IOPscience

This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 3.145.115.93 This content was downloaded on 09/05/2024 at 16:57

Please note that terms and conditions apply.

You may also like:

International Organizing Committee of the FAPM-2019:

International Conference on Data Processing Algorithms and Models Yanling Zhou, Xiaonan Xiao and Fei Li

Academician Committee of FAPM-2019 (International Advisory Council)

Extreme-Temperature and Harsh-Environment Electronics (Second Edition)

Physics, technology and applications

Online at: https://doi.org/10.1088/978-0-7503-5072-3

Extreme-Temperature and Harsh-Environment Electronics (Second Edition)

Physics, technology and applications

Vinod Kumar Khanna

Independent Researcher, Chandigarh, India Retired Chief Scientist, CSIR-Central Electronics Engineering Research Institute, Pilani, India

IOP Publishing, Bristol, UK

© IOP Publishing Ltd 2023

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the publisher, or as expressly permitted by law or under terms agreed with the appropriate rights organization. Multiple copying is permitted in accordance with the terms of licences issued by the Copyright Licensing Agency, the Copyright Clearance Centre and other reproduction rights organizations.

Permission to make use of IOP Publishing content other than as set out above may be sought at permissions@ioppublishing.org.

Vinod Kumar Khanna has asserted his right to be identified as the author of this work in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

 ISBN
 978-0-7503-5072-3 (ebook)

 ISBN
 978-0-7503-5070-9 (print)

 ISBN
 978-0-7503-5073-0 (myPrint)

 ISBN
 978-0-7503-5071-6 (mobi)

DOI 10.1088/978-0-7503-5072-3

Version: 20230701

IOP ebooks

British Library Cataloguing-in-Publication Data: A catalogue record for this book is available from the British Library.

Published by IOP Publishing, wholly owned by The Institute of Physics, London

IOP Publishing, No.2 The Distillery, Glassfields, Avon Street, Bristol, BS2 0GR, UK

US Office: IOP Publishing, Inc., 190 North Independence Mall West, Suite 601, Philadelphia, PA 19106, USA

To my late father Shri Amarnath Khanna For his earnest endeavors to shape my educational career. To my late mother Smt. Pushpa Khanna For her love and blessings to guide me on the path of life. To my grandson Hansh and daughter Aloka For bringing joy and happiness in the family. To my wife Amita For her unflinching and unfailing support.

Contents

Preface to the revised edition	XXX
Preface to first edition	xxxii
Acknowledgements	xxxiv
About this book	XXXV
Author biography	xxxvi
Abbreviations, acronyms, chemical symbols and mathematical notation	xxxix
Roman alphabet symbols	1
Greek/other symbols	lvii

Part IEnvironmental hazards and extreme-temperature electronicsSub-part IAEnvironmental hazards

1	Introduction and overview	1-1
1.1	Reasons for moving away from normal practices in electronics	1-1
1.2	Organization of the book	1-2
1.3	Temperature effects	1-7
	1.3.1 Silicon-based electronics	1-7
	1.3.2 Wide bandgap semiconductors	1-9
	1.3.3 Passive components and packaging	1-10
	1.3.4 Superconductivity	1-11
1.4	Harsh environment effects	1-11
	1.4.1 Humidity and corrosion effects	1-11
	1.4.2 Radiation effects	1-12
	1.4.3 Vibration and mechanical shock effects	1-12
	1.4.4 Electronics in electromagnetic interference environments	1-12
	1.4.5 Sensors in aggressive environments	1-13
	1.4.6 Medical implant electronics	1-13
	1.4.7 Space environment electronics	1-13
	1.4.8 Jamming attacks prevention, and cyber security	1-13
1.5	Discussion and conclusions	1-13
	Review exercises	1-14
	References	1-15

2	Operating electronics beyond conventional limits	2-1
2.1	Life-threatening temperature imbalances on Earth and other planets	2-2
2.2	Temperature disproportions for electronics	2-3
2.3	High-temperature electronics	2-4
	2.3.1 The automotive industry	2-6
	2.3.2 The aerospace industry	2-8
	2.3.3 Space missions	2-10
	2.3.4 Oil well logging equipment	2-14
	2.3.5 Industrial and medical systems	2-16
2.4	Low-temperature electronics	2-17
2.5	The scope of extreme-temperature and harsh-environment electronics	2-18
	2.5.1 High-temperature operation: a serious vulnerability	2-19
	2.5.2 Upgradation/degradation of performance by cooling	2-19
	2.5.3 Corrosion: humidity and climatic effects	2-20
	2.5.4 Deleterious effects of nuclear and electromagnetic radiations on electronic systems	2-20
	2.5.5 Vibration and shock effects	2-21
	2.5.6 Special environments	2-22
2.6	Discussion and conclusions	2-22
	Review exercises	2-23
	References	2-24

Part I Environmental hazards and extreme-temperature electronics Sub-part IB Extreme-temperature electronics

3	Temperature effects on semiconductors	3-1
3.1	Introduction	3-1
3.2	The energy bandgap	3-2
3.3	Intrinsic carrier concentration	3-3
3.4	Carrier saturation velocity	3-8
3.5	Electrical conductivity of semiconductors	3-10
3.6	Free carrier concentration in semiconductors	3-10
3.7	Incomplete ionization and carrier freeze-out	3-11
3.8	Different ionization regimes	3-14
	3.8.1 At temperatures $T < 100$ K: carrier freeze-out or incomplete ionization regime	3-14
	3.8.2 At temperatures $T \sim 100$ K, and within 100 K < $T < 500$ K: extrinsic or saturation regime	3-18

	3.8.3 At temperatures $T > 500$ K: intrinsic regime	3-18
	3.8.4 Proportionality to bandgap at $T \ge 400$ K	3-19
3.9	Mobilities of charge carriers in semiconductors	3-19
	3.9.1 Scattering by lattice waves	3-19
	3.9.2 Scattering by ionized impurities	3-21
	3.9.3 Mobility in uncompensated and compensated semiconductors	3-22
	3.9.4 Resultant mobility	3-22
3.10	Equations for mobility variation with temperature	3-23
	3.10.1 Arora–Hauser–Roulston equation	3-23
	3.10.2 Klaassen equations	3-24
	3.10.3 MINIMOS mobility model	3-25
3.11	Mobility in MOSFET inversion layers at low temperatures	3-26
	Carrier lifetime	3-26
3.13	Wider bandgap semiconductors than silicon	3-29
	3.13.1 Gallium arsenide	3-29
	3.13.2 Silicon carbide	3-29
	3.13.3 Gallium nitride	3-29
	3.13.4 Diamond	3-30
3.14	Discussion and conclusions	3-30
	Review exercises	3-31
	References	3-33
4	Temperature dependence of the electrical characteristics of	4-1
	silicon bipolar devices and circuits	
4.1	silicon bipolar devices and circuits Properties of silicon	4-1
4.1 4.2	· · · · · · · · · · · · · · · · · · ·	4-1 4-2
	Properties of silicon	
4.2	Properties of silicon Intrinsic temperature of silicon	4-2
4.2	Properties of silicon Intrinsic temperature of silicon Recapitulating single-crystal silicon wafer technology	4-2 4-5
4.2	Properties of silicon Intrinsic temperature of silicon Recapitulating single-crystal silicon wafer technology 4.3.1 Electronic grade polysilicon production	4-2 4-5 4-5
4.2	Properties of silicon Intrinsic temperature of silicon Recapitulating single-crystal silicon wafer technology 4.3.1 Electronic grade polysilicon production 4.3.2 Single-crystal growth	4-2 4-5 4-5 4-5
4.2	Properties of silicon Intrinsic temperature of silicon Recapitulating single-crystal silicon wafer technology 4.3.1 Electronic grade polysilicon production 4.3.2 Single-crystal growth 4.3.3 Photolithography	4-2 4-5 4-5 4-5 4-6
4.2	 Properties of silicon Intrinsic temperature of silicon Recapitulating single-crystal silicon wafer technology 4.3.1 Electronic grade polysilicon production 4.3.2 Single-crystal growth 4.3.3 Photolithography 4.3.4 Thermal oxidation of silicon 	4-2 4-5 4-5 4-5 4-6 4-7
4.2	 Properties of silicon Intrinsic temperature of silicon Recapitulating single-crystal silicon wafer technology 4.3.1 Electronic grade polysilicon production 4.3.2 Single-crystal growth 4.3.3 Photolithography 4.3.4 Thermal oxidation of silicon 4.3.5 n-Type doping of silicon by thermal diffusion 	4-2 4-5 4-5 4-5 4-6 4-7 4-8
4.2	 Properties of silicon Intrinsic temperature of silicon Recapitulating single-crystal silicon wafer technology 4.3.1 Electronic grade polysilicon production 4.3.2 Single-crystal growth 4.3.3 Photolithography 4.3.4 Thermal oxidation of silicon 4.3.5 n-Type doping of silicon by thermal diffusion 4.3.6 p-Type doping of silicon by thermal diffusion 	4-2 4-5 4-5 4-5 4-6 4-7 4-8 4-9
4.2	 Properties of silicon Intrinsic temperature of silicon Recapitulating single-crystal silicon wafer technology 4.3.1 Electronic grade polysilicon production 4.3.2 Single-crystal growth 4.3.3 Photolithography 4.3.4 Thermal oxidation of silicon 4.3.5 n-Type doping of silicon by thermal diffusion 4.3.6 p-Type doping of silicon by thermal diffusion 4.3.7 Impurity doping by ion implantation 4.3.8 Low-pressure chemical vapor deposition 4.3.9 Plasma-enhanced chemical vapor deposition 	4-2 4-5 4-5 4-6 4-7 4-8 4-9 4-9
4.2	 Properties of silicon Intrinsic temperature of silicon Recapitulating single-crystal silicon wafer technology 4.3.1 Electronic grade polysilicon production 4.3.2 Single-crystal growth 4.3.3 Photolithography 4.3.4 Thermal oxidation of silicon 4.3.5 n-Type doping of silicon by thermal diffusion 4.3.6 p-Type doping of silicon by thermal diffusion 4.3.7 Impurity doping by ion implantation 4.3.8 Low-pressure chemical vapor deposition 	4-2 4-5 4-5 4-6 4-7 4-8 4-9 4-9 4-11

	4.3.11 Ohmic (non-rectifying) contacts to Si	4-13
	4.3.12 Schottky contacts to Si	4-14
	4.3.13 p-n Junction and dielectric isolation in silicon integrated circuits	4-15
4.4	Examining temperature effects on bipolar devices	4-15
	4.4.1 The Shockley equation for the current–voltage characteristics of a p–n junction diode	4-15
	4.4.2 Forward voltage drop across a p-n junction diode	4-19
	4.4.3 Forward voltage of a Schottky diode	4-21
	4.4.4 Reverse leakage current of a p-n junction diode	4-24
	4.4.5 Avalanche breakdown voltage of a p–n junction diode	4-26
	4.4.6 Analytical model of temperature coefficient of avalanche breakdown voltage	4-29
	4.4.7 Zener breakdown voltage of a diode	4-33
	4.4.8 Storage time (t_s) of a p ⁺ -n junction diode	4-33
	4.4.9 Current gain of a bipolar junction transistor	4-34
	4.4.10 Approximate analysis	4-39
	4.4.11 Saturation voltage of a bipolar junction transistor	4-41
	4.4.12 Reverse base and emitter currents of a bipolar junction transistor (I_{CBO} and I_{CEO})	4-43
	4.4.13 Dynamic response of a bipolar transistor	4-44
4.5	Bipolar analog circuits in the 25 °C–300 °C range	4-45
4.6	Bipolar digital circuits in the 25 °C-340 °C range	4-47
4.7	Discussion and conclusions	4-48
	Review exercises	4-48
	References	4-52
5	Temperature dependence of electrical characteristics of silicon MOS devices and circuits	5-1
5.1	Introduction	5-2
5.2	Threshold voltage of an n-channel enhancement-mode MOSFET	5-2
5.3	On-resistance $(R_{DS(ON)})$ of a double-diffused vertical MOSFET	5-7
5.4	Transconductance (g_m) of a MOSFET	5-12
5.5	$BV_{\rm DSS}$ and $I_{\rm DSS}$ of a MOSFET	5-13
5.6	Zero temperature coefficient biasing point of MOSFET	5-13
5.7	Dynamic response of a MOSFET	5-16
5.8	MOS analog circuits in the 25 °C to 300 °C range	5-17
5.9	Digital CMOS circuits in -196 °C to 270 °C range	5-24
5.10	Discussion and conclusions	5-25

	Review exercises	5-25
	References	5-28
6	The influence of temperature on the performance of silicon-	6-1
	germanium heterojunction bipolar transistors	
6.1	Introduction	6-1
6.2	HBT fabrication	6-3
6.3	Current gain and forward transit time of Si/Si _{1-x} Ge _x HBT	6-5
6.4	Comparison between Si BJT and Si/SiGe HBT	6-8
6.5	Discussion and conclusions	6-16
	Review exercises	6-17
	References	6-19
7	The temperature-sustaining capability of gallium arsenide	7-1
	electronics	
7.1	Introduction	7-1
7.2	The intrinsic temperature of GaAs	7-4
7.3	Growth of single-crystal gallium arsenide	7-5
7.4	Doping of GaAs	7-6
7.5	Ohmic contacts to GaAs	7-8
	7.5.1 Au–Ge/Ni/Ti contact to n-type GaAs for room temperature operation	7-8
	7.5.2 High-temperature ohmic contacts to n-type GaAs	7-8
7.6	Schottky contacts to GaAs	7-9
7.7	Commercial GaAs device evaluation in the 25 °C–400 °C temperature range	7-9
7.8	Structural innovations for restricting the leakage current of GaAs MESFET up to 300 °C	7-11
7.9	Won et al threshold voltage model for a GaAs MESFET	7-13
7.10	The high-temperature electronic technique for enhancing the performance of MESFETs up to 300 °C	7-15
7.11	The operation of GaAs complementary heterojunction FETs from 25 °C to 500 °C	7-16
7.12	GaAs bipolar transistor operation up to 400 °C	7-17
	A GaAs-based HBT for applications up to 350 °C	7-18
7.14	$Al_xGaAs_{1-x}/GaAs$ HBT	7-19
7.15	GaAs x-ray and beta particle detectors	7-21
7.16	Discussion and conclusions	7-22

	Review exercises	7-22
	References	7-24
8	Silicon carbide electronics for hot environments	8-1
8.1	Impact of silicon carbide devices on power electronics and its superiority over silicon	8-1
8.2	Intrinsic temperature of silicon carbide	8-2
8.3	Silicon carbide single-crystal growth	8-6
8.4	Doping of silicon carbide	8-7
8.5	Surface oxidation of silicon dioxide	8-8
8.6	Schottky and ohmic contacts to silicon carbide	8-8
8.7	SiC p–n diodes	8-9
	8.7.1 SiC diode testing up to 498 K	8-9
	8.7.2 SiC diode testing up to 873 K	8-9
	8.7.3 Operation of SiC integrated bridge rectifier up to 773 K	8-10
8.8	SiC Schottky barrier diodes	8-10
	8.8.1 Temperature effects on Si and SiC Schottky diodes	8-11
	8.8.2 Schottky diode testing up to 623 K	8-12
	8.8.3 Schottky diode testing up to 523 K	8-12
8.9	SiC JFETs	8-12
	8.9.1 Characterization of SiC JFETs from 25 °C to 450 °C	8-14
	8.9.2 500 °C operational test of 6H-SiC JFETs and ICs	8-15
	8.9.3 6H-SiC JFET-based logic circuits for the 25 °C–550 °C range	8-17
	8.9.4 Long operational lifetime (10 000 h), 500 °C, 6H-SiC analog and digital ICs	8-19
	8.9.5 Characterization of 6H-SiC JFETs and differential amplifiers up to 450 °C	8-19
8.10	SiC bipolar junction transistors	8-20
	8.10.1 Characterization of SiC BJTs from 140 K to 460 K	8-21
	8.10.2 Performance assessment of SiC BJT from -86 °C to 550 °C	8-22
8.11	SiC MOSFETs	8-23
8.12	SiC sensors	8-24
	8.12.1 Flexible 3C-SiC temperature sensors working up to 450 °C	8-24
	8.12.2 4H-SiC gas sensors operating up to 500 °C	8-24
	8.12.3 3C-SiC MEMS pressure sensor working at 500 °C	8-26
8.13	Discussion and conclusions	8-26
	Review exercises	8-28
	References	8-30

9	Gallium nitride electronics for very hot environments	9-1
9.1	Introduction	9-1
9.2	Intrinsic temperature of gallium nitride	9-4
9.3	Growth of the GaN epitaxial layer	9-5
9.4	Doping of GaN	9-5
9.5	Ohmic contacts to GaN	9-6
	9.5.1 Ohmic contacts to n-type GaN	9-6
	9.5.2 Ohmic contacts to p-type GaN	9-7
9.6	Schottky contacts to GaN	9-7
9.7	GaN MESFET model with hyperbolic tangent function	9-7
9.8	AlGaN/GaN HEMTs	9-12
	9.8.1 Operation of AlGaN/GaN HEMTs on 4H-SiC/sapphire substrates from 25 °C to 500 °C	9-12
	9.8.2 Life testing of AlGaN/GaN HEMTs from 150 °C to 240 °C	9-14
	9.8.3 Power characteristics of AlGaN/GaN HEMTs up to 368 °C	9-14
	9.8.4 Mechanisms of the failure of high-power AlGaN/GaN HEMTs at high temperatures	9-15
9.9	InAlN/GaN HEMTs	9-15
	9.9.1 AlGaN/GaN versus InAlN/GaN HEMTs for high-temperature applications	9-15
	9.9.2 InAlN/GaN HEMT behavior up to 1000 °C	9-15
	9.9.3 Thermal stability of barrier layer in InAlN/GaN HEMTs up to 1000 °C	9-16
	9.9.4 Feasibility demonstration of HEMT operation at gigahertz frequency up to 1000 °C	9-16
9.10	GaN sensors	9-18
	9.10.1 GaN piezoelectric pressure sensor working up to 350 °C	9-18
	9.10.2 GaN-based Hall-effect magnetic field sensors operating up to 400 °C	9-20
9.11	Discussion and conclusions	9-21
	Review exercises	9-21
	References	9-23
10	Diamond electronics for ultra-hot environments	10-1
10.1	Introduction	10-1
10.2	Intrinsic temperature of diamond	10-2
	Synthesis of diamond	10-5
10.4	Doping of diamond	10-6

10.4.1 n-Type doping	10-6
10.4.2 p-Type doping	10-7
10.4.3 p-Doping by hydrogenation termination of the diamond surface	1 10-8
10.5 A diamond p-n junction diode	10-9
10.6 Diamond Schottky diode	10-10
10.6.1 Diamond Schottky diode operation up to 1000 °C	10-10
10.6.2 Long-term operation of diamond Schottky barrier diode up to 400 °C	es 10-12
10.7 Diamond bipolar junction transistor operating at < 200 °C	10-13
10.8 Diamond metal-semiconductor FET	10-13
10.8.1 Hydrogen-terminated diamond metal-semiconductor FETs	10-13
10.8.2 Electrical characteristics of diamond MESFETs in 20 °C–100 °C temperature range	10-15
10.8.3 Hydrogen-terminated diamond MESFETs with a passivation layer	10-16
10.8.4 Operation of pulse or delta boron-doped diamond MESFETs up to 350 °C	10-16
10.8.5 Alternative approach to boron δ -doping profile	10-17
10.9 Diamond JFET	10-17
10.9.1 Diamond JFETs with lateral p-n junctions	10-17
10.9.2 Operation of diamond JEFTs up to 723 K	10-17
10.10 Diamond MISFET	10-20
10.11 Diamond radiation detectors	10-23
10.11.1 Structural configuration	10-23
10.11.2 Radiation detection principles	10-24
10.11.3 Photoconduction and photovoltaic operational modes	10-24
10.11.4 Current and pulse counting modes	10-24
10.11.5 Advantages	10-26
10.12 Diamond quantum sensors	10-26
10.12.1 N-V center in diamond	10-26
10.12.2 N-V center creation in bulk diamond	10-26
10.12.3 Applications	10-26
10.13 Discussion and conclusions	10-26
Review exercises	10-28
References	10-30

11	High-temperature passive components, interconnections and	11-1
	packaging	
11.1	Introduction	11-1
11.2	High-temperature resistors	11-1
	11.2.1 Metal foil resistors	11-1
	11.2.2 Wire wound resistors	11-3
	11.2.3 Thin-film resistors	11-3
	11.2.4 Thick-film resistors	11-4
	11.2.5 Manganese nitride compound resistors	11-5
11.3	High-temperature capacitors	11-5
	11.3.1 Ceramic capacitors	11-5
	11.3.2 Solid and wet tantalum capacitors	11-6
	11.3.3 Teflon capacitors	11-7
11.4	High-temperature magnetic cores and inductors	11-7
	11.4.1 Magnetic cores	11-7
	11.4.2 Inductors	11-7
11.5	High-temperature metallization	11-11
	11.5.1 Tungsten metallization on silicon	11-11
	11.5.2 Tungsten: nickel metallization on nitrogen-doped homoepitaxial layers on p-type 4H- and 6H-SiC substrates	11-11
	11.5.3 Nickel metallization on n-type 4H-SiC and Ni/Ti/Al metallization on p-type 4H-SiC	11-12
	11.5.4 A thick-film Au interconnection system on alumina and aluminum nitride ceramic substrates	11-12
11.6	High-temperature packaging	11-12
	11.6.1 Substrates	11-13
	11.6.2 Die-attach materials	11-13
	11.6.3 Wire bonding	11-13
	11.6.4 Hermetic packaging	11-14
	11.6.5 Joining the two parts of hermetic packages	11-15
11.7	Discussion and conclusions	11-16
	Review exercises	11-16
	References	11-18
12	Superconductive electronics for ultra-cool environments	12-1
12.1	Introduction	12-1
12.2	Superconductivity basics	12-2

	12.2.1 Low-temperature superconductors	12-2
	12.2.2 Meissner effect	12-2
	12.2.3 Critical magnetic field (H_C) and critical current density (J_C)	12-5
	12.2.4 Superconductor classification: type I and type II	12-5
	12.2.5 The BCS theory of superconductivity	12-8
	12.2.6 Ginzburg-Landau theory	12-10
	12.2.7 London equations	12-13
	12.2.8 Explanation of Meissner's effect from London equations	12-14
	12.2.9 Practical applications	12-16
	12.2.10 High-temperature superconductor	12-17
12.3	Josephson junction	12-17
	12.3.1 The DC Josephson effect	12-17
	12.3.2 The AC Josephson effect	12-19
	12.3.3 Theory	12-19
	12.3.4 Gauge-invariant phase difference	12-24
12.4	Inverse AC Josephson effect: Shapiro steps	12-31
12.5	Superconducting quantum interference devices	12-34
	12.5.1 DC SQUID	12-34
	12.5.2 The AC or RF SQUID	12-37
12.6	Rapid single flux quantum logic	12-38
	12.6.1 Difference from traditional logic	12-38
	12.6.2 Generation of RSFQ voltage pulses	12-38
	12.6.3 RSFQ building blocks	12-39
	12.6.4 RSFQ reset-set flip-flop	12-39
	12.6.5 RSFQ NOT gate or inverter	12-41
	12.6.6 RSFQ OR gate	12-42
	12.6.7 Advantages of RSFQ logic	12-43
	12.6.8 Disadvantages of RSFQ logic	12-44
12.7	Discussion and conclusions	12-44
	Review exercises	12-45
	References	12-48
13	Superconductor-based microwave circuits operating at liquid-nitrogen temperatures	13-1
12.1	Introduction	13-2
	Substrates for microwave circuits	13-2
13.2		13-2

13.3	HTS thin-film materials	13-3
	13.3.1 Yttrium barium copper oxide	13-3
	13.3.2 Thallium barium calcium copper oxide	13-3
13.4	Fabrication processes for HTS microwave circuits	13-3
13.5	Design and tuning approaches for HTS filters	13-4
13.6	Cryogenic packaging	13-5
13.7	HTS bandpass filters for mobile telecommunications	13-7
	13.7.1 Filter design methodology	13-8
	13.7.2 Filter fabrication and characterization	13-10
13.8	HTS JJ-based frequency down-converter	13-10
13.9	Discussion and conclusions	13-12
	Review exercises	13-12
	References	13-13
14	High-temperature superconductor-based power delivery	14-1
14.1	Introduction	14-1
14.2	Conventional electrical power transmission	14-2
	14.2.1 Transmission materials	14-2
	14.2.2 High-voltage transmission	14-2
	14.2.3 Overhead versus underground power delivery	14-2
14.3	HTS wires	14-3
	14.3.1 First generation (1G) HTS wire	14-3
	14.3.2 Second-generation (2G) HTS wire	14-4
14.4	HTS cable designs	14-6
	14.4.1 Single-phase warm dielectric HTS cable	14-6
	14.4.2 Single-phase cool dielectric HTS cable	14-7
	14.4.3 Flow rate, pressure drop and HTS cable temperatures	14-9
	14.4.4 Three-phase cold dielectric HTS cable	14-9
14.5	HTS fault current limiters	14-9
	14.5.1 Resistive SFCL	14-9
	14.5.2 Shielded-core SFCL	14-11
	14.5.3 Saturable-core SFCL	14-12
14.6	HTS transformers	14-13
14.7	Discussion and conclusions	14-13
	Review exercises	14-14
	References	14-15

Part II Harsh-environment electronics

Sub-part IIA General considerations

15	Humidity and contamination effects on electronics	15-1
15.1	Introduction	15-1
15.2	Absolute and relative humidity	15-2
15.3	Relation between humidity, contamination and corrosion	15-2
15.4	Metals and alloys used in electronics	15-4
15.5	Humidity-triggered corrosion mechanisms	15-4
	15.5.1 Electrochemical corrosion	15-4
	15.5.2 Anodic corrosion	15-5
	15.5.3 Galvanic corrosion	15-5
	15.5.4 Cathodic corrosion	15-7
	15.5.5 Creep corrosion	15-8
	15.5.6 Stray current corrosion	15-9
	15.5.7 The pop-corning effect	15-9
15.6	Discussion and conclusions	15-9
	Review exercises	15-10
	References	15-10
16	Moisture and waterproof electronics	16-1
16.1	Introduction	16-1
16.2	Corrosion prevention by design	16-2
	16.2.1 The fault-tolerant design approach	16-2
	16.2.2 Air-gas contact minimization	16-2
	16.2.3 The tight dry encasing design	16-2
	16.2.4 A judicious choice of materials for boundary surfaces	16-2
16.3	Parylene coatings	16-3
	16.3.1 Parylene and its advantages	16-3
	16.3.2 Types of parylene	16-3
	16.3.3 The vapor deposition polymerization process for parylene coatings	16-3
	16.3.4 Typical electrical properties	16-4
	16.3.5 Applications for corrosion prevention	16-5
16.4	Superhydrophobic coatings	16-5
	16.4.1 Concept of superhydrophobicity	16-5
	16.4.2 Standard deposition techniques versus plasma processes	16-5
	16.4.3 The main technologies	16-7

	16.4.4 Applications	16-7
16.5	Volatile corrosion inhibitor coatings	16-7
16.6	Silicones	16-8
16.7	Discussion and conclusions	16-9
	Review exercises	16-10
	References	16-11
17	Preventing chemical corrosion in electronics	17-1
17.1	Introduction	17-1
17.2	Sulfidic and oxidation corrosion from environmental gases	17-2
17.3	Electrolytic ion migration and galvanic coupling	17-2
17.4	Internal corrosion of integrated and printed circuit board circuits	17-3
17.5	Fretting corrosion	17-3
17.6	Tin whisker growth	17-3
17.7	Minimizing corrosion risks	17-3
	17.7.1 Using non-corrosive chemicals in device application and assembly	17-3
	17.7.2 Device protection with conformal coatings	17-5
17.8	Further protection methods	17-7
	17.8.1 Potting or overmolding with a plastic	17-7
	17.8.2 Porosity sealing or vacuum impregnation	17-7
17.9	Hermetic packaging	17-8
	17.9.1 Multilayer ceramic packages	17-9
	17.9.2 Pressed ceramic packages	17-11
	17.9.3 Metal can packages	17-11
17.10) Hermetic glass passivation of discrete high-voltage diodes, transistors and thyristors	17-11
17.11	Discussion and conclusions	17-12
	Review exercises	17-13
	References	17-14
18	Radiation effects on electronics	18-1
18.1	Introduction	18-1
18.2	Sources of radiation	18-2
	18.2.1 Natural radiation sources	18-2
	18.2.2 Man-made or artificial radiation sources	18-3
18.3	Types of radiation effects	18-4

	18.3.1 Total ionizing dose (TID) effect	18-4
	18.3.2 Single-event effect	18-5
	18.3.3 Dose-rate effect	18-5
18.4	Total dose effects	18-5
	18.4.1 Gamma-ray effects	18-5
	18.4.2 Neutron effects	18-8
18.5	Single-event effects	18-10
	18.5.1 Non-destructive SEEs	18-10
	18.5.2 Destructive SSEs	18-11
18.6	Discussion and conclusions	18-13
	Review exercises	18-13
	References	18-14
19	Radiation-hardened electronics	19-1
19.1	The meaning of 'radiation hardening'	19-2
19.2	Radiation hardening by process (RHBP)	19-2
	19.2.1 Reduction of space charge formation in silicon dioxide layers	19-2
	19.2.2 Impurity profile tailoring and carrier lifetime control	19-2
	19.2.3 Triple-well CMOS technology	19-2
	19.2.4 Adoption of silicon-on-insulator technology	19-4
19.3	Radiation hardening by design	19-5
	19.3.1 Edgeless or annular MOSFETs	1 9-6
	19.3.2 Channel stoppers and guard rings	1 9-6
	19.3.3 Controlling the charge dissipation by increasing the channel width to the channel length ratio	19-7
	19.3.4 Temporal filtering	19-10
	19.3.5 Spatial redundancy	19-10
	19.3.6 Temporal redundancy	19-11
	19.3.7 Dual interlocked storage cell	19-12
19.4	Discussion and conclusions	19-15
	Review exercises	19-15
	References	19-16
20	Vibration-tolerant electronics	20-1
20.1	Vibration is omnipresent	20-1
20.2	Random and sinusoidal vibrations	20-2
20.3	Countering vibration effects	20-2
20.4	Passive and active vibration isolators	20-2

20.5 Theory of passive vibration isolation	20-4
20.5.1 Case I: free undamped vibrations	20-5
20.5.2 Case II: forced undamped vibrations	20-7
20.5.3 Case III: forced vibrations with viscous damping	20-11
20.6 Mechanical spring vibration isolators	20-15
20.7 Air-spring vibration isolators	20-15
20.8 Wire-rope isolators	20-16
20.9 Elastomeric isolators	20-16
20.10 Negative stiffness isolators	20-16
20.11 Active vibration isolators	20-19
20.11.1 Working	20-19
20.11.2 Advantages	20-20
20.11.3 Applications	20-20
20.12 Discussion and conclusions	20-21
Review exercises	20-21
References	20-22

Part II Harsh-environment electronics

Sub-part IIB Application-specific robust electronics techniques

21	Making electronics compatible with electromagnetic	21-1
	interference environments	
21.1	Electromagnetic interference	21-2
21.2	Electromagnetic compatibility	21-2
21.3	Classification of EMI	21-4
	21.3.1 Sources of EMI	21-5
	21.3.2 EMI production mechanisms	21-6
	21.3.3 Duration of EMI	21-7
	21.3.4 Bandwidth of EMI	21-7
21.4	Effects of EMI	21-7
	21.4.1 EMI noise signal	21-7
	21.4.2 Examples of disablement of equipment functions by EMI	21-8
21.5	Single-ended and differential transmission of signals	21-8
	21.5.1 Single-ended transmission of signals	21-8
	21.5.2 Differential transmission of signals	21-8
	21.5.3 Effects of EMI currents induced in the wires by magnetic fields generated around them during high-frequency differential current flow	21-12

21.6	Differe	ntial- and common-mode voltages	21-12
21.7	Differe	ntial-mode interference	21-13
	21.7.1	Cause of differential-mode interference	21-13
	21.7.2	Differential-mode noise voltage	21-13
	21.7.3	Differential-mode noise current	21-13
21.8	Comm	on-mode interference	21-14
	21.8.1	Cause of common-mode interference	21-14
	21.8.2	Common-mode interference noise voltage	21-14
	21.8.3	Common-mode interference noise current	21-14
21.9	Twiste	d pair cable for common-mode EMI noise rejection	21-15
	21.9.1	The twisted wires	21-15
	21.9.2	Magnetic fields and induced currents	21-15
	21.9.3	Induced current cancellation	21-15
	21.9.4	Untwisted wires	21-15
	21.9.5	Subdual of EMI in twisted wires from self and external EMI	21-16
	21.9.6	Explanation of distance effect on noise creation in untwisted and twisted wires with assumed noise potentials per unit length	21-17 1
	21.9.7	EMI not stopped, only weakened	21-17
	21.9.8	Applications of twisted wire cables	21-17
21.10	O Com	non-mode interference from common impedance coupling	21-17
21.1	l Comb	vined EMI noise	21-21
21.12	2 Filter	s for EMI noise suppression	21-21
	21.12.1	Differential-mode EMI noise filter	21-21
	21.12.2	2 Common-mode EMI noise filter	21-24
21.13	3 Grou	nding	21-25
	21.13.1	Ground loops, and a simplified ground loop circuit	21-25
	21.13.2	2 Induction of interference currents by stray magnetic fields	21-28
21.14	4 Grou	nding approaches	21-29
	21.14.1	Single-point grounding	21-29
	21.14.2	2 Multi-point grounding	21-32
	21.14.3	B Hybrid grounding	21-34
	21.14.4	Comparison of single-point, multi-point and hybrid grounding approaches	21-34
21.1:	5 EMI	shielding	21-34
	21.15.1	Shielding efficiency	21-34
	21.15.2	2 Shielding materials	21-37
	21.15.3	3 The Faraday cage	21-37

21.15.6 Types of shielded twisted pair cables21-4021.16 Grounding of shielded cables21-4221.16.1 Electrical shielding21-4321.16.2 Magnetic shielding21-4321.16.3 Considerations for a shielded cable grounded at both ends21-4321.17 Discussion and conclusions21-43Review exercises21-43References21-43References21-4322.1 Disorganized scenario in a harsh environment, and denial of accessibility to the sensor22-222.3 Need of tightly monitoring energy systems aggravates burden on sensors22-222.4 High-temperature sensors22-322.4.1 All 4H-SiC MEMS piezoresistive accelerometer22-322.4.2 Piezoelectric YCa4O(BO ₃) ₃ (YCOB) single-crystal-based accelerometer22-422.5 Flow sensors22-1122.5.1 3C-SiC on-glass-based thermal flow sensor22-1122.5.2 Fiber optic flow sensor22-1522.6.1 Silicon carbide capacitive pressure sensor22-1522.6.2 Micromachined pressure sensor with sapphire membrane and platinum thin film strain gauges22-1722.6.3 Ceramic nanofiber-based flexible pressure sensor22-1722.6.4 All SiC fiber optic pressure sensor22-1722.7.7 Temperature sensors22-1822.7.1 SOI diode temperature sensor22-1822.7.2 LTCC wireless temperature sensor22-1822.7.3 Langasite SAW resonator-based high temperature sensor22-2222.8 Humidity sensors22-1822.7.4 Saphire fiber Bragg grating as temperature sensor22-22 <th></th> <th>21.15.4 Board level shielding (BLS) for PCBs</th> <th>21-38</th>		21.15.4 Board level shielding (BLS) for PCBs	21-38
21.16Grounding of shielded cables21-4221.16.1Electrical shielding21-4321.16.2Magnetic shielding21-4321.16.3Considerations for a shielded cable grounded at both ends21-4321.17Discussion and conclusions21-43Review exercises21-43References21-4322Developing sensor capabilities for aggressive environments22-122.1Disorganized scenario in a harsh environment, and denial of accessibility to the sensors22-222.3Need of tightly monitoring energy systems aggravates burden on sensors22-322.4Accelerometers22-322.4.1All HI-SiC MEMS piezoresistive accelerometer22-322.4.2Piezoelectric YCa4O(BO ₃) ₃ (YCOB) single-crystal-based accelerometer22-1122.5.13C-SiC on-glass-based thermal flow sensor22-1122.5.2Fibor optic flow sensor22-1522.6.1Silicon carbide capacitive pressure sensor22-1522.6.2Micromachined pressure sensor with sapphire membrane and platinum thin film strain gauges22-1722.6.3Ceramic nanofiber-based flexible pressure sensor22-1722.6.4All SiC fiber optic pressure sensor22-1722.6.4All SiC fiber optic pressure sensor22-1722.6.5Joi diode temperature sensor22-1722.6.4All SiC fiber optic pressure sensor22-1722.7.1SOI diode temperature sensor22-1722.7.2LTCC wireless temperature sensor<		21.15.5 Unshielded and shielded twisted pair cables	21-38
21.16.1Electrical shielding21-4221.16.2Magnetic shielding21-4321.16.3Considerations for a shielded cable grounded at both ends21-4321.17Discussion and conclusions21-43Review exercises21-43References21-4322Developing sensor capabilities for aggressive environments22-123.1Disorganized scenario in a harsh environment, and denial of accessibility to the sensor22-224.3Need of tightly monitoring energy systems aggravates burden on sensors22-222.4Accelerometers22-322.4.1All 4H-SiC MEMS piezoresistive accelerometer22-322.4.2Piezoelectric YCa4O(BO ₃) ₃ (YCOB) single-crystal-based accelerometer22-1122.5.13C-SiC on-glass-based thermal flow sensor22-1122.5.2Fiber optic flow sensor22-1522.6.1Silicon carbide capacitive pressure sensor22-1522.6.2Micromachined pressure sensor with sapphire membrane and platinum thin film strain gauges22-1722.7.1SOI diode temperature sensor22-1722.7.2LTCC wireless temperature sensor22-1722.7.3Langaite SAW resonator-based high temperature sensor22-1722.7.4Sapphire fiber Bragg grating as temperature sensor22-2222.8Humidity sensors22-22		21.15.6 Types of shielded twisted pair cables	21-40
21.16.2 Magnetic shielding21-4321.16.3 Considerations for a shielded cable grounded at both ends21-4321.17 Discussion and conclusions21-43Review exercises21-43References21-4322Developing sensor capabilities for aggressive environments22-122.1 Disorganized scenario in a harsh environment, and denial of accessibility to the sensor22-222.3 Need of tightly monitoring energy systems aggravates burden on sensors22-223. Need of tightly monitoring energy systems aggravates burden on sensors22-322.4.1 All 4H-SiC MEMS piezoresistive accelerometer22-322.4.2 Piezoelectric YCa ₄ O(BO ₃) ₃ (YCOB) single-crystal-based accelerometer22-422.5 Flow sensors22-1122.5.1 3C-SiC on-glass-based thermal flow sensor22-1122.6.2 Micromachined pressure sensor with sapphire membrane and platinum thin flim strain gauges22-1522.6.3 Ceramic nanofiber-based flexible pressure sensor22-1722.6.4 All SiC fiber optic pressure sensor22-1722.7.1 SOI diode temperature sensor22-1722.6.4 All SiC fiber optic pressure sensor22-1722.7.1 SOI diode temperature sensor22-1722.7.1 SOI diode temperature sensor22-1722.7.2 LTCC wireless temperature sensor22-1822.7.3 Langasite SAW resonator-based high temperature sensor22-2222.8 Humidity sensors22-2222.8 Humidity sensors22-20	21.10	6 Grounding of shielded cables	21-42
21.16.3 Considerations for a shielded cable grounded at both ends21-4321.17 Discussion and conclusions21-43Review exercises21-43References21-4322Developing sensor capabilities for aggressive environments22-122.1 Disorganized scenario in a harsh environment, and denial of accessibility to the sensor22-222.3 Need of tightly monitoring energy systems aggravates burden on sensors22-222.4 Accelerometers22-322.4.1 All 4H-SiC MEMS piezoresistive accelerometer22-322.4.2 Piezoelectric YCa4O(BO ₃) ₃ (YCOB) single-crystal-based accelerometer22-822.5 Flow sensors22-1122.5.2 Flow sensors22-1122.5.2 Fiber optic flow sensor22-1422.6 Pressure sensors22-1522.6.1 Silicon carbide capacitive pressure sensor22-1522.6.2 Micromachined pressure sensor with sapphire membrane and platinum thin film strain gauges22-1722.7 Temperature sensors22-1722.7 Temperature sensors22-1722.7.1 SOI diode temperature sensor22-1722.7.2 LTCC wireless temperature sensor22-1822.7.3 Langasite SAW resonator-based high temperature sensor22-2022.7.4 Sapphire fiber Bragg grating as temperature sensor22-2222.8 Humidity sensors22-22		21.16.1 Electrical shielding	21-42
21.17Discussion and conclusions21-43 Review exercises21-43 References22Developing sensor capabilities for aggressive environments22-122.1Disorganized scenario in a harsh environment, and denial of accessibility to the sensor22-222.3Need of tightly monitoring energy systems aggravates burden on sensors22-222.4Accelerometers22-3 22.422.4.1All 4H-SiC MEMS piezoresistive accelerometer22-3 22.422.4.2Piezoelectric YCa4O(BO ₃) ₃ (YCOB) single-crystal-based accelerometer22-822.5Flow sensors22-11 22.5.122.5.13C-SiC on-glass-based thermal flow sensor22-11 22-1522.6.2Micromachined pressure sensor with sapphire membrane and platinum thin flim strain gauges22-6.3 22-6.422.7.1SOI diode temperature sensor22-17 22-1722.7.2LTCC wireless temperature sensor22-17 22-1722.7.3Langasite SAW resonator-based high temperature sensor22-17 22-1722.6.4All SiC fiber optic pressure sensor22-17 22-1722.7.1SOI diode temperature sensor22-17 22-1722.7.2LTCC wireless temperature sensor22-18 22-1722.7.4Sapphire fiber Bragg grating as temperature sensor22-22 22-2222.8Humidity sensors22-22		21.16.2 Magnetic shielding	21-43
Review exercises21-43 References 22Developing sensor capabilities for aggressive environments22-122.1 Disorganized scenario in a harsh environment, and denial of accessibility to the sensor22-2 22.2 High-temperature sensors22-2 22.3 Need of tightly monitoring energy systems aggravates burden on sensors22-2 22.4 Accelerometers22-3 22.4 Accelerometers22-3 22.4.1 All 4H-SiC MEMS piezoresistive accelerometer22-3 22.4.2 Piezoelectric YCa ₄ O(BO ₃) ₃ (YCOB) single-crystal-based accelerometer22-8 22.5 Flow sensors22-11 22.5.1 3C-SiC on-glass-based thermal flow sensor22-15 22.6 Pressure sensors22-15 22.6 Silicon carbide capacitive pressure sensor22-15 22.6.1 Silicon carbide capacitive pressure sensor22-17 22.6.2 Micromachined pressure sensor22-17 22.6.4 All SiC fiber optic pressure sensor22-17 22.6.4 All SiC fiber optic pressure sensor22-17 22.7 Temperature sensors22-18 22.7.1 SOI diode temperature sensor22-18 22.7.2 LTCC wireless temperature sensor22-20 22.7.4 Saphire fiber Bragg grating as temperature sensor22-22 22.8 Humidity sensors22-22		21.16.3 Considerations for a shielded cable grounded at both ends	21-43
References21-4822Developing sensor capabilities for aggressive environments22-122.1Disorganized scenario in a harsh environment, and denial of accessibility to the sensor22-222.2High-temperature sensors22-222.3Need of tightly monitoring energy systems aggravates burden on sensors22-222.4Accelerometers22-322.4.1All 4H-SiC MEMS piezoresistive accelerometer22-322.4.2Piezoelectric YCa4O(BO ₃) ₃ (YCOB) single-crystal-based accelerometer22-822.5Flow sensors22-1122.5.13C-SiC on-glass-based thermal flow sensor22-1422.6Pressure sensors22-1522.6.1Silicon carbide capacitive pressure sensor22-1522.6.2Micromachined pressure sensor with sapphire membrane and platinum thin film strain gauges22-1722.7Temperature sensors22-1722.7Temperature sensors22-1722.7Tomperature sensors22-1822.7.1SOI diode temperature sensor22-1822.7.2LTCC wireless temperature sensor22-1822.7.3Langasite SAW resonator-based high temperature sensor22-2022.7.4Saphire fiber Bragg grating as temperature sensor22-2022.7.2LTCC wireless temperature sensor22-2022.7.4Saphire fiber Bragg grating as temperature sensor22-2022.7.4Saphire fiber Bragg grating as temperature sensor22-2022.8Humidity sensors22-20 </td <td>21.17</td> <td>7 Discussion and conclusions</td> <td>21-43</td>	21.17	7 Discussion and conclusions	21-43
22Developing sensor capabilities for aggressive environments22-122.1Disorganized scenario in a harsh environment, and denial of accessibility to the sensor22-222.2High-temperature sensors22-222.3Need of tightly monitoring energy systems aggravates burden on sensors22-222.4Accelerometers22-322.4.1All 4H-SiC MEMS piezoresistive accelerometer22-322.4.2Piezoelectric YCa4O(BO ₃) ₃ (YCOB) single-crystal-based accelerometer22-822.5Flow sensors22-1122.5.13C-SiC on-glass-based thermal flow sensor22-1122.5.2Fiber optic flow sensor22-1522.6Nicion carbide capacitive pressure sensor22-1522.6.1Silicon carbide capacitive pressure sensor22-1722.6.2Micromachined pressure sensor with sapphire membrane and platinum thin film strain gauges22-1722.7Temperature sensors22-1722.7Temperature sensors22-1822.72.7.1SOI diode temperature sensor22-1822.7.1SOI diode temperature sensor22-1822.7.2LTCC wireless temperature sensor22-2022.7.3Langasite SAW resonator-based high temperature sensor22-2022.7.4Saphire fiber Bragg grating as temperature sensor22-2222.8Humidity sensors22-23		Review exercises	21-43
22.1Disorganized scenario in a harsh environment, and denial of accessibility to the sensor22-222.2High-temperature sensors22-222.3Need of tightly monitoring energy systems aggravates burden on sensors22-222.4Accelerometers22-322.4.1All 4H-SiC MEMS piezoresistive accelerometer22-322.4.2Piezoelectric YCa40(BO ₃) ₃ (YCOB) single-crystal-based accelerometer22-522.4.3Optical accelerometer22-822.5Flow sensors22-1122.5.13C-SiC on-glass-based thermal flow sensor22-1122.5.2Fiber optic flow sensor22-1422.6Pressure sensors22-1522.6.1Silicon carbide capacitive pressure sensor22-1522.6.2Micromachined pressure sensor with sapphire membrane and platinum thin film strain gauges22-1722.7Temperature sensors22-1722.7Temperature sensors22-1822.7.1SOI diode temperature sensor22-1822.7.2LTCC wireless temperature sensor22-2022.7.3Langasite SAW resonator-based high temperature sensor22-2022.7.4Saphire fiber Bragg grating as temperature sensor22-2222.8Humidity sensors22-23		References	21-48
22.1Disorganized scenario in a harsh environment, and denial of accessibility to the sensor22-222.2High-temperature sensors22-222.3Need of tightly monitoring energy systems aggravates burden on sensors22-222.4Accelerometers22-322.4.1All 4H-SiC MEMS piezoresistive accelerometer22-322.4.2Piezoelectric YCa40(BO ₃) ₃ (YCOB) single-crystal-based accelerometer22-522.4.3Optical accelerometer22-822.5Flow sensors22-1122.5.13C-SiC on-glass-based thermal flow sensor22-1122.5.2Fiber optic flow sensor22-1422.6Pressure sensors22-1522.6.1Silicon carbide capacitive pressure sensor22-1522.6.2Micromachined pressure sensor with sapphire membrane and platinum thin film strain gauges22-1722.7Temperature sensors22-1722.7Temperature sensors22-1822.7.1SOI diode temperature sensor22-1822.7.2LTCC wireless temperature sensor22-2022.7.3Langasite SAW resonator-based high temperature sensor22-2022.7.4Saphire fiber Bragg grating as temperature sensor22-2222.8Humidity sensors22-23			
accessibility to the sensor22-222.2High-temperature sensors22-222.3Need of tightly monitoring energy systems aggravates burden on sensors22-322.4Accelerometers22-322.4.1All 4H-SiC MEMS piezoresistive accelerometer22-322.4.2Piezoelectric YCa ₄ O(BO ₃) ₃ (YCOB) single-crystal-based accelerometer22-822.5Flow sensors22-1122.5.13C-SiC on-glass-based thermal flow sensor22-1122.5.2Fiber optic flow sensor22-1522.6.1Silicon carbide capacitive pressure sensor22-1522.6.2Micromachined pressure sensor with sapphire membrane and platinum thin film strain gauges22-1722.6.3Ceramic nanofiber-based flexible pressure sensor22-1822.7.1SOI diode temperature sensor22-1822.7.2LTCC wireless temperature sensor22-1822.7.3Langasite SAW resonator-based high temperature sensor22-2022.7.4Sapphire fiber Bragg grating as temperature sensor22-2222.8Humidity sensors22-22	22	Developing sensor capabilities for aggressive environments	22-1
22.3Need of tightly monitoring energy systems aggravates burden on sensors22-2 22-322.4Accelerometers22-3 22-322.4.1All 4H-SiC MEMS piezoresistive accelerometer22-3 22-322.4.2Piezoelectric YCa4O(BO ₃) ₃ (YCOB) single-crystal-based accelerometer22-822.5Flow sensors22-11 22-5122.5.13C-SiC on-glass-based thermal flow sensor22-1422.6Pressure sensors22-15 22-6122.6.1Silicon carbide capacitive pressure sensor22-15 22-1522.6.2Micromachined pressure sensor with sapphire membrane and platinum thin film strain gauges22-17 22-6422.7Temperature sensors22-17 22-18 22-7122-18 22-7122.7.1SOI diode temperature sensor22-18 22-20 22.7.3 22.7.3 22.7.422-20 22.7.422.8Humidity sensors22-22 22.23	22.1		22-2
on sensors22.422.4Accelerometers22-322.4.1All 4H-SiC MEMS piezoresistive accelerometer22-322.4.2Piezoelectric YCa4O(BO3)3 (YCOB) single-crystal-based accelerometer22-522.4.3Optical accelerometer22-822.5Flow sensors22-1122.5.13C-SiC on-glass-based thermal flow sensor22-1122.5.2Fiber optic flow sensor22-1422.6Pressure sensors22-1522.6.1Silicon carbide capacitive pressure sensor22-1522.6.2Micromachined pressure sensor with sapphire membrane and platinum thin film strain gauges22-1722.6.3Ceramic nanofiber-based flexible pressure sensor22-1722.7Temperature sensors22-1822.7.1SOI diode temperature sensor22-1822.7.2LTCC wireless temperature sensor22-2022.7.3Langasite SAW resonator-based high temperature sensor22-2022.7.4Sapphire fiber Bragg grating as temperature sensor22-2222.8Humidity sensors22-23	22.2	High-temperature sensors	22-2
22.4Accelerometers22-322.4.1All 4H-SiC MEMS piezoresistive accelerometer22-322.4.2Piezoelectric YCa4O(BO ₃) ₃ (YCOB) single-crystal-based accelerometer22-522.4.3Optical accelerometer22-822.5Flow sensors22-1122.5.13C-SiC on-glass-based thermal flow sensor22-1122.5.2Fiber optic flow sensor22-1422.6Pressure sensors22-1522.6.1Silicon carbide capacitive pressure sensor22-1522.6.2Micromachined pressure sensor with sapphire membrane and platinum thin film strain gauges22-1722.6.3Ceramic nanofiber-based flexible pressure sensor22-1722.6.4All SiC fiber optic pressure sensor22-1822.7.1SOI diode temperature sensor22-1822.7.2LTCC wireless temperature sensor22-2022.7.3Langasite SAW resonator-based high temperature sensor22-2022.7.4Sapphire fiber Bragg grating as temperature sensor22-2222.8Humidity sensors22-23	22.3	Need of tightly monitoring energy systems aggravates burden	22-2
22.4.1All 4H-SiC MEMS piezoresistive accelerometer22-322.4.2Piezoelectric YCa4O(BO3)3 (YCOB) single-crystal-based accelerometer22-522.4.3Optical accelerometer22-822.5Flow sensors22-1122.5.13C-SiC on-glass-based thermal flow sensor22-1122.5.2Fiber optic flow sensor22-1422.6Pressure sensors22-1522.6.1Silicon carbide capacitive pressure sensor22-1522.6.2Micromachined pressure sensor with sapphire membrane and platinum thin film strain gauges22-1722.6.3Ceramic nanofiber-based flexible pressure sensor22-1722.6.4All SiC fiber optic pressure sensor22-1722.7.1SOI diode temperature sensor22-1822.7.2LTCC wireless temperature sensor22-2022.7.3Langasite SAW resonator-based high temperature sensor22-2022.7.4Sapphire fiber Bragg grating as temperature sensor22-2022.8Humidity sensors22-20		on sensors	
22.4.2 Piezoelectric YCa4O(BO3)3 (YCOB) single-crystal-based accelerometer22-522.4.3 Optical accelerometer22-822.5 Flow sensors22-1122.5.1 3C-SiC on-glass-based thermal flow sensor22-1122.5.2 Fiber optic flow sensor22-1422.6Pressure sensors22-1522.6.1 Silicon carbide capacitive pressure sensor22-1522.6.2 Micromachined pressure sensor with sapphire membrane and platinum thin film strain gauges22-1722.6.3 Ceramic nanofiber-based flexible pressure sensor22-1722.7 Temperature sensors22-1822.7.1 SOI diode temperature sensor22-1822.7.2 LTCC wireless temperature sensor22-2022.7.3 Langasite SAW resonator-based high temperature sensor22-2222.8 Humidity sensors22-23	22.4		22-3
accelerometer22-822.4.3 Optical accelerometer22-822.5 Flow sensors22-1122.5.1 3C-SiC on-glass-based thermal flow sensor22-1122.5.2 Fiber optic flow sensor22-1422.6 Pressure sensors22-1522.6.1 Silicon carbide capacitive pressure sensor22-1522.6.2 Micromachined pressure sensor with sapphire membrane and platinum thin film strain gauges22-1722.6.3 Ceramic nanofiber-based flexible pressure sensor22-1722.6.4 All SiC fiber optic pressure sensor22-1822.7.7 Temperature sensors22-1822.7.2 LTCC wireless temperature sensor22-2022.7.3 Langasite SAW resonator-based high temperature sensor22-2222.8 Humidity sensors22-23		-	22-3
22.5Flow sensors22-1122.5.13C-SiC on-glass-based thermal flow sensor22-1122.5.2Fiber optic flow sensor22-1422.6Pressure sensors22-1522.6.1Silicon carbide capacitive pressure sensor22-1522.6.2Micromachined pressure sensor with sapphire membrane and platinum thin film strain gauges22-1722.6.3Ceramic nanofiber-based flexible pressure sensor22-1722.6.4All SiC fiber optic pressure sensor22-1822.7.7Temperature sensors22-1822.7.1SOI diode temperature sensor22-2022.7.3Langasite SAW resonator-based high temperature sensor22-2222.8Humidity sensors22-23			22-5
 22.5.1 3C-SiC on-glass-based thermal flow sensor 22.5.2 Fiber optic flow sensor 22.14 22.6 Pressure sensors 22.6.1 Silicon carbide capacitive pressure sensor 22.6.2 Micromachined pressure sensor with sapphire membrane and platinum thin film strain gauges 22.6.3 Ceramic nanofiber-based flexible pressure sensor 22.6.4 All SiC fiber optic pressure sensor 22.17 22.6.4 All SiC fiber optic pressure sensor 22.18 22.7.1 SOI diode temperature sensor 22.7.2 LTCC wireless temperature sensor 22.7.3 Langasite SAW resonator-based high temperature sensor 22.7.4 Sapphire fiber Bragg grating as temperature sensor 22.23 		22.4.3 Optical accelerometer	22-8
 22.5.2 Fiber optic flow sensor 22.14 22.6 Pressure sensors 22.6.1 Silicon carbide capacitive pressure sensor 22.6.2 Micromachined pressure sensor with sapphire membrane and platinum thin film strain gauges 22.6.3 Ceramic nanofiber-based flexible pressure sensor 22.6.4 All SiC fiber optic pressure sensor 22.17 22.6.7 Temperature sensors 22.18 22.7.1 SOI diode temperature sensor 22.18 22.7.2 LTCC wireless temperature sensor 22.7.3 Langasite SAW resonator-based high temperature sensor 22.7.4 Sapphire fiber Bragg grating as temperature sensor 22.23 	22.5	Flow sensors	22-11
22.6Pressure sensors22-1522.6.1Silicon carbide capacitive pressure sensor22-1522.6.2Micromachined pressure sensor with sapphire membrane and platinum thin film strain gauges22-1722.6.3Ceramic nanofiber-based flexible pressure sensor22-1722.6.4All SiC fiber optic pressure sensor22-1722.7Temperature sensors22-1822.7.1SOI diode temperature sensor22-2022.7.3Langasite SAW resonator-based high temperature sensor22-2022.7.4Sapphire fiber Bragg grating as temperature sensor22-2222.8Humidity sensors22-23		22.5.1 3C-SiC on-glass-based thermal flow sensor	22-11
 22.6.1 Silicon carbide capacitive pressure sensor 22.6.2 Micromachined pressure sensor with sapphire membrane and platinum thin film strain gauges 22.6.3 Ceramic nanofiber-based flexible pressure sensor 22.6.4 All SiC fiber optic pressure sensor 22.7.7 22.7.7 Temperature sensors 22.7.8 22.7.2 LTCC wireless temperature sensor 22.7.3 Langasite SAW resonator-based high temperature sensor 22.7.4 Sapphire fiber Bragg grating as temperature sensor 22.72 22.73 Humidity sensors 22.73 		22.5.2 Fiber optic flow sensor	22-14
22.6.2 Micromachined pressure sensor with sapphire membrane and platinum thin film strain gauges22-1522.6.3 Ceramic nanofiber-based flexible pressure sensor22-1722.6.4 All SiC fiber optic pressure sensor22-1722.7 Temperature sensors22-1822.7.1 SOI diode temperature sensor22-1822.7.2 LTCC wireless temperature sensor22-2022.7.3 Langasite SAW resonator-based high temperature sensor22-2222.7.4 Sapphire fiber Bragg grating as temperature sensor22-23	22.6	Pressure sensors	22-15
platinum thin film strain gauges22.6.3 Ceramic nanofiber-based flexible pressure sensor22-1722.6.4 All SiC fiber optic pressure sensor22-1722.7 Temperature sensors22-1822.7.1 SOI diode temperature sensor22-1822.7.2 LTCC wireless temperature sensor22-2022.7.3 Langasite SAW resonator-based high temperature sensor22-2022.7.4 Sapphire fiber Bragg grating as temperature sensor22-2222.8 Humidity sensors22-23		22.6.1 Silicon carbide capacitive pressure sensor	22-15
22.6.4 All SiC fiber optic pressure sensor22-1722.7 Temperature sensors22-1822.7.1 SOI diode temperature sensor22-1822.7.2 LTCC wireless temperature sensor22-2022.7.3 Langasite SAW resonator-based high temperature sensor22-2022.7.4 Sapphire fiber Bragg grating as temperature sensor22-2222.8 Humidity sensors22-23			22-15
22.7 Temperature sensors22-1822.7.1 SOI diode temperature sensor22-1822.7.2 LTCC wireless temperature sensor22-2022.7.3 Langasite SAW resonator-based high temperature sensor22-2022.7.4 Sapphire fiber Bragg grating as temperature sensor22-2222.8 Humidity sensors22-23		22.6.3 Ceramic nanofiber-based flexible pressure sensor	22-17
22.7.1 SOI diode temperature sensor22-1822.7.2 LTCC wireless temperature sensor22-2022.7.3 Langasite SAW resonator-based high temperature sensor22-2022.7.4 Sapphire fiber Bragg grating as temperature sensor22-2222.8 Humidity sensors22-23		22.6.4 All SiC fiber optic pressure sensor	22-17
22.7.2 LTCC wireless temperature sensor22-2022.7.3 Langasite SAW resonator-based high temperature sensor22-2022.7.4 Sapphire fiber Bragg grating as temperature sensor22-2222.8 Humidity sensors22-23	22.7	Temperature sensors	22-18
22.7.3 Langasite SAW resonator-based high temperature sensor22-2022.7.4 Sapphire fiber Bragg grating as temperature sensor22-2222.8 Humidity sensors22-23		22.7.1 SOI diode temperature sensor	22-18
22.7.4 Sapphire fiber Bragg grating as temperature sensor22-2222.8 Humidity sensors22-23		22.7.2 LTCC wireless temperature sensor	22-20
22.8 Humidity sensors 22-23		22.7.3 Langasite SAW resonator-based high temperature sensor	22-20
22.8 Humidity sensors 22-23		22.7.4 Sapphire fiber Bragg grating as temperature sensor	22-22
22.8.1 Micromachined humidity sensor 22-23	22.8		22-23
		22.8.1 Micromachined humidity sensor	22-23
•	22.8	22.7.4 Sapphire fiber Bragg grating as temperature sensor	22-22
		22.8.1 Micromachined humidity sensor	22-23

	22.8.2 Optical humidity sensor based on hydrogel thin film expansion	22-25
22.9	Gas sensors	22-26
	22.9.1 TiO_2 -ZrO ₂ oxygen lambda sensors	22-26
	22.9.2 Mixed potential CO sensor	22-26
	22.9.3 SiC FET sensor for NO, NH ₃ , O ₂ , CO, and SO ₂	22-27
22.1	Discussions and conclusions	22-30
	Review exercises	22-30
	References	22-33
23	Adapting medical implant electronics to human biological	23-1
	environments	
23.1	Environment inside the human body	23-1
	23.1.1 Water in the body	23-1
	23.1.2 Electrolytes in the body	23-2
23.2	Essential properties of packaging materials for reliable functioning of implanted medical electronic devices	23-3
	23.2.1 Hermeticity	23-3
	23.2.2 Biocompatibility	23-4
	23.2.3 Mechanical flexibility	23-4
	23.2.4 Weight	23-4
	23.2.5 Internal outgassing	23-5
	23.2.6 Radio frequency transparency	23-5
	23.2.7 Heat generation minimization	23-5
	23.2.8 Thermal expansion coefficients matching	23-5
	23.2.9 Ease of processing	23-6
	23.2.10 Other properties	23-6
23.3	Studying biological response vis-à-vis material properties	23-6
23.4	Foreign body reaction to implanted biomaterials	23-6
	23.4.1 Post implantation acute and chronic inflammation phases	23-6
	23.4.2 Stages of inflammatory response	23-6
23.5	Biomaterials for implants	23-11
	23.5.1 Metals	23-11
	23.5.2 Ceramics	23-12
	23.5.3 Polymers	23-13
	23.5.4 Composites	23-13

23.6 Metallic biomaterials	23-14
23.6.1 Titanium (Ti) and its alloys	23-14
23.6.2 Cobalt-chromium alloys	23-15
23.6.3 Stainless steels	23-15
23.7 Ceramic biomaterials	23-15
23.7.1 Classes of ceramics	23-15
23.7.2 Processing of ceramics	23-16
23.7.3 Making hermetic ceramic feedthroughs by conventional brazing	23-17
23.7.4 Making ceramic feedthroughs using extruded metal vias	23-19
23.8 Polymeric biomaterials	23-19
23.8.1 PDMS (polydimethylsiloxane)	23-19
23.8.2 Polyimide	23-21
23.8.3 PVDF (polyvinylidene fluoride)	23-21
23.8.4 Parylene-C	23-22
23.8.5 Liquid crystal polymers (LCPs)	23-22
23.8.6 Thermoplastic polyurethane (TPU)	23-23
23.9 Composite biomaterials	23-23
23.9.1 Metal matrix composites	23-23
23.9.2 Ceramic matrix composites	23-23
23.9.3 Polymer matrix composites	23-24
23.10 Implantable microelectrode arrays for neuroprosthetics	23-24
23.11 Optrode array with integrated LEDs	23-26
23.11.1 Applications of the array	23-26
23.11.2 Working of the array	23-26
23.11.3 Fabrication of the array	23-27
23.12 Operation of an implanted electronics device enclosed in a soft polymer covering	23-38
23.13 Anti-foreign body reaction (FBR) techniques for domestication/mitigation of FBR to implants	23-40
23.13.1 Optimization of size, shape and texture of the implant	23-41
23.13.2 Drug co-delivery	23-41
23.13.3 Using bioresorbable materials for building implants	23-41
23.13.4 Using zwitterionic materials	23-41
23.14 Sensors working in biological environments	23-42
23.14.1 Sensors which can work by indirect interaction through shielding films	23-42
23.14.2 Sensors in which direct interaction of sensor surface with body fluids is needed	23-44

23.1:	5 Discussion and conclusions	23-47
	Review exercises	23-47
	References	23-54
24	Meeting the challenges faced by electronics in unfavorable	24-1
	space environments	
24.1	The challenge of vibrations and shocks	24-2
	24.1.1 Sources of vibrations in space vehicles	24-2
	24.1.2 Effects of vibrations on onboard electronic printed-circuit board assemblies (PCBAs)	24-4
	24.1.3 Protection of PCB from vibration	24-4
	24.1.4 Dampening and isolation of vibrations	24-8
24.2	The challenge of temperature excursions beyond safe limits	24-8
	24.2.1 Need of thermal control on space vehicles	24-8
	24.2.2 Passive thermal control	24-9
	24.2.3 Active thermal control	24-15
24.3	The challenge of electrical charging of spacecraft	24-23
	24.3.1 Surface charging	24-23
	24.3.2 Internal charging (deep dielectric charging or bulk charging or buried charging)	24-28
24.4	The challenge of tin whisker growth	24-31
	24.4.1 Tin whiskers	24-31
	24.4.2 Risks to electronic circuits	24-32
	24.4.3 Theories of whisker growth	24-33
	24.4.4 Methods to reduce whisker growth	24-33
24.5	The challenge of erosion of spacecraft materials by atomic oxygen	24-34
	24.5.1 Crippling effects of atomic oxygen on space missions	24-34
	24.5.2 Erosion yield	24-34
	24.5.3 AO effects on metals	24-36
	24.5.4 AO effects on polymers	24-36
	24.5.5 Protection of polymers	24-36
	24.5.6 AO effects on glasses and thermal coatings	24-36
24.6	The challenge of radiation showers	24-36
	24.6.1 Inapplicability of common shielding practices to electronics in space	24-36
	24.6.2 Gamma ray shielding materials	24-37
	24.6.3 Neutron radiation shielding materials	24-37

	24.6.4 Adapting conformal coatings for shielding electronics in space	24-37
24.7	The challenge of outgassing in vacuum environment of space	24-38
	24.7.1 Outgassing sources and mechanisms	24-38
	24.7.2 Effects of outgassing	24-38
	24.7.3 Lowering of space vacuum by outgassing, and hampering of high-voltage operations	24-40
	24.7.4 Alleviation of outgassing contamination	24-40
24.8	Discussion and conclusions	24-41
	Review exercises	24-41
	References	24-46
25	Electronics jamming counteraction and cybersecurity	25-1
	assurance in adversary environments	
25.1	A jamming attack	25-2
25.2	Types of jamming and jammers	25-2
	25.2.1 Classification by type of jamming signal used	25-2
	25.2.2 Classification by characteristic features of jammers	25-4
25.3	Detection of jamming attacks	25-6
	25.3.1 From signal strength	25-6
	25.3.2 From carrier sensing time	25-6
	25.3.3 From packet delivery ratio (PDR)	25-6
25.4	Mapping out jammed area and planning the defense strategy against jamming	25-6
25.5	Approaches to overcome jamming	25-7
	25.5.1 Retreating away from the jammer	25-7
	25.5.2 Resource adjustment to actively compete with the jammer	25-7
	25.5.3 Adopting jamming-resistant communication techniques	25-7
25.6	Retreating methods	25-7
	25.6.1 Spatial retreat	25-7
	25.6.2 Channel surfing	25-7
25.7	Competition method: regulation of transmitted power and error correcting code	25-8
25.8	Jamming-resistant spread-spectrum communication systems	25-9
	25.8.1 Frequency-hopping spread spectrum (FHSS)	25-11
	25.8.2 Direct sequence spread spectrum (DSSS)	25-18
	25.8.3 Hybrid FHSS/DSSS	25-26

25.9 Ethical hacking	25-26
25.9.1 The white hat hacker	25-26
25.9.2 Phases of ethical hacking	25-27
25.10 Malware (malicious software)	25-27
25.10.1 Virus	25-29
25.10.2 Worm	25-29
25.10.3 Trojan horse	25-30
25.10.4 Wiper	25-30
25.10.5 Spyware	25-30
25.10.6 Ransomware	25-30
25.10.7 Rogue security software	25-31
25.10.8 Scareware	25-31
25.10.9 Crypto jacker	25-31
25.10.10 Keylogger	25-31
25.10.11 Rootkit	25-32
25.10.12 Fileless malware	25-32
25.11 Hacking threats and attacks	25-32
25.11.1 Advanced persistent threat (APT)	25-32
25.11.2 Arbitrary code execution (ACE)	25-32
25.11.3 Backdoor attack	25-33
25.11.4 Code injection and cross-site scripting (XSS)	25-33
25.11.5 Drive-by-download and data breach	25-35
25.11.6 Denial-of-service (DoS) attack	25-36
25.11.7 Eavesdropping	25-39
25.11.8 Email spoofing	25-39
25.11.9 Exploit	25-40
25.11.10 Malvertising	25-40
25.11.11 Social engineering	25-41
25.11.12 Phishing	25-41
25.11.13 Privilege escalation	25-41
25.11.14 Spamming	25-41
25.11.15 Zombie attacks	25-42
25.11.16 Botnet attacks	25-42
25.12 Defences against hacking	25-42
25.12.1 Access control software	25-42
25.12.2 Anti-keylogger	25-43
25.12.3 Anti-malware	25-43

25.12.4 A	Anti-spyware software	25-43
25.12.5 A	Anti-subversion software	25-43
25.12.6 A	Anti-tampering software	25-44
25.12.7 A	Anti-theft system	25-44
25.12.8 C	Cryptographic/encryption software	25-44
25.12.9 F	Firewall	25-46
25.12.10	Intrusion detection system/intrusion prevention system (IDS/IPS)	25-46
25.12.11	Sandbox	25-47
25.12.12	Security information and event management (SIEM)	25-47
25.12.13	Software patch	25-47
25.12.14	Vulnerability management software	25-48
25.12.15	Packet sniffer	25-48
25.12.16	Public key infrastructure services	25-48
25.12.17	Managed detection and response (MDR) services	25-49
25.12.18	Vulnerability assessment and penetration testing (VAPT) tools	25-50
25.13 Discussio	on and conclusions	25-50
Review e	exercises	25-51
Referenc	res	25-59

Preface to the revised edition

The first edition of this popular reference book presented a new perspective on electronic applications catering to hostile environments, and filled a long-felt need for an advanced reference book on the subject. This second edition provides fully updated content, including new references and developments during the years since the first edition was published. New material in this edition includes overall updating of chapter contents, an extensively upgraded bibliography, addition of sections on GaAs, SiC, GaN and diamond sensors (sections 7.15, 8.12, 9.10, and 10.11) together with incorporation of five new chapters added as sub-part IIB providing expanded discussion of electromagnetic interference and compatibility issues anticipated with the colossal spread of communication links and power infrastructure, sensors for hostile environments, medical electronic devices implanted in the human body for corrective therapy, electronic equipment operation in the vacuum and radiation environments experienced during space odysseys, and last but not the least, protection from dangers faced from malicious jamming and hacking attacks. The second edition of the book is organized in two parts I (chapters 1-14) and II (chapters 15–25), with parts I and II further subdivided into sections A and B. Their content coverage is concisely spelt out as follows:

Part I: Environmental hazards and extreme-temperature electronics (chapters 1–14) 'Sub-part IA: Environmental hazards (chapters 1 and 2)' gives an overview of the hazardous environments of operation of electronics.

'Sub-part IB: Extreme-temperature electronics (chapters 3–14)' covers the effects of temperature on semiconductors, silicon bipolar devices and circuits, silicon MOS devices and circuits, and SiGe heterojunction bipolar transistors. This part presents gallium arsenide electronics, silicon carbide electronics, gallium nitride electronics, diamond electronics, passive components, interconnections and packaging, super-conductive electronics, superconductor-based microwave circuits, and high temperature superconductor-based delivery of power.

Part II: Harsh-environment electronics (chapters 15–25)

'Sub-part IIA: Harsh-environment electronics (chapters 15–20): General considerations' describes humidity and contamination effects on electronics, moisture and waterproof electronics, chemical corrosion and radiation effects on electronics, radiation-hardened electronics, and vibration-tolerant electronics.

'Sub-part IIB: Harsh-environment electronics: Application-specific robust electronics techniques (chapters 21–25)' explains electromagnetic interference and methods to achieve electromagnetic compatibility, sensors for aggressive environments, implantable medical electronics, space electronics, electronic jamming mitigation and assurance of cyber security.

The electronics engineer faces numerous challenges to develop electronic components and devices that can operate in difficult environmental conditions or situations where long-term reliability is critical and where mission failure will lead to human safety risks besides incurring substantial financial losses. The precautionary measures begin right at the outset during the conception phase of an electronic circuit in reference to conditions under which it is planned to function. They must be addressed at all stages commencing from device or circuit design to its fabrication and packaging, including proper choice of constructional materials.

It is hoped that the revised edition encapsulating latest information on the subject will serve as a treasure-trove of knowledge immensely useful to researchers, postgraduate students, practising engineers and other concerned stakeholders working with electronic devices and circuits under extreme temperatures and harsh environments, including the automotive, avionics, oil and nuclear power industries. Like its predecessor, the new edition will motivate and inspire all readers tackling environmental perils confronting electronics to strive with greater zeal and enthusiasm towards the goal of rugged, durable and reliable electronics.

> Vinod Kumar Khanna Chandigarh, India

Preface to first edition

Customarily, electronic devices and circuits are required to operate at room temperature. This is more a matter of convenience and convention than optimization. On lowering the temperature, the performance of electronic devices is improved two-fold or by several orders of magnitude. This upgradation is observed in various forms, e.g. increased speed of digital systems, a better signal-to-noise ratio and greater bandwidth for analog systems, improved sensitivity for sensors, greater precision and range for measuring instruments, and overall deceleration of the ageing process of materials. However, low temperature is not always beneficial, e.g. the current gain and breakdown voltage of bipolar transistors are degraded with decreasing temperature. Broadly speaking, low-temperature electronics (LTE) has two offshoots: semiconductor-based electronics and superconductor-based electronics. Semiconductor-based electronics pertains to electronics that can be made to operate at any temperature from room temperature, or even much higher, down to the lowest cryogenic temperatures, 1 K or below. On the other hand, present-day systems based on superconductivity are confined to operation at low cryogenic temperatures, below about 10 K, which has been a serious impediment to their widespread use. The advent of high-temperature superconductors and associated systems appears to hold some promise.

The other side of the story is high-temperature electronics (HTE). 'High temperature' is any temperature above 125 °C. This cut-off point is frequently specified as the upper limit at which standard commercial silicon devices are supposed to function properly. However, tests on standard commercial components indicate that even temperatures up to 150 °C may be applied to selected silicon components. Certain niche applications have to operate beyond the melting point of many materials used in present-day industrial electronics. Examples are monitors and down-hole well-drilling tools for energy exploration. Aircraft and turbine engine controls also have to withstand high temperatures.

The scope of extreme-temperature electronics (ETE) encompasses operation in temperature ranges outside the traditional commercial, industrial or military ranges, i.e. -55 °C/-65 °C to +125 °C. There are three categories of ETE, known as HTE referring to temperatures over +125 °C, LTE for temperatures below -55 °C/-65 °C, and cryogenic temperature electronics, below -150 °C.

Apart from the extreme-temperature applications discussed above, mention may be made of chemically corrosive conditions. Excessively high humidity causes corrosion in electronic devices. Low humidity favors the building up of static electricity. Atmospheric corrosion, an electrochemical process that occurs on metals covered by a thin film of water and ions, is often responsible for damage to electrical and electronic components leading to premature failures even in indoor ambient conditions.

Ionizing radiation consisting of electromagnetic waves such as x-rays and γ -rays, and particulate radiation, i.e. protons, electrons, neutrons, etc, causes malfunctions and failures in electronic components and circuits. The extent of damage depends on

the type of radiation, its intensity or energy, the time of exposure and hence the dose, in addition to the distance between the radiation source and the electronic equipment.

Unconventional electronics is subdivided into different areas, e.g. electronics capable of operating at high temperatures for deep well and geothermal logging, lightweight ground and air vehicles, and space exploration; electronics benefitting from low-temperature operation as well as electronics able to withstand low temperatures for infrared systems, satellite communications and medical equipment, and newer opportunities in wireless and mobile communications, computers, and measurement and scientific equipment; electronics capable of countering the detrimental effects of humid and chemically corrosive environments for use in tropical climates and industries such as pulp and paper processing, oil and petroleum refining, mining, foundry, chemicals, etc; and radiation environment electronics for the space, medical and nuclear power industries.

This book has three objectives:

- (i) to explore the beneficial/harmful impacts of extreme temperatures on electronic devices and circuits, as well as to enquire into the complexities introduced by harsh conditions such as damp, dirty and radiation-filled environments;
- (ii) to describe the techniques adopted to utilize the advantages of these unconventional situations; and
- (iii) to present the remedial measures taken to counteract and deal with these unfavorable circumstances.

This book is written for graduate and research students in electrical and electronic engineering. It will serve as a useful supplement to microelectronics course material, treating this specialized discipline with breadth and depth. The book answers several questions that come to mind when one starts thinking and imagining beyond a normal electronics course. The book is also written to fulfill the needs of electronic device and process design engineers, as well as circuit and system developers engaged in this fast-moving field, covering both fundamentals and applications. Scientists and professors engaged in this field will also find it useful as a comprehensive guide to the state-of-the-art electronic technologies for hostile environments.

Vinod Kumar Khanna CSIR-CEERI, Pilani, India

Acknowledgements

Above all, I must thank Almighty God for giving me the vigor and wisdom to complete this work. I am grateful to all my colleagues and Director, CSIR-CEERI, Pilani for constant encouragement in my efforts. I wish to thank my editor and editorial assistant for rejuvenating my interest and boosting my confidence from time to time. Their kind co-operation and support led to timely completion of the work. I owe a profound debt of gratitude to all authors/editors of research papers, magazine articles and web pages, on whose work this book is based. Most of these excellent works are cited in the bibliographies at the end of each chapter. However, if anyone has inadvertently escaped mention, I hope it may be forgiven. Last but not least, I am grateful to my family for providing the serene atmosphere and relieving me of many domestic responsibilities so that I could devote more time to book writing. To all the above, I express my sincere thanks.

Vinod Kumar Khanna CSIR-CEERI, Pilani, India

About this book

Extreme-Temperature and Harsh-Environment Electronics (Second Edition): *Physics, technology and applications* presents a unified perspective combining the impact of extremely high and exceedingly low temperatures on the operation of semiconductor electronics, in addition to the influence of hostile environments such as high-humidity conditions, as well as surroundings contaminated by chemical vapors, nuclear radiation or those disturbed by mechanical shocks and vibrations. Incorporating the preliminary background material and thus laying down foundations for easy understanding, the progress in mainstream silicon, silicon-on-insulator and gallium arsenide electronics is sketched. Contemporary wide bandgap semiconductor technologies such as silicon carbide, gallium nitride and diamond electronics are explored. After a brief treatment of superconductivity, concepts of superconductive electronics are introduced. Progress in Josephson junctions, SQUIDs and RSFQ logic circuits is highlighted. The state of the art in hightemperature superconductor-based power delivery is surveyed. Succeeding chapters look at various protection schemes that have been devised to shield electronic circuits and equipment from adverse ambient conditions. These conditions range from the presence of high moisture concentrations in the atmosphere, to showers of high-energy particles such as the alpha particles, protons and nuclei of heavy elements that flood the atmosphere from outer space. A particularly attractive area is the dampening of vibration effects to protect electronics from the quivering disturbances or jerks that are always present near large machines or during accidental falls of electronic equipment. Specialized topics explored include electromagnetic interference and compatibility, use of sensors in aggressive environments, implantable medical electronics, space electronics, and protection of electronics from jamming and hacking.

In this book, a lucid description of this vast panorama of topics is reinforced by an elegant mathematical treatment. Broad in scope, this comprehensive treatise provides a coherent, well-organized and amply illustrated exposition of the subject which will be immensely useful for graduate and research students, professional engineers and researchers engaged in this frontier of technology. Its three-pronged approach encompassing physical aspects, technological breakthroughs and application examples will make reading interesting and enjoyable.

Author biography

Vinod Kumar Khanna

Introduction

Vinod Kumar Khanna is an independent researcher at Chandigarh, India. He is a retired Chief Scientist from Council of Scientific and Industrial Research (CSIR)-Central Electronics Engineering Research Institute (CEERI), Pilani, India, and a retired Professor from Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India. He is a former Emeritus Scientist, CSIR and Professor Emeritus, AcSIR, India. His broad areas of research were the design, fabrication and characterization of power semiconductor devices, micro- and nanosensors.

Academic qualifications

He received the MSc Degree in Physics with specialization in Electronics from University of Lucknow in 1975 and PhD degree in Physics from Kurukshetra University in 1988 for the thesis entitled, 'Development, characterization and modeling of the porous alumina humidity sensor'.

Work experience and accomplishments

His research experience spans over a period of 40 years from 1977 to 2017. He started his career as a Research Assistant in the Department of Physics, University of Lucknow from 1977 to 1980. He joined CSIR-Central Electronics Engineering Research Institute, Pilani (Rajasthan) in April 1980. At CSIR-CEERI he worked on several CSIR-funded as well as sponsored research and development projects. His major fields of research included power semiconductor devices and microelectronics/ MEMS and nanotechnology-based sensors and dosimeters.

In power semiconductor devices area, he worked on the high-voltage and highcurrent rectifier (600 A, 4300 V) for railway traction, high voltage TV deflection transistor (5 A, 1600 V), power Darlington transistor for AC motor drives (5 A, 1600 V), fast-switching thyristor (1300 A, 1700 V), power DMOSFET and IGBT. He contributed towards the development of sealed tube Ga/Al diffusion for deep junctions, surface electric field control techniques using edge beveling and contouring of large-area devices, and floating field limiting ring design; and characterization of minority-carrier lifetime as a function of process steps. He also contributed towards the development of P-I-N diode neutron dosimeter and PMOSFET-based gamma ray dosimeter.

In the area of sensor technology, he worked on the nanoporous aluminum oxide humidity sensor, ion-sensitive field-effect transistor-based microsensors for biomedical, food and environmental applications; microheater embedded gas sensor for automotive electronics, MEMS acoustic sensor for launch vehicles and capacitive MEMS ultrasonic transducer for medical applications.

Semiconductor facility creation and maintenance

He was responsible for setting up and looking after diffusion/oxidation facilities, edge beveling and contouring, reactive sputtering and carrier lifetime measurement facilities. As the Head of MEMS and microsensors group, he looked after the maintenance of six-inch MEMS fabrication facility for R&D projects as well as augmentation of processing equipment under this facility at CSIR-CEERI.

Scientific positions held

During his tenure of service at CSIR-CEERI from April 1980 till superannuation in November 2014, he was promoted to various positions including one merit promotion. He retired as Chief Scientist and Professor (AcSIR: Academy of Scientific and Innovative Research), and Head of MEMS and Microsensors Group. Subsequently, he worked for three years as Emeritus Scientist, CSIR and Emeritus Professor, AcSIR from November 2014 to November 2017. After completion of the emeritus scientist scheme, he now lives at Chandigarh. He is a passionate author, and enjoys reading and writing.

Membership of professional societies

He is a Fellow and life member of the Institution of Electronics and Telecommunication Engineers (IETE), India. He is a life member of Indian Physics Association (IPA), Semiconductor Society, India (SSI) and Indo-French Technical Association (IFTA).

Foreign travel

He is widely travelled. He participated in and presented research papers at IEEE Industry Application Society (IEEE-IAS) Annual Meeting at Denver Colorado, USA, in September–October, 1986. His short-term research assignments include deputations to Technische Universität Darmstadt, Germany in 1999, at Kurt-Schwabe-Institut fur Mess- und Sensortechnik e.V., Meinsberg, Germany in 2008 and at Fondazione Bruno Kessler, Trento, Italy in 2011 under collaborative program. He was a member of the Indian Delegation to Institute of Chemical Physics, Novosibirsk, Russia in 2009.

Scholarships and awards

He was awarded National Scholarship by the Ministry of Education and Social Welfare, Government of India, on the basis of Higher Secondary result, 1970; CEERI Foundation Day Merit Team Award for projects on fast-switching thyristor (1986); power Darlington transistor for transportation (1988), P–I–N diode neutron dosimeter (1992); and high-voltage TV deflection transistor (1994); Dr N G Patel Prize for best poster presentation in 12th National Seminar on Physics and Technology of Sensors 2007, BARC, Mumbai; CSIR-DAAD Fellowship in 2008 under Indo-German Bilateral Exchange Programme of Senior scientists, 2008. He is featured in the Stanford–Elsevier prestigious list of world top 2% scientists (2022, Elsevier Data Repository, V4, doi: 10.17632/btchxktzyw.4).

Research publications and books

He has published 194 research papers in leading peer-reviewed national/international journals and conference proceedings. He has authored 19 books, and has also contributed six chapters in edited books. He has five patents to his credit, including two US patents.

Abbreviations, acronyms, chemical symbols and mathematical notation

А	ampere
AC	alternating current
ACE	arbitrary code execution
ACK	acknowledge
Ag	silver (argentum)
AgCl	silver chloride
Ag ₂ O	silver oxide
Ag ₂ S	silver sulfide
AH	absolute humidity
AI	artificial intelligence
Al	aluminum
ALD	atomic layer deposition
AlGaAs	aluminum gallium arsenide
AlGaN	aluminum gallium nitride
AlN	aluminum nitride
Al_2O_3	aluminum oxide, alumina
AO	atomic oxygen
APT	advanced persistent threat
Ar	argon
As_2O_3	arsenic trioxide
As_2O_5	arsenic pentoxide
ASTM	American society for testing and materials
Au	gold (aurum)
BaCO ₃	barium carbonate
BCS	Bardeen–Cooper–Schrieffer (theory of superconductivity)
Be	beryllium
BFSK	binary frequency-shift keying
BGJFET	buried-grid JFET
B_2H_6	diborane
Bi ₂ Te ₃	bismuth telluride
BiCMOS	bipolar CMOS
BJT	bipolar junction transistor
BLS	board level shielding
BN	boron nitride
B_2O_3	boron trioxide
BOX	buried oxide
BPF	bandpass filter
BPSK	binary phase-shift keying
BSCCO	bismuth-strontium-calcium-copper oxide
BSG	borosilicate glass
С	carbon

°C	degrees centigrade
Ca ²⁺	calcium cation
cal g ⁻¹	calorie gram ⁻¹
CaŎ	calcium oxide
$Ca_3(PO_4)_2$	calcium phosphate
$Ca_{10}(PO_4)_6(OH)_2$	calcium hydroxyapatite
CBMA	carboxybetaine methacrylate
CCD	charge-coupled device
CEN	Comité Européen de Normalisation
CeO ₂	cerium (IV) oxide
CF-PEEK	carbon fiber reinforced PEEK (polyetheretherketone)
CH ₄	methane
$(CH_3)_3B$	trimethylborane
$C_{16}H_{14}Cl_2$	parylene C
$-(C_2H_2F_2)_n$	PVDF
CHFET	complementary heterojunction FET
$C_7H_7N_3$	tolytriazole
$C_{17}H_{16}N_2O_4$	polyurethane
$C_{12}H_{24}N_2O_2$	dicyclohexylammonium nitrite
$C_{35}H_{28}N_2O_7$	polyimide resin
$C_{6}H_{8}O_{7}$	citric acid
$C_6H_{10}O_4$	adipic acid
$C_6H_{10}O_6$	glucono-delta-lactone or gluconolactone
$C_6H_{12}O_6$	glucose
$(C_2H_6OSi)_n$	polydimethylsiloxane (PDMS)
CISPR	Comité International Spécial des Perturbations Radioélectriques
Cl ⁻	chloride anion
CMOS	complementary metal-oxide-semiconductor (FET)
CO	carbon monoxide
Co	cobalt
	carbon dioxide
CO ₂ COB	
	chip-on-board (assembly)
CO-OP	controlled over pressure (process)
CoSi ₂	cobalt silicide
CP-Ti	commercially pure titanium
CPU	central processing unit
CQT	cascaded quadruplet trisection coupling structure (filter geometry)
Cr	chromium
Cr_2O_3	chromium (III) oxide
CRT	cathode ray tube
CSFs	colony-stimulating factors
3C-SiC	cubic silicon carbide
CSMA	carrier sense multiple access (protocol)
CT	computed tomography
CTE	coefficient of thermal expansion
Cu	copper
CuO	copper oxide
Cu ₂ S	copper sulfide
CVD	chemical vapor deposition
CZ	Czochralski (single-crystal silicon)

DAC	discretionary access control
dB	decibel
DBE	droplet backside exposure
DC	direct current
DCF	Distributed coordination function
DD	displacement damage
DDoS	distributed denial-of-service (attack)
2DEG	two-dimensional electron gas
DGVTJFET	dual-gate vertical channel trench JFET
2DHG	two-dimensional hole gas
DI-BSCCO	dynamically innovative-BSCCO
DICE	dual interlocked storage cell
DICHAN	dicyclohexylammonium nitrite
DIFS	DCF interframe space interval
DMOSFET	double-diffused MOSFET
DMVTJFET	depletion-mode VTJFET
DNS	domain name system
DOM	document object model
DoS	denial-of-service
DRAM	dynamic random-access memory
DSSS	direct sequence spread spectrum
E	east
e ⁻	electron
e-beam	electron beam
ECF	extracellular fluid compartment
ECOG	electrocorticography
EDR	endpoint detection and response (tool)
EEG	electroencephalogram
EEPROM	electrically-erasable programmable read-only memory
EG	electronic grade (polysilicon)
EHP	electron hole pair
eHTP	extremely high temperature package
EIA	Electronics Industries Association
EL Ni	electroless nickel
EMC	electromagnetic compatibility
EMF	electromotive force
EMI	electromagnetic interference
EMVTJFET	enhancement-mode VTJFET
ESD	electrostatic discharge
ETO	ethylene oxide
eV	electronvolt
2FA	two-factor authentication
FBGCs	foreign body giant cells
FBR	foreign body reaction
FC/APC	fiber connector with angled physical contact
FCC	Federal Communications Commission
fcc	face-centered cubic
FCL	fault current limiter
FET	field-effect transistor
$fF Pa^{-1}$	femtofard pascal ⁻¹
FHSS	frequency hopping spread system
1 1100	nequency nopping spread system

FIRST	Far Infra-Red Space Telescope
FR-4	flame retardant-4, a grade designation by National Electrical Manufacturers
	Association for glass epoxy laminate
FSK	frequency-shift keying
Ga	gallium
GaN	gallium nitride
Ga_2O_3	gallium trioxide
GaPO ₄	gallium phosphate or gallium orthophosphate
Ge	germanium
GEO	geosynchronous equatorial orbit
GHz	gigahertz
GM	Gifford–McMahon (cryocoolers)
Gox	glucose oxidase
GPS	global positioning system
GSFC	Goddard Space Flight Center
GTO	gate turn-off (thyristor)
Gy	gray
h	hour
	hydrogen cation
НА	hydroxyapatite
HAF	high-attenuation fiber
HASL	hot air solder leveling
HA/Ti-6Al-4V	hydroxyapatite reinforced Ti-6Al-4V
HBT	heterojunction bipolar transistor
HCO ₃ ⁻	bicarbonate anion
HCs	hydrocarbons
HEMT	high electron mobility transistor
HFET	heterojunction FET
HfO ₂	hafnium oxide
Hg	mercury (hydrargyrum)
Hg H ₂ O	water, dihydrogen monoxide
	hydrogen peroxide
H ₂ O ₂ HPHT	high-pressure and high-temperature
6H-SiC	
HT	hexagonal silicon carbide
HTCC	high-temperature (sensors)
HTE	high temperature co-fired ceramic high-temperature electronics
HTML	hypertext markup language
HTS	high-temperature superconductor
HTTP	hypertext transfer protocol
HVAC	high-voltage alternating current
Hz	hertz
IBAD	ion beam-assisted deposition
IC_{I^2C}	integrated circuit
I ² C	inter-integrated circuit
ICF	intracellular fluid (compartment)
ICMP	internet control message protocol
ICQ	short form of the phrase, 'I seek you', it is an internet instant cross-
	platform messenger app supporting audio/video chats, text messaging to cellular network phones, emails and file transfers

iCVD	initiated chemical vapor deposition
IDS/IPS	intrusion detection system/intrusion prevention system
IDT	interdigitated (electrodes)
IEEE	Institute of Electrical and Electronic Engineers
IF	intermediate frequency
i-GaN	intrinsic gallium nitride
IGBT	insulated gate bipolar transistor
IL-3, IL-4,	interleukin-3, interleukin-4, interleukin-10, etc
IL-10, etc	
IM Au	immersion gold
InAlN	indium aluminum nitride
InAs	indium arsenide
InGaAs	indium gallium arsenide
InP	indium phosphide
InSb	indium antimonide
Intelsat	International Telecommunications Satellite Organization
IP	internet protocol
IPS	intrusion prevention system
Ir	iridium
ISOPHOT	Infrared Space Observatory Photometer
ITO	indium tin oxide
JFET	junction FET
JJ	Josephson junction
JTE	junction termination extension
K	kelvin (scale of temperature), key
K ⁺	potassium cation
KCl	potassium chloride
keV	kilo-electronvolt
kg	kilogram
kHz	kilohertz
km	kilometer
kPa	kilopascal
K _{Public}	public key
K _{Secret}	secret key
kV	kilovolt
kW	kilowatt
L	liter
LaAlO ₃	lanthanum aluminate
LaB ₆	lanthanum hexaboride
Langasite	lanthanum gallium silicate, La ₃ Ga ₅ SiO ₁₄
LAO	lanthanum aluminate
LC	Inductance–capacitance (circuit)
LCD	liquid crystal display
LCJFET	lateral channel JFET
LCPs	liquid crystal polymers
LDPC	low density parity coding
LEC	liquid encapsulated Czochralski
LED	light-emitting diode
LEO	low earth orbit
LFI	local file inclusion

LGS	lanthanum gallium silicate, La ₃ Ga ₅ SiO ₁₄
Li	lithium
LO	local oscillator
LPCVD	low-pressure chemical vapor deposition
LPF	low-pass filter
LSN	low-stress silicon nitride
LTCC	low temperature co-fired ceramic
LTE	low-temperature electronics
LTO	low-temperature oxide
M1	classically-activated macrophages
M2	wound-healing macrophages
m	meter
mA	milli-ampere
MAC	molecular absorber coating, managed/mandatory access control
MACOR	trademark for a machinable glass ceramic: fluorophlogopite mica (55%)
	+ borosilicate glass (45%)
MAG	maximum available gain
$M_x Al_x Si_{1-x}$	zeolite, M is a metal or hydrogen ion, $0 < x < 1$ and y is the number
$O_2 \cdot yH_2O$	of water molecules
MDR	managed detection and response
MEA	more electric aircraft
MEMS	microelectromechanical systems
MESFET	metal-semiconductor FET
meV	milli-electronvolt
Mg	magnesium
Mg^{2+}	magnesium cation
MG	metallurgical grade (polysilicon)
MgCr ₂ O ₄ –TiO ₂	magnesium chromite-titanium dioxide
MgO	magnesium entonnee trainfull cloxide
MHz	megahertz
MISFET	metal-insulator-semiconductor FET
mK	millikelvin
MLI	multilayer insulation
mm	millimeter
MMIC	monolithic microwave IC
Mn	manganese
$Mn(NO_3)_2$	manganese nitrate
MnO_2	manganese dioxide
$m\Omega$	milli-ohm
MΩ-cm	
Mo	megaohm-centimeter molybdenum
	2
MOCVD	metal-organic CVD
MOSFET	metal-oxide-semiconductor FET
MoSi ₂	molybdenum disilicide
MPa MPC	megapascal
MPC MPCVD	2-methacryloyloxyethyl phosphorylcholine
MPCVD MPS	microwave plasma-enhanced CVD
MPS Mraga	merged PiN/Schottky (diode)
Mregs	regulatory macrophages
MRI	magnetic resonance imaging

mS	millisiemen
MSOC	modern security operations center
MTTF	mean-time-to-failure
MV	megavolt
mV	millivolt
Ν	nitrogen, north
n	number, neutron
Na ⁺	sodium cation
Na ₂ O	sodium oxide
NaOH	sodium hydroxide
NASA	National Aeronautics and Space Administration
Nb	niobium
nC	nanocoulomb
NH ₃	ammonia
Ni	nickel
NiCr	nickel-chromium, nichrome
NiO	nickel (II) oxide
nm	nanometer
NMOS	n-channel MOSFET
NO	nitric oxide
NO ₂	nitrogen dioxide gas
NO _x	oxides of nitrogen
NP0	negative positive zero
ns	nanosecond
02	oxygen
OCVD	open circuit voltage decay
OH-	hydroxide anion
ONO	silicon oxide-silicon nitride-silicon oxide
OP-AMP	operational amplifier
OSI	open system interconnection (model)
OSP	organic solderability preservative
pA	picoampere
Parylene C	derivative of parylene in which one hydrogen atom in the aryl ring is
i di yiene C	replaced with chlorine
Pb	lead (plumbum)
pBN	pyrolytic boron nitride
pC	pico Coulomb
PCB	printed circuit board
PCBA	printed circuit board assembly
PCM	phase-change material
Pd	palladium
PDMS	polydimethylsiloxane
PDR	packet delivery ratio
PECVD	plasma-enhanced CVD
PEEK	polyetheretherketone
PEG	polyethylene glycol
pH	potential hydrogen
PH ₃	phosphine
pHEMA	poly (2-hydroxyethyl methacrylate)
PKI	public key infrastructure
1 111	puole key influstructure

PLD	pulsed laser deposition
PLGA	poly(lactic-co-glycolic) acid
PMOS	p-channel MOSFET
PMU	power management unit
PO_4^{3-}	phosphate anion
P_2O_5	phosphorous pentoxide
POCl ₃	phosphorous oxychloride
Poly-SiC	polycrystalline silicon carbide
ppm K^{-1}	parts per million Kelvin ⁻¹
ps	picosecond
PSG	phosphosilicate glass
Pt	platinum
PTFE	polytetrafluoroethylene
PTH	plated-through-hole
PVA	poly(vinyl alcohol)
PVDF	polyvinylidene fluoride
QUAD	quadruple
rad	radiation absorbed dose
RADAR	radio detection and ranging
RAM	random-access memory
RBAC	role-based access control
RCE	remote code execution
ReBCO	rare-earth barium copper oxide
RF	radio frequency
RFBG	regenerated fiber Bragg grating
RFI	remote file inclusion
RFID	radio-frequency identification
RH	relative humidity
RHBD	radiation hardening by design
RHBP	radiation hardening by process
RoHS	restriction of hazardous substances
RPCVD	reduced pressure CVD
R-S	reset_set (flip-flop)
R=5 RSFQ	rapid single flux quantum
R_2SiO	structural unit of silicone where R is an organic group
R ₂ SIO RTA	rapid thermal annealing
RTP	reversible thermal panel
RTV	room temperature vulcanization
Ru	ruthenium
S	second
S	sulfur. siemen
SAE	Society of Automotive Engineers International
International	society of Automotive Engineers international
Sapphire	Al ₂ O ₃
SAW	surface acoustic wave
SBD	Schottky barrier diode
SBD	sulfobetaine methacrylate
SBMA	
SCPS	satellite control processors
SCS Se	switched capacitor system selenium
	scientum

SEB	single event burnout
SEE	single event effect
SEFI	single event functional interrupt
SEGR	single event gate rupture
SEI	Sumitomo Electric Industries Ltd
SEJFET	static expansion channel JFET
SEL	single event latchup
SES	single event snapback
SET	single event transient
SEU	single event upset
SFBG	sapphire fiber Bragg grating
SFCL	superconducting FCL
Si	silicon
SIAFET	static induction-injected accumulated FET
SiC	silicon carbide
SIEM	security information and event management
SiGe	silicon-germanium (alloy)
$Si_{1-x}Ge_x$	silicon–germanium (alloy) where x is the mole fraction of germanium in
	the alloy with a value from 0 to 1
SiH_4	silane
SiHCl ₃	trichlorosilane
SiH ₂ Cl ₂	dichlorosilane
SiO ₂	silicon dioxide
SMD	surface mount device
Si ₃ N ₄	silicon nitride
$Si(OC_2H_5)_4$	tetraethylorthosilicate (TEOS)
$Si_xO_yN_z$	silicon oxynitride
SISO	spiral in/spiral out (resonator)
SLD	superluminescent diode
Sm	samarium
$\mathrm{s} \mathrm{m}^{-1}$	second meter ⁻¹
SMF-28	single mode optical fiber-28, a standard telecom fiber
SMLI	stateful multilayer inspection (firewall)
Sn	tin (stannum)
SO_4^{2-}	sulphate anion
SOI	silicon-on-insulator
SPF	sender policy framework
SQUID	superconducting quantum interference device
SRH	Shockley–Read–Hall (recombination)
SS	subthreshold swing
STI	shallow trench isolation
STP	shielded twisted pair (cable)
SYN	synchronize
SYN-ACK	synchronize-acknowledge
Т	tesla
Та	tantalum
TaN	tantalum nitride
Ta_2O_5	tantalum pentoxide
TaSi ₂	tantalum disilicide
TBCCO	thallium-barium-calcium-copper oxide

TC	temperature coefficient
TCP SYN	transmission control protocol synchronize
TCR	TC of resistance
TCS	trichlorosilane
Te	tellurium
TEOS	tetraethylorthosilicate
Ti	titanium
Ti-6Al-4V	90% Ti, 6% aluminum and 4% vanadium alloy
TID	total ionizing dose
TiN	titanium nitride
TiO ₂	titanium dioxide
$TiO_2 - ZrO_2$	titanium dioxide-zirconium dioxide
TiSi ₂	titanium disilicide
TMB	trimethylboron
TMR	triple modular redundancy
ТР	twisted pair (cable)
TPTS	two-phase thermal switch
TPU	thermoplastic polyurethane
TTL	transistor–transistor logic
TV	television
UHVCVD	ultra-high vacuum CVD
UMOSFET	U-shaped MOSFET
URL	uniform resource locator
UTP	unshielded twisted pair (cable)
UV	ultraviolet
V	volt
VAPT	vulnerability assessment and penetration testing (tool)
VCI	volatile corrosion inhibitor (coating)
V_2O_5	vanadium pentoxide
VTJFET	vertical trench JFET
W	tungsten, watt
Wb	weber, the SI unit of magnetic flux. Weber per second = Volt
WI-FI	not the short form of 'wireless fidelity'; a registered trademark of WI-FI
vv 1-1 1	alliance; a family of wireless protocols based on IEEE 802.11 standard; a
	local area networking technology for high-speed data exchange between
	digital devices over short distances through radio communication by
	internet
WN_x	tungsten nitride
WSi ₂	tungsten disilicide
w/v	weight by volume concentration
w/w	weight by weight concentration
XML	
XSS	extensible markup language
	cross-site scripting
YBa ₂ Cu ₃ O ₇	YBCO
YBCO	yttrium barium cuprate
$YCa_4O(BO_3)_3$	yttrium calcium oxoborate
YCOB	YCa ₄ O(BO ₃) ₃
YIG	yttrium iron garnet
Y_2O_3	yttrium oxide
YSZ	yttria stabilized zirconia

Ζ	atomic number
Zn	zinc
Zr	zirconium
ZrO_2	zirconium oxide, zirconia
ZTC	zero temperature coefficient biasing point of a MOSFET

Roman alphabet symbols

а	depth of the active region in MESFET
Α	parameter in the model of Quay et al, area, amplitude of signal
A	magnetic vector potential
A^*	effective Richardson constant
A, B, C	parameters of the Bludau <i>et al</i> model
$A_{\rm V}$	voltage gain
b	parameter in Arora-Hauser-Roulston equation, parameter in
	Chynoweth equations
В	bandwidth of the original signal in FHSS
<i>B</i> (0)	magnetic induction at the surface
B _{FHSS}	bandwidth determined by the spacing between the M carrier
- 11135	frequencies of FHSS signal
b _i	the <i>i</i> th data bit
BV _{CBO}	collector-base breakdown voltage of a bipolar transistor with
D, CBO	emitter open
BV _{CEO}	collector–emitter breakdown voltage of a bipolar transistor with
D' CEO	base open
$BV_{\rm DSS}$	drain-source breakdown voltage of a MOSFET with gate shorted
<i>D</i> / DSS	to source
B(x)	magnetic induction along the x-direction
C_1, C_2, C_3	parameters in the model of threshold ionization energy
C	capacitance
c	velocity of light, damping coefficient (vibration theory)
$C_{\rm ds}, C_{\rm DS}$	drain-source capacitance
$C_{\rm ds}, C_{\rm DS}$ $C_{\rm gd}$	gate-drain capacitance
	intrinsic capacitance
C _{iss} C–L	capacitance-inductance
C-L-C	capacitance-inductance-capacitance
$C_{\rm rss}$	reverse transfer capacitance
$C_{\rm rss}$ $C_{\rm ox}$	oxide capacitance per unit area
	chipping signal
c(t) D	diffusion coefficient of carrier, diffusion coefficient of dopant
D d	diameter, thickness, length, deformation
d dl	linear element
	diffusion constant of electrons in the p-base
$\frac{D_{nB}}{D}$	position-averaged diffusion coefficient across the base profile
D_{nB}	position-dependent diffusion coefficient of electrons in the base
$D_{\rm nB}(x)$	diffusion constant of holes in the base
D _{pB}	diffusion constant of holes in the n^+ -emitter
D _{pE}	areal element
ds	
d(t)	discrete function
Ε	electric field
e F	electronic charge
E _C	energy of conduction band edge
$E_{\rm g}, E_{\rm G}$	energy bandgap
$E_{\rm gB0}$	silicon bandgap at zero doping of the base layer (in an HBT)

$\Delta E_{ m gB,A}$	bandgap narrowing of base layer due to acceptor impurity doping
	effect (in an HBT)
$\Delta E_{\rm gBGe}(x=0)$	bandgap offset of base layer at $x = 0$ (in an HBT)
$\Delta E_{\rm gB,Ge}(x = W_{\rm B})$	bandgap offset of base layer at $x = W_B$ (in an HBT)
$E_{\rm gB}(x)$	position-dependent energy bandgap of SiGe base layer (in an
	HBT)
$E_{ m F}$	Fermi energy level
$E_{ m fn}$	quasi-Fermi level of electrons
E_{fp}	quasi-Fermi level of holes
$E_{\rm g}$	energy bandgap
$E_{g}(0)$	energy bandgap at 0 K
$\langle \tilde{E}_{\rm p} \rangle$	average energy loss due to phonon scattering
$E_{\rm V}$	energy of valence band edge
F	force, free energy
f	frequency of the signal
F_0	peak value of the force waveform
f_0	frequency of the carrier signal in FHSS
F1, F2, F33, F4, F5,	frequencies corresponding to the 8 k-bit patterns: 000, 001, 010,
F6, F7, F8	011, 100, 101, 110, 111
$f_1 = f_0$	low frequency for binary 0 in FHSS
$f_2 = f_0 + \Delta f$	high frequency for binary 1 in FHSS
f_c	carrier frequency in MFSK-FHSS, frequency of the carrier wave in
<i>J</i> C	BPSK
$f_{\rm d}$	difference frequency in MFSK-FHSS
f_i	frequency of the spreading signal during <i>i</i> th hopping period in
<i>J1</i>	FHSS
f_{\max}	maximum frequency of oscillation
$f_{\rm n}$	natural frequency
$f_{\rm T}$	transition frequency (unity-gain frequency)
G	processing gain
g	acceleration due to gravity
s g _d	output conductance
g _m	transconductance of MOSFET
$g_{\rm m0}$	transconductance of MOOT DT transconductance value (maximum) at $V_{GS} = 0$
Sm0 Smb	body-effect conductance
g _{ms}	transconductance of MOSFET in saturated condition
h h	Planck's constant
ħ	reduced Planck's constant = $h/2\pi$
H _C	critical magnetic field of a superconductor
h _{FE}	current gain of a bipolar transistor in a common-emitter
mpe	connection
I, i	current
I, I I _A	current in circuit A
I _A I _B	base current of a bipolar transistor, current flowing through load
1B	resistance of circuit B
L	biasing current (superconductor, Josephson junction, SQUID)
I _b Ic	collector current of a bipolar transistor, critical current
$I_{\rm C}$	(superconductor)
I	collector–base reverse current of a bipolar transistor with emitter
$I_{\rm CBO}$	*
	open

<i>I</i> _{CCH}	current drawn from the supply during logic high output state
I _{CEO}	collector-emitter reverse current of a bipolar transistor with base
	open
I _d	current in SBD
I_{D0}	reverse saturation current (leakage current) of SBD
I _{DS}	drain-source current of a MOSFET
I _{DSS}	drain-source leakage current of a MOSFET with the gate shorted
	to the source, the saturated drain current of a MESFET at $V_{GS} = 0$
$I_{\rm E}$	emitter current of a bipolar transistor
$I_{ m F}$	forward current
$I_{ m fc}$	full saturation current
I _{IL}	input low current
I _{nB}	electron current from the n ⁺ -emitter to the p-base
I _{OFF}	off-state current
I _{ON}	on-state current
Ip	persistent current (superconductor)
$I_{\rm pE}$	hole current from the p-base to the n ⁺ -emitter of a bipolar
	transistor
$I_{\rm R}$	reverse current
Is	saturation current, screening current (superconductor)
J, j	current density
J _B	base current density
$J_{\rm C}, j_{\rm C}$	collector current density of a bipolar transistor, critical current
-	density of a superconductor
J _n	Bessel functions of the first kind
K	stiffness, spring constant
k V V V	number of bits in a binary word
K, K_1, K_2	constants Delterregeneration t
k _B	Boltzmann constant
K _{FE}	damage coefficient related to current gain damage coefficient associated with carrier lifetime
K_{τ} L	
L	length, diffusion length of carrier, channel length of an FET, inductored number of hits per signal element (in EUSS)
I	inductance, number of bits per signal element (in FHSS) diffusion length of electrons in the base
L_{nB}	diffusion length of holes in the emitter
$L_{ m pE}$ M	number of equivalent valleys in the conduction band of SiC,
171	collector multiplication factor, a digit for the number of levels or
	groupings likely for an assigned number of binary variables,
	number of signal elements in MFSK-FHSS, index in MOSFET
	drain current equation in Shoucair's analysis
m_0	rest mass of electron = 9.11×10^{-31} kg
$m_{\rm n}^{*}, m_{\rm p}^{*}$	effective masses of electrons and holes for density-of-state
n ,p	calculations
Ν	dopant concentration
n	electron concentration, ideality factor of SBD
\widetilde{N}	position-averaged ratio of effective densities of states in SiGe and
	Si, across the base profile
NA	total acceptor impurity concentration
N _A ⁻	ionized acceptor impurity concentration
N _{AB}	acceptor concentration in the p-base layer

$N_{\rm C}, N_{\rm V}$	effective densities of states in the conduction and valence bands of
	a semiconductor
N _{crit}	critical impurity density
$N_{\rm C,SiGe}(x)$	position-dependent effective density of states in the conduction
	band of SiGe
ND	total donor impurity concentration
$N_{\mathbf{D}}^{+}$	ionized donor impurity concentration
N _{DE}	doping concentration in the n-emitter layer
$N_{\mathrm{D(g)}}$	doping concentration of polysilicon gate
NI	density of charged impurities, trap density
n _i	intrinsic carrier concentration (of a semiconductor)
$n_{\rm iB}(x)$	position-dependent intrinsic carrier concentration in the base
<i>n</i> _{pB}	number of electrons in the p-base
$\hat{N}(t), n(t)$	noise as a function of time
$N_{\rm V,SiGe}(x)$	position-dependent effective density of states in the valence band of
	SiGe
Р	pressure
р	canonical momentum of a classical particle
p	hole concentration
P_0	amplitude of the transmitted force
p_0	TC of threshold voltage
$p_{\mathbf{B}}(x)$	position-dependent hole concentration in the base varying with
	position x
$p_{\text{H}_2\text{O}}$	partial pressure of water vapor present in air
$p_{\rm H_2O}^{*2}$	equilibrium vapor pressure of water vapor
$P_{\rm I}$	incident power
P_{J}	jammer power
p_{nE}	number of holes in the n ⁺ -emitter
P_{T}	transmitted power
p(t)	product or spread signal in FHSS
Q	total electronic charge
q	electronic charge
Q_0	heat of compression
q_0	parameter in Shoucair's threshold voltage equation (the value of
	$V_{\rm Th}$ at 0 K, as found by extrapolation)
$Q_{\rm a}(T)$	conducting channel charge
$Q_{\rm C}$	heat absorbed from the cold environment at temperature $T_{\rm C}$
$Q_{\rm f}$	fixed charge in the silicon dioxide
R	resistance, the bit rate in the input information signal in DSSS
R_1, R_2, R_3	three reflected beams
R_1, R_3	resistors formed at the junctions between the beams and the
	support frame
R_2, R_4	resistors made at the junctions between the beams and the proof
D	mass
R _A	resistance connected to voltage source $V_{\rm A}$
R-C	resistance-capacitance
R _c	bit rate in the spread signal in DSSS
R _{CHANNEL}	resistance of channel region of a MOSFET
$r_{\text{Corrected}}(t)$	received corrected signal
R _{DRIFT}	resistance of drift region of a MOSFET

$R_{ m D}^{ m Si}$ $R_{ m D}^{ m SiC}$	on-resistance of Si diode
$R_{\rm D}^{\rm SiC}$	on-resistance of SiC diode
R _{DS(ON)}	drain-source on-resistance of a MOSFET
R _G	resistance of the current path to ground
$R_{\rm LA}$	resistance of load resistance of circuit A
R _{LB}	resistance of load resistance of circuit B
R _n	external resistor shunting a JJ
R _{Return}	resistance of return path of current
R _{SA}	resistance of voltage source of circuit A
R _{SB}	resistance of voltage source of circuit B
$R_{\rm s}, R_{\rm S}$	series resistance of the source
r(t)	received signal
<i>S</i> , <i>s</i>	cross-section, area
$s_{\text{Corrected}}(t)$	corrected signal $s(t)$ in DSSS (by including noise)
$s_{\text{Corrected-Jamming}}(t)$	corrected signal $s(t)$ in DSSS (by including noise as well as
concered summing()	jamming)
$s_{\rm d}(t)$	transmitted digital signal with respect to time, BPSK signal
$s_{i}(t)$	transmitted digital signal for one signal element with respect to
	time (in MFSK-FHSS)
S _{Jammer}	power of jammer
S _{Jamming(Filter)}	power of the jamming signal entering the filter
$s_{\text{Jamming}}(t)$	jamming signal as a function of time
s(t)	spread signal in FHSS
T	temperature in the Kelvin scale, periodic time of clock signal,
-	transmissibility, bit period in MFSK-FHSS, bit width in DSSS
t	time
T_0	ambient temperature
$T_{\rm C}$	temperature of the cold environment
$T_{\rm c}$	time taken for translation of the MFSK signal to a new frequency
16	in MFSK-FHSS, bit width of the pseudorandom noise signal in
	DSSS
t _H	hop period
$T_{\rm L}$	lattice temperature
$t_{\rm ox}$	oxide thickness
$T_{\rm s}$	time occupied by each signal element in MFSK-FHSS
U_1, U_2	states of lowest energy on the opposite sides of the tunnel barrier
V, v	voltage
v	velocity of electron
V_0	amplitude of sinusoidal voltage
V_{+}, V_{-}	two signals equal in magnitude but opposite in phase (ϕ_+, ϕ)
V_{1}, V_{2}	voltage magnitudes
$V_{\rm a}$	early voltage
$V_{\rm A}, V_{\rm B}$	voltage sources of circuits A and B
$V_{\rm a}, V_{\rm b}, V_{\rm c}$	potentials at the ground points a, b, c of circuits A, B, C
$V_{\rm AC}$	AC voltage
v _{AC}	base-collector voltage
v _{BE}	base-emitter voltage
V _{BE} V _{bi}	built-in potential
V _{bi} V _{CE}	collector–emitter voltage, voltage conversion efficiency
	collector–emitter voltage in saturation mode
$v_{\rm CES}$	concetor-ennitier voltage in saturation mout

V	aamman mada valtaga
V _{CM}	common-mode voltage
V _d	voltage across SBD
V _{DC}	DC voltage
V _{DD}	drain supply
V _{DM}	differential-mode voltage
$V_{\rm DS}$	drain-source voltage
$V_{ m D}^{ m Si}$	forward voltage of Si diode
$V_{\mathrm{D}}^{\mathrm{SiC}}$	forward voltage of SiC diode
V _{FB}	flatband voltage
V _G	voltage drop produced across resistor $R_{\rm G}$
V _{GS}	gate-source voltage
$V_{\rm GS}$ (ZTC)	$V_{\rm GS}$ at ZTC point
$V_{\rm IN+}, V_{\rm IN-}$	input voltage terminals of the Wheatstone bridge
$v_{\rm nB}$	velocity of electrons at the emitter end of the base
V _{NMH}	high-level noise margin
$V_{\rm NML}$	low-level noise margin
V _{OH}	output high voltage
V _{OL}	output low voltage
	output voltage of the Wheatstone bridge
V _{OUT}	output voltage of the wheatstone ondge
$V_{\rm OUT+}, V_{\rm OUT-}$	voltage of the output signal
V _{Output} V	peak voltage
V _{peak} V	pinch-off voltage of MESFET
$V_{\rm po}$	velocity of holes at the base end of the emitter
$v_{ m pE}$ $V_{ m R}$	reverse bias
V R V _{RLA}	voltage across the load resistance R_{LA} of the source circuit A
	voltage across the load resistance R_{LB} of the source circuit A voltage across the load resistance R_{LB} of the receptor circuit B
V _{RLB} V _{SA}	voltage across the load resistance KLB of the receptor cheart B voltage source of circuit A
	substrate bias, voltage source of circuit B
V _{SB} V	voltage of the signal
$V_{ m Signal}$ $V_{ m SS}$	source supply
V(t)	time-dependent voltage
$V_{\rm sub}, V_{\rm substrate}$	substrate voltage
$V_{\rm sub}$, $V_{\rm substrate}$	threshold voltage of a MOSFET
$V_{\rm Thermal}$	thermal voltage
v_{sat}	saturation velocity of carrier
	-
v_n^{sat}	saturation velocity of electron
$v_{\rm p}^{\rm sat}$	saturation velocity of hole
W	bandwidth of the input information signal in DSSS
W	depletion layer width
$W, W_{\rm B}$	base width of a bipolar transistor, channel width of an FET
W_0	work done at room temperature
$W_{\rm C}$	work done by the gas during expansion in the engine at temper-
	ature $T_{\rm C}$
$W_{\rm D}$	depletion region thickness at the drain
$W_{\rm d}$	bandwidth of the input data signal in MFSH-FHSS
W_{I}	threshold ionization energy
$W_{\rm S}$	depletion region thickness at the source
$W_{\rm s}$	bandwidth of the spread signal in MFSH-FHSS, the bandwidth of
	the spread signal in DSSS

X _C	capacitive reactance
X _L	inductive reactance
<i>Xtalk</i> _{BA}	crosstalk parameter between receptor circuit B and source circuit
	A
$Z_{\mathrm{A}}, Z_{\mathrm{B}}, Z_{\mathrm{C}},, Z_{N}$	impedances of wires W_A , W_B , W_C ,, W_N

Greek/other symbols

$ \begin{array}{c} \alpha \\ \\ \alpha_{it} \\ \\ \alpha_{n} \\ \\ \alpha_{ot} \\ \\ \alpha_{p} \\ \\ \alpha_{T} \end{array} $	fitting parameter in the Varshini equation, index of temperature for mobility variation, ionization coefficient, current gain of a bipolar transistor in the common-base configuration, an empirical constant determining the saturation voltage of the drain current of a MESFET coefficient for interface states ionization coefficient of an electron coefficient for oxide-trapped charges ionization coefficient of a hole base transport factor
β	fitting parameter in the Varshini equation, current gain of a bipolar transistor in the common-emitter configuration, transconductance parameter of a MESFET containing the electron mobility μ_n
$ \beta_{\max} \beta_{NPN} \beta_{PNP} \beta_{Si} \beta_{Si} (T) $	maximum current gain current gain of n-p-n transistor current gain of p-n-p transistor current gain of Si BJT
$\beta_{\rm Si/SiGe}(T)$ γ δ	current gain of Si/SiGe HBT as a function of temperature T emitter injection efficiency of a bipolar transistor, the effective threshold voltage displacement with V_{DS} for a MESFET phase difference
$\Delta C \\ \Delta E_{\mathrm{A}} \\ \Delta E_{\mathrm{D}}$	change in capacitance activation energy of acceptor impurity activation energy of donor impurity
$\Delta E_{\rm g}^{\rm L}$ $\Delta E_{\rm gB}$	energy bandgap difference between the emitter and base semiconductor materials bandgap narrowing of the base
ΔE_{gE} $(\Delta E_g)_{Si/SiGe}$ ΔE_V	bandgap narrowing of the base bandgap narrowing of the emitter difference between energy bandgaps of the Si emitter and Si_xGe_{1-x} base valence band offset
Δf $\Delta N_{\rm it}$ $\Delta N_{\rm ot}$	difference between frequencies f_1 and f_2 interface trap density oxide-trapped charge density
ΔR Δt $\Delta \xi_{g}, \Delta \xi_{gBE}$	change in resistance time interval decrease in bandgap of the emitter relative to base
$\Delta \varsigma_{g}, \Delta \varsigma_{gBE}$ $\Delta \Phi$ ε ε_{0}	phase difference between junctions A, B in a SQUID dielectric constant permittivity of free space
$\varepsilon_{\rm ox}$ $\varepsilon_{\rm s}$	relative permittivity of silicon dioxide relative permittivity of silicon emission coefficient or ideality factor in diode equation, shielding efficiency
η $\eta_{\rm A}$ $\eta_{\rm a}, \eta_{\rm b}$	efficiency of absorption empirical constants efficiency of multiple reflections
$\eta_{\rm MR}$ $\eta_{\rm R}$ θ $\theta(\mathbf{r})$	efficiency of reflection gauge-invariant phase difference, contact angle at solid–liquid interface phase of the wave function

κ	TC of threshold voltage
λ	mean free path of carrier, channel length modulation parameter of MESFET,
	wavelength of the wave, air-fuel ratio in the combustion chamber of
	automobile
λ or $\lambda_{\rm L}$	London penetration length/depth
λ_0	high-energy low-temperature asymptotic phonon mean free path
μ	mobility of carrier, permeability of the material
μ_0	vacuum permeability
μA	microampere
$\mu_{\rm I}$	ionized impurity scattering-limited mobility
$\mu_{\rm i}$	initial mobility
$\mu_{\rm f}$	final mobility
μJ	microJoule
$\mu_{\rm L}$	lattice scattering-limited mobility
μm	micron (micrometer)
$\mu_{\rm n}$	mobility of an electron
$\mu_{\rm nB}$	mobility of electrons in the base
$\mu_{ m p}$	mobility of a hole
$\mu_{\rm pE}$	mobility of holes in the emitter
μŶ	microvolt
μW	microwatt
بې مړ E	coherence length (for Cooper pairs)
$\xi_{ m g}$	bandgap in the emitter
Ξ	an integer
ρ	resistivity of a substance
ρ_1, ρ_2	densities of the Cooper pairs
$\rho_{\rm ox}$	charge density in the oxide
$\rho(\mathbf{r})$	Cooper pair concentration in the superconductor where \mathbf{r} is the position vector
σ	conductivity
$\sigma_{ m v}$	an empirical constant
τ	carrier lifetime, time constant
$ au_{ m B}$	base transit time
$ au_{ m E}$	emitter transit time
$ au_{ m F}$	forward transit time, final lifetime
$ au_{ m HL}$	high-level lifetime
$ au_{\mathrm{I}}$	initial lifetime
$ au_{ m LL}$	low-level lifetime
$ au_{ m p}$	lifetime of holes
$ au_{\rm pE}$	lifetime of holes in the emitter
Φ Φ	magnetic flux threading a loop
Φ_0	magnetic flux quantum (fluxon) fluence, phase difference between the wavefunctions ψ_1 and ψ_2 ; $\phi = \phi_2 - \phi_1$
ϕ	phase difference when $V = 0$
$\phi_0 \\ \phi_1, \phi_2$	phase difference when $V = 0$ phases of the wavefunctions of Cooper pairs, phases of two signals V_1 , V_2
	phases of the wavefulnetions of Cooper pairs, phases of two signals v_1 , v_2 phases adjacent to the junction A in a SQUID
$\Phi_{\text{A1}}, \Phi_{\text{A2}}$ $\Phi_{\text{B1}}, \Phi_{\text{B2}}$	phases adjacent to the junction B in a SQUID
Φ_{B1}, Φ_{B2} Φ_A, Φ_B	phase differences across the JJs A and B in a SQUID
$\phi_{\rm A}, \phi_{\rm B}$	Schottky barrier height
$\varphi_{\rm B} = \Phi_{\rm bn}$	Schottky barrier height of metal–semiconductor interface
Φ_{External}	external magnetic flux
- External	

$\phi_{ m F}$	bulk potential
$\phi_{ m ms}$	metal-semiconductor work function
ψ	wavefunction
ψ_1 and ψ_2	wavefunctions of Cooper pairs
$\psi(\mathbf{r})$	wavefunction of Cooper pair electron where \mathbf{r} is the position vector
ω	angular frequency
Ω	ohm
Ω-cm	ohm-centimeter
$\omega_{\rm n}$	natural angular frequency
Ω_{s}	excitation frequency
∇	nabla (differential operator)