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Chapter 6

Real-world design optimisation problems:
applications and usefulness

Moment-based uncertainty propagation methods sidestep the complications of
finding the MPP that become apparent in the FORM. Furthermore, the moment
approach provides optimiser stability (or convergence) compared to the MC
method. Therefore, by utilising the analytical high-order moments accompanied
by one of the parametric distribution fitting techniques, an arbitrary system response
can be sustained through the use of robust design optimisation (RDO), reliability-
based design optimisation (RBDO), or reliability-based robust design optimisation
(RBRDO). Such an approach overcomes the limitations of the MPP methods as well
as those of other moment-based approaches, thus providing more dependable results
in probabilistic design optimisation.

This chapter applies the moment-based uncertainty evaluation method to several
real-world examples to show its applicability in generating dependable and sturdy
engineering systems.

6.1 The framework for probabilistic design optimisation
Figure 6.1 presents the unified moment-based probabilistic optimisation framework,
which will be referred to as the polynomial moment (PolyMoment) -based approach
in the following discussions. This framework is generic and can be simplified
depending on the optimisation paradigm employed, i.e. RDO, RBDO, or
RBRDO. The steps used to apply the PolyMoment approach are elaborated in
this section, which makes reference to the previous chapters of this book. The
remainder of this chapter presents real-world applications of PolyMoment.

As shown in the flowchart, once the probabilistic optimisation problem has been
formulated by identifying the objective, performance, and constraint functions
according to (3.2), (3.9), or (3.20), the following five steps are executed:
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Step 1: Find the deterministic optimum design using the formulation shown in
(3.1) and use it as the initial design =dk 0 of the moment-based probabilistic
optimisation; dk denotes the design point at the kth iteration.

Step 2: Model the response surface of the constraint function ·G ( )i for = …i N1, , c

(for RBDO/RBRDO) and the performance function ·K ( ) (for RDO/
RBRDO) using a polynomial (refer section 6.1) around design point dk

using the surface region constant ζs and the vector of standard deviation of
the random variables σX ; then determine the design window for selective
sampling using the design window constant ζd and σX (refer to section 6.1.2).

Step 3: For RBDO and RBRDO, find the closed-form expressions of the high-

order moments ⎡⎣ ⎤⎦
∼

E Gi
j

for = …i N1, , c and = …j N1, , m using the analytical

moment propagation framework introduced in chapter 4. For RDO and
RBRDO, find ͠E K[ ] and ͠E K[ ]2 . Here, ·∼

G ( )i and ·K͠ ( ) denote the approximated
·G ( )i and ·K ( ), respectively. Evaluate the numerical values of the moments.

Figure 6.1. The framework of the polynomial moment (PolyMoment)-based probabilistic optimisation for
RDO, RBDO, and RBRDO.
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Step 4: For RBDO and RBRDO, find the probability distribution of the
performance functions using one of the moment-based distribution fitting
methods studied in chapter 5. For RDO and RBRDO, compute the variance
of K͠ using σ = −͠ ͠͠ E K E K[ ] ( [ ])K

2 2 2.
Step 5: Finally, ensure that the constraints β⩽ > ΦG d XPr[ ( , ) 0] ( )i i are met

using the estimated probability distribution (for RBDO and RBRDO) and
that the objective function ·C( ) has been minimised. If either of the conditions
is not met, update design point dk for = +k k 1 using the chosen optimiser
and go to step 2 if the design window exceeds the response region; or step 3
otherwise (refer to section 6.1.2).

6.1.1 Local response surface modelling using multivariate polynomials

In problems whose large-scale optimisation would involve the use of costly
simulations, metamodels (or surrogate models) are used instead of actual simula-
tions to assess the performance and constraints [1]. Polynomial metamodels are a
popular choice for this purpose [2, 3]. Studies [2, 4] have shown that the use of
polynomial metamodels can significantly reduce the cost of probabilistic optimisa-
tion, even when functional relationships between performance functions and input
variables are available. Section 3.2.3 covers techniques commonly used to express
system responses using multivariate polynomials. The choice of model for the
PolyMoment framework given in figure 6.1 is up to the user.

Although polynomial metamodels can greatly improve computational efficiency,
using them as a global approximation sacrifices accuracy when the constraint and
performance functions are highly nonlinear. Therefore, local approximations of the
responses can be made at every iteration. Local approximations using second-order
polynomials are some of the most commonly used approaches, even in MPP-based
optimisation methods [2, 4]. The results of these studies have demonstrated that this
strategy significantly improves both the computational efficiency and the accuracy
of the RBDO computation. The next subsection presents a selective sampling
technique introduced in [2] for the surface reconstruction procedure, which is a way
of further boosting the computational efficiency.

6.1.2 The selective sampling technique

Selective sampling, as proposed by [2], balances global and local modelling by
determining the need for a new local response surface based on a mechanism that
uses a surface region and a design window (explained below). This approach
improves computational efficiency by only constructing a new local response surface
when deemed necessary.

As shown in figure 6.1, the PolyMoment-based optimisation starts by finding the
deterministic optimum =dk 0; then, the response surface is locally approximated
around the intervals:

ζ σ±d . (6.1)k
s X
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The value of the surface region constant ζs is typically selected based on a
multiplicative factor of 1.2–1.5 times the target reliability index β used in the
optimisation problem.

For example, 1.2β is used for moderately nonlinear problems and 1.5β is used for
highly nonlinear ones [5]. The design window constant ζd is a smaller value (ζ ζ<d s)
used for the selective sampling technique. The mechanism of the technique is
illustrated in figure 6.2 using the highly nonlinear Rosenbrock function [6].

Consider the case in which a local response surface (depicted by dashed lines) is
constructed around dk using the intervals (6.1). In the next iteration, the design point

+dk 1 is changed and a decision about the need for a new model is made using the
design window, which is defined as ζ σ±+dk

d X
1 (depicted by dotted lines). As shown

in figure 6.2, when the design window around +dk 1 exceeds the boundaries of the
existing surface region, a new local response surface is constructed around +dk 1. On
the other hand, if the design window remains within the existing surface region, the
current model is used. As a result of implementing the selective sampling technique,
the local response surface does not have to be created at every iteration, thus
improving the overall efficiency of the probabilistic optimisation process.

6.2 Lithium-ion batteries: a reliability-based design optimisation
framework

In complex engineering systems, the relationship between the output of interest and
the input variables is not always clear, so numerical algorithms such as the finite
element method are used to calculate the output variables. The input–output
relationship in an FE model can only be approximately calculated using basic
mathematical models, which are then locally evaluated for further examination
including uncertainty evaluation. A prime example is the modelling of the

Figure 6.2. An illustration of the selective sampling technique using the highly nonlinear Rosenbrock function
[6]. The figure shows the situation in which a new model is required when the design point’s design window
exceeds the surface region and vice versa.
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mechanical strength of lithium-ion batteries when they are subjected to sudden
impact [7]. The goal is to understand the relationship between the mechanical
strength of the battery and three inputs: displacement, surrounding temperature, and
strain rate. The model should consider uncontrolled factors, such as manufacturing
tolerances, shocks, and vibrations, which affect the battery strength estimation. The
purpose of the model is to study the behaviour of the battery’s mechanical strength
and determine optimal input values that result in the minimum or maximum
mechanical force.

Modelling the mechanical strength of a lithium-ion battery (LIB) when it is
subjected to sudden impact is a complex task due to various variables such as
stochastic and dynamic loads, variations in material properties, and interactions
among elements. The force developed in an LIB during a crash is an important
factor in determining its resistance to tensile impact and serves as a basis for its new
mechanical design.

To obtain accurate results, the uncertainties of the inputs and their impact on the
mechanical strength must be considered using an uncertainty evaluation toolbox, as
discussed in previous chapters of the book. An FE model is used as an initial step to
analyse the mechanical forces experienced by the battery in relation to its inputs
through the use of surface plots or optimisation algorithms. However, there are two
challenges associated with this method. First, repeating the FE model’s execution for
uncertainty analysis in the generation of surface plots or optimisation significantly
increases the computational load. Second, the output mechanical force calculated
using the FE model does not account for the uncertainties of the inputs.

A Monte Carlo simulation was considered but discarded, even though it is the
most robust and effective method for this type of uncertainty evaluation. MC
simulation involves the generation of multiple independent realisations of input
quantities using known probability distributions, which are then used to calculate
the output probability distribution. The mean and standard deviation of the output
can also be obtained. However, the computational time required to run the MC
simulation can be prohibitively long if the FE model takes 10 min per execution and
104 realisations are required to obtain a single distribution.

Instead, this case study employs an artificial neural network (ANN) to obtain a
global model of the battery’s mechanical strength and applies the PolyMoment-
based approach (see figure 6.3) to reduce the computational load. This approach
considers variations in the inputs and provide high-order statistics such as the mean,
standard deviation, skewness, and kurtosis, as well as the probability distribution of
the mechanical force.

6.2.1 The finite element model of the lithium-ion battery

The ABAQUS/Explicit version 6.14 software [8] is used to model the mechanics of
the lithium-ion battery with fully coupled thermal stress analysis to understand the
interaction effects of various factors on the maximum crushing load of the battery
pack. The model, described in [7], includes components such as the battery casing,
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jelly roll, composites, and isolators. Smaller components are ignored, as their
deformation is largely insignificant according to [9].

It should be noted that studies such as [10–12] have developed constitutive
mechanical models for the failure assessment of battery packs. In this study, the
battery casing, which is made of steel, and the jelly roll, modelled as crushable foam,
undergo significant plastic deformation during mechanical loading and are consid-
ered in the analysis. This study uses a homogenised mechanical model of the jelly roll
from [10] to reduce computational time, while still accurately replicating the load
and displacement of the 18650 LIB. This allows for finer meshing and more accurate
deformation and failure mechanism predictions in response to the applied load.

The FE model was validated by comparing simulation results with experimental
data, which showed good agreement. The force–displacement plot, force–temper-
ature plot, and force–strain rate plot were compared for the results of the simulation
and the experiment; the comparison revealed similar levels of accuracy. The FE
model was used to obtain compressive force data for variations in displacement,
strain rate, and temperature. The FE model snapshots (see examples on the left-hand
side of figure 6.3) showed the effect of compression loading on the battery structure.

Figure 6.3. A framework for RBDO that utilises moment-based uncertainty evaluation with an FE Model of
the 18650 LIB to obtain the probability distribution and statistical properties of its mechanical strength.
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6.2.2 Incorporating moment-based uncertainty evaluation

In this study, data samples were collected from the finite element model using Latin
hypercube sampling [13] and an ANNwas trained using 70% of the collected data to build
a global model of the mechanical force in a lithium-ion battery, as shown in [7]. The
temperature values ranged from 10 °C to 50 °Cwith an interval of 10 °C, the displacement
ranged from 2mm to 8mm with an interval of 2mm, and the strain rate ranged from 0.05
to 0.20 mm s−1 with an interval of 0.05 mm s−1. The ANNmodel showed high prediction
accuracy with a coefficient of determination (R2) of 0.999 74 (figure 6.4).

To consider the uncertainties in the inputs and obtain the statistical properties
and probability distribution of the mechanical force, the model-based uncertainty
evaluation described in section 4.2 was performed on the ANN model. This
evaluation required the use of a multivariate polynomial to represent the relation-
ship between the inputs and the outputs, and therefore a local model of the
mechanical force Fl was established using a general three-variable second-order
polynomial equation:

∑ ∑ ∑ ∑ ϵ= + + + +
= = = = +

XF a a X a X a XX( ) , (6.2)
i

N

i

N

i

N

j i

N

j

1 1 1 1

l i i ii i ij i00 0
2

where = …X X X{ , , }N1 denotes the input variables, =N 3 is the number of variables,
a a a a{ , , , }i ii ij00 0 is the set of model coefficients, and ϵ is the modelling (or
approximation) error.

The symbolic expressions for the higher-order statistics of the mechanical force
were then computed using a toolbox described in section 4.2. It is important to note
that only the finite element runs used to train the ANN model were needed to
compute the probability distribution of the mechanical force. No additional finite
element simulations were required, as the changes in the response surface model

Figure 6.4. A comparison between the mechanical force predicted by the ANN model and the actual
experimental data obtained from the finite element (FE) model. Reprinted from [7], Copyright 2018, with
permission from Elsevier.
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were captured in the coefficients. However, the form of the model remained
unchanged.

Next, the coefficients of the polynomial model were obtained using the Box–
Behnken design approach for the design of experiments and the least-squares
method [14]. The data samples were collected for the design of experiments to
obtain the numerical values of the higher-order statistics. The local model was
constructed within a range of σ± X3 , where σX is the standard deviation vector of
the input variables.

The least-squares method was employed to build the model, making it possible to
assume that the error term ϵ followed a normal distribution with zero mean and
standard deviation σϵ [14]. This additional random variable was incorporated when
using the toolbox from section 4.2 to compute the higher-order statistics, considering
the modelling error of Fl when calculating its uncertainty. The calculated higher-
order statistics were then used with the Pearson system (described in section 2.5.5) to
approximate the distribution of the mechanical force.

6.2.3 The resultant design

The probability distributions obtained through the PolyMoment-based RBDO
method are compared to those obtained through Monte Carlo simulation using
finite element simulation data in figure 6.5. The comparison is made for a displace-
ment of 5mm, a temperature of 30 °C, a strain rate of 0.125 mm s−1, and with
coefficients of variation of 0.01 and 0.05. The histogram of the Monte Carlo

Figure 6.5. A comparison of the probability distributions produced by PolyMoment-based RBDO and a
Monte Carlo simulation using the FE data for a displacement of 5mm, a temperature of 30 °C, and a strain
rate of 0.125 mm s−1 with coefficients of variance (COVs) of 0.01 and 0.05. Reprinted from [7], Copyright
2018, with permission from Elsevier.
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simulation was generated with a sample size of 500. The results in figure 6.5
demonstrate that the distributions obtained from the proposed framework are in
good agreement with the Monte Carlo simulation. In addition, the figure shows that
as the coefficient of variation of the inputs increases, the spread of the mechanical
strength distribution also increases. Although the study assumes normal distribu-
tions for the inputs, the proposed method is capable of handling non-normal
distributions as well.

PolyMoment is capable of performing probabilistic analyses under various
uncertainty conditions, including different distributions and input uncertainties,
without requiring additional ANN model building or FE simulation evaluations.
This capability is of significant value, especially when FE models require high
computational times for each execution or when design optimisation algorithms
necessitate repeated evaluations of output probability distributions or sensitivities.

Figure 6.6. A depiction of the relationship between the input variables and the mean mechanical strength of an
LIB; one input is held constant in each plot. (a) A constant strain rate of 0.19 mm s−1, (b) a constant
displacement of 7.66 mm, and (c) a constant temperature of 10.47 °C. The input variables are assumed to
follow a normal distribution with a coefficient of variation of 0.01. Reprinted from [7], Copyright 2018, with
permission from Elsevier.
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The mean mechanical force computed by the PolyMoment framework was
used to generate the three surface plots in figure 6.6, which illustrate the influence
of inputs on the mechanical force experienced by the battery. By keeping one of
the inputs constant, it is possible to observe the trend in figure 6.6. This trend
remains consistent regardless of the constant values used, allowing one to infer
the sensitivity of the force experienced by the battery force with respect to its
inputs.

The surface plots in figure 6.6 demonstrate that the mechanical strength of the
battery increases with increasing strain rate and displacement, but decreases with
increasing temperature. These results are aligned with experimental results, which
show that larger external impacts result in higher mechanical stresses and strains.
Higher temperatures decrease battery strength due to decreased hardness and
toughness. The sequential quadratic programming algorithm [15] and other
advanced optimisation methods (genetic algorithm [16], stepwise optimisation
[17, 18]) show that the maximum mean mechanical strength (7530 N) can be
achieved at displacement of 8 mm, a temperature of 10 °C, and a strain rate of
0.2 mm s−1.

From the plots, it can be concluded that: (1) the proposed probabilistic frame-
work accurately predicts the probability distribution of the LIB’s mechanical
strength; (2) lower displacement and temperature result in higher battery strength;
(3) displacement and temperature have equal impacts on battery strength, while the
strain rate has a lower impact.

The application of the PolyMoment framework offers a probabilistic method for
battery design that takes account of uncertainties both inside and outside the
battery, which is vital for battery dependability and security. These findings are
especially relevant to battery manufacturers who aim to meet safety regulations and
prevent accidents in electric vehicles.

6.3 Vehicle design based on side-impact crashworthiness: the
application of a reliability-based robust design optimisation
problem

This section examines a vehicle side-impact crashworthiness study [19], which is an
optimisation problem with nine design variables, eleven random variables, and ten
constraint functions and is commonly used as a benchmark for new probabilistic
optimisation methods. The aim is to reduce the weight of the vehicleW X( ) and the
variance of the performance function K X( ) while improving side-impact crash
protection for passenger safety. To achieve this, the European Enhanced Vehicle-
Safety Committee side-impact procedure [20] is utilised to establish the reliability
constraints of the performance functions.

6.3.1 Problem formulation

The problem formulation (from [19]) is:
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β

= = +
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−

−

−

C w
W
W

wX

d d d

minimize: ( ) ,

subject to: abdomenload 1kN,

upper/middle/lower viscous criteria 0.32 ms ,
upper/middle/lower rib deflection 32 mm,
pubicsymphysisforce 4kN,

velocity of B pillar at middle point 9.9 mm ms ,

velocity of front door at B pillar 15.7 mm ms ,

where: , and 1.282,

(6.3)

K

L U

1
0

1

2

0
2

1

1

1

where =w 0.51 and =w 0.52 are the weights, =W 29.050 kN is the initial weight, and
=K 1.47810 mm is the initial variance of the performance function based on the

original design points given in [19]. The constraint and performance functions, initial
design points, statistical information, and details of the random variables are given
in [19]. The target reliability index for all constraint functions is β = 1.282.

6.3.2 Resultant design

The performance function that represents the safety component of the design
objective in this RBRDO problem is the lower rib deflection. To assess its robustness
and reliability, we adopt a combination of moment-based robustness analysis using
univariate DRM and PMI (from section 3.1) and reliability analysis using PMA
(from section 3.2). The results are compared with those obtained from the
PolyMoment-based RBRDO method, as depicted in figure 6.1, which provides a
comprehensive framework for performing both probabilistic analyses. The final
design outputs are tabulated in table 6.1.

In addition to the total number of function evaluations and the accuracy of
meeting the probability constraints, the accuracy with which σK is computed is also
considered as a performance metric. Unlike the previous examples, the actual
reliabilities computed by the MC method are presented in a radar chart in figure 6.7.
Since the failure probability is10% (β = 1.282), the ideal solution is a radar line that
stays within the two outermost polygon regions. Any radar line that crosses the

Table 6.1. Theperformance of the robustness analysis of thePMI,DRM,andproposedPolyMomentmethods in
vehicle side-impact crashworthiness evaluation. FEV denotes the function evaluation counts [21].

Optimum design

Method W (kN) Calculated σK (mm2) Actual σK (mm2) Total FEV counts

PMI and PMA 28.7780 0.0618 0.6254 4590
DRM and PMA 25.8685 0.4144 0.4645 4940
PolyMoment 27.6034 0.1633 0.1635 1526
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second outermost boundary towards the centre indicates a design violation for that
specific reliability constraint.

Table 6.1 compares the results of three RBRDO techniques in terms of side-
impact crashworthiness. All three methods offer a significant reduction in vehicle
weight and lower rib cage deflection variance. However, the PolyMoment method
outperforms the others by yielding optimal results three times faster.

The PolyMoment method also produces a design that offers a good balance of
vehicle weight and safety, while the variance estimations produced by the MC
method reveal that the DRM and PMI methods underestimate the variance. This
results in lighter but less safe designs. For example, if the DRM is used, the variance
is underestimated at 0.4144 mm2, which might be overlooked by the designer, as the
true value is 0.4645 mm2. Increasing the quadrature points or using bivariate DRM
could improve accuracy, but at the cost of increased function evaluations. The PMI
method has an even greater variance underestimation.

Although the PMA with DRM appears to be the best option for weight
optimisation based on table 6.1, the radar chart in figure 6.7 indicates that this design
is unreliable and fails to meet safety standards when validated using the MC method.
This aligns with the literature [22], which states that multiple MPP iterations can lead
to unreliable designs. However, the design solution produced by the PolyMoment
method always satisfies the failure probability constraint of less than 10%.

6.4 Fuel cells: parameter optimisation for reliable and robust
operation

Hydrogen fuel cells are seen as a promising energy storage technology due to their
environmental friendliness and efficiency compared to traditional combustion

Figure 6.7. The probability of satisfying the constraint functions for the vehicle side-impact crashworthiness
problem. Reproduced from [21], CC BY 3.0.
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technologies. The polymer electrolyte membrane (PEM) fuel cell is considered one
of the most promising types due to its high power output, low operating temper-
ature, efficiency, high current density, and structural safety [23–26]. These benefits
make PEM fuel cells suitable for small-scale power generation and for use in the
automobile industry.

The operation of a PEM fuel cell is shown in figure 6.8. It consists of an
electrolyte sandwiched between two electrodes (the anode and cathode), with bipolar
plates on both sides that distribute hydrogen and oxygen gases and serve as current
collectors. Hydrogen gas flows to the anode, where it is separated into protons and
electrons by a catalyst; the protons flow through the membrane to the cathode and
the electrons flow through an external circuit to generate electricity. On the cathode
side, oxygen reacts with the hydrogen ions to form water, and the exothermic
reaction generates heat [27].

Research has been conducted on PEM fuel cells to optimise their efficiency. The
first fuel cell models date back to the early 1990s [27]. More comprehensive models
were later developed, including a dynamic model that incorporated six submodels
[29]. Other studies optimised operational parameters using novel algorithms [30, 31],
a battery–capacitor hybrid system [32], and stochastic dynamic programming [33].
However, no study has considered the uncertainties in the operating parameters and
their propagation to output uncertainties in PEM fuel cell optimisation.

This subsection utilises a PolyMoment framework that incorporates uncertainty
evaluation into the design optimisation loop of a PEM fuel cell. This approach will
result in a more robust and cost-efficient PEM fuel cell, taking into account factors

Figure 6.8. The polymer electrolyte membrane (PEM) fuel cell. Reprinted from [28], Copyright 2018, with
permission from Elsevier.
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such as manufacturing variations, material variations, and uncontrollable operating
environments [34–38].

6.4.1 Problem formulation

The problem statement focuses on optimising the output power of a PEM fuel cell
described in [29] while considering the hydrogen mass flow rate (equation (6.4)) in an
economical design. The study uses a dynamic fuel cell model made up of six
components and considers the hydrogen mass flow rate to be an important
parameter. The output power of the fuel cell is dependent on five inputs, and the
study aims to analyse the uncertainty of the outputs (fuel cell power and hydrogen
flow rate) and perform a sensitivity analysis to identify the optimal parameters for a
reliable and robust design. The PolyMoment framework is proposed to perform the
analysis in an accurate and efficient manner.

λ=W
I
F

M n
2

, (6.4)H
st

H an2 2

where Ist is the stack current, F is the Faraday constant,MH2
is the molecular mass of

hydrogen, n is the number of cells, and λan is the hydrogen excess rate.
The efficiency of the fuel cell’s output power is influenced by various parameters,

such as the stack current Ist, the stack temperatureT , the oxygen excess ratio λca, the
hydrogen excess ratio λ ,an , and the inlet air humidity φca, in (refer to figure 6.9). These
operating conditions are usually optimised for maximum output power efficiency
and minimum hydrogen consumption. To assist this optimisation process, response
surface methodology (RSM) is used to describe the relationship between the output
and the inputs of the system. This study takes account of the uncertainties in fuel cell
output power and hydrogen consumption in the optimisation process, as illustrated
in figure 6.10.

The response surface of the PEM fuel cell’s output power is constructed using a
second-order polynomial model:

Figure 6.9. The relationships and modelling of variables in the optimisation of PEM fuel cell design with a
focus on optimising power subject to a low hydrogen mass flow rate. Reprinted from [28], Copyright 2018,
with permission from Elsevier.
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i i ii i ij i00 0
2

Here, ·G( ) denotes the output response, X denotes the vector of design variables, N
denotes the number of design variables, and a a a a{ , , , }i ii ij00 0 is the set of model
coefficients. Table 6.2 presents the lower and upper bounds of the input stack
current, stack temperature, oxygen excess ratio, hydrogen excess ratio, and inlet air
humidity.

The first step is to derive symbolic expressions for the high-order moment of ·G( )
using the toolbox in section 4.2. The next step involves substituting the numerical

Figure 6.10. The framework used to apply PolyMoment to determine the statistical properties of the PEM fuel
cell. Reprinted from [28], Copyright 2018, with permission from Elsevier.

Table 6.2. The minimum and maximum values of the design variables used to construct the RSM model of
PEM fuel cell output power and the statistical properties (probability distribution and coefficient of variation)
attributed to the respective design variables for probabilistic analysis.

Design variable
Minimum
value

Median
value

Maximum
value

Probability
distribution

Coefficient of
variation

Stack current, Ist (A) 36.0 43.0 50.0 Uniform 0.01
Stack temperature,

T (°C)
55.0 60.0 65.0 Uniform 0.01

Oxygen excess ratio,
λca

1.5 2.5 3.5 Normal 0.01

Hydrogen excess
ratio, λan

1.1 1.3 1.5 Normal 0.01

Inlet air humidity,
ϕca, in

0.6 0.8 1.0 Uniform 0.01
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values of the model coefficients and the other parameters of X to obtain the
statistical parameters of ·G( ). The optional third step is a sensitivity or robustness
analysis.

6.4.2 Sensitivity analysis

This study aims to find the optimal combination of design variables that results in
the highest output power P and the lowest hydrogen mass flow rateWH2

for a PEM
fuel cell. To ensure economical operation, it is crucial to minimiseWH2

. To determine
the design’s robustness, the sensitivities of the mean and standard deviation of P and
WH2

with respect to the stack current Ist and the hydrogen excess ratio λan are
analysed using the 3D surface plot shown in figure 6.11.

The other parameters were kept constant and were assumed to have a coefficient
of variation of 0.01. As can be seen in figures 6.11(a) and (b), the mean and standard
deviation of the output power are more sensitive to changes in Ist than to changes in
λan. However, both Ist and λan have an equal impact on the mean and standard
deviation ofWH2

, as shown in figures 6.11(c) and (d).

Figure 6.11. Surface plots showing the influence of the stack current Ist and hydrogen excess ratio λan on the
(a) mean and (b) standard deviation of the output power P as well as (c) on the mean and (d) standard
deviation of the hydrogen mass flow rate. The other parameters are kept constant, as follows: the stack
temperature is 60 °C, the oxygen excess ratio is 2.5, and the air humidity ratio is 0.8. All the parameters are
assumed to have distinct probability distributions with a coefficient of variation of 0.01. Reprinted from [28],
Copyright 2018, with permission from Elsevier.
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6.4.3 Determination of the optimal operating conditions for RBDO and RBRDO

There are two ways to optimise the design of a PEM fuel cell for optimal power
output while maintaining a low hydrogen flow rate of 3e−5 kg s−1: (1) reliability-
based optimisation with a 99% confidence constraint and (2) reliability-based robust
optimisation, which also minimises the standard deviation of the output power and
the hydrogen flow rate.

The objectives and constraints are set using a sequential quadratic programming
algorithm [39], and the PolyMoment framework is used to calculate the reliability
and the standard deviation. The Pearson system of distributions is used for
approximation. The output power is represented by equation (6.5) with =N 5,
and the hydrogen mass flow rate is given by equation (6.4).

For this case study, the problem of reliability-based optimisation can be
mathematically formulated as:

μ

⩽
⩽ ⩽ =

−W

E

d X

d d d d X

Maximise: ,

subject to: ( , ) 3e kg,

where: and [ ],

(6.6)
d XG( , )

H
5

L U
2

where dL and dU are the lower and upper bounds of the vector of design variables d,
respectively.

Based on the optimisation results, the highest mean output power of 1329.56 W
can be achieved with the following parameters: a stack current of 42.16 A, a stack
temperature of 63.98 °C, an oxygen excess ratio of 3.50, a hydrogen excess ratio of
1.10, and an inlet relative air humidity of 0.63. These values also ensure, with 99%
confidence, that the hydrogen flow rate stays below 3e−5 kg s−1. The results are even
consistent with those of other advanced optimisation algorithms, such as the genetic
algorithm [16] and stepwise optimisation [17, 18].

Figure 6.12 compares the results of the PolyMoment framework with Monte
Carlo simulations that include and exclude uncertainties in the hydrogen mass flow
rate. The Monte Carlo simulations, which are considered to represent the current
state of the art in the field but are computationally intensive, demonstrate close
agreement with the results from PolyMoment. Furthermore, PolyMoment offers a
more computationally efficient approach than the Monte Carlo simulations.

However, the Monte Carlo simulation that excludes uncertainties in the hydrogen
mass flow rate has a 50% chance of exceeding the design constraint for the hydrogen
mass flow rate, which could lead to increased hydrogen consumption and cost. This
highlights the importance of considering uncertainties when optimising for the
power output in this field. The maximum power output that can be attained without
considering uncertainties is 1545.25 W, as reported in [29].

The standard deviations of the output power and the hydrogen flow rate of the
PEM fuel cell can be reduced to improve the quality of the design. This results in a
robust design that is less affected by external factors and more consistent in its
output. PolyMoment can be used to calculate the standard deviation and minimise it
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as an additional objective for a robust fuel cell design. Mathematically, the
minimisation of these additional parameters can be added into the optimisation
algorithm as follows:

μ
μ

σ
σ

σ
σ

+ +

⩽
⩽ ⩽ =

−

w w w

W

E

d X

d d d d X

minimize: ,

subject to: ( , ) 3e kg,

where: and [ ],

(6.7)

W

W
1
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G
2

G

G
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H
5

L U

0 0

H2

H2
0

2

where G0 andWH
0

2
denote the initial values of the output power and hydrogen flow

rate, respectively, and w w w{ , , }1 2 3 are weights assigned by the design engineer based
on design priorities such that + + =w w w 11 2 3 . The standard deviations of both ·G( )
and ·W ( )H2

can be symbolically obtained from PolyMoment in figure 6.10.
The impacts of setting different priorities in the optimisation problem (6.7) were

studied using three sets of weights w w w{ , , }1 2 3 . Table 6.3 shows the values of three
parameters of interest for all three scenarios obtained through MC simulation. The
results show that the three scenarios lead to different fuel cell designs. The designer
can choose the weights in problem (6.7) to balance the trade-off between maximising
the mean power, the robustness of power, and the hydrogen flow rate. A trade-off
and cost–benefit analysis is needed for the final optimal operating parameters.
PolyMoment is a preferable option for uncertainty evaluation, as it is accurate,
computationally efficient, and straightforward to use for design optimisation
regardless of the problem’s nonlinearity and dimensionality. Incorporating system
uncertainties is crucial for a dependable and high-quality PEM fuel cell design,
making it a valuable tool for design engineers.

Figure 6.12. A comparison between the probability distribution obtained from the PolyMoment framework
and those obtained using Monte Carlo simulations for the optimal parameter values that lead to the maximum
output power. Reprinted from [28], Copyright 2018, with permission from Elsevier.
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6.5 Magnetic sensor module design
The design of magnetic sensors often involves the use of computer simulations, such
as the FE modeling, followed by a design optimisation process to determine the
optimal parameters that meet system constraints. However, this approach can be
computationally expensive for high-dimensional systems and does not account for
variations in manufacture that can lead to the production of noncompliant products.
To address these shortcomings, this case study presents the use of a combined
approach that uses the parametric model order reduction (PMOR) method and the
reliability-based design optimisation method within the PolyMoment framework.

Specifically, it focuses on the design of a magnetic sensor for a linear motor mover
position detector and uses a three-dimensional (3D) model. A new approach is
proposed, incorporating proper orthogonal decomposition with dynamic mode
decomposition (POD-DMD) [40, 41], multiparameter moment matching, and a
response surface moment-based RBDO method that uses the PolyMoment frame-
work to achieve an accurate and efficient analysis. This method reduces the risk of
noncompliance caused by manufacturing uncertainties and provides a faster
computational process. The design obtained from the presented method is compared
to that obtained from a deterministic optimisation method to demonstrate its
effectiveness.

Figure 6.13(a) displays a 3D view of the magnetic sensor and its placement on the
stator of the linear motor in the xyz plane. The magnetic sensor module includes a
Nd–Fe–B permanent magnet (PM) and three iron cores, labelled I, II, and III. A Hall
integrated circuit is positioned between cores I and II. The PM is magnetised in the
negative Y direction and the desired magnetic flux density BX is measured at the
midpoint of the airgap g2 in the X direction.

The sensor operates by detecting changes in flux density caused by changes in
reluctance. Due to the alternating tooth–slot structure of the linear motor stator, the
flux density distribution at the midpoint of g2 is sinusoidal for a two-pole pitch
displacement. For the Hall integrated circuit to output a minimum of 1 V peak to
peak, the sensor’s peak flux density (PFD) must be at least 0.1 T. The total harmonic
distortion (THD) should be less than 1%. To meet these requirements, the sensor
must undergo a thorough parametric study and optimisation.

Table 6.3. The differences in the mean and the standard deviation of a fuel cell’s output power and the
standard deviation of hydrogen flow rate for different weights in the optimisation problem shown in (6.7). The
results were obtained using MC simulation.

Weights
w w w{ , , }1 2 3

Mean output
power, μG (W)

Standard deviation of the
output power, σG (kg s−1)

Standard deviation of the
hydrogen flow rate, σWH2

(kg s−1)

{1,0,0} 1329.56 12.32 4.11e−7

{ }, ,1
3

1
3

1
3

1121.32 9.93 3.51e−7

{ }, ,5
9

2
9

2
9

1328.28 12.20 4.10e−7
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6.5.1 Problem formulation

Figure 6.14 shows the PMOR-RBDO framework, which starts with a POD-DMD-
based PMOR method to achieve a computationally efficient result and then uses an
RBDO technique to find the optimal sensor design that takes account of manu-
facturing uncertainties. To find the global optimum, this study uses the genetic
algorithm (GA) as a heuristic method instead of gradient-based optimisers.

Equation (6.8) represents the mathematical model of the magnetic sensor module
shown in figure 6.13, which is described as a nonlinear magnetostatic problem with
no external electric source. In this equation, M and K are square matrices of size

×n n,Y t( ) is the state vector, F t( ) is the source vector, and N t( ) is the nonlinearity
associated with the system. The equation shows how the magnetic field MY t( ) in the
module is affected by the derivative of Y t( ), the source vector F t( ), and the
nonlinearity N t( ).

+ = +MY K
Y

F N Yt
d t

dt
t t( )

( )
( ) ( ( )) (6.8)

To make this high-dimensional system more manageable, equation (6.6.1) is trans-
formed into equation (6.6.2) using a combination of the singular value decom-
position (SVD)-based POD method and the DMD [40, 43].

+ = Φ + Φ Φ* *M Y K
Y

Ft
d t

dt
t e p( )

( )
( ) diag( ) , (6.9)r r r

r w tDMD DMD

where = Φ †p F( )DMD
1, = Φ Φ*M Mr , and = Φ Φ*K Kr . ΦDMD are the DMD bases

for rank k, p is the initial condition, and wi are the eigenvalues. To include the effects
of parameters on the system, multiparameter moment matching with the Taylor
series is used to parameterise the equation. The magnetic sensor design is optimised
using two different scenarios:

1. Deterministic optimisation: in this scenario, only the PMOR model is used,
which does not account for the uncertainties in the design parameters due to
manufacture. This method aims to optimise the peak flux density and total
harmonic distortion without considering their tolerance effects.

Figure 6.13. A linear position sensor module located on a stator. (a) The arrangement of the sensor module
arrangement on the stator and (b) the parameters of the sensor module. PM denotes permanent magnet [42].
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2. Response surface moment-based RBDO: in this scenario, the tolerance effects of
the design parameters are considered during the optimisation, with a near-
negligible failure probability of 0.01%. The optimisation takes account of the
uncertainties caused by machines with tolerances of ±0.05 and ±0.1 mm. The
actual constraint noncompliance is then calculated using the Monte Carlo
method with 106 samples.

Figure 6.14. The flowchart of the PMOR-RBDO Framework. The RBDO portion of the flowchart, shown in
the left half, incorporates the PolyMoment framework [42].
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6.5.2 The results of the PolyMoment-based RBDO method

The results are summarised in table 6.4, which shows that the deterministic design
meets the set constraints but has a higher probability of failing to meet the required
PFD constraint than the desired 0.01% because it does not consider the effects of
manufacturing tolerance. Figure 6.15 shows that up to 11% of the probability
distribution of the PFD could fail to meet the desired constraints for higher
manufacturing uncertainties. On the other hand, RBDO avoids this problem and
does not compromise the THD, as shown in table 6.4. The results also show that
using the PMOR model and the proposed PolyMoment-based RBDO method
improves the computational speed significantly compared to using the full FE
model. The proposed method provides a significant improvement in terms of design
noncompliance cost, computational speed, and accuracy, making it valuable for the
production-ready design of magnetic sensors.

6.6 A multistorey three-dimensional steel structure: reliability
analysis and optimisation

This section describes a case study in the field of structural design optimisation that
focuses on a complex and challenging engineering problem. The study uses the
PolyMoment-based RBDO method to evaluate uncertainty and ensure safety, by
combining high-order moment-based uncertainty analysis with efficient response
surface modelling. This method outperforms existing methods in terms of accuracy
and computational efficiency, making it a significant case study in the field.

Figure 6.16 illustrates the finite element model of a five-story steel-framed modular
building consisting of six identical corner-supported modules on each floor. The
modules are 7.2 m long, 3.2 m wide, and 3.0 m high, with parallel-flange sections for
beams and square hollow sections for columns. The floors are made of 100 mm thick
concrete slabs, and all inter-module connections are assumed to be ideally pinned.

Uncertainties in steel-framed modular buildings often stem from the use of
standardised prefabricated steel modules. When multiple modules are put together

Table 6.4. Optimal design of the magnetic sensor and constraint compliance for deterministic optimisation
and RBDO. FEV denotes function evaluation counts.

Optimisation
method

Tolerance
(mm)

Optimal
design

Failure
probability

Required FEV
by GA

PMOR model
calls

PFD
(T)

THD
(%)

PFD
(%)

THD
(%)

Deterministic
(Scenario 1)

±0.05 0.13 0.24 0.63 0.00 2200 2200
±0.1 0.13 0.24 10.97 0.00 2200 2200

RBDO (Scenario 2) ±0.05 0.16 0.24 0.00 0.00 58 600 7020
±0.1 0.20 0.24 0.00 0.00 58 600 6560
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to form a complex frame, it is crucial to consider the overall structural reliability. This
is where the computational efficiency and accuracy of the PolyMoment method can be
highly beneficial for engineers. The successful application of this method to a complex
three-dimensional multistorey steel structure highlights its importance in understand-
ing the implications of analytical uncertainty evaluation in engineering design.

6.6.1 Problem formulation

The FE model for the structure shown in figure 6.16 was obtained using the method
outlined in [44]. The model represents a multistorey steel-framed structure that is

Figure 6.15. Probability distributions of the peak flux densities (PFDs) obtained using the MC method for
deterministic and RBDO designs with manufacturing tolerances of (a) ±0.05 mm and (b) ±0.1 mm.

Figure 6.16. A three-dimensional multistorey structure in which (a) represents the single volumetric module
and (b) represents the full structural model. Reprinted from [44], Copyright 2020, with permission from
Elsevier.
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subjected to a combination of loads, including self-weight and superimposed dead
load, live load, and wind load. The dead load calculation was performed using the
ANSYS gravity field [45]. The wind load was determined based on the wind speed
for Cyclonic Region C as per the Standards Association of Australia’s AS1170.2
[46], and the design wind direction was assumed to be parallel to the global X-
direction.

Three performance functions were selected, includingG1, which is the inter-storey
drift under SLS loading (AS1170.0 [3]), G2, which is the ULS performance of
columns subjected to combined axial *Nx and flexural actions *My and *Mz (AS4100
[47]), and G3, which is the ULS performance of beams (AS4100 [47]). The structure
was considered to have failed if any one of the performance functions was not met.
The target reliability index was set at β = 3 forG1 and β = 3.8 for G2 andG3, as per
ISO 13822 [48].

In the optimisation process, variables such as Mcx and Mcy represent the member
moment capacities in the principal and minor axes, respectively. Ncx is the column
capacity, Zbe and Zce are the section modules for beams and columns, respectively,
Ab and Ac are the cross-sectional areas of beams and columns, and details such as the
material and geometric properties can be found in table 6.5. The probabilistic
models for load variables in this table were determined based on the Australian
Building Codes Board Handbook [49] and the material models based on the Joint
Committee on Structural Safety code [50].

The starting point for the optimisation was set at
=w t w d t t{ , , , , , } {100, 9.0, 133, 202, 7.0, 5.0}c c fb bb fb wb mm. The optimisation

of the structure was carried out by minimising the total volume of the columns and
beams and reducing the structural self-weight, as described in detail below:
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6.6.2 The resultant design and benchmarking

Table 6.6 presents the results of the RBDO problem for the complex steel structure
shown in figure 6.16; in this table, reliability analysis based on PMA from section 3.2
is utilised to compare the outcomes of the PolyMoment method, which was applied
with up to =N 4m and =N 8m moments. The table reports the reliability indexes of
the final RBDO designs, which were obtained from the ANSYS model of the
structure. The reliability indexes were calculated using the Monte Carlo method.
Only the final reliability index of performance function G1 is shown in table 6.6, as
the reliability indexes of both G2 and G3 are infinite. This implies that G1 is the only
constraint that plays a role in determining the final design.

The results reveal that the PolyMoment-based method requires significantly fewer
function evaluations (540 evaluations) compared to the PMA method (6022
evaluations), leading to an approximately elevenfold increase in computational
efficiency. The design obtained using the PolyMoment method meets the target
reliability index of β = 3 as described in (6.10), while the design obtained using the
MPP-based RBDO method does not meet this target, potentially resulting in an
underdesigned structure.

In addition, the results in table 6.6 show that the use of higher-order moments
improves the accuracy of the reliability analysis and results in a more optimum final
design with a lower total cross-sectional area, without sacrificing the number of

Table 6.5. Properties of the random variables for the three-dimensional multistorey structure problem; CoV
denotes the coefficient of variation.

Description Distribution

Median

CoVSLS ULS

SIDL Superimposed dead load (Pa) Lognormal 1000 0.10
LL Live load (Pa) Lognormal 1500 0.43
wc Width of column (Pa) Normal Not applicable 0.0205
tc Wall thickness of column (Pa) Normal Not applicable 0.0362
wfb Flange width of beam (Pa) Normal Not applicable 0.0132
dbb Depth of beam (Pa) Normal Not applicable 0.0364
tfb Flange thickness of beam (Pa) Normal Not applicable 0.0182
twb Web thickness of beam (Pa) Normal Not applicable 0.0151
Es Elastic modulus of steel (Pa) Lognormal 206×109 0.03
Ec Elastic modulus of concrete (Pa) Lognormal 21.8×109 0.15
pW

Windward wind pressure (Pa) Lognormal 169.5040 432.0960 0.16

pL
Leeward wind pressure (Pa) Lognormal 56.4987 144.0309 0.16

pR
Roof wind pressure (Pa) Lognormal 169.4961 432.0927 0.16

RouS Density of steel (kg m−3) Lognormal 7700 0.01
RouC Density of concrete (kg m−3) Lognormal 2400 0.04
fy

Yield stress of steel (Pa) Lognormal 350×106 0.05
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function evaluations. This efficiency and accuracy improvement is due to the
absence of MPP iterations in finding the reliability constraints and the selective
sampling paradigm in finding the local response surface models.

It is important to note that while the localised response surface with selective
sampling mechanism could be used for MPP-based methods, the added assumptions
on top of the MPP transformation and search strategies may negatively affect its
reliability constraint evaluation accuracy. As such, the PolyMoment-based proba-
bilistic optimisation methodology is a more desirable choice for complex problems,
especially for safety-critical structural designs that are required to meet building
standards and their reliability constraints, such as wind and earthquakes.

6.7 Summary
This chapter presented a unified moment-based probabilistic optimisation frame-
work called the PolyMoment-based approach, which is generic and can be adapted
to RDO, RBDO, and RBRDO optimisation paradigms. The methodology was
explained in detail and its use was demonstrated through five real-world applica-
tions: lithium-ion batteries, vehicle side-impact crashworthiness, a magnetic sensor
module, and a multistorey steel structure.

References
[1] Missoum S, Ramu P and Haftka R T 2007 A convex hull approach for the reliability-based

design optimization of nonlinear transient dynamic problems Comput. Meth. Appl. Mech.
Eng. 196 2895–906

[2] Youn B D and Choi K K 2004 A new response surface methodology for reliability-based
design optimization Comput. Struct. 82 241–56

[3] 2002 Structural design action—part 0: general principles AS/NZS 1170.0:2002 Standards
New Zealand https://www.standards.govt.nz/shop/asnzs-1170-02002

[4] Mansour R and Olsson M 2016 Response surface single loop reliability-based design
optimization with higher-order reliability assessment Struct. Multidiscip. Optim. 54 63–79

Table 6.6. RBDO results for the three-dimensional multistorey structure problem. The reliability indexes β of
G2 and G3 are infinite. The PMA was employed using a recent MPP-based algorithm provided in [51] for
reliability analysis.

Method

Final design

FEV counts β of G1wc tc wfb dbb tfb twb C

Deterministic 0.0947 0.0050 0.0750 0.2300 0.0120 0.0060 5.0801 120
PMA 0.0988 0.0050 0.0750 0.2300 0.0120 0.0060 5.1828 6022 2.8043
PolyMoment ( =N 4m ) 0.0976 0.0050 0.0750 0.2300 0.0120 0.0060 5.2000 540 3.0274
PolyMoment ( =N 8m ) 0.0968 0.0050 0.0750 0.2300 0.0120 0.0060 5.1108 540 3.0107

Analytical Evaluation of Uncertainty Propagation for Probabilistic Design Optimisation

6-26

https://doi.org/10.1016/j.cma.2006.12.008
https://doi.org/10.1016/j.compstruc.2003.09.002
https://www.standards.govt.nz/shop/asnzs-1170-02002
https://doi.org/10.1007/s00158-015-1386-x


[5] Chen Z, Qiu H, Gao L, Li X and Li P 2014 A local adaptive sampling method for reliability-
based design optimization using Kriging model Struct. Multidiscip. Optim. 49 401–16

[6] Shang Y-W and Qiu Y-H 2006 A note on the extended Rosenbrock function Evol. Comput.
14 119–26

[7] Rajan A, Vijayaraghavan V, Ooi M P-L, Garg A and Kuang Y C 2018 A simulation-based
probabilistic framework for lithium-ion battery modelling Measurement 115 87–94

[8] Abaqus version 6.10. Abaqus User Subroutines Reference Manual, Providence, RI Dassault
Systèmes Simulia Corp., 2010

[9] Sahraei E, Kahn M, Meier J and Wierzbicki T 2015 Modelling of cracks developed in
lithium-ion cells under mechanical loading RSC Adv. 5 80369–80

[10] Dufo-López R, Lujano-Rojas J M and Bernal-Agustín J L 2014 Comparison of different
lead–acid battery lifetime prediction models for use in simulation of stand-alone photovoltaic
systems Appl. Energy 115 242–53

[11] Yarime M, Shiroyama H and Kuroki Y 2008 The strategies of the Japanese auto industry in
developing hybrid and fuel cell vehicles Making Choices about Hydrogen: Transport Issues for
Developing Countries (Tokyo: UNU Press) pp 187–212 https://www.idrc.ca/en/book/making-
choices-about-hydrogen-transport-issues-developing-countries International Development
Research Centre (IDRC)

[12] Young K, Wang C, Wang L Y and Strunz K 2013 Electric vehicle battery technologies
Electric Vehicle Integration into Modern Power Networks (New York: Springer) pp 15–56

[13] Iman R 2008 Latin Hypercube Sampling Encyclopedia of Statistical Sciences (Hoboken, NJ:
Wiley)

[14] Draper N 1995 Response Surface Methodology: Process and Product Optimization Using
Designed Experiments: RH Myers and DC Montgomery vol 59 (New York: Wiley) p 714

[15] Nocedal J and Wright S J 2006 Quadratic programming Numerical Optimization (New
York: Springer) pp 448–92

[16] Deb K, Pratap A, Agarwal S and Meyarivan T 2002 A fast and elitist multiobjective genetic
algorithm: NSGA-II IEEE Trans. Evol. Comput. 6 182–97

[17] Tian Q, Zhao D, Li Z and Zhu Q 2017 Robust and stepwise optimization design for CO2

pipeline transportation Int. J. Greenhouse Gas Control 58 10–8
[18] Zhao D, Tian Q, Li Z and Zhu Q 2016 A new stepwise and piecewise optimization approach

for CO2 pipeline Int. J. Greenhouse Gas Control 49 192–200
[19] Youn B D, Choi K, Yang R-J and Gu L 2004 Reliability-based design optimization for

crashworthiness of vehicle side impact Struct. Multidiscip. Optim. 26 272–83
[20] W. G. European Enhanced Vehicle-Safety Committee Side Impact https://eevc.net/EEVC/

EN/Past/WG09/WG09.html (accessed January 2023)
[21] Rajan A, Ooi M, Kuang Y C and Demidenko S 2017 Reliability-based design optimisation

of technical systems: analytical response surface moments method J. Eng. 2017 36–46
[22] Valdebenito M A and Schuller G I 2010 A survey on approaches for reliability-based

optimization Struct. Multidiscip. Optim. 42 645–63
[23] Åhman M 2001 Primary energy efficiency of alternative powertrains in vehicles Energy 26

973–89
[24] Schäfer A, Heywood J B and Weiss M A 2006 Future fuel cell and internal combustion

engine automobile technologies: a 25-year life cycle and fleet impact assessment Energy 31
2064–87

Analytical Evaluation of Uncertainty Propagation for Probabilistic Design Optimisation

6-27

https://doi.org/10.1007/s00158-013-0988-4
https://doi.org/10.1162/evco.2006.14.1.119
https://doi.org/10.1016/j.measurement.2017.10.033
https://doi.org/10.1039/C5RA17865G
https://doi.org/10.1016/j.apenergy.2013.11.021
https://www.idrc.ca/en/book/making-choices-about-hydrogen-transport-issues-developing-countries
https://www.idrc.ca/en/book/making-choices-about-hydrogen-transport-issues-developing-countries
https://doi.org/10.1109/4235.996017
https://doi.org/10.1016/j.ijggc.2017.01.003
https://doi.org/10.1016/j.ijggc.2016.03.005
https://doi.org/10.1007/s00158-003-0345-0
https://eevc.net/EEVC/EN/Past/WG09/WG09.html
https://eevc.net/EEVC/EN/Past/WG09/WG09.html
https://doi.org/10.1049/joe.2016.0244
https://doi.org/10.1007/s00158-010-0518-6
https://doi.org/10.1016/S0360-5442(01)00049-4
https://doi.org/10.1016/S0360-5442(01)00049-4
https://doi.org/10.1016/j.energy.2005.09.011
https://doi.org/10.1016/j.energy.2005.09.011


[25] Corbo P, Migliardini F and Veneri O 2007 Performance investigation of 2.4 kW PEM fuel
cell stack in vehicles Int. J. Hydrog. Energy 32 4340–9

[26] Srinivasan S, Velev O A, Parthasarathy A, Manko D J and Appleby A J 1991 High energy
efficiency and high power density proton exchange membrane fuel cells—electrode kinetics
and mass transport J. Power Sources 36 299–320

[27] Verbrugge M W and Hill R F 1990 Ion and solvent transport in ion‐exchange membranes:
II. A radiotracer study of the sulfuric‐acid, nation‐117 system J. Electrochem. Soc. 137 893

[28] Rajan A, Garg A, Vijayaraghavan V, Kuang Y C and Ooi M P-L 2018 Parameter
optimization of polymer electrolyte membrane fuel cell using moment-based uncertainty
evaluation technique J. Energy Storage 15 8–16

[29] Xuan D, Li Z, Kim J and Kim Y 2009 Optimal operating points of PEM fuel cell model with
RSM J. Mech. Sci. Technol. 23 717–28

[30] Park C, Oh K, Kim D and Kim H 2004 Development of fuel cell hybrid electric vehicle
performance simulator Int. J. Automot. Technol. 5 287–95 http://www.ijat.net/journal/view.
php?number=194

[31] Al-Baghdadi M A S and Al-Janabi H A S 2007 Parametric and optimization study of a PEM
fuel cell performance using three-dimensional computational fluid dynamics model Renew.
Energy 32 1077–101

[32] Sikha G and Popov B N 2004 Performance optimization of a battery–capacitor hybrid
system J. Power Sources 134 130–8

[33] Kim M-J and Peng H 2007 Power management and design optimization of fuel cell/battery
hybrid vehicles J. Power Sources 165 819–32

[34] San F G B, Isik-Gulsac I and Okur O 2013 Analysis of the polymer composite bipolar plate
properties on the performance of PEMFC (polymer electrolyte membrane fuel cells) by RSM
(response surface methodology) Energy 55 1067–75

[35] Okur O, Alper E and Almansoori A 2014 Optimization of catalyst preparation conditions
for direct sodium borohydride fuel cell using response surface methodology Energy 67
97–105

[36] Kanani H, Shams M, Hasheminasab M and Bozorgnezhad A 2015 Model development and
optimization of operating conditions to maximize PEMFC performance by response surface
methodology Energy Convers. Manage. 93 9–22

[37] Charoen K et al 2017 Application of response surface methodology to optimize direct
alcohol fuel cell power density for greener energy production J. Clean. Prod. 142 1309–20

[38] Garg A, Panda B N and Lam J S L 2016 Functional characterization of current character-
istic of direct methanol fuel cell Fuel 183 432–40

[39] Fesanghary M, Mahdavi M, Minary-Jolandan M and Alizadeh Y 2008 Hybridizing
harmony search algorithm with sequential quadratic programming for engineering optimi-
zation problems Comput. Meth. Appl. Mech. Eng. 197 3080–91

[40] Tu J H, Luchtenburg D M, Rowley C W, Brunton S L and Kutz J N 2013 Novel sampling
strategies for dynamic mode decomposition 66th Annual Meeting of the APS Division of
Fluid Dynamics 58 (College Park, MD: American Physical Society) APS Division of Fluid
Dynamics Meeting Abstracts, H35.001 http://meetings.aps.org/link/BAPS.2013.DFD.H35.1

[41] Chatterjee A 2000 An introduction to the proper orthogonal decomposition Curr. Sci. 78
808–17 https://www.currentscience.ac.in/Volumes/78/07/0808.pdf

Analytical Evaluation of Uncertainty Propagation for Probabilistic Design Optimisation

6-28

https://doi.org/10.1016/j.ijhydene.2007.05.043
https://doi.org/10.1016/0378-7753(91)87009-Z
https://doi.org/10.1149/1.2086574
https://doi.org/10.1016/j.est.2017.10.014
https://doi.org/10.1007/s12206-009-0205-y
https://www.ijat.net/journal/view.php?number=194
https://www.ijat.net/journal/view.php?number=194
https://doi.org/10.1016/j.renene.2006.04.018
https://doi.org/10.1016/j.jpowsour.2004.01.054
https://doi.org/10.1016/j.jpowsour.2006.12.038
https://doi.org/10.1016/j.energy.2013.03.076
https://doi.org/10.1016/j.energy.2014.01.089
https://doi.org/10.1016/j.energy.2014.01.089
https://doi.org/10.1016/j.enconman.2014.12.093
https://doi.org/10.1016/j.jclepro.2016.09.059
https://doi.org/10.1016/j.fuel.2016.06.069
https://doi.org/10.1016/j.cma.2008.02.006
https://meetings.aps.org/link/BAPS.2013.DFD.H35.1
https://www.currentscience.ac.in/Volumes/78/07/0808.pdf


[42] Paul S, Rajan A, Chang J, Kuang Y C and Ooi M P-L 2018 Parametric design analysis of
magnetic sensor based on model order reduction and reliability-based design optimization
IEEE Trans. Magn. 54 1–4

[43] Paul S and Chang J 2017 Design and parametric study of the magnetic sensor for position
detection in linear motor based on nonlinear parametric model order reduction Sensors 17
1543

[44] Rajan A, Luo F J, Kuang Y C, Bai Y and Ooi M P-L 2020 Reliability-based design
optimisation of structural systems using high-order analytical moments Struct. Saf. 86
101970

[45] Stolarski T, Nakasone Y and Yoshimoto S 2018 Engineering Analysis with ANSYS Software
2 (Oxford: Butterworth-Heinemann)

[46] 2011 Structural design actions - Part 2: Wind actions AS/NZS 1170.2:2011 Standards New
Zealand https://www.standards.govt.nz/shop/asnzs-1170-22011/

[47] 2016 Steel structures AS 4100—1998 Standards Australia https://www.standards.org.au/
standards-catalogue/sa-snz/building/bd-001/as—4100-1998

[48] ISO 13822:2010 2010 Bases for design of structures—Assessment of existing structures
(International Organisation for Standardization)

[49] 2019 Handbook: Structural ReliabilityVerification Method 1.0 (Canberra: Australian Building
Codes Board)

[50] 2001 Probabilistic model code part 2: load models https://www.jcss-lc.org/jcss-probabilistic-
model-code/ Joint Committee on Structural Safety https://www.jcss-lc.org/jcss-probabilistic-
model-code/

[51] Roudak M A, Shayanfar M A, Barkhordari M A and Karamloo M 2017 A robust
approximation method for nonlinear cases of structural reliability analysis Int. J. Mech. Sci.
133 11–20

Analytical Evaluation of Uncertainty Propagation for Probabilistic Design Optimisation

6-29

https://doi.org/10.1109/TMAG.2017.2754286
https://doi.org/10.3390/s17071543
https://doi.org/10.3390/s17071543
https://doi.org/10.1016/j.strusafe.2020.101970
https://doi.org/10.1016/j.strusafe.2020.101970
https://www.standards.govt.nz/shop/asnzs-1170-22011/
https://www.standards.org.au/standards-catalogue/sa-snz/building/bd-001/as�4100-1998
https://www.standards.org.au/standards-catalogue/sa-snz/building/bd-001/as�4100-1998
https://www.jcss-lc.org/jcss-probabilistic-model-code/
https://www.jcss-lc.org/jcss-probabilistic-model-code/
https://www.jcss-lc.org/jcss-probabilistic-model-code/
https://www.jcss-lc.org/jcss-probabilistic-model-code/
https://doi.org/10.1016/j.ijmecsci.2017.08.038

	Chapter 6 Real-world design optimisation problems: applications and usefulness
	6.1 The framework for probabilistic design optimisation
	6.1.1 Local response surface modelling using multivariate polynomials
	6.1.2 The selective sampling technique

	6.2 Lithium-ion batteries: a reliability-based design optimisation framework
	6.2.1 The finite element model of the lithium-ion battery
	6.2.2 Incorporating moment-based uncertainty evaluation
	6.2.3 The resultant design

	6.3 Vehicle design based on side-impact crashworthiness: the application of a reliability-based robust design optimisation problem
	6.3.1 Problem formulation
	6.3.2 Resultant design

	6.4 Fuel cells: parameter optimisation for reliable and robust operation
	6.4.1 Problem formulation
	6.4.2 Sensitivity analysis
	6.4.3 Determination of the optimal operating conditions for RBDO and RBRDO

	6.5 Magnetic sensor module design
	6.5.1 Problem formulation
	6.5.2 The results of the PolyMoment-based RBDO method

	6.6 A multistorey three-dimensional steel structure: reliability analysis and optimisation
	6.6.1 Problem formulation
	6.6.2 The resultant design and benchmarking

	6.7 Summary
	 References


