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Chapter 1

Rays, matrices, and transfer maps

To understand particle accelerators and their components, we need to study and
solve the equations of motion of charged particles in external electromagnetic fields.
In their most general form, these equations contain terms involving all orders of the
coordinates and velocities of the particles [1, 2]. However, if the particles are
confined to small distances from a reference orbit and have small angles relative to
the same orbit, a linear equation of motion resembling a simple pendulum (or mass-
on-a-spring) equation results. This is the basis for the paraxial approximation
presented in section 1.1. The ‘spring constant’ in the equation of motion can be
generalized to include a piecewise focusing function whose form depends on the types
of external fields present. In addition to the paraxial approximation, the focusing
elements of particle accelerators can be treated as thin or thick lenses, depending on
whether the focal length is large or comparable to the physical axial extent of the
external fields. We discuss thin and thick lenses in sections 1.2 and 1.3. For both thin
and thick lenses, a matrix description of particle motion is both convenient and
powerful. Finally, in section 1.4 we mention the existence of powerful methods based
on Lie operators that address higher-order particle tracking.

1.1 Paraxial approximation
The linearized equation of motion for a charged particle in the presence of external
fields represented by the focusing function κ(s) is

x s s x s( ) ( ) ( ) 0, (1.1)κ″ + =

where primes indicate derivatives with respect to the axial distance ‘s’ measured
along the reference trajectory. For now, we consider just one of the transverse
coordinates for particle motion, the horizontal component (or the radial component
in a local curvilinear coordinate system).

doi:10.1088/978-0-7503-4039-7ch1 1-1 ª IOP Publishing Ltd 2022

https://doi.org/10.1088/978-0-7503-4039-7ch1


Note that equation (1.1), known as Hill’s equation, is a homogeneous, second-
order ordinary differential equation (ODE) with a coefficient, the focusing function,
which is not generally constant. The solution depends on the initial conditions
x x(0), (0)′ , and on the form of s( )κ , but not on any higher orders of either x(0) or
x (0)′ . This latter condition is the essence of the paraxial approximation; it is the
equivalent of using θ instead of sinθ in Snell’s law of standard optics.

Here and in subsequent chapters we will discuss the solutions of Hill’s equation
and some of its non-homogeneous versions in some detail; additional considerations
can be found in many textbooks (e.g., [2]). The general solution of equation (1.1) can
be written as a superposition of cosine-like C(s) and sine-like S(s) functions

x s x C s x S s
x s x C s x S s

( ) (0) ( ) (0) ( ),
( ) (0) ( ) (0) ( ),

(1.2)
= + ′

′ = ′ + ′ ′

such that C S(0) 1, (0) 0= = , C S(0) 0, (0) 1′ = ′ = . In matrix form, equation (1.2)
reads

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

x s
x s

C s S s
C s S s

x
x

( )
( )

( ) ( )
( ) ( )

(0)
(0)

. (1.3)
′

=
′ ′ ′

In a more compact form we can write

Rx s x s x x[ ( ), ( )] [ (0), (0)] . (1.4)T T′ = ′

The space spanned by the coordinates x s x s( ), ( )′ for an ensemble of particles is
called trace space or, more commonly, phase space. Strictly speaking, this phase
space would be a projection on the x x( , )′ plane of full phase space. In the simple
situations in which no radiation, acceleration, or particle losses occur, the area in
phase space is conserved under transformations represented by R. The latter
statement is known as Liouville’s theorem, which we will revisit in chapter 4. As a
consequence of this theorem, the determinant of R is equal to one, i.e., R 1.=

The simplest case of a focusing function is the ‘point’ lens, a mathematical
construct whereby s s f( ) ( )/κ δ= . ‘δ’ represents the Dirac delta function and ‘f’ is a
constant. By an integration of equation (1.1) with this focusing function, it is easy to
see that ‘f’ represents the focal length of a zero-length lens located at s = 0. Figure 1.1
illustrates the zero-length or point lens.

By studying equation (1.2) for a point lens, we can identify the principal
trajectories or rays illustrated in figure 1.1: for the first ray,
x x x(0) 0, (0)1 1 10′ = = , leading to x s x f( ) (1/ ),1 10′ = − x s x s f( ) (1 / )1 10= − for
s > 0; for the second ray, x x x(0) 0, (0)2 2 20= ′ = ′ , leading to x s x s( ) .2 20= ′ Thus,
in this case, the matrix R is:

⎡
⎣

⎤
⎦

R
f

1 0
1/ 1

. (1.5)f = −

Note that the first column in R represents ray 1 (coefficients multiplying initial
conditions), while the second column represents ray 2.
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An equally important transfer matrix represents the ray transformation over a
drift of length L:

⎡
⎣

⎤
⎦

R L1
0 1

. (1.6)L =

The matrices in equations (1.5) and (1.6) are the building blocks for transforming
rays in linear systems with multiple lenses.

1.2 Thin lenses
If the extent of a real lens, as quantified by the effective length leff of the profile of the
focusing function s( )κ , is much smaller than the focal length, then the lens is
considered to be thin. (The point lens introduced above is an extreme example of a
thin lens, because it remains so for any f > 0.) A useful construction that applies
especially to lenses whose profiles s( )κ are not dominated by fringe fields, i.e.,
extended ‘tails,’ is the hard-edge model. Figure 1.2 shows an example of an actual
axial profile (of a magnetic field) related to s( )κ and the corresponding hard-edge
model.

The effective length of the hard-edge model is defined by

l s ds
f

l
1

( ) ,
1

. (1.7)
s

s

eff
peak

eff peak
1

1∫κ
κ κ≡ =

−

+

Therefore, the condition for a thin lens is l1/peak eff
2κ ≪ , or f≫ leff. According to this

criterion, a very strong lens can have a focal length comparable to its effective
length, in which case the lens is not thin; or else the lens can be weak and have a very
long focal length, satisfying the condition of a thin lens.

Figure 1.1. A ‘point’ lens at s = 0. The red and blue rays represent the principal trajectories or rays.
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Ray tracing for a thin lens proceeds just as for the point lens (figure 1.1); so, for
example, the exit x-coordinate of a given ray is unchanged after traversing the lens.
Thus, the basic transfer matrix that connects ray coordinates on both sides of the
lens is the same as that given in equation (1.5).

1.3 Thick lenses
Thick lenses in charged-particle optics can be treated just as thick lenses in standard
optics. Concepts such as principal planes, nodal points, etc. also apply to magneto-
static or electrostatic lenses [3]. The principal planes of a thick lens or a system of
lenses are two hypothetical planes that connect locations of unit magnification, i.e.,
an object located on one plane is imaged on the second plane with the same size.
Figure 1.3 illustrates the primary and secondary principal planes, H and H ,″ for a
system of two focusing thin lenses separated by a distance d that have the same focal
lengths. Ray tracing is done using the method of parallel rays as discussed in the
standard optics book by Jenkins and White [4].

Figure 1.2. Actual axial profile of a magnetic field (related to the focusing function) and corresponding hard-
edge model (red broken curve).

Figure 1.3. The system of two positive thin lenses is equivalent to a thick lens that has the principal planes
H and H″ shown. Note that the focal lengths of the system are measured from the principal planes.
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We can use equations (1.5) and (1.6) to find the matrix for the lens system shown
in figure 1.3:

⎡
⎣

⎤
⎦

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣

⎤
⎦

⎡
⎣⎢

⎤
⎦⎥

R
R R
R R f

d
f

1 0
1/ 1

1
0 1

1 0
1/ 1 , (1.8)11 12

21 22 2 1
= = − −

or,

⎜ ⎟

⎡

⎣

⎢
⎢
⎢

⎛
⎝

⎞
⎠

⎤

⎦

⎥
⎥
⎥

R

d f d

f f
d

f f
d f

1 /

1 1
1 /

. (1.9)
1

1 2 1 2
2

=

−

− + − −

By multiplying R with a drift matrix (length l1) on the left and another (length l2) on
the right, we obtain a new matrix R

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

R
R R
R R

R l R R l R l R l l R
R R l R

. (1.10)11 12

21 22

11 2 21 12 1 11 2 22 1 2 21

21 22 1 21
= = + + + +

+

Now, by setting R 011 = we obtain the distance from the second lens to the second
focal point of the system, F″ [5]:

⎜ ⎟⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

l
R
R

d
f f f

d
f f

1
1 1

. (1.11)2
11

21 1 1 2 1 2

1

= − = − + −
−

The second factor on the right of equation (1.11) gives the inverse effective object and
image focal lengths f, f ″ of the lens combination [4]:

⎜ ⎟
⎛
⎝

⎞
⎠f f f

d
f f f

1 1 1 1
. (1.12)

1 2 1 2

= + − =
″

The focal lengths f and f ″ are measured from the corresponding principal planes, as
shown in the figures.

Now assume that the second lens is divergent but that the two lenses have the
same strength, i.e., the same focal lengths in magnitude: f1 = −f2 > 0. Then, from
equation (1.12), the effective focal length is simply

f
f

d

f

d
. (1.13)1

2
2
2

= =

Furthermore, from equations (1.11) and (1.12), the second focal point of the system,
F ,″ as measured from the second lens is

⎜ ⎟
⎛
⎝

⎞
⎠

l f
f

d
1 . (1.14)2 1

1= −

This quantity is positive, indicating a convergent equivalent thick lens for the two-
lens system if f1 > d. Thus, we arrive at the important result that the combination of
two lenses, one convergent (positive) and the other divergent (negative) that have the

A Practical Introduction to Beam Physics and Particle Accelerators (Third Edition)

1-5



same strengths, leads to net focusing if their separation is smaller than the positive
focal length f. This is relevant to the strong focusing scheme discussed in chapter 3
for particle accelerators.

Figure 1.4 shows the action of the focusing–defocusing lens combination for two
values of their separation d. The geometrical construction that finds the principal
planes uses the method of parallel rays mentioned above; examination of the
figures may reveal the basic ideas. Note that the principal planes lie outside the space
between the lenses in figure 1.4(a), unlike figure 1.3(a), for a pair of converging lenses
with the same separation as in figure 1.4(a).

Additional relationships between the elements of the matrix in equation (1.10)
and the important optical properties of a general lens system are discussed in an
article by Halbach [6] and in appendix D of [5].

1.4 Transfer maps
The matrix formalism presented in the previous sections can be extended to higher
orders. The complexity of the equations of motion to third order can be appreciated
in Wiedemann’s explicit treatment in his chapter 3 [2]; classic particle accelerator
matrix software such as TRANSPORT [7], on the other hand, can perform only up
to second-order calculations for most lattice elements. To third order, the ith
component of the six-dimensional vector x x y y z( , , , , , )Tδη = ′ ′ (δ is the fractional
momentum error—see section 6.5) is transformed between beamline planes ‘1’ (exit)
and ‘0’ (input) according to [7]:

R T U(1) (0) (0) (0) (0) (0) (0). (1.15)
j

j
j k

j
j k l

j
, , ,

i ij ijk k ijkl k l∑ ∑ ∑η η η η η η η= + +

Figure 1.4. Combination of convergent (lens 1) and divergent (lens 2) lenses with the same strengths. In (a) the
spacing d is smaller than the individual focal lengths (f1 = −f2 > 0); in (b) the spacing d is larger than the
individual focal lengths. Note how the principal planes H and H″ are found using the parallel ray technique.
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Most calculations in TRANSPORT employ up to the second-order matrix T. To
perform second- and higher-order calculations, a more elegant and powerful (but
also more demanding—from a mathematical viewpoint) approach is provided by
Lie algebraic methods. The latter are based on the Lie algebra structure of
Hamiltonian mechanics, as briefly discussed in appendix A and in far more detail
by Dragt in [8]. Essentially, a beamline is described by a transfer map consisting of
the product of the linear-transformation matrix R and the exponentials of Lie
operators containing polynomials fm [9]. The polynomials f3, f4, for example,
describe second- and third-order effects, respectively.

Furthermore, since standard light optics can be shown to have a Hamiltonian
structure [10], the same Lie algebra methods can be applied to both particle
trajectories and light rays. In classical mechanics, particle trajectories obey the
principle of least action [11]. Light rays, on the other hand, travel through optical
systems such that their paths take the least times. This is known as Fermat’s principle
in geometrical optics [4].

To conclude this chapter, we present an example of non-paraxial imaging. We
have used the MARYLIE code to image the letters in ‘UMER’ through a system of
four focusing–defocusing quadrupole doublets; additional details are discussed in
appendix A and in the MARYLIE manual [12]. Figure 1.5(a) shows the object to
be imaged by a unit-magnification system employing 20 TeV protons and super-
conducting magnets. Figure 1.5(b) displays the image obtained by tracing 2052
rays. The calculated transfer map differs slightly from a 6 × 6 unit matrix, which is
enough to result in the blurring seen in figure 1.5(b). Most of the aberrations are
caused by the quadrupole fringe fields; effects due to third-order distortion (see the
letters ‘U’ and ‘R’), astigmatism, and field curvature are present. Starting with a
much smaller object and/or turning off the fringe fields considerably reduces the
aberrations.

Figure 1.5. (a) The object to be imaged by four superconducting quadrupole doublets employing 20 TeV
protons. (b) Image computed using the MARYLIE code; the effects of third-order aberrations are seen (see
also appendix A and [12]).
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1.5 Computer resources
Matrix multiplication, both symbolic and numeric, can be readily implemented in
either Mathcad or Matlab or their freeware counterparts SMath Studio and Octave
(see appendix A). Many standalone optics design programs are also available, but
most are either too expensive or intended for professional use. Some software of this
type is available as packages for codes such as Mathematica (e.g., Optics Lab).

We found the free program Optgeo, written by Jean-Marie Biansan, to be
instructive and relatively easy to use (see appendix A for download information).
The ray tracing in figures 1.3 and 1.4 can be reproduced without too much effort. We
include two Optgeo files in this book’s website. Alternatively, for Mathcad users we
recommend a very well designed program for 2D optics called 2D Optical Ray Tracer,
which is written by Valter Kiisk of the University of Tartu (Estonia) and is available
online for free. We include in our website a version with input that closely reproduces
the results shown in figure 1.4(a). It is important to keep the lens thicknesses small
relative to their focal lengths for comparison with figure 1.4, but we can also easily
explore thick lens combinations. Figure 1.6 illustrates typical output.

For Matlab, there is at least one free app, LensLab, which can be used to
reproduce the ray tracing of the lens doublets in this chapter. Another program that
we found useful is Ray Optics for Android devices; there is a ‘Pro’ version that adds
details of the calculations. RayLab, a free app for Apple’s IOS devices, looks very
professional and rather challenging as an educational tool for geometrical optics.

Thin magnetostatic lenses can be implemented in several of the most popular codes
for particle accelerator design. (In fact, in some cases thin lenses are required for some
operations, such as tracking in the code MAD.) Our website includes three example
files for the program WINAGILE (see appendix A). The first file illustrates the
implementation of one thin quadrupole lens; the other two files are examples of two
thin quadrupole combinations. The files illustrate the concepts of this chapter and

Figure 1.6. Graphics produced by the 2D optics Mathcad program 2D Optical Ray Tracer by Valter Kiisk.
Distances are in mm.
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serve as a preamble to quadrupole focusing (chapter 2) and to alternating gradient, or
strong focusing (chapter 3). In appendix A, we indicate how to download, install, and
run WINAGILE. Figure 1.7 is a screenshot from WINAGILE that shows trajectory
tracking with a two thin quadrupole combination.

The example of non-paraxial imaging illustrated in figure 1.5 relies on the
MARYLIE code [12] briefly described in section 1.4. Additional details pertaining
to this code and the example can be found in appendix A.
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