate can be found from equation (4.14). Notice that

in terms of wavelength, equation (4.14) can be written as = λ
π τ

B
h821
3

0
.

Exercise 4.6. The dye rhodamine 6G in ethylene glycol has a lifetime of 3.5 ns. For
an emission wavelength of 570 nm, what is the coefficient of stimulated emission?
(Take the refractive index of the solvent to be 1.4.)

Solution: Equation (4.14) gives the coefficient of stimulated emission as

π ν τ
=B

c
h8

.21

3

3
0

The refractive index (n) of the solvent is 1.4. Therefore, the speed of light in this
medium is c/n. The lifetime (τ0) is × −3.5 10 s9 . The frequency (ν) corresponding to
570 nm is ×5 10 Hz14 . Using the value of = × −h 6.6 10 J s34 , the value of B21

obtained is 1.5×104 m3 J−1 s−2.

4.4.4.2 The ratio and the magic of stimulated emission
Similarly, equation (4.11) can now be rewritten as follows:

ρ ν
= −νA

B
e

( )
1. (4.15)h k T21

21

/ B

The quantity
ρ ν

A
B ( )

21

21
is purely a number and is known as the ratio (R) of spontaneous

to stimulated emission coefficients for a system in thermal equilibrium with a
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radiation field. As can be seen from the above equation, its value varies with
frequency and the temperature and is extremely important in the development of
lasers. Table 4.1 gives typical values of R at various temperatures for a wide range of
the EM spectrum.

Exercise 4.7. Evaluate the ratio (R) of the rate of spontaneous radiation to that
of stimulated radiation for a tungsten filament for the visible frequency range at
2000 K.

Solution:At T = 2000 K, for the visible frequency range (5× 1014 Hz), the value of
this ratio from equation (4.15) is approximately e12 (or 1.5 × 105).

This is the reason why the majority of the radiation emitted by tungsten lamps
takes the form of spontaneous emission and the probability of stimulated emission is
minimal.

Exercise 4.8. Use equation (4.15) and assume a wavelength of 570 nm. If we wish to
make the rate of spontaneous emission (A21) equal to the factor ρ νB ( )21 , what
temperature could be used?

Solution: According to the question, to make the value of ratio R in equation
(4.15) equal one, we need

=νe 2.h k T/ B

The frequency (ν) corresponding to 570 nm is ×5 10 Hz14 . Using the values
= × − −h 6.6 10 J s34 1 and = × − −k 1.38 10 J KB

23 1, the value of

ν = ×h
k T T

2.53 10
.

B

4

Therefore, =× ln2,
T

2.53 104

or the required temperature = = ××T 3.64 10 K2.53 10
ln2

4
4

A glance at table 4.1 shows that in the microwave region, the level of stimulated
emission dominates that of spontaneous emission, as the value of R is small. This
was the obvious reason for the invention of Microwave Amplification by Stimulated
Emission of Radiation (MASER) before the invention of LASER. To obtain
stimulated emission in the visible/IR region, the denominator of R in equation
(4.15) should be increased. This can be achieved by increasing the value of ρ(ν)
between the two energy levels. This is the subject of the next chapter.

♣ The research groups of Townes (1955) and Basov and Prokhorov [4]
independently demonstrated amplification in the microwave region in ammonia.

♣ Basov and Prokhorov [4] wrote a paper on their molecular generator for the
journal ‘Zhurnal Èksperimental’noi i Teoreticheskoi Fiziki’ (later known as ‘Soviet
Physics—JETP’), which they submitted in December 1953, but this paper was
delayed by a year due to a typographical error in 2π that needed to be corrected!
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Questions and problems
1. How do you represent the number of radiation modes per unit volume in a

frequency range dν in free space, in terms of the frequency ν and the
velocity of light, c?

2. The temperature of the Sun’s surface is about 6000 K. What is the intensity
of the radiation from the Sun?

3. What is the mechanism by which an incandescent bulb and a mercury light
work?

4. The temperature of the tungsten filament of a light bulb is 3000 K. What is
the peak of its light spectrum?

5. According to Planck’s law of black-body radiation, what is the energy
density of radiation between the frequencies ν and ν +dν?

6. The number of atoms of energy E within a specific energy range (dE) can be
given by = −N E E e E( )d dN

KT
E k T/ B . Calculate the temperature at which you

could see a considerable number of ‘visible’ photons.
7. Find the energy of a particle at a room temperature of ~300 K.
8. Calculated the mean number of photons excited in the radiation field mode

of a thermal source that has a wavelength 400 nm at a temperature of
300 K.

9. For nondegenerate atomic levels of a system in thermal equilibrium, what is
the ratio of Einstein’s A coefficient to Einstein’s B coefficient in terms of
frequency υ, the velocity of light c, and Planck’s constant?

10. Write down the units of the rate constants of spontaneous emission (A) and
stimulated emission (B). What is the radiative rate for a molecular system
with radiative lifetime of 10 ns?

11. At a constant temperature, compare the ratio of the spontaneous and
stimulated emission rates typically obtained for the microwave and UV
regions of the EM spectrum.

12. An argon-ion laser works on a single line (514.5 nm) with an output power
of 78.50 mW. Take the spectral purity to be 0.001 nm. What is the value of
A21/B21 for the laser?
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