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Part I

Basics of photonics and lasers





IOP Publishing

An Introduction to Photonics and Laser Physics

with Applications

Prem B Bisht

Chapter 1

The photon and photonics

The full form of the acronym ‘laser’ is light amplification by stimulated emission of
radiation. The laser was invented in 1960 as a so-called ‘tool looking for an
application’. Within six decades, lasers have found applications in all walks of life,
including industries based on them. Micromachining, waveguide fabrication, welding,
cutting, nondestructive testing, and pulsed-laser deposition of thin films are some of
their applications in materials science. In the field of electrical engineering, fiber optics
has revolutionized the field of optical communication. In aerospace engineering
applications involving jet and scramjet engines, studies of the mixing of fuel sprays
require laser-induced fluorescence techniques. The defense, medical, and cosmetic
fields, as well as scientific research, are interdisciplinary areas that make extensive use
of lasers. Like the flow of electrons that completes electronic circuits in electronics,
photons are related to photonic circuits in the field of photonics. Maxwell’s equations
suggest that light is an electromagnetic (EM) wave. Therefore, this chapter connects
optics with EM theory. The figure shows an electric field (E, in the y direction) and a
magnetic field (B, in the x direction), which are mutually perpendicular to each other.
The EM wave is propagating in the y direction; the details are given in this chapter.
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Learning objectives
After reading this chapter, the learner will be able to:
Identify the various branches of photonics;
Relate Maxwell’s equation to optics;
Define radiation pressure and the angular momentum of light;
Explain radiation using accelerating charge;
Describe the refractive index and dispersion of a material;
Differentiate between electronic and photonic circuits.

1.1 The photon
Max Planck suggested the idea of energy packets known as ‘quanta’ in 1900. While
Einstein called these packets ‘energy particles’ in 1905, it took until 1923 for this idea
to be reinforced by the discovery of the Compton effect. These particles were named
photons by Gilbert Lewis in 1926; this term denoted ‘carriers of radiant energy’. Just
as the electron is associated with electricity, light of wavelength λ or frequency ν
consists of photons of energy hν. Here, h is Planck’s constant.

The photon:
(i) has no charge,
(ii) is considered to have zero rest mass but
(iii) carries momentum p h( / )λ= ,
(iv) has a constant velocity (c) 108∼ m s−1 in vacuum,
(v) carries a spin of 1 and thus follows Bose–Einstein statistics,
(vi) is immune to EM noise (as it has no charge), and
(vii) does not undergo photon–photon interactions in linear optics.

The property of photons being immune to EM noise makes a light beam a special
tool as compared to electrical circuits that are prone to picking up stray EM signals.
Similarly, photon–photon interactions cannot take place under normal light levels.
In the same way that electronics deals with the flow of electrons in electrical circuits,
photon-related studies address photonic circuits that fall within the domain of
photonics. This means that the two light rays can cross without interacting with each
other. The photon–electron interaction, which falls within the domain of light–
matter interactions, is an important area of interdisciplinary research. Chapter 2
introduces this aspect, along with spectroscopy.

1.2 Branches of photonics
This term photonics is used to describe the control of photons and the photon nature
of light. This is one of the modern area of optics that deals with the technologies used
to generate and harness light. ‘Laser applications’ is an interdisciplinary field that
uses the principles of conventional optics, electromagnetism, spectroscopy, and
quantum optics. Therefore, several subcategories (shown in figure 1.1) are encom-
passed by the term photonics. In addition, electrodynamics, which is a self-sufficient
theory, is used in various areas of optical technologies.
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1.2.1 Conventional optics

According to Fermat’s principle, light rays travel along the path that can be
traversed in the least time. When light propagates through large objects in which the
wavelength of light is smaller than the dimensions of the object, its behavior can be
explained by drawing light rays. We experience this in the form of reflection or
refraction of light rays from a surface. Under such circumstances, the light rays
follow the rules of geometrical optics. This method of understanding light falls under
ray optics.

1.2.2 Electromagnetism and wave optics

Light is an electromagnetic wave and, as such, its electric and magnetic fields are
represented in their vector forms (see section 1.3). However, in wave optics, the scalar
representation of EM fields is sufficient. In Young’s double-slit interference experi-
ment, for example, Huygens’ principle of secondary wavelets is used to explain wave
interference. This can be achieved without taking the components of the EM field
into account.

1.2.3 Quantum optics

Certain phenomena cannot be explained using EM theory. Optical phenomena that
can only be explained by treating light as a stream of photons, such as coherent
states and photon entanglement (♠ see chapter 15) fall within this category. The
Mach–Zehnder interferometer (♠ see chapter 9) is used to experimentally test the
basic theoretical proposals in quantum optics, such as the entanglement of photons
and Bell’s inequalities. Quantum cryptography also is the subject of quantum optics.

1.2.4 Light–matter interaction or quantum electronics

This topic addresses the interactions of light with matter. The phenomena of
absorption and spontaneous and stimulated emission (i.e. the spectroscopy of atoms

Figure 1.1. Interdisciplinary nature of photonics, illustrating some application areas.
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and molecules) are studied here. Nonlinear optics, bulk spectroscopy, and the
spectroscopy of low-dimensional materials in the form of monolayers, quantum
wires, or quantum dots fall into this category.

1.2.5 Optoelectronics

This is an area in which both electrical current and light are required for the
operation of a device. The presence of electronics in the device controls the optical
character of the device. Devices that fall into this category are electronic in nature
but evolve light. Examples include the light-emitting diodes, solar cells, and display
devices in modern equipment, including smartphones. Edison’s bulb may fall into
this category as well. Specialized centers are dedicated to this topic worldwide. This
research area has immense applications in the photonics industry.

1.2.6 Electro-optics

An optical switch that operates the automated door of an elevator or an office falls
into this category. In this field, the electronics in an item of equipment is used to
control the device in combination with an optical effect. Electro-optic shutters fall
into this category. In addition, the change in the optical response (absorption/
transmission) of a material due to AC or DC electric/magnetic fields falls within this
area. Examples of devices based on electro-optics include those based on the Kerr
effect or Faraday rotation (♠ see chapter 3).

1.2.7 Light-wave technology

The whole of modern-day communication is based on data exchange with a large
frequency bandwidth. This includes the communication used by television, the
internet, and the telephone. Devices and systems that are used in optical commu-
nication and optical signal processing fall into this category. Fiber-optic commu-
nication is the key example in this field.

1.3 Maxwell’s equations and their connection to optics
Optics is connected to EM theory through Maxwell’s equations (MEs). The basic
laws of reflection and refraction can be derived from the electric (E

��
) and magnetic

(B
��
) field vectors via solution of the plane-wave equation. The set of Maxwell’s four

equations for EM fields in vacuum from classical electrodynamics are written as
follows:

E B

E
B
t

B J
E
t

(i). . (ii). . 0

(iii). (iv).
(1.1)

0
(Gauss’s law)

(No name)

(Faraday’s Law)

0 0 0

(Ampere’s law fixed by Maxwell)

ρ
ε

μ μ ϵ

∇ = ∇ =

∇ × = ‒ ∂
∂

∇ × = + ∂
∂

̀

�� �� �� ��

�� ��
��

�� �� ��
��
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Here, 0ϵ and 0μ , are known as the permittivity (in farad m−1) and permeability
(in Henry m−1) of free space, respectively; ρ is the charge density inCm 3− , and J

��
is

the current density in A m 2− in the region. It should be noted that these equations
are of the first order in time and space. The equations do not have symmetry in either
the E

��
or B

��
fields. By working on these equations a little, we can obtain symmetric

equations for either of the fields, as follows. For instance, on taking the curl of the
Faraday’s law (equation (iii)),

B
t t

E ( ) ( B).∇ × ∇ × = ∇ × − ∂
∂

≡− ∂
∂

∇ ×
�� �� �� ��

��
�� ��

Using the vector identity E EE ( . ) 2∇ × ∇ × = ∇ ∇ − ∇
�� �� �� �� �� �� ��

, the above equation can be
rewritten as

E E
t

( . ) ( B).2∇ ∇ − ∇ = − ∂
∂

∇ ×
�� �� �� �� �� ��

For charge-free (ρ =0) and current-free (J 0)=
��

regions, we can use equations (i) and
(ii) to write the following wave equation:

c
E
t

E
1

0. (1.2)
2

2

2
2∂

∂
− ∇ =

��
��

Here, c is the speed of light ( )c 1

0 0
=

μ ϵ
in m s−1. We have obtained equation (1.2)

for one variable (E
��
) at the cost of using a second-order differential equation.

Similarly, one can write the wave equation for the B
��

field as well.
We can assume a general solution of equation (1.2) for E

��
(r ⃗,t) in units of V m−1 as

E r t E n k r t( , ) cos ( . ). (1.3)0 ω ϕ⃗ = ˆ ⃗ − +
�� ��

Here, E0 is the amplitude of the wave. For a simple case, we take a wave propagating
in the z direction (i.e. k r kz. ⃗ =

��
), as shown in the diagram below (figure 1.2). This is

known as the plane-wave solution. The unit vector n̂ indicates the direction of

Figure 1.2. The electric field (E0
��
), magnetic field (B0

��
), and the direction of propagation of an EM wave (k̂)

make a triad. The polarizations of the field vectors are indicated by n̂ and n̂′, respectively.
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oscillation of E
��

and is known as the polarization of the field vector; k is the
propagation constant or the wavevector, i.e. the number of waves per unit length; ω
is the frequency; and ϕ is the phase factor.

In Euler’s form, equation (1.3) is the real part of equation (1.4) as follows:

E r t E ne( , ) . (1.4)i k r t
0 ( . )⃗ = ˆ ⃗ ω ϕ− +

�� ��

By using this solution for equation (1.2), we obtain

t
e i e e ik e( ) ; and ( ) ( ).i t i t ik r ik r. .ω∂

∂
= − ∇ =⃗ ⃗ω ω− −

���� ��

From these relations, we can effectively replace ∇with ik
��

and
t

∂
∂

with −iω for
plane-wave equations. Now, using ME (iii), we can write the relation between the
electric and magnetic field vectors with k̂ as follows:

E k n
c

B n( ) .
ˆ × ˆ = ˆ′

This explains the transverse nature of the EM wave indicated in the diagram.
The oscillation of the field vectors is perpendicular to the propagation direction of
the wave. We recall that this is in contrast to sound waves, in which the rarefaction
and densification of the medium’s particles takes place in the propagation direction
of the wave—for this reason, sound waves are generally called longitudinal waves.

The unit vector k( ˆ) indicates the direction of propagation of the wave. From ME
(ii), we can see that that the B

��
field of an EM wave that has n̂′ as its direction of

oscillation is perpendicular to k̂ (i.e., n k 0)ˆ′∙ ˆ = . Similarly, n̂ and k̂ are mutually
perpendicular to each other, as can be seen in the figure.

The corresponding Maxwell’s equations in matter are written by introducing the
displacement vector (D

��
in Cm 2− ), the available charge and current densities, and the

H
���

field (in A m 1)− . The D
��

field is defined as D Eϵ=
�� ��

and H
���

is related to B
��

according to H B=
μ

��� ��

. Here, ϵ and μ are the permittivity and permeability of the

medium. In metals, the current density (J
��
) is related to the conductivity (σ) by

J Eσ=
�� ��

. In metals, the square root of the product of the quantities ,ω μ, and σ is

defined as the inverse of the skin depth (s) according to s 2=
ωμσ

(♠ see question 7).

Measured in units of nm, s is the distance over which the amplitude of the EM waves
decays to e1/ of its original value while propagating in the material with given
parameters.

♣ The relation J Eσ=
�� ��

is known as ‘Ohm’s law’. The elementary form of this law
is studied in high school. It states that the current (I ) across a resistor is proportional
to the potential difference (V ) between the two ends of the resistor (R), according to
V IR= . As an exercise, one can obtain this relation by expressing E in terms of V
across a metal bar of length L with resistance R and conductivity σ . It is necessary to
replace J∣ ∣

��
with the current (I) per unit area (A) according to this definition.
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Exercise 1.1. A linearly polarized plane EM wave is propagating in the z direction,
and its plane of polarization is the x direction. The electric field of the wave has an
amplitude given by E0 . The frequency of the wave is ω, and its wave number is k.
What are the electric and magnetic fields of the wave?

Solution: The electric field vector of the wave (E
��
) is

E E e kz t Vmcos ( )(x0
1ω= ˆ − −

��
). The magnetic field vector is written as

B k E( )=
ω
×�� �� ��

k E e e kz t( ) cos ( ).1
z x0 ω= ˆ × ˆ −

ω

Therefore B E e kz t( ) cos( )k
y0 ω= ˆ −

ω

��
tesla (T). Note that we have ignored the

phase part.

Exercise 1.2. (a). Show that the dimension of skin depth s( ) is that of length.
(b). What is the typical value of s for copper for the frequencies in the visible

region ( 10 Hz15ω ̃ )?
Solution:
(a). This is easy to verify if we take the dimension of charge to be [Q]. To get the

dimension of skin depth (s) as L[ ], use the dimensions T M LQ[ ], [ ]1 2− − , and
M L T Q[ ]1 3 2− − for ,ω μ, and σ , respectively.
(b). For copper, the value of 10 ( cm ).7 1σ = Ω − Using the value of N A10 /6 2μ = −

and an angular frequency for the visible region of 10 Hz,15ω = we get the value of s ̃
10 nm. This indicates that visible radiation can access the surface of the copper for
distances up to the order of 10 nm!

Exercise 1.3. While ME (iii) is responsible for the generation of electricity, which
equation is used in the mechanism of cooking by induction stove?

Solution:We know that Faraday’s law suggests that changing magnetic fields give
rise to current; ME (iv) suggests that a changing electric field gives rise to a magnetic
field. In an induction stove, when an AC current passes through the coil of a
conducting wire, it induces a magnetic field within the skin depth of the ferromag-
netic base of the cooking pan. The eddy currents induced by the magnetic field in the
thick base of the cooking pan result in Joule heating due to its resistivity. This heat is
responsible for cooking the food contents of the pan by heat conduction.

1.4 A few topics related to lasers and optics
1.4.1 Phase velocity and group velocity

The electric field of the wave (i.e. E r t( , )⃗
��

) is given in three dimensions by equation
(1.3). For the one-dimensional case (i.e. along z), it can be rewritten as
E z t E n k z t( , ) cos( . )0 ω ϕ= ˆ − +
�� �� �� . At a certain numerical value of the phase,

the movement of the wave can be tracked so that the derivative 0d
dt

=ϕ . The plot of ω
vs k can be used to define two important concepts regarding the velocity of the wave:
(i) the phase velocity (v ⃗) of the waveform is defined as the ratio of ω and k according

to
k

v ⃗∣ ∣ = ω ; (ii) the instantaneous derivative ( )d
dk
ω , on the other hand, comes into the

picture when the waveform consists of slightly varying frequencies and wave vectors.
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In this case, the waveform propagates as a superposition of two or more modulated
waves known as a wave packet. The speed of the modulated signal is defined as the

group velocity, ( )d
dkgv = ω . For a nondispersive medium, gv remains equal to the

magnitude of v ⃗.

1.4.2 Power flow and Poynting vector

We know, for instance, that heat is also transported by sunlight to the Earth. An
important aspect of electromagnetic (EM) wave transport is the propagation of
energy. The energy densities in electric (uE) and magnetic (uB) fields are given by

Eu ,
2E
0 2= ϵ and Bu 1

2B
0

2=
μ

, respectively. The energy density of the EM field is

given by

B Eu
1
2

1
.em

0

2
0

2

μ
ϵ= +

⎛
⎝⎜

⎞
⎠⎟

Maxwell’s equations help in the derivation of an energy conservation equation. The
energy flow per unit area per unit time is given by the Poynting vector (S)⃗ ,

E BS
1

( ). (1.5)
0

⃗
μ

= ×
�� ��

1.4.3 Radiation pressure and angular momentum

The tail of a comet in orbit around the Sun always points away from the Sun. This
happens due to the radiation pressure exerted by the momentum of the light. From a
dimensional analysis, we can see that the magnitude of the linear momentum
(p k= ℏ�� ��

) imparted by a single photon of linearly polarized light is given by the ratio
of the energy U h( )νΔ = absorbed to the speed of light, as follows:

h c kp ( / ) . (1.6)⃗ ν= ˆ

Alternatively, the momentum of a photon can be written in terms of its wavelength λ
as p h/λ= . Using equation (1.5), with E c B ,|= ∣

�� ��
the density of the linear

momentum in the EM field is given by

P
c

E B
S

( ). (1.7)em 2 0

⃗
ϵ< > = = ×

�� ��

When a stream of N photons per unit area per second falls perpendicularly on a
perfectly black surface, it is assumed that all the photons are absorbed, thereby
completely transferring their momenta to the surface. The irradiance (I ′) in units of
W m−2 and the energy ( UΔ ) absorbed by the area A( ) in time t( )Δ are related by

UΔ = I ′ A tΔ . As the energy is completely absorbed, the gain in momentum based on
equation (1.7) is

p U c I A t c/ / .Δ = Δ ≡ ′ Δ
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The force (F) is defined as the rate of change of momentum, i.e., F p t I A c/ /= Δ Δ ≡ ′ .
Therefore, the radiation pressure (Pr) which is equivalent to the force per unit area is
given by the following:

P I c/ . (1.8)r = ′

♣ The radiation pressure also has applications in the micromanipulation of particles
using laser beams.

For a 100% reflecting surface, the photon undergoes a change of momentum
equal to p2 . Therefore, the pressure exerted on the surface is equal to I c2 /′ .

If a beam of circularly polarized light (♠ see chapter 3) is incident on an absorbing
medium, the surface experiences a torque as predicted by classical EM theory. The
magnitude of the torque ζ∣ ∣ per unit area is given by

I Mh
2

.
ω π

ζ = ′ ≡

Here, M is the total number of photons. This indicates that the angular momentum
(lem

⃗ ) of the photon is h/2 .π This value of intrinsic momentum of photon is known as
the spin angular momentum (SAM) and its value is taken as 1 unit. While for right
circularly polarized light, the spin of the photon is parallel to the direction of
propagation, it is antiparallel for left circularly polarized light.

In addition, the angular momentum carried by the phase part of the wavefront
(also known as the phase front) of the light is called the orbital angular momentum
(OAM). This is included in the expression for the cross-product of the radius vector
r r z( , 0, )⃗ of the beam and pem

��
as follows:

l r p r E B[ ( )]. (1.9)em em 0
⃗ ϵ= ⃗ × ≡ ⃗ × ×�� �� ��

Equation (1.9) includes both the SAM and OAM contributions of light. Although
the details are beyond the scope of this book, it is sufficient to mention that a light
beam with an azimuthal phase dependence of ei l| |ϕ′ in its cross section has an OAM
value that is higher by several factors than the SAM. Here, ϕ′ is the azimuthal
coordinate and l is an integer known as the azimuthal mode index or, the order of
OAM.

♣ The transfer of SAM was first experimentally observed using a torque
experienced by a suspended quarter-wave plate by Beth in 1936.

♣ For linearly polarized light, l 0em
⃗< > = . The same is true for unpolarized light,

as this is considered to be a mixture of right circularly and left circularly polarized
lights. The only difference is that for linearly polarized light, the mixture is coherent
(♠ see chapter 3).

♣ It is also of contemporary interest that light beams with different orders of
OAM can be produced; these are known as vortex beams and find applications in
super-resolution light microscopy and photonics.

♣ The magnitude of the OAM of the vortex beam is said to be related to the
topological charge of the beam by l| |± ℏ.
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1.4.4 Radiation emitted by the accelerated charge

For a single point charge q, the dipole moment can be given as p t qd t( ) ( )dip =�� ��
, where

d
��
is the position of the charge with respect to the origin. An oscillating dipole produces

EM radiation in the perpendicular direction. The power (P) radiated by an accelerating
charge with acceleration a is given by the generalized Larmor formula as follows:

P
q a

c6
, (1.10)0

2 6 2μ γ
π

∝

with c1/ 1 /2 2vγ = − , where v is the velocity of the relativistic particles. It can be
seen that the power radiated by the charged particle is proportional to the square of
the acceleration. The factor 6γ indicates that the radiated power increases drastically
for particles with speeds near to the speed of light.

Exercise 1.4. Write down the Poynting vector for the waves mentioned in exercise
1.1 by including the phase part, 1ϕ .

Solution:The electric field inV m/ can be written asE E e kz tcos ( )x0 1ω ϕ= ˆ − +
��

.

By obtaining the corresponding B k E( )=
ω
×�� �� ��

(T), the Poynting vector is given by

( )S E B
k E

e kz t
1

( ) ( ) cos (Wm ).z
0

0
2

0

2
1

2

μ μ ω
ω ϕ= × = ˆ − + −

�� �� ��

1.4.5 Refractive index

The refractive index (n) of a medium is defined as the ratio of the speed of the light in
vacuum (c) to that in the medium (v). It should be noted that a change in the speed of
the light wave results in a change in its wavelength. However, the oscillation
frequency of a wave remains unchanged in any medium. We can also write the
expression for the refractive index as follows:

n or . (1.11)r r
2

0 0

ϵμ
ϵ μ

ϵ μ=

For a vacuum, the values of the relative quantities rμ and rϵ are taken to be unity.
For most optical media (viz. transparent glass) other than ferromagnetic materials,
the value of μ is taken to be the same as that of vacuum. Therefore, the relative
permittivity rϵ is given by n2. The quantity rϵ often denotes the dielectric constant of
the material, which is related to the electrical susceptibility as follows:

n (1 ).r e
2ϵ χ≡ = +

In this formula, n is known as the high-frequency dielectric constant and is a
function of the frequency. From here, an estimate of eχ can be obtained, provided
that the dielectric constant of a material is known.
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1.4.6 Dispersion curve

In a non-conducting (or dielectric) isotropic medium, the electrons are bound to
atoms. If a dielectric is placed in in external electric field (E

��
), the electronic charge

(q) is displaced from its equilibrium position. From classical electrodynamics, we
know that the induced polarization Pind

��
for a number of oscillators per unit volume,

N, is given by

P Np .ind ind=
�� ��

We can write the expression for a damped oscillation forced by an external time-
varying field (in the y direction) as

my m y Ky qEγ+̈ ̇ + =�� �� �� ��

or

y y y
qE
m

, (1.12)0
2γ ω+̈ ̇ + =�� �� ��

��

where K is the force constant, m is the mass of the electron, 0ω is the effective
resonance frequency (= K m/ ) of the bound electrons, and γ is the damping
constant. Similar to the mass–spring system in mechanics, we assume a solution
of equation (1.12) such as y y ei t

0= ω�� ��
to obtain the complex amplitude of

oscillation as follows:

y
qE

m i( )
.0

0
2 2ω ω γω

=
− −

��
��

As a result, an induced electric dipole moment pind
��

is created in the y direction, as
given by

p
q E

m i( )
.ind

2

0
2 2ω ω γω

=
− −

��
��

As a result of the incident E
��
, the Pind

��
in the dielectric is also given by P Eind 0 eϵ= χ

�� ��
,

and we can obtain the value of eχ as follows:

Nq
m i( )

.e

2

0 0
2 2ϵ ω ω γω

χ =
− −

The frequency dependence of the refractive index n( )ω leads to dispersion, which is
represented as a complex quantity due to n (1 )e

2 χ= + as follows:

n
Nq

m i
1

( )
. (1.13)2

2

0 0
2 2ϵ ω ω γω

= +
− −
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For a large number of frequencies, this equation can be rewritten as

n
Nq

m

f

i
1 . (1.14)j

j

j

2
2

0 0
2 2ϵ ω ω γω

= + Σ
− −

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

Here, fj describes the relative potential strengths of the oscillation frequencies. For
small values of γ (which are neglected), equation (1.14) can be written as follows:

n
Nq

m

f
1 . (1.15)

j

j

j

2
2

0 0
2 2∑

ϵ ω ω
= +

−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

This equation, when written in terms of the wavelength (λ), is known as Sellmeier’s
formula, an empirical relation proposed by Sellmeier in 1872 as follows:

n A1 , (1.16)2
0

2

2
0
2

λ
λ λ

= +
−

⎛
⎝⎜

⎞
⎠⎟

where A Nq

mc4
0

2
0

2
0

2= λ
π ϵ

is known as Sellmeier’s coefficient. Equations (1.15) and (1.16)

are extremely useful formulae used to estimate the refractive index data for various
wavelength regions for applications in linear and nonlinear optics. The original
dispersion relation, which did not take account of anomalous dispersion, was
proposed by Cauchy as early as 1836 (♠ see question 11).

1.4.7 Normal dispersion and anomalous dispersion

For simple systems such as gaseous media, n( ) 1ω ≅ , we can write n( 12 − ) in
equation (1.13) as n n n( 1)( 1) 2+ − ≈ . Near the resonant frequency, we can take
∣ 20 0ω ω ω+ ∣≈ and ∣ 0 0ω ω ω− ∣≪ . To separate n( )ω into refractive or real (n′) and
absorptive or imaginary (n′′) parts, we take n n in= + ′′′ . So, from equation (1.13),

n in
Nq

m i
( ) 1

( )
.2

2

0 0
2 2ϵ ω ω γω

+ ″ = +
− −

′

By rationalizing the second term and separating it into real and imaginary parts, we get

n n
Nq

m
1 ( )

( )
(1.17)2 2

2

0

0
2 2

0
2 2 2 2 2ϵ

ω ω
ω ω γ ω

′ − ″ = + −
− +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

n n
Nq

m
2

( )
. (1.18)

2

0 0
2 2 2 2 2ϵ

γω
ω ω γ ω

″ =
− +

′
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

Here, γ is related to the decay rate of the population. We can use these two
relations to check the relation at the resonant frequency (i.e. 0ω ω= ) as follows:

n n 1 (1.19)2 2′ − ″ =
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and

n n
Nq
m

2 . (1.20)
2

0 0ϵ γω
″ =′

Using equation (1.20), equation (1.19) can be rewritten as a quadratic equation, as
follows:

( )n n 0Nq
m

4 2
2

2

0 0

2

′ − ′ − =
ϵ γω

to give the roots of n 2′ as ( )n 1 Nq
m

2 1
2

1
2

2

0 0

2

′ = ± +
ϵ γω

.

Only a positive root can represent real values. At very high frequencies, n′ will
approach unity. The variables n′ and n″ are known as optical constants and are
plotted in figure 1.3 based on equations (1.17) and (1.18). The plot of n′ vs ω is
known as the dispersion curve. The value of n′ generally increases with frequency
(known as normal dispersion), except for a narrow range where it falls sharply
followed by a dip. This small region represents anomalous dispersion. The normal
and anomalous dispersion regimes are indicated in the figure.

A plot of n″ against frequency shows a maximum at 0ω , indicating the resonant
frequency dependence of the absorption coefficient. The anomalous or, negative
dispersion regions find applications in the dispersion compensation of ultrafast laser
pulses and optical communication, respectively (♠ see chapters 22 and 23 for more
details).

1.5 Comparison of an electronic circuit and a photonic circuit
A basic electronics circuit used to charge and discharge a capacitor is shown in
figure 1.4. Here, a capacitor (C ) is charged by the battery through the resistor (R)
when the switch (S1) is closed (and switch S2 is open). It is discharged through the
resistor when S1 is open (and S2 is closed).

A simple photonic circuit can be produced with the help of two polarizers (P1 and
P2) placed in the path of a polarized light beam. Depending on the orientation of P2
(i.e. whether it is parallel or perpendicular to the optical axis of P1), a photodetector
will record changes in the signal. This photonic circuit can represent the output (i.e.
the light sensed by the detector) in terms of binary numbers using one when P1 is
parallel to P2 and zero when P1 is perpendicular to P2. (♠ see chapter 3 for detailed
description of the phenomenon of polarization).

Figure 1.3. The real (n′) and imaginary (n″) parts of the refractive index as a function of the frequency ( )ω . The
normal and anomalous dispersion regimes are also indicated.
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1.6 Nobel prizes related to lasers
When the laser was invented by Maiman in 1960, it was ‘an invention searching for
an application’. Since then, lasers have contributed to the fundamental discoveries
and applications of modern technologies that could not have been achieved
otherwise. Table 1.1 gives some of the notable Nobel prizes for laser-related work
in last six decades.

Figure 1.4. Typical electronic circuit used to charge and discharge a capacitor (C ) through a resistor (R) and a
battery (left panel). Representation of a photonic circuit (right panel) realized using polarized light (indicated
by double arrows) with two polarizers (P1 and P2) and a photodetector.

Table 1.1. Notable Nobel prizes for laser-related work following the invention of the ruby laser in 1960 by
Maiman.

Year Laser-related Nobel prizes

1964 Townes, Basov, and Prokhorov for the maser–laser principle.
1971 Gabor for the basic ideas of the holographic method.
1981 Nicolaas Bloembergen and Arthur Schawlow for laser spectroscopy.
1997 Claude Cohen-Tannoudji, Americans Steven Chu and William Phillips for the

development of methods to cool and trap atoms using laser light.
1999 Ahmed Zewail for ultrafast laser techniques
2000 Zhores Alferov and Herbert Kroemer for developing semiconductor heterostructures for

continuous wave semiconductor diode lasers.
2001 Eric Cornell, Wolfgang Ketterle, and Carl E. Wieman for Bose–Einstein condensation.
2005 Theodor Hansch and John Hall for the development of laser-based precision

spectroscopy, known as the optical frequency comb technique.
2009 Charles K. Kao, Willard S. Boyle, and G. E. Smith for fiber-optic communication and

the CCD sensor
2012 Serge Haroche and David J. Wineland for experimental methods that enable the

measurement and manipulation of individual quantum systems.
2014 Isamu Akasaki, Hiroshi Amano, and Shuji Nakamura for the invention of efficient blue

light-emitting diodes (Physics)
2014 Eric Betzig, Stefan W. Hell, and William E. Moerner for stimulated-emission-depletion

(STED) microscopy using laser beams (Chemistry)
2017 Rainer Weiss, Kip S Thorne, and Barry C Barish for the LIGO detector and the

observation of gravitational waves
2018 Arthur Ashkin, Gerald Mourou, and Donna Strickland for optical trapping of particles

and chirped pulse amplification of laser pulses
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Questions and problems
1. What is the difference between electro-optics and optoelectronics? Give one

example of each.
2. (i) With reference to the properties of the photon, why is light immune

to EM noise?
(ii) How do we eliminate external EM noise in experiments that use

electronic devices?
3. (i) Which of MEs is responsible for the generation of electricity, and

which one describes the absence of magnetic monopoles?
(ii) Estimate the speed of light using MEs in vacuum [Use

8.85 10 C N m0
12 2 1 2ϵ = × − − − and 4 10 NA0

7 2μ π= × − − ].
4. Write down the plane-wave solution of a wave equation derived from MEs

for charge-free, current-free regions. With reference to plane waves, what is
the difference between the terms wavefront and phase front?

5. Using the solution of the wave equation in Euler’s form, use ME (iii) to
show that light is an EM wave and that E

��
and B

��
are perpendicular to each

other.
6. If fρ and Jf are corresponding ‘free’ charge and current densities, respec-

tively, D
��

and H
���

are the displacement vectors and H
���

the field (often
referred to as the magnetic field), write down the ME for a medium for
which the permittivity and permeability are ϵ and μ, respectively.

7. Assume that the displacement current term is too small to be neglected in
ME (iv). For a charge-free and current-free region, let the wave equation be
given by equation (1.2) and the speed of light in a medium be 1/( )ϵμ= .

Using the solution of the wave equation E r t E ne( , ) i k r t
0

( . )⃗ = ˆ ⃗ ω−
�� ��

, obtain the
value of the skin depth for a metal of conductivity σ .

8. Differentiate between the phase velocity and the group velocity for a wave.
Show that in the absence of dispersion, both velocities are equal.

9. Describe how an accelerated charge radiates.
10. Half of the Nobel prize was awarded for work on the optical trapping of

microparticles in 2018. What is the principle of optical trapping? ♣You may
like to read the original paper by Arthur Ashkin (PNAS, 94 (10), (1997), pp
4853–4860). You will know that the particle size matters with respect to the
wavelength of the light used for optical levitation. The scattering and
gradient forces balance to trap the particle on the focussed laser beam.

11. The general form of Sellmeier’s empirical relation equation (1.16) is given

by n 1
j

Aj

j

2
2

2 2∑= + λ

λ λ−

⎛
⎝⎜

⎞
⎠⎟. For jλ λ≫ and A Aj = , prove that it approaches

Cauchy’s formula n C ..C
1

2
2= + +

λ
for C A(1 )1 = + and C

A

A

2 (1 )2
0
2

=
λ

+
.

12. How do you define the normal and anomalous dispersion regimes?
13. In the dispersion curve, at what frequency is the absorption coefficient

maximized?
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14. For a photonic circuit for a logic gate that uses polarisers, write down the
truth table, which is similar to that for electronic gates.

Bibliography
[1] Beth R A 1936 Mechanical detection and measurement of the angular momentum of light

Phys. Rev. 50 115–25
[2] Fowles G R (ed) 1975 Introduction to Modern Optics 2nd edn (New York: Dover)
[3] Griffiths D J (ed) 1989 Electrodynamics 2nd edn (Englewood Cliffs, NJ: Prentice-Hall)
[4] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Orbital angular

momentum of light and the transformation of Laguerre–Gaussian laser modes Phys. Rev. A
45 8185–9

[5] Sang X, Tienb E-K and Boyraz O 2009 Applications of two-photon absorption in silicon
J. Optoelectron. Adv. Mater. 11 15–25

An Introduction to Photonics and Laser Physics with Applications

1-16

https://doi.org/10.1103/PhysRev.50.115
https://doi.org/10.1103/PhysRevA.45.8185

	Chapter 1 The photon and photonics
	1.1 The photon
	1.2 Branches of photonics
	1.2.1 Conventional optics
	1.2.2 Electromagnetism and wave optics
	1.2.3 Quantum optics
	1.2.4 Light–matter interaction or quantum electronics
	1.2.5 Optoelectronics
	1.2.6 Electro-optics
	1.2.7 Light-wave technology

	1.3 Maxwell’s equations and their connection to optics
	1.4 A few topics related to lasers and optics
	1.4.1 Phase velocity and group velocity
	1.4.2 Power flow and Poynting vector
	1.4.3 Radiation pressure and angular momentum
	1.4.4 Radiation emitted by the accelerated charge
	1.4.5 Refractive index
	1.4.6 Dispersion curve
	1.4.7 Normal dispersion and anomalous dispersion

	1.5 Comparison of an electronic circuit and a photonic circuit
	1.6 Nobel prizes related to lasers
	 Questions and problems
	 Bibliography


