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Preface

In 2000, the National Science Foundation predicted that ‘Quantum Information
science (QIS) will have an extensive eventual impact on how science is taught at the
college and secondary level, and will bring a deeper understanding of quantum physics
to a broad segment of the lay public.’Now, everyone talks about quantum computers
as the future of computational means. Although there are many journal articles,
books, and research articles on quantum computation and information, they are
often either too easy or too difficult for physics students. There are many excellent
lecture notes, textbooks, and videos available from highly recognized universities
worldwide, but they are intensive and may not be ideal to those who want to self-
study the subject and explore the current status of the quantum computation and
information theory.

This book aims for an easy-to-read, self-paced but practical introduction to
serious learners by taking a step-by-step approach without the need of rigorous
mathematics. It does not describe what you can do with quantum computers but
instead describes what other books do not write out, especially such content that
may not be obvious for those who just started learning quantum computation.
Fundamental concepts of physics behind quantum gates and selected programming
examples of simulated quantum computation are explained in detail without
referring to many other books and articles. This book intends to serve as a gateway
to acquire more advanced knowledge and even using existing cloud-based quantum
computers. Readers should take pencil and paper to follow the steps in order to feel
the spin dynamics through the quantum gates.

Chapter 1 summarizes concepts and rules of vectors and matrices used in this
book, and fundamental knowledge of quantum mechanics. They are applied
throughout this book. Chapter 2 describes the classical binary gates and concepts
of alternative universal gates that triggered quantum computation. Chapter 3 shows
various quantum gates used to construct quantum circuits, and demonstrates how to
implement the quantum gates and algorithms using Blueqat, a practical quantum
gates simulation using Python. However, no prior knowledge of Python program-
ming is required for investigating quantum circuits. Chapter 4 explains signature
quantum algorithms so that the readers may acquire working knowledge of
quantum circuits. Chapter 5 describes Bells’ inequality for quantum entanglement
and a scheme of quantum teleportation using the entanglement. Chapter 6
demonstrates how to send a code safely using photon quantum bits without being
tampered with, called the BB84 protocol. The appendix briefly introduces the latest
commercial advancements developed by Amazon, IBM, Microsoft, Google, and
D-wave, and other companies.

You will be amazed to learn how much this cutting-edge technology has
progressed once you immerse yourself into the subject. Let us dive into a practical
gateway from this book.
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Chapter 1

Two-level quantum systems

We need a basic knowledge of linear algebra (vectors and matrices) throughout this
book. Because readers of this book may be unfamiliar with vectors and matrices, in
the first half of this chapter we will briefly describe them. In the second half,
rotations of spins and the coordinates, projection operators to represent observa-
tions, and entanglement and superposition of quantum states will be discussed.
Mathematics of photon-based qbit is also given.

1.1 Vectors and matrices
1.1.1 Calculation rules of vectors and matrices

Two-dimensional vector
In this book, we use Dirac’s vector notation used in quantum physics. Consider an
arbitrary two-dimensional vector ∣v> as shown in figure 1.1 in the ket vector format:

v
v
v∣ 〉 = 1

2

⎡
⎣⎢

⎤
⎦⎥ where v1 and v2 are the x- and y-components, respectively. For a Euclidean

space, the coefficients are real values.

Using a set of unit vectors, ∣ =e 1
01

⎡
⎣⎢

⎤
⎦⎥ and ∣ 〉 =e 0

12
⎡
⎣⎢

⎤
⎦⎥, the vector ∣v> can be

expressed as

v v v v v v
v
v∣ 〉 = ∣ 〉 + ∣ 〉 ∣ 〉 = + =e e , or 1

0
0
1

. (1.1)11 2 2 1 2
1

2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

Define the bra vector: 〈 ∣=u u u[ ]1 2 , and the inner (scalar) product of two vectors,
<u∣ and ∣v>, can be defined as

v v v〈 ∣ 〉 = + !u u u (bracket ). (1.2)1 1 2 2
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Using the inner product, the orthonormal property of the unit vectors can be
expressed as

δ δ〈 ∣ 〉 = = = ≠e e i j i jwhere 1 if ; and 0 if (Kronecker’s delta). (1.3)i j ij ij

Also, the definiton of the outer product of the two vectors is given by

v
v
v

v v
v v∣ 〉〈 ∣ = =u u u u u

u u[ ] . (1.4)1

2
1 2

1 1 1 2

2 1 2 2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

Matrices as operators on vectors
Because of the orthonormal property of the unit vectors, the vector components,
v1 and v2, can be given by the inner products of the unit vector and the vector ∣v>:

v v v v v v v v〈 ∣ 〉 = 〈 ∣ 〉 + 〈 ∣ 〉 = 〈 ∣ 〉 = 〈 ∣ 〉 + 〈 ∣ 〉 =e e e e e e e e e e, and . (1.5)1 1 1 1 2 1 2 1 2 1 2 1 2 2 2 2

Therefore,

v v v v v∣ 〉 = 〈 ∣ 〉∣ 〉 + 〈 ∣ 〉∣ 〉 = ∣ 〉〈 ∣ 〉 + ∣ 〉〈 ∣ 〉e e e e e e e e . (1.6)1 11 2 2 1 2 2

Here, the outer products of the unit vectors, ∣ 〉〈 ∣e e1 1 and ∣ 〉〈 ∣e e2 2 , are called the
projection operators:

ˆ = ∣ 〉〈 ∣ = ˆ = ∣ 〉〈 ∣ =P e e P e e1 0
0 0

, and 0 0
0 1

. (1.7)1 21 1 2 2
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

Notice v vˆ ∣ 〉 = ∣ 〉P e1 1 1 , v vˆ ∣ 〉 = ∣ 〉P e2 2 2 , v v vˆ ∣ 〉 + ˆ ∣ 〉 = ∣ 〉P P1 2 , and thus

ˆ + ˆ = ˆP P I (1.8)1 2

where Î is the 2×2 unit matrix.
Below is a summary of the addition and multiplication of matrices. Suppose

= =A
a a
a a B

b b
b b

and ,11 12

21 22

11 12

21 22

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

Figure 1.1. Two-dimensional vector space.
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the basic matrix calculation rules are:
(1)

δ δ δ
δ δ

δ=A
a a
a a

where is a scalar constant, (1.9)11 12

21 22

⎡
⎣⎢

⎤
⎦⎥

(2) Addition:

± = ± ±
± ±

A B
a b a b
a b a b

, (1.10)11 11 12 12

21 21 22 22

⎡
⎣⎢

⎤
⎦⎥

(3) Multiplication:

= + +
+ +

AB
a b a b a b a b
a b a b a b a b

. (1.11)11 11 12 21 11 12 12 22

21 11 22 21 21 12 22 22

⎡
⎣⎢

⎤
⎦⎥

Rotation and translation of a vector can be performed by applying corresponding
matrices. For example, as shown in figure 1.1, rotating a vector ∣v> by angle θ to
create a new vector, ∣v’>, is expressed by ∣v’>=R(θ)∣v>. The rotational matrix, R
(θ), can be obtained as follows. Let v v α= cos1 and v v α= sin2 . The components
of the rotated vector are given by

v v v v v vα θ α θ α θ θ θ′ = + = − = −cos( ) cos cos sin sin cos sin ,1 1 2

and

v v v v v vα θ α θ α θ θ θ′ = + = + = +sin( ) sin cos cos sin cos sin .2 2 1

In the matrix representation (equation (1.11)), the above equations can be
expressed as

v
v

v v
v v

v
v

θ θ
θ θ

θ θ
θ θ

′
′ = −

+
= −cos sin

sin sin
cos sin
sin cos

,1

2

1 2

1 2

1

2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥

and the rotational matrix is, thus, given by

θ θ θ
θ θ

= −R( ) cos sin
sin cos

. (1.12)
⎡
⎣⎢

⎤
⎦⎥

Notice that rotation of the two-dimensional coordinate system (x, y) by angle θ to
another coordinate system, (X, Y), is mathematically equivalent to the vector
rotation by angle –θ. Thus,

θ θ
θ θ

=
−

X
Y

x
y

cos sin
sin cos

. (1.13)
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥
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1.1.2 Combining two different vector spaces—direct product

Consider two different two-dimensional vector spaces where each vector space has
its own set of unit vectors or an orthonormal basis. Suppose a vector in each vector
space is respectively given by

v
v
v∣ 〉 = ∣ 〉 =u

u
u and .1

2

1

2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

A vector in the coupled vector space is expressed by the direct product of the two
vectors:

v
v
v

v
v
v
v

∣ 〉 ⊗ ∣ 〉 =
∣ 〉
∣ 〉

=u
u
u

u
u
u
u

. (1.14)1

2

1 1

2 2

2 1

2 2

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

The coupled vector space becomes four-dimensional, and the coupled orthonormal
basis is given by

∣ 〉 ⊗ ∣ 〉 = ∣ 〉 ⊗ ∣ 〉 = ∣ 〉 ⊗ ∣ 〉 = ∣ 〉 ⊗ ∣ 〉 =0 0

1
0
0
0

, 0 1

0
1
0
0

, 1 0

0
0
1
0

, 1 1

0
0
0
1

. (1.15)

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

Notice that the direct product has the following distribution rule:

v v v v v v∣ 〉 + ∣ 〉 ⊗ ∣ 〉 + ∣ 〉 = ∣ 〉 ∣ 〉 + ∣ 〉 ∣ 〉 + ∣ 〉 ∣ 〉 + ∣ 〉 ∣ 〉u u u u u u( ) ( ) , (1.16)A B A B A B A B A B1 2 1 2 1 1 1 2 2 1 2 2

where the subscripts, A and B, indicate two different vector spaces. Notice that we
often write v v∣ 〉 ⊗ ∣ 〉 = ∣ 〉∣ 〉u u for short. It is important not to change the order of
vector for the direct product.

Wealsodefinethedirectproductoftwomatrices, =A
a a
a a

11 12

21 22

⎡
⎣⎢

⎤
⎦⎥and =B

b b
b b

11 12

21 22

⎡
⎣⎢

⎤
⎦⎥,as

⊗ = =A B
a B a B
a B a B

a b a b a b a b
a b a b a b a b
a b a b a b a b
a b a b a b a b

. (1.17)11 12

21 22

11 11 11 12 12 11 12 12

11 21 11 22 12 21 12 22

21 11 21 12 22 11 22 12

21 21 21 22 22 21 22 22

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

We will use the direct products when we discuss universal operators in chapter 2.

1.2 Foundation of quantum mechanics
1.2.1 General properties of quantum states

Here is a summary of properties that quantum systems must satisfy [1]. Whenever
we create a quantum algorithm, it must satisfy these conditions.

(1) The quantum states of a system can be described by a single-valued
continuous complex-valued function, ψ∣ 〉, and the physics observables, A,

Quantum Computation and Quantum Information Simulation using Python
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including energy, position, momentum, angular momentum, spins, and
particle creation/annihilation, can be expressed as a mathematical operator,
Â. Measurement values, {εk; k=1, 2, …}, of the observable A satisfy the
equation, ψ ε ψˆ∣ 〉 = ∣ 〉A k k k , where εk is the eigen value, and ψ∣ 〉k is eigen
function of the equation. When the observable is Hamiltonian (energy), the
equation is called the Schrödinger equation, ψ ε ψˆ ∣ 〉 = ∣ 〉H k k k .

(2) A single measurement of the physical observable A yields one of the possible
eigen values {εk}. The equation itself does not determine the eigen functions
and the eigen values without a boundary condition.

(3) A quantum state can be normalized, and its operators are linear:
(i) ψ ψ〈 ∣ 〉 = 1 where ψ ψ〈 ∣= ∣ 〉 †( ) is the conjugate transpose of ∣ψ>, and
(ii) ψ ψ ψ ψˆ ∣ 〉 + ∣ 〉 = ˆ∣ 〉 + ˆ∣ 〉A a b aA bA( )1 2 1 2 where the coefficients a and b are

constants of complex values.
(4) Because the physical observables are real values, the eigen values must be

real numbers. Therefore, the operator Â must be Hermitian, i.e., ˆ = ˆ†
A A.

Proof: Suppose ψ ε ψˆ∣ 〉 = ∣ 〉A k k k , and the eigen value is real, i.e., ε ε= *
k k .

ψ ψ ψ ε ψ ε ψ ψ ε〈 ∣ ˆ∣ 〉 = 〈 ∣ ∣ 〉 = 〈 ∣ 〉 =A , andk k k k k k k k k ψ ψ ψ ψ ε〈 ∣ ˆ∣ 〉 = 〈 ∣ ˆ ∣ 〉 =† † *A A( )k k k k k .
Thus, if the eigenvalue is a real number, ˆ = ˆ†

A A.
(5) The eigen functions are orthogonal, i.e., ψ ψ〈 ∣ 〉 = 0i j if ≠i j .

Proof. Suppose ψ ε ψˆ∣ 〉 = ∣ 〉A i i i and ψ ε ψˆ∣ 〉 = ∣ 〉A j j j where Â is Hermitian.
Notice ψ ψ ψˆ∣ 〉 = 〈 ˆ ∣ = 〈 ˆ ∣† †

A A A( )i i i because Â is Hermitian. Also notice that
because the eigen values are real, ψ ε ψ ε ψˆ∣ 〉 = ∣ 〉 = 〈 ∣† †A( ) ( )i i i i i . Therefore,

ψ ψ ψ ψ ε ψ ψ〈 ˆ ∣ 〉 = 〈 ∣ ˆ 〉 = 〈 ∣ 〉†
A A , andi j i j j i j

ψ ψ ψ ψ ε ε ψ ψ〈 ˆ ∣ 〉 − 〈 ∣ ˆ 〉 = − 〈 ∣ 〉 =†
A A ( ) 0i j i j i j i j . Thus, ψ ψ〈 ∣ 〉 = 0i j unless ε ε=i j.

(6) The complete set of eigen functions {ψ∣ 〉k , k=1, 2, 3, ….} forms an
orthonormal basis. In other words, any quantum state of the given system
can be expressed by the superposition of eigen functions: ∑ψ ψ∣ 〉 = ∣ 〉c

k
k k

where ψ ψ δ〈 ∣ 〉 =j k jk and ψ ψ= 〈 ∣ 〉ck k .
(7) Suppose a coordinate system for observation is changed to another

coordinated system, a complete set of the eigen functions {ψ∣ 〉k , k=1, 2, 3,
….} is transformed to another set of eigen functions {φ∣ 〉k , k=1, 2, 3, ….},

i.e., φ ψ∣ 〉 = ˆ ∣ 〉U where Û is the operator for this transformation. Then,

∑φ ψ∣ 〉 = ∣ 〉
=

u
k 1

j jk k, and ∑φ φ ψ ψ〈 ∣ 〉 = 〈 ∣ 〉†u u( )
k m,

i j ik mj k m . Since both sets of eigen

functions are orthonormal, ∑φ φ δ δ〈 ∣ 〉 = = †u u( )
k m,

i j i j ik mj k m, , .

Note: An operator, which satisfies ∑ δ=†u u( )
k

ik kj i j, , is called the unitary

operator, and ˆ ˆ = ˆ†
U U I , i.e., ˆ = ˆ† −

U U
1. Operators that change quantum

states must be unitary.
(8) The expectation value of the observable A is given by ψ ψ〈 〉 = 〈 ∣ ˆ∣ 〉A A .

In particular, ψ ψ ε〈 〉 = 〈 ∣ ˆ∣ 〉 =A Ak k k if ψ ψ∣ 〉 = ∣ 〉k .
(9) A projection operator is given by ψ ψˆ = ∣ 〉〈 ∣Pk k k .

If ∑ψ ψ∣ 〉 = ∣ 〉c
k

k k , then ∑ ∑ψ ψ ψ ψ ψ δ ψˆ ∣ 〉 = ∣ 〉〈 ∣ 〉 = ∣ 〉 = ∣ 〉P c c c
j j

k j k k j j k kj k k .
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The probability of observing the eigen state ψ∣ 〉k is

∑ ∑ψ ψ ψ ψ ψ ψ ψ ψ δ ψ ψ∣〈 ∣ ˆ ∣ 〉∣ = ∣〈 ∣ ∣ 〉〈 ∣ 〉∣ = ∣〈 ∣ ∣ 〉 ∣ = ∣ 〈 ∣ 〉∣ = ∣ ∣P c c c c .
j j

k j k k j j k kj k k k
2 2 2 2 2

(10) Matrix representation of operator Û .

Let ∑ψ ψ∣ 〉 = ∣ 〉c
j

j k where ψ ψ= 〈 ∣ 〉cj j , and ∑ψ ψ ψ∣ ′〉 = ˆ ∣ 〉 = ˆ ∣ 〉U c U
j

j j .

If ∑ψ ψ∣ ′〉 = ′ ∣ 〉c
j

j k where ψ ψ′ = 〈 ∣ ′〉c j j , then ψ∣ ′〉 becomes

∑ ∑ψ ψ ψ∣ ′〉 = ′ ∣ 〉 = ˆ ∣ 〉c i c U
i i

i i i , and thus,

∑ ∑ψ ψ ψ ψ ψ ψ ψ ψ′ = 〈 ∣ ′〉 = 〈 ∣ ˆ 〉 = 〈 ∣ ˆ 〉 = 〈 ∣ ˆ ∣ 〉c U c U U c .
j j

i i i i j j i j j

Define ψ ψ〈 ∣ ˆ ∣ 〉 =U Ui j ij, and we obtain ∑′ =c U ci
j

ij j. Therefore, the transform

ψ ψ ψ∣ 〉 → ∣ ′〉 = ˆ ∣ 〉U can be represented by a linear transform of {ci}: ∑′ =c U c
j

i ij j.

1.3 Quantum state vectors
Without rigorous mathematics, we describe quantum states in an analogy of the
two-dimensional vectors described above. Here, we focus on two-level systems to
describe a quantum bit (qbit). Readers may wonder whether the term, quantum bit,
should be written as ‘qubit’ or ‘qbit.’ Refer to an interesting article on this subject.1

1.3.1 Two-level quantum state vector: qbit

An electron is known to have two possible spin states. It can be described on a two-
dimensional complex vector space.Whenwemeasure the spin state along the z-axis or the
‘vertical’ axis, which is the default direction of externalmagnetic field,we observe the spin
up (↑) or down (↓) state. We assign the following vectors ∣0> and ∣1> to the spin states:

∣ ↑ ⟩ = ∣ ⟩ = ∣ ↓ ⟩ = ∣ ⟩ =Spin up: 0 1
0

, and spin down: 1 0
1

. (1.18)
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

The spin state vectors form an orthonormal basis of the vector space, {∣0>, ∣1>}
where 〈 ∣ 〉 = 〈 ∣ 〉 =0 0 1 1 1, and 〈 ∣ 〉 = 〈 ∣ 〉 =0 1 1 0 0. An arbitrary spin state can be given
by ψ∣ 〉 = ∣ 〉 + ∣ 〉a b0 1 where the coefficients a and b are complex value constants, and
the spin state is normalized, ψ ψ〈 ∣ 〉 = ∣ ∣ + ∣ ∣ =a b 12 2 because either spin state will be
observed by a measurement. The spin state ψ∣ 〉 is called a qbit in the quantum
computation/information. The complex coefficients, a and b, can be expressed as

1There is an interesting explanation for qbit and qubit. See https://scienceblogs.com/pontiff/2007/11/27/qubit-
qbit-qbit-or-qbert-1)
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θ=a cos
2

⎜ ⎟⎛
⎝

⎞
⎠ and

θ= φb e sin
2

i ⎜ ⎟⎛
⎝

⎞
⎠, using phase angles, φ and θ, which satisfy the

normalization condition, ∣a∣2 + ∣b∣2=1. A Bloch sphere, shown in figure 1.2, is often
used to visualize the qbit dynamics although we will not use it in this book.

1.3.2 Projection operators for spin states

If one observes the spin state, ψ∣ 〉 = ∣ 〉 + ∣ 〉a b0 1 , along the z-axis, the measurement
yields either spin up or down. Observation of the spin state can be interpreted as the
application of the projection operators. From equation (1.7), the projection
operators for the spin state described by the orthonormal basis, {∣0>, ∣1>}, are given

ˆ = ∣ 〉〈 ∣ = = ˆ = ∣ 〉〈 ∣ = =P P0 0 1
0

[1 0] 1 0
0 0

and 1 1 0
1

[0 1] 0 0
0 1

. (1.19)0 1
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

The probability of observing the spin up state along the z-axis, ∣a∣2, can be
calculated from a measurement

ψ ψˆ ∣ 〉 = ∣ 〉〈 ∣ 〉 = ∣ 〉〈 ∣ ∣ 〉 + ∣ 〉 = + = = ∣ 〉P a b a b a a0 0 0 0 ( 0 1 ) 1 0
0 0

1
0

1 0
0 1

0
1

1
0

0 , (1.20)0
⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

and the probability of observing the spin down state along the z-axis, ∣b∣2, can be
calculated from a measurement

ψ ψˆ ∣ 〉 = ∣ 〉〈 ∣ 〉 = ∣ 〉〈 ∣ ∣ 〉 + ∣ 〉 = + = = ∣ 〉P a b a b b b1 1 1 1 ( 0 1 ) 0 0
0 1

1
0

0 0
0 1

0
1

0
1

1 . (1.21)1
⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

Once a measurement is conducted on a quantum system, the quantum state of the
system is collapsed, and a successive measurement yields the same state as the
previous measurement. This means

ˆ ˆ = ˆ ˆ ˆ = ˆ ˆ ˆ = ˆ ˆ =P P P PP P P P PP, , and 0.0 0 0 1 1 1 0 1 1 0

Figure 1.2. Bloch sphere.
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1.3.3 Time evolution of spin states

To obtain the time evolution and rotation of spins, we use exponential operators.
We define the form of exponential operators as

∑ ∑= ˆ ≡
!

ˆ =
!

ˆ
=

∞

=

∞
ˆe uA

n
uA

u
n

Aexp( )
1

( ) (1.22)
n n0 0

uA n
n

n

where u is a complex number. Suppose the wave function is given by ψ∣ 〉(0) at t = 0,
the wave function satisfies the time dependent Schrödinger equation:

ψ ψℏ ∂∣ 〉
∂

= ˆ ∣ 〉i
t

t
H t

( )
( )

where Ĥ is the Hamiltonian of the system. From the Schrödinger equation, the time
evolution of the wave function is given by

ψ ψ∣ 〉 = −
ℏ

ˆ ∣ 〉t
i

Ht( ) exp (0) . (1.23)⎜ ⎟⎛
⎝

⎞
⎠

Proof.

∑

∑

∑

∑

ψ
ψ ψ

ψ

ψ

ψ

ψ ψ

ℏ ∂∣ 〉
∂

= ∂
∂

∣ 〉 = ℏ ∂
∂ !

−
ˆ

ℏ
∣ 〉

= ˆ
− !

−
ˆ

ℏ
− ∣ 〉

= ℏ
!

−
ˆ

ℏ
∣ 〉

= − ℏ
ˆ

ℏ − !
−

ˆ

ℏ
− ∣ 〉

= ˆ ∣ 〉 = ˆ ∣ 〉

− ℏ
ˆ

−
−

−

−
−

− ℏ
ˆ

=

∞

=

∞

=

∞

=

∞

( )i
t

t t
e i

t n
iHt

H
n

iHt
n t

i
n

iHt
nt

i
iH

n
iHt

n t

He H t

( )
(0)

1
(0)

1
( 1)

( 1) (0)

1
( ) (0)

1
( 1)

( 1) (0)

(0) ( ) .

i Ht
n

n
n

n
n

n
n

i Ht

1
1

1

1
1

n

n

n

n

0

1

1

1

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

1.3.4 Rotation of spin states

Define the rotational operator, δθR̂ ( )j of an infinitesimal angle δθ
��

about the

rotational axis j, such that ⃗ ⃗δθ ψ ψˆ ∣ 〉 = ∣ ′ 〉
��

R r r( ) ( ) ( )j on the wave function ⃗ψ∣ 〉r( ) .
Because the position of the vector after it is rotated forward by an infinitesimal angle
δθ
��
is given by ⃗ ⃗ ⃗δθ′ = + ×

��
r r r using the vector product (figure 1.3), we obtain

ψ ψ δθ∣ ′ ⃗ 〉 = ∣ ⃗ − × ⃗ 〉
��

r r r( ) ( ) ,

and thus,

δθ ψ ψ δθ ψ δθ ψ

ψ δθ ψ δθ ψ

ˆ ∣ ⃗ 〉 = ∣ ⃗ − × ⃗ 〉 ≈ ∣ ⃗ 〉 − × ⃗ · ∇∣ ⃗ 〉

= ∣ ⃗ 〉 −
ℏ

× ⃗ · ∣ ⃗ 〉 = −
ℏ

· ∣ ⃗ 〉

�� �� ��

�� �� �� ��
R r r r r r r

r
i

r p r
i

L r

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) 1 ( )
(1.24)

j

⎜ ⎟⎛
⎝

⎞
⎠
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where = − ℏ∇��
p i is the linear momentum, and ⃗= ×

�� ��
L r p is the angular

momentum.
The infinitesimal angle is defined as δθ θ=

→∞
�� ��

N
Nlim / , and we obtain

θ θ θˆ =
→∞

−
ℏ

· = − · ℏ
��

�� ��
�� ��

R
N

i L
N

i L( ) lim 1 exp( / ). (1.25)j

N⎛
⎝⎜

⎞
⎠⎟

The spin rotational operators about the x, the y, and the z axes are, respectively,
given by replacing the angular momentum of each axis with Pauli’s spin matrix of
the corresponding axis:

θ
θ θ σˆ = −

ˆ

ℏ
= −

ˆ��
R i

L
i( ) exp exp

2
, (1.26)j

j j j j
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

where j = x, y, or z, and

σ̂ = 0 1
1 0x

⎡
⎣⎢

⎤
⎦⎥, σ̂ = − i

i
0

0y
⎡
⎣⎢

⎤
⎦⎥, σ̂ =

−
1 0
0 1z

⎡
⎣⎢

⎤
⎦⎥, and ˆ =I 1 0

0 1
⎡
⎣⎢

⎤
⎦⎥.

Thus,

θ θσ θ θ σ
θ θ

θ θ
ˆ = − ˆ = ˆ + ˆ =

−
−

R i I i
i

i
( ) exp

2
cos

2
sin

2

cos( /2) sin( /2)
sin( /2) cos( /2)

, (1.27)x
x

x⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

θ
θσ θ θ σ

θ θ
θ θ

ˆ = −
ˆ

= ˆ + ˆ =
−

R i I i( ) exp
2

cos
2

sin
2

cos ( /2) sin ( /2)
sin ( /2) cos ( /2)

, (1.28)y
y

y⎜ ⎟ ⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

θ θσ θ θ σˆ = − ˆ = ˆ + ˆ =
θ

θ

−
R i I i e

e
( ) exp

2
cos

2
sin

2
0

0
. (1.29)z

z
z

i

i

/2

/2
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

where we have omitted the suffix of the angles. For basic concepts of spin states,
refer to a textbook on quantum mechanics [1].

Figure 1.3. Infinitesimal rotation of the position vector.
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1.3.5 Rotation of a spin observation coordinate frame

In order to observe a spin state, an external magnetic field is applied to the spin. If the
external magnet is along the z-axis, we observe either ∣0> or ∣1> as we discussed above
(equations (1.19) and (1.20)). Now, if we rotate the external magnetic field by angle θ
about one of the coordinate axes, we rotate the observation coordinate frame. Thus, if
we rotate the z-axis by angle θ on the zx-plane, i.e., if we rotate the ‘vertical’ spin-
measurement coordinate frame about the y-axis by angle θ, we obtain a new ‘tilted’
measurement coordinate frame where the rotated orthonormal basis is given by:

θ
θ θ
θ θ

θ
θ

∣ ′〉 = ˆ − ∣ 〉 =
−

=
−

R0 ( ) 0
cos( /2) sin( /2)

sin( /2) cos( /2)
1
0

cos( /2)
sin( /2)

, (1.30)y

⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

and

θ
θ θ
θ θ

θ
θ

∣ ′〉 = ˆ − ∣ 〉 =
−

=R1 ( ) 1
cos( /2) sin( /2)

sin( /2) cos( /2)
0
1

sin( /2)
cos( /2)

.y

⎡
⎣⎢

⎤
⎦⎥
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

In particular, if θ=π/2, the direction of the external magnetic field becomes
‘horizontal,’ or

π
π

π
π

∣ ′〉 = ∣ → 〉 =
−

=
−

∣ ′〉 = ∣ ← 〉

= =

0
cos( /4)

sin( /4)
1/ 2

1/ 2
, and 1

sin( /4)
cos( /4)

1/ 2

1/ 2
.

(1.31)

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

Recall that if we observe the spin state, ψ∣ 〉 = ∣ 〉 + ∣ 〉a b0 1 , along the ‘vertical’
coordinates frame where the external magnetic field is along the z-axis, an observed
state is either ∣0> or ∣1> with the corresponding probability ∣a∣2 or ∣b∣2. If we observe
the spin state using the ‘horizontal’ measurement frame where the external magnetic
field is along the x-axis, the spin state to be observed can be determined by applying
the projection operators, ˆ = ∣ ′〉〈 ′∣∣ ′〉P 0 00 and ˆ = ∣ ′〉〈 ′∣∣ ′〉P 1 11 to the basis ∣0> and ∣1>:

ˆ ∣ 〉 = ∣ ′〉〈 ′∣ ∣ 〉 = ∣ ′〉 = ∣ ′〉∣ ′〉P a a
a

0 ( 0 0 ) 0 1/ 2 1/ 2
1
0

0
2

0 , (1.32)0
⎡⎣ ⎤⎦⎡

⎣⎢
⎤
⎦⎥

and

ˆ ∣ 〉 = ∣ ′〉〈 ′∣ ∣ 〉 = − ∣ ′〉 = ∣ ′〉∣ ′〉P b b
b

1 ( 1 1 ) 1 1/ 2 1/ 2
1
0

1
2

1 .1
⎡⎣ ⎤⎦⎡

⎣⎢
⎤
⎦⎥

Thus, the spin state becomes ψ∣ 〉 = ∣ ′〉 + ∣ ′〉a b
1

2
( 0 1 ) in the ‘horizontal’ measure-

ment frame, and we observe ∣0’> or ∣1’>, and the probability of observing ∣0’> is ∣a∣2/2
and the probability of observing ∣1’> spin is ∣b∣2/2 along the horizontal magnetic field.
This is a useful description when we discuss Bell’s inequality where three different
observation frames are involved (section 5.1).
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1.4 Non-cloning principle for qbit
One of the distinct characteristics of a qbit is that it cannot be copied because an act
of observation to copy a qbit, ψ∣ 〉 = ∣ 〉 + ∣ 〉a b0 1 , changes the quantum state to either
∣ 〉0 or ∣ 〉1 , and any successive measurement yields the same state as the first
measurement. Let us restate this non-cloning principle.

Suppose we could define a ‘copy’ operator, Ĉ , such that ψ ψ ψˆ∣ 〉 = ∣ 〉∣ 〉C where
ψ∣ 〉 = ∣ 〉 + ∣ 〉a b0 1 . Then, by the definition of the copy operator,

ψ ψ ψˆ ∣ 〉 = ∣ 〉∣ 〉 = ∣ 〉 + ∣ 〉 ∣ 〉 + ∣ 〉
= ∣ 〉∣ 〉 + ∣ 〉∣ 〉 + ∣ 〉∣ 〉 + ∣ 〉∣ 〉
C a b a b

a ab b
( 0 1 )( 0 1 )

0 0 ( 0 1 1 0 ) 1 1 .2 2

On the other hand,

ψˆ ∣ 〉 = ˆ ∣ 〉 + ∣ 〉 = ˆ∣ 〉 + ˆ∣ 〉 = ∣ 〉∣ 〉 + ∣ 〉∣ 〉C C a b aC bC a b( 0 1 ) 0 1 0 0 1 1 . (1.33)

Therefore, unless a=0 or b=0, we cannot define the copy operator. If a=0, then
b2 = b and thus b=1; and if b=0, a2=a and a=1. These conditions indicate the pure
quantum state ψ∣ 〉 = ∣ 〉0 or ψ∣ 〉 = ∣ 〉1 in which there is no quantum fluctuation. The
non-cloning principle plays an important role in detecting data tapping while
transmitting a secret code using the quantum teleportation (section 6.3).

1.5 Quantum entanglement
1.5.1 What is entanglement?

Suppose a set of two electron spins, spin A and spin B, are coupled, the net spin S is
1 or 0. Such an example is two electrons in a hydrogen molecule. As shown in
table 1.1, if S = 1, then Sz = +1, 0, or −1 whereas, if S=0, then Sz = 0 only.

The quantum states of S=1 and Sz = 0 or S= 0 and Sz = 0 are called the entangled
states. Suppose we conduct an observation of spin A when S = 0. Using the
projection operator, the spin state becomes

ψˆ ∣ 〉 = ∣ 〉〈 ∣ ∣ 〉 − ∣ 〉 = ∣ 〉P 0 0
1

2
( 0 1 1 0 )

1

2
0 1 . (1.34)A A A A B A B A B

⎛
⎝⎜

⎞
⎠⎟

Table 1.1. Two coupled spins.

Net spin S Sz Quantum state

S = 1 +1 ∣ 〉0 0A B

0 ∣ 〉 + ∣ 〉1

2
( 0 1 0 1 )A B A B

−1 ∣ 〉1 1A B

S = 0 0 ∣ 〉 − ∣ 〉1

2
( 0 1 1 0 )A B A B
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That is, if spin A is up (↑), then spin Bmust be down (↓). Observing the spin A will
automatically determine the spin state B. It seems to be trivial, and this is also true
for the classical physics. However, recall that unless we observe one of them, both
spins A and B have equal probabilities of spin up and down!

What is important to perceive is that, in classical physics, all spin states are pre-
determined regardless of whether we observe them or not. Therefore, the spin states
A and B are already determined with the condition of the total spin value. On the
other hand, in quantum physics, unless we make observation of spin A, spin A can
be both up and down with equal probabilities, and spin B can also be both up and
down with equal probabilities. This argument is very much like the quantum logic of
Schrödinger’s cat.

According to quantum mechanics, an act of observation of the spin A state
instantly determines the spin B state, depending on the outcome of the spin state A.
Remember that the spin A state is undermined before observation. This is why we
call it the ‘spooky’ behavior of quantum entanglement. Furthermore, the entangle-
ment is non-localizing, i.e., even if the spins are physically separated (without
observation) by an astronomical distance after making the coupled state, they are
still entangled!

The quantum entanglement is such a strange and unique quantum behavior, and
it is one of the key properties that make quantum computation and information
theory distinct from the classical theory. One of its astonishing examples is quantum
teleportation, which will be discussed in chapter 5.

1.5.2 Superposition and entanglement

Imagine that two classical sinusoidal waves of frequencies, sin(ω1t) and sin(ω2t) are
superposed, the resultant wave is given by

ω ω ω ω ω ω+ = − +
t t t tsin( ) sin( ) 2 cos

2
sin

2
.1 2

1 2 1 2⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

There are two possible frequencies after superposition of two classical waves. The
quantum superposition is fundamentally different from the superposition of n-
classical waves which linearly gives only n different states. The number of states
exponentially increases in the quantum superposition.

A qbit ψ∣ 〉 = ∣ 〉 + ∣ 〉a b0 1 is a superposition of ∣0> and ∣1> states. The possible
states from superposition of two qbits are given by the direct product defined by
equation (1.14)

ψ∣ 〉 = ∣ 〉 + ∣ 〉 ⊗ ∣ 〉 + ∣ 〉 = ∣ 〉 + ∣ 〉 + ∣ 〉 + ∣ 〉 =a b c d ac ad bc bd

ac
ad
bc
bd

( 0 1 ) ( 0 1 ) 00 01 10 11 . (1.35)

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
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Now, the number of possible states become four. If n-qbits are superposed,

ψ ψ ψ∣ 〉 ⊗ ∣ 〉 ⊗ ⋯⊗∣ 〉

= ∣ 〉 + ∣ 〉 ⊗ ∣ 〉 + ∣ 〉 ⊗ ⋯ ⊗ ∣ 〉 + ∣ 〉

= ∣ 〉 ⊗ ∣ 〉 ⊗ ⋯ ⊗∣ 〉 + ⋯⋯ + ∣ 〉 ⊗ ∣ 〉 ⊗ ⋯ ⊗ ∣ 〉

= ∣ 〉∣ 〉⋯∣ 〉 + ⋯⋯ + ∣ 〉∣ 〉⋯∣ 〉 = ∣ 〉⋯ 〉 + ⋯⋯ + ∣ ⋯ 〉

1

2
0

1

2
1

1

2
0

1

2
1

1

2
0

1

2
1

1

2
( 0 0 0 1 1 1 )

1

2
( 0 0 0 1 1 1 )

1

2
( 00 0 11 1 ).

(1.36)
n

n n

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

This represents a superposed 2n-state from ∣ ⋯ 〉00 0 to ∣ ⋯ 〉11 1 with equal weight.
Computation using superposed qbits is superior to the classical binary bit calcu-
lation (quantum supremacy) because we can perform computation on all the
superposed states at once.

It must be noted that the quantum entanglement is not superposition of quantum
states. If two qbits are entangled, they cannot be expressed as the direct product of
two qbits. In other words, they cannot be separated as two independent quantum
events. In chapter 3, we show quantum gates that superpose, entangle, and detangle
qbits using conditional gates.

1.6 Another example of qbit
Other than spins, another example of qbit is linearly polarized photons. Using a
linear polarizer, we can obtain the horizontally polarized photon (↔) and the

vertically polarized photon (↕) as we define ∣↔〉 = ∣ 〉 =0 1
0

⎡
⎣⎢

⎤
⎦⎥ and ∣↕〉 = ∣ 〉 =1 0

1
⎡
⎣⎢

⎤
⎦⎥,

respectively.
A photon with an arbitrary linear polarization can be expressed as

ψ∣ 〉 = ∣↕〉 + ∣↔〉a b because of the orthonormal condition:

〈↕∣↕〉 = 〈↔∣ ↔ 〉 = 〈↕∣↔〉 = 〈↔∣↕〉 =1 and 0. (1.37)

For photon qbits, the projection operators represent the observation of light using
a polarizer whose polarization axis is either in the horizontal or in the vertical
direction.

ˆ = ∣↔〉〈↔∣ = ∣ 〉〈 ∣ = =P 0 0 1
0

[1 0] 1 0
0 0

, (1.38)0
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

and

ˆ = ∣↕〉〈↕∣ = ∣ 〉〈 ∣ = =P 1 1 0
1

[0 1] 0 0
0 1

. (1.39)1
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

Similar to the electron spin, the probability of observing the horizontally
polarized photon is given by ∣a∣2 from the measurement
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ψ ψˆ ∣ 〉 = ∣ 〉〈 ∣ 〉 = ∣ 〉〈 ∣ ∣ 〉 + ∣ 〉 = ∣ 〉 =P a b a a0 0 0 0 ( 0 1 ) 0 1
00

⎡
⎣⎢

⎤
⎦⎥, and the probability of observ-

ing the vertically polarized photon is given by ∣b∣2 from the measurement

ψ ψˆ∣ 〉 = ∣ 〉〈 ∣ 〉 = ∣ 〉〈 ∣ ∣ 〉 + ∣ 〉 = ∣ 〉 =P a b b b1 1 1 1 ( 0 1 ) 1 0
1

.1
⎡
⎣⎢

⎤
⎦⎥

We use photon based qbits in chapter 6, Quantum Cryptograph.
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