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Preface

Magnetism is an exciting area of research in condensed matter presenting a variety
of exotic phases and critical phenomena and several technological applications. We
can study simple models, which are theoretically tractable and yet display quanti-
tative correspondence with real systems.

This book is addressed to people with an interest in magnetism, mainly spin
systems. There are excellent advanced textbooks and review papers on the subject.
Still, it was my experience that a book was needed, dedicated to the basic concepts
with a more elementary treatment for researchers starting in the area. Very little in
the text is my original contribution. Most of the material was collected from the
literature. However, it would take a long time for the interested student to gather all
the topics in the literature. I have tried to make the material mostly self-contained,
and references to more advanced treatment are indicated. It is supposed that the
reader has some familiarity with the subject at a level as the one presented in the
book by Blundel [1]. To keep the text short, I have left out some themes such as one-
dimensional models, path-integral formalism and the treatment of continuous
systems, and in this context, the nonlinear sigma model.

In chapter 1, I introduce the Heisenberg model and discuss the ground state of the
ferromagnet and the antiferromagnet. A short introduction to the Hubbard model is
given. In chapter 2, the spin-wave formalism is presented for the ferromagnet and
the antiferromagnet. The XY model is studied using a self-consistent harmonic
approximation. I finish the chapter with a brief introduction to the Jordan–Wigner
transformation and Majorana fermions. In chapter 3, I look at the antiferromag-
netic triangular lattice and the antiferromagnetic square lattice in the presence of an
external magnetic field. I introduce the Dzyaloshinskii–Moriya interaction, treat the
nonlinear spin-wave theory in a mean-field approach, and finally present a modified
spin-wave method.

In chapter 4, I describe lattices with three different sites: the honeycomb, the
checkerboard, and the Union Jack lattices. To treat the antiferromagnetic lattices,
I introduce a generalized Bogoliubov transformation. Chapter 5 is dedicated to the
study of formalisms that are more general than the spin-wave theory and can be used
to study magnetically disordered phases. I develop the Schwinger boson technique
and use it to study valence bond solids and frustrated systems. The use of fermion
operators is also mentioned. In chapter 6, I present bond operators adequate to treat
dimerized phases and the Schwinger SU(3) bosons. I survey quantum phase
transitions, nematic phases, and the Heisenberg model with biquadratic interaction.
Chapter 7 is dedicated to the study of dynamics. I introduce the linear response
theory, correlation functions, spin transport, the Kubo formulas, the Green function
technique, and the memory function formalism. In chapter 8, I develop perturbation
theory to calculate the retarded Green function, also called the Feynman propa-
gator, for a many-body system. There are excellent books leading with the subject
and discussing in full detail Green functions in the context of perturbation theory.
In this chapter, I go straight to the point to teach the reader how to calculate

xi



Feynman diagrams. Magnon topological insulators have been the cause of
substantial interest in recent years, and in chapter 9 I explore briefly topological
effects in ferromagnets and antiferromagnets. In chapter 10 I present a brief
introduction to topological spin liquids. This chapter complements chapter 5, but
it is more specific and can be skipped if the reader is not interested in the subject. An
overview of numerical methods used in spin models is presented in chapter 11. In
appendix A, a short account of group theory is presented to introduce some concepts
used in the book. Finally, in appendix B, I finish with a Green function theory
specific to spin Hamiltonians. The exercises vary in difficulty and complement the
text with specific examples. References are given for the most difficult exercises.

The book by Eriksson et al [2] covers some material lacking in the present book,
and in that sense both books complement each other.

References
[1] Blundell S 2003 Magnetism in Condensed Matter (Oxford: Oxford University Press)
[2] Eriksson O, Bergman A, Bergqvist L and Hellsvik J 2016 Atomistic Spin Dynamics:

Foundations and Applications (Oxford: Oxford University Press)
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Chapter 1

The Heisenberg model

We start with a lattice, in one, two, or three dimensions. There are several kinds of
lattices, and sometimes we even consider a continuum model. Now, in each lattice

site i, we put a spin ⃗Si, with ⃗ = +S S S( 1)i
2

where S is an integer or a half odd
integer. In most cases, one is interested in S = ½ and sometimes in S = 1. The
classical limit where → ∞S is also of interest. The most straightforward interaction
between two spins is given by ⃗ · ⃗S Si j. Using quantummechanics, we can arrive at this
term (see, for instance, Auerbach [1] and Maplis [2]). Still, I am not going to do that
here and assume that the reader is familiar with the procedure. The basic
Hamiltonian in magnetism is the so-called Heisenberg model. This model describes
the interaction between spins in a lattice with N sites where generally, → ∞N . This
is a many-body problem that usually cannot be exactly solved, and many numerical
techniques solve the equations for a finite number of sites. When we do analytical
calculations, most of the time, we treat free particles (called quasiparticles) described
by a quadratic Hamiltonian. The interaction between particles is then handled via
perturbation theory or using a mean-field approach where a quadratic Hamiltonian
replaces the true Hamiltonian of the system with renormalized temperature-depend-
ent parameters. Let us start our journey.

The following Hamiltonian represents the Heisenberg model

∑= ⃗ · ⃗H J S S
1
2

, (1.1)
ij

ij i j

wherein the sum i and j run over all sites on a lattice, Jij = Jji is symmetric, and the
factor ½ corrects the double-counting of the bonds. Spin components on the same
site obey the commutation relations

∑ε α β γ= =
γ

α β
αβγ

γS S i S x y z, ( , , , , ). (1.2)j j j
⎡⎣ ⎤⎦
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Spins on different sites commute with each other. The coefficients Jij are called
exchange constants, and for most of the text, we assume Jij = J, and nearest-
neighbor interactions. If J < 0, the energy is minimized when the spins are parallel to
each other, and we have a ferromagnetic model. For J > 0, antiparallel orientation is
instead favored, and we have an antiferromagnet. Defining

= + = −+ −S S iS S S iS, , (1.3)j j
x

j
y

j j
x

j
y

we can write (1.1) as

∑=
+

+
+ − − +

H J
S S S S

S S
1
2 2

. (1.4)
ij

ij
i j i j

i
z

j
z

⎛
⎝⎜

⎞
⎠⎟

At high temperatures, the spins are disordered due to the strong thermal fluctua-
tions, and the expectation value of each spin vanishes: 〈 ⃗ 〉 =S 0i . For an operator A,
we define

ρ〈 〉 =A tr A( ), (1.5)

where ρ is the density matrix. For mixed states ρ is given by

∑ρ = ∣ 〉〈 ∣p n n , (1.6)
n

n

where pn is the probability of occupation of the eigenstate ∣ 〉n . For a pure state ψ∣ 〉,
the density matrix is given by ρ ψ ψ= ∣ 〉〈 ∣. In the canonical ensemble, as will be the
case treated here, we have

∑〈 〉 = 〈 ∣ ∣ 〉β−A
Z

e n A n
1

, (1.7)
n

En

where = β−Z tr e( )H . It may happen that below some critical temperature, Tc, the
spins order magnetically, and on average, they point along some definite direction:
〈 ⃗ 〉 ≠S 0i . The existence of Tc depends on the dimensionality, the type of lattice, and
the range of the interactions. I will discuss the details later. If there is a Tc below this
temperature 〈 ⃗ 〉Si will increase when we decrease T and will reach a maximum value
at zero temperature. The critical temperature is called the Curie temperature in
ferromagnets and the Néel temperature TN in antiferromagnets.

1.1 Ground state for the ferromagnet
For a spin S we have the basis ∣ ⟩S m, with

⃗ ∣ 〉 = + ∣ 〉 ∣ 〉 = ∣ 〉S S m S S S m S S m m S m, ( 1) , , , , . (1.8)z2

Since we are considering lattices where all spins have the same eigenvalue S we write
∣m〉. For a lattice, the basis is spanned by the product states ∣ ⟩m ,1 ∣ ⟩m ,2 …, ∣ ⟩m .N

On this basis, the last term in (1.4) is diagonal, but the other two terms are not.
Defining the total spin ⃗ ≡ ∑ ⃗S Si i it is easy to show that
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= = =S H S H S H[ , ] [ , ] [ , ] 0. (1.9)yx z

Then we can find simultaneous eigenstates of H, ⃗S
2
and Sz. We will start with states

where mi has the maximum value S. This means that all spins are aligned in the
z-direction. We write

ψ∣ ⟩ = ∣ ⟩ ∣ ⟩ … ∣ ⟩S S S , (1.10)N1 2

where ∣ ⟩S i means ∣m = S〉 for the spin at the site i. Here we take >J 0ij , and for the
ferromagnet, we write equation (1.4) with a minus sign. Acting with H on (1.10)
we get

∑ψ ψ ψ ψ∣ 〉 = − ∣ 〉 + ∣ 〉 + ∣ 〉+ − − +H J S S S S S S
1
2

1
2

1
2

, (1.11)
ij

ij i j i j i
z

j
z⎛

⎝⎜
⎞
⎠⎟

but ψ ψ∣ ⟩ = ∣ ⟩ =+ − − +S S S S 0,i j i j and so we can write

∑ ∑ψ ψ ψ∣ 〉 = − ∣ 〉 = − ∣ 〉H J S S
S

J
1
2 2

. (1.12)
ij ij

ij i
z

j
z

ij

2

Thus ∣ψ〉 is an eigenstate of H. There are 2Stot + 1 of such states since H is invariant
under rotations in the spin space. However, a state ϕ∣ ⟩ = m1 m2 … mN is
generally not an eigenstate of H. We have

∑

∑

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ∣ ∣ = − ⟨ ∣ ∣ ⟩ + ⟨ ∣ ∣ ⟩ + ⟨ ∣ ∣ ⟩

= −

+ − − +H S S S S S S

J m m

1
2

1
2

1
2

1
2

.
(1.13)ij

i j

j

,

i j i j i
z

j
z

ij i

⎛
⎝⎜

⎞
⎠⎟

If Jij ⩾ 0 for all i and j, then Jijmimj ⩽ JijS
2 and we conclude

∑ϕ ϕ ⩾ −H
S

J
2

. (1.14)
ij

ij

2

Therefore, all eigenenergies, in particular the ground state energy, are larger than or
equal to − ∑S N J( / ) .ij ij

2 However, ∣ψ〉 is an eigenstate to this energy and therefore it
must be a ground state if Jij ⩾ 0 for all i, j. We have found then that the fully
polarized state is the ground state.

1.2 Spontaneous broken symmetries
Spontaneous symmetry breaking happens when the Hamiltonian has a symmetry
and hence a conserved quantity, but the ground state of the system does not have
that symmetry. The Hamiltonian of the Heisenberg model given by equation (1.1) is
rotationally symmetric. If we rotate all spins by the same angle, the Hamiltonian
does not change. The total spin of the system, as we have seen, commutes with the
Hamiltonian and hence is conserved. However, the symmetry is broken spontaneously
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in the ferromagnet’s ground state where a single unique direction has been chosen
along which all the spins have lined up, and the ground state is not invariant under
rotation. When the symmetry that is broken spontaneously is continuous, such as
the rotation of spins discussed above, there are infinitely many ground states.
(Note that there are a finite number of ground states when the broken symmetry
is discrete, such as a spin inversion in the Ising model, to be discussed later.) In
the case of spontaneously broken continuous symmetry, the low-lying excitation
with energy ⃗E k( ) does not have a gap. That is, ⃗E k( ) → 0 as ⃗k → 0. This result is
known as the Goldstone theorem. More details of the theorem can be found in
Auerbach [1].

1.3 Ground state for the antiferromagnet
In most cases, the antiferromagnetic ground state is more complicated than the
ferromagnetic ground state, and few rigorous results are known about the ground
state of the general Heisenberg model. One case where a rigorous result exists is
where one has an antiferromagnet on a bipartite lattice. In such a lattice, all sites are
divided into two disjoint subsystems A and B so that Jij = 0 if i,j ∈ A or if i,j ∈ B.
Hence, one has interactions only between sites from different lattices. As an
example, we have the square lattice shown in figure 1.1.

For a bipartite lattice with Jij ⩾ 0 in Hamiltonian (1.4), we might naively assume
that the ground state is fully polarized but with the spins in opposite directions for
the two sublattices. This state is called the Néel state. It is the true ground state for
the classical model, but it is not for the quantum case. For instance, the ground state
of a four-site spin ½ antiferromagnetic chain is given by

↑ ↑ ↓ ↓ + ↓ ↓ ↑ ↑ + ↓ ↑ ↑ ↓ + ↑ ↓ ↓ ↑ − ↑ ↓ ↑ ↓ − ↓ ↑ ↓ ↑2 2 .

Figure 1.1. The bipartite square lattice with sublattices A and B.
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The Néel state can be written as

∏ ∏ψ = −
∈ ∈

S S . (1.15)
i A

i
j B

j

The states ∣±S〉 are eigenstates of Sz for the given lattice site with eigenvalues ±S.
We have

∑∑ψ ψ ψ ψ= + +
∈ ∈

+ − − +H J S S S S S S
1
2

1
2

. (1.16)
i A j B

ij i j i j i
z

j
z⎛

⎝⎜
⎞
⎠⎟

Note that

ψ =+ −S S 0, (1.17)i j

and

∑∑ψ

ψ

= × + − −

… − … − + −

∈ ∈

H J S S S S

S S S

1
2

[ ( 1) ( 1)]

1 1 .
(1.18)i A j B

ij

i j
2

⎜

⎟

⎛
⎝

⎞
⎠

So, ∣ψ〉 is not even an eigenstate of H. We present an important theorem without
demonstration. The proof is given in chapter 5 of Auerbach [1].

Marshall’s theorem: The absolute ground state ψ0 for equal size sublattices A and B is
a singlet of the total spin

ψ∣ 〉 =S 0. (1.19)tot 0

Marshall’s theorem does not uniquely determine the ground state, and many other
total-spin singlets are not the ground state.

As we saw, due to the spin rotational invariance of the coupling, the antiferro-
magnetic interaction drives neighboring spins isotropically antiparallel. The ground
state can be achieved by forming an overall singlet with Stot = 0 (as follows from
Marshall’s theorem). The difficulty is that this condition does not fix the state
uniquely. The number of singlets grows exponentially as a function of the lattice size
(Fazekas [3]), and most of the singlets have a complicated structure. For spin ½ the
basic singlet is given by

= ∣↑ ↓ 〉 − ∣↓ ↑ 〉i j[ , ]
1

2
( ). (1.20)i j i j

Singlet states of more than two spins are obtained by letting all the spins participate
in pair bonds. Let us consider as an example a four-site spins ½ Heisenberg model
on a square (a single plaquette). The singlet basis can be chosen to consist of the two
states shown in figure 1.2.

Other states can be written as a combination of the above basis, as shown in
figure 1.3.

The ground state of this four-site Heisenberg model is given by [3]
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ψ = +1

2
([1, 2][3, 4] [2, 3][4, 1]), (1.21)0

with energy E0 = −2J (which is quite different from the Néel state). ψ0 is a superposition
of two states with parallel bond configurations on the square. Each state given by the
parallel bonds is not an eigenstate of the Hamiltonian, and thus not the ground state.
The Hamiltonian flips the bonds on the square between horizontal and vertical
configurations of the parallel bonds. The ground state is hence given by the super-
position (1.21). The situation remains the same if we go to larger configurations. Only
in the thermodynamic limit (when → ∞N ), the Néel ground state (for the isotropic
square lattice) becomes asymptotically degenerate with the exact singlet ground state.
However, there are models for which the ground state is not the Néel state even when
the number of sites goes to infinity.

1.4 Excited states for the ferromagnet
In this section, I will consider the excited states of a ferromagnet. I take S = 1/2, but
it can be easily generalized for other values of spins. For simplicity, let us study a
one-dimensional chain. Each spin has two neighbors, and so we can write

∑= − ⃗ · ⃗ +H J S S . (1.22)
i

i i 1

As we have seen, the ground state of the system ψ0 consists of all the spins lying
along the z-direction, and we have

ψ ψ∣ 〉 = − ∣ 〉H
NS

2
. (1.23)0

2

0

4 4 3

1 2

3

21

[1,2][3,4] =
[2,3][4,1] =

Figure 1.2. Singlet basis.

4 3

1 2

= –

Figure 1.3. [1, 3][4, 2] = [1, 2][3, 4] − [2, 3][4, 1]. This state is a combination of the basis in figure 1.2.
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To create an excitation, we flip a spin at site j and consider the state ψ ψ∣ ⟩ = −S .j j 0

This state is the ground state with the spin at site j flipped:

ψ
ψ

∣ ⟩ = … ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ …
∣ ⟩ = … ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ …j

0

Thus, we have changed the total spin of the system by ½ - (- ½) = 1. This excitation
has, therefore, an integer spin and is a boson. Acting with H on ψ∣ ⟩j we obtain

ψ ψ ψ ψ∣ 〉 = − + ∣ 〉 − ∣ 〉 − ∣ 〉+ −H J NS S S S[( 2 ) ], (1.24)j j j j
2

1 1

and we see that ψ∣ ⟩j is not an eigenstate of the Hamiltonian. We get an eigenstate by
summing over all configurations with a spin flipped at each site j and writing

∑ψ ψ∣ 〉 = ∣ 〉
N

e
1

(1.25)
j

q
iqr

j
j

where eiqrj is a phase factor, which describes a plane wave of wave number q. Such
waves are known as ‘spin waves’. The state ψ∣ ⟩q is essentially a flipped spin
delocalized. A single spin deviation does not appear on a particular site but is
instead distributed over all of the sites in the lattice. It is easy to see that

ψ ψ∣ 〉 = ∣ 〉H E q( ) , (1.26)q q

where

= − + −E q NS J JS qa( ) 2 (1 cos ), (1.27)2

and a is the lattice spacing. This result can easily be extended to higher dimensions.
A ferromagnet is perfectly ordered at T = 0, but at non-zero temperature, the order
is disrupted by spin waves. The energy of a spin-wave is quantized, and the quantum
of energy of a spin-wave is called a magnon.

1.5 Translational symmetry
I will consider the same problem taking a linear chain in a ring (that is, with periodic
boundary condition). The system is invariant if we displace all spins by one (or
more) site. Let T be the translation operator, which takes a spin at the site l into the
site l + 1. We have

γ= =γ γ†
+TS T S x y z( , , ), (1.28)l l 1

and

α α α=T , (1.29)

where ∣α〉 and α are eigenvectors and eigenvalues of T. If we have N sites, applying T
N times we return to the first site. Thus, αN = 1. The solutions are then

α π= = = … −−e K N n n Nwith (2 / ) , 0, 1, , 1.iK
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We can write the eigenstates of H as

S S K, , , (1.30)T
z
T

where

⃗ = +
=
= −

S S S K S S S S K

S S S K S S S K

T S S K e S S K

, , ( 1) , , ,

, , , , ,

, , , , ,

(1.31)

T
Z
T T T T

Z
T

Z
T T

Z
T

Z
T T

Z
T

T
Z
T iK T

Z
T

2

with ⩽ ⩽ = − … −S NS S NS NS NS0 , , 1, ,T
z
T .

We know from quantum mechanics that translational invariance is associated
with the conservation of linear momentum. In the following, I consider the state
with one spin flipped. We can write an eigenstate of T as

ϕ = − + + + … + + − + + … + …c c (1.32)1 2

ϕ = + − + + + … + + + − + + … + …T c c (1.33)1 2

But ϕ ϕ= −T e iK , which leads to

= … → = …− −
+e c c e c c, . , , . , (1.34)iK iK

n n2 1 1

so, = −c en
iKn and thus

ϕ = − + + + … + + − + + … + + + − + + +…e e e (1.35)iK iK iK2 3

We have N eigenvalues of T. We also have one energy for each value of K. For
instance, for N = 4 we have

ϕ∣ ⟩ = ∣− + + +⟩ + ∣+ − + +⟩ + ∣+ + − +⟩ + ∣+ + + −⟩e e e e , (1.36)iK iK iK iK2 3 4

with K = 0, π/2, π, 3π/2.

1.6 Two spin waves
The state with two flipped spins is given by

ψ ψ∣ ⟩ = − −S S . (1.37)ij i j 0

For the ferromagnet, this is a state with two magnons. Note that for S =½ there is
no state ψii . We can put the first spin flipped at N sites. The second spin flipped
at N−1 sites. Since a permutation does not change the state, we have N(N−1)/2
states. For S >½, we can have two flipping at the same site, and thereforeN additional
states, leading to a total of N(N + 1)/2 states. I am not going to present the calculation
of two spin-wave states here. For this calculation, see Feynman [4]. It is important to
mention that now we have bound states, and we can look upon the problem as a
scattering of two quasiparticles. In the same way, we can treat three or more spin
deviations.
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1.7 Long-range order
Suppose that we have a rotationally invariant Hamiltonian H0. We add an ordering
field h, which breaks the rotational symmetry, and write

= −H H hS , (1.38)q
z

0

where

∑= ⃗ · ⃗S e S . (1.39)q
z

i

iq r
i
zi

The magnetization per site is given by

= β−( )m h
NZ

tr e S( )
1

. (1.40)q
H

q
z

We consider here lattices that are symmetric under reflection about the origin. For h > 0
we have >m h( ) 0q since the applied field induces the magnetization. We say that the
system has a spontaneously broken symmetry if the magnetization is finite in the
thermodynamic limit, as we take the field h to zero from above. That is

≠
→ →∞+

m hlim lim ( ) 0. (1.41)
h N0

q

Note that the order of limits matter. We define the correlation functions as

α⃗ = =
→

αα β α α−
−+

( )S q
ZN

tr e S S x y z( ) lim
1

. , , . (1.42)
h 0

H
q q

If h = 0, the correlations are independent of the direction α.

1.8 Mermin and Wagner’s theorem
The theorem says that for the quantum Heisenberg model

∑= ⃗ · ⃗H J S S
1
2

, (1.43)
i j,

ij i j

with short-range interactions that obey

∑∣ ∣∣ ⃗ − ⃗ ∣ < ∞
N

J r r
1

2
, (1.44)

i j,

ij i j

there can be no true long-range order at finite temperatures in one and two
dimensions. The theorem does not apply at T = 0. If there is a unique ground state
and a gap in the excitation spectrum, the ground state of the Heisenberg model must
be disordered. The proof of the above statement is presented in Auerbach [1]. Note
that gapless excitations do not imply long-range order. For example, the spin half
Heisenberg antiferromagnet in one dimension has gapless excitation but no long-
range order at zero temperature.
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1.9 The Ising model
In this book, I will study several spin Hamiltonians. Here I will mention only one
specific case: the Ising model described by the Hamiltonian

∑= −H
J

S S
2

. (1.45)
ij

i
z

j
z

It is the simplest model in magnetism since …m m m N1 2 is an eigenstate of the
Hamiltonian. The model has an ordered phase below the critical temperature in
three and two dimensions. It is perhaps one of the most studied models, mainly in
statistical physics, and it can be applied to several different systems where we have a
variable that can take only two values. Its importance is that it is one of few solvable
models in one and two dimensions where we can compute thermodynamic quantities
exactly. As concerning magnetic systems, for a material to be Ising-like, the ground
state of the ion model must be a doublet well separated from the excited states.

1.10 Brillouin zone
Suppose we have a lattice with lattice vectors [5]

⃗ = ⃗ + ⃗ + ⃗R n a n a n a , (1.46)n 1 1 2 2 3 3

where ni are integers and ⃗ai are the primitive vectors. The reciprocal lattice is
generated by basis vectors ⃗ ⃗b b,1 2 and ⃗b3 given by

π π π⃗ = ⃗ × ⃗
⃗ · ⃗ × ⃗

⃗ = ⃗ × ⃗
⃗ · ⃗ × ⃗

⃗ = ⃗ × ⃗
⃗ · ⃗ × ⃗

b
a a

a a a
b

a a
a a a

b
a a

a a a
2 ( )

( )
,

2 ( )
( )

,
2 ( )

( )
. (1.47)1

2 3

1 2 3
2

3 1

2 3 1
3

1 2

3 1 2

The vectors of the reciprocal lattice are then

⃗ = ⃗ + ⃗ + ⃗K n b n b n b n( : integer). (1.48)n i1 1 2 2 3 3

If we express the vector ⃗q as

⃗ = ⃗ + ⃗ + ⃗q q b q b q b , (1.49)
1 1 2 2 3 3

then the component qi has the values

=q
n
N

, (1.50)i
i

i

where Ni is the number of unit cells in the ⃗ai direction, and the total number of lattice
points is equal to =N N N N1 2 3. We have N independent ⃗q vectors. The first Brillouin
zone is the region surrounded by planes bisecting the vectors connecting the origin
and neighboring reciprocal lattice points.

In general, we have to integrate a function in the Brillouin zone. To show how this
is done, we start with the simple case of one dimension, where we have the well-
known result
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∫ ∑= Δ
=−

f x dx f x x( ) ( ) , (1.51)
i

N

1
b

b

i

where Δ =x b N2 / . We can write (1.51) as

∫∑ =
= −N

f x
b

f x dx
1

( )
1
2

( ) . (1.52)
i

N

1

i
b

b

If we have a lattice in one dimension of length a, the reciprocal lattice is given by
π π− ⩽ ⩽a k a/ / . With π=b a/ , we have

∫∑
π

=
= π

π

−N
f k

a
f k dk

1
( )

2
( ) . (1.53)

i

N

1

i
a

a

/

/

This result can easily be generalized to an integral in the Brillouin zone in
d-dimensions

∫∑
π

⃗ = ⃗
N

f k
V

d k
1

( )
(2 )

, (1.54)
i

i d BZ

d

where V is the volume of the unitary cell. For the square or cubic lattice, the
calculation is straightforward. If the unitary cell is a rectangle with sides a and b, the
Brillouin zone is given by: π π− ⩽ ⩽a k a/ /x , π π− ⩽ ⩽b k b/ / .y However, the integral
is more elaborated in other kinds of lattices. Note that it is usual to take the lattice
parameter a as unity.

1.11 Mean-field approximation for the classical ferromagnetic
Heisenberg model

The magnetization is μ⃗ = ⃗m gSi B i, and the total magnetization ∑⃗ = ⃗M m
i

i. In the

case of interaction with only an external field ⃗B , the energy of the system is

∑ ∑ ∑ ∑μ μ μ μ μ θ= = − ⃗ · ⃗ = − ⃗ · ⃗ = −E E B m gB S gSB cos , (1.55)
i i i i

i i B i B i0 0 0

where θi is the angle between the magnetic field and the orientation of the spin. The
partition function is given by

∫ θ θ ϕ βμ μ θ π= =Z d d gSB
r

r
sin exp( cos ) 4

sinh
, (1.56)B1 0

⎡
⎣⎢

⎤
⎦⎥

where βμ μ=r gSBB0 .
From the free energy = −F k T ZlnB 1, we get the magnetization (in the field

direction)
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μ
μ μ= − ∂

∂
= − =M

F
B

gSN r
r

gSNL r
1

coth( )
1

( ), (1.57)B B
0

⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

where L(r) = coth(r)−1/r is the Langevin function.
Now we consider the classical ferromagnetic Heisenberg model in the presence of

an external field. We have for the energy

∑ ∑μ μ= − ⃗ · ⃗ − ⃗ · ⃗
〈 〉

E J S S gB S . (1.58)
i j i,

i j B i0

In the mean-field approximation, we replace the interaction between spins by an
interaction with a field generated by the mean orientation of the spins (that is, we
replace one of the ⃗Si by its average 〈 ⃗ 〉Si ). We write then

∑ ∑ ∑μ μ μ μ= − ⃗ · ⃗ − ⃗ · ⃗ = − ⃗ + ⃗ · ⃗E Jz S S gB S Jz S gB S( ) , (1.59)
i i i

i B i B i0 0

where z is the number of nearest neighbors. We assume that the direction of the
z-axis is in the direction of the magnetic field. The direction of 〈 ⃗〉S is also in the z-axis
direction and its modulus is 〈S〉. Using equation (1.56) we have for the magnetization

μ β μ μ= = 〈 〉 +M gNSL f f S Jz S gB( ), ( ). (1.60)B B0

However, μ= 〈 〉M N g SB , and so we can write

β μ μ= 〈 〉 +S SL S Jz S gB[ ( )]. (1.61)B0

We have to solve (1.61) numerically. For B = 0 we find a finite solution for T < Tc,
where Tc is given by

=T
JzS

k3
. (1.62)c

B

2

We can use the mean-field theory described above only to study ordered phases
because we assume 〈 ⃗ 〉 ≠S 0.i The antiferromagnet can be treated on the same line,
noting that now we have two sublattices.

The reader can easily perform the above calculation for the quantum case.
Instead of the integral (1.56), one has a discrete sum over the quantum states that
can be calculated using the formula

∑+ + + … + = = −
−=

− −a ax ax ax ax
a x

x
(1 )
1

, (1.63)
j

L

1

L j
L

2 1 1

where L is the number of terms in the series, which in this case is L = 2J + 1.

1.12 Landau theory for phase transitions
The Landau theory of phase transitions is based on the view that phase transitions
have universal properties, in that they depend only on the nature of the order
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parameter and not on the finer details of the system. In general, the order parameter
vanishes in the disordered phase and takes a non-zero value in the ordered phase.
However, correlations and fluctuations are ignored in the theory. The central
hypothesis is that we may expand the free energy in a power series in the order
parameter in the vicinity of the critical point that we take as the magnetization m.
Here we consider a ferromagnet [6]. The equilibrium value ofm is then the value that
minimizes the free energy. For cases where F(m, T ) = F(−m, T ), the most general
expansion for F is

= + + + + …F m T a T b T m c T m d T m( , ) ( )
1
2

( )
1
4

( )
1
6

( ) (1.64)2 4 6

where we use fractional coefficients just for convenience. We have

∂
∂

= = + + + …F
m

b t m c T m d T m0 ( ) ( ) ( ) (1.65)3 5

First, we consider the case where c, d, e, … > 0. To obtain a magnetically ordered
state, one must suppose that the coefficient of the term m2 passes through zero at
some temperature Tc. We write then

γ= −b T T T( ) ( ), (1.66)c

near T = Tc. If c is positive, nothing new is added by the term d, and this term may
then be neglected. The magnetization (for zero applied field) is found from

γ − + =T T m c T m( ) ( ) 0. (1.67)c s c s
3

So that either ms = 0 or

γ= −m c T T T( /( ( ))( ). (1.68)s c c
2

For ⩾T Tc the only real root of (1.68) is at =m 0s because γ and c are positive. Thus,
Tc is the Curie temperature. For <T Tc the minimum is at

γ= −m c T T T( / ( )) ( ) . (1.69)s c c
1/2 1/2

This phase transition is a second-order phase transition because the magnetization
goes continuously to zero at the transition temperature.

The transition is first order (the magnetization drops discontinuously to zero at
the transition temperature) if c is negative. We must then retain d and take it as
positive to restrain it from going to minus infinite. The equilibrium condition is

γ − − ∣ ∣ + =T T m c T m d T m( ) ( ) ( ) 0. (1.70)c s c s c s
3 5

So that either ms = 0 or

γ − − ∣ ∣ + =T T c T m d T m( ) ( ) ( ) 0. (1.71)c c s c s
2 4

The Landau theory, although very useful, is a mean-field theory and cannot
correctly describe critical points, where it should be complemented by scaling laws
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and renormalization group theory. At a critical point, a thermodynamic function
generally contains a term regular in t, where = −t T T/ 1,c plus a singular part that
behaves like a power of t [7]. The power is the critical exponent. When the external
magnetic field is zero, we define the following exponents as →t 0:

χ
∼ ∣ ∣
∼ ∣ ∣
∼ ∣ ∣

β

γ

α

−

−

M t
t

C t

(Order parameter),
(Susceptibility),
(Heat capacity),

where ~ means ‘singular part is proportional to’ (note that β here is not k T1/ B ).
Critical exponents are universal in that they do not depend on the details of the
physical system and are the same for several classes of systems. For instance, for
the ferromagnet, they depend on the dimensionality of the lattice, the range of
interaction, and the dimensionality of the order parameter (actually the symmetry of
the order parameter). The mean-field theory gives β = ½ (independent of the space
dimension). The critical exponents calculated using the mean-field theory differ from
the true ones in dimensions 1, 2 and 3. The theory is only correct when the system’s
space dimension is higher than a certain dimension called the upper critical dimension.

1.13 The Hubbard model
The simplest model of a solid is to consider atoms as a collection of sites, each with a
single level (orbital). The Pauli principle constrains the sites to four configurations:
empty, a single electron with spin-up, a single electron with spin-down, and finally
occupation by a pair of electrons with opposite spins. In the so-called tight-binding
model, electrons can hop between lattice sites without interacting with each other. In
its simplest form, electron hopping can only occur between nearest-neighbor sites,
and all hopping processes have the same kinetic energy−t. The kinetic energy term in
the Hamiltonian is a term that destroys an electron of spin σ on site i and creates it
on a neighbor site j (or vice-versa). In the Hubbard model [8], we have an additional
term that considers the electrons’ interaction via a screened Coulomb repulsion. In
the Hamiltonian, we have a term which is zero if the site is empty or has only a single
electron, but has the value U if electrons doubly occupy the site with opposite spins
since the most significant interaction will be for two electrons on the same site. The
Hamiltonian is then written as:

∑ ∑ ∑μ= − + + − +
σ〈 〉

σ σ σ σ
† †

↑ ↓ ↑ ↓( )H t c c c c U n n n n( ), (1.72)
i j i i,

i j j i i j i i

where

=σ σ σ
†n c c , (1.73)i i i

and σc i are fermion operators. The symbol 〈 〉i j, means that hopping occurs only
between two adjacent sites. The last term is a chemical potential that controls the
filling. We refer to the situation where there is one electron per site as ‘half-filling’.
Depending on the value of U, the model describes a metallic or an insulating state.
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If the Coulomb repulsion is large, the electrons are less likely to hop to a neighboring
site, and they self-localize on a given lattice site. The electrons can virtually hop to
another site and back. However, the material is an insulator and will not conduct. Such
a material with an odd number of electrons per unit cell that does not conduct because
of Coulomb repulsion is called a Mott insulator, as opposed to band insulators,
resulting from filled energy bands. If t/U is large, electrons are essentially free. However,
if U/t ≫ 1, the electrons are localized. The kinetic energy term favors two neighboring
site-localized electrons to have antialigned spins, as a hop to a neighboring site is not
allowed due to the Pauli exclusion principle. Hence, at half-filling and in the large
repulsion limit, the most elementary model that captures the dominant interaction in
Mott-insulators is the spin ½ antiferromagnetic Heisenberg model with ∼J t U/ ,2

∑= ⃗ · ⃗
〈 〉

H J S S , (1.74)
ij

i j

with the spin given by

τ⃗ = ℏ
σ σσ σ
†

′ ′S c c i
2

, (no sum in ) (1.75)i i i

where τ ⃗ are the three Pauli matrices. For the derivation of this result, see Fradkin [9].
Note, however, that equation (1.74) is only the leading term of the effective
Hamiltonian. If we go to higher orders, we obtain also ring-exchange processes,
second-neighbor interactions, etc. For instance, up to the third order in the strong
coupling expansion, we get the following three spin ring-exchange term [10]

∑ϕ= ⃗ · ⃗ × ⃗
Δ

H J S S Ssin ( ), (1.76)
ijk

i j k3 3

where J3 is the three spin ring-exchange couplings constant around an elementary
triangle Δi j k, , on the square lattice formed by the sites i, j, k in a counterclockwise
way and ϕ is the magnetic flux enclosed through Δi j k, , . The scalar spin chirality in
Δi j k, , is defined by

χ = ⃗ · ⃗ × ⃗S S S( ). (1.77)ijk i j k

This term acts as a fictitious magnetic flux for the Hubble model’s conduction
electrons and gives rise to a nontrivial topology.

I am not going to study the Hubbard model in this book. The above introduction
was only to show that the antiferromagnetic Heisenberg model can be used to study
strongly correlated systems.

1.14 Exercises
1.1. Consider the one-dimensional ferromagnetic Ising model with Hamiltonian

∑= − −
=

−

+H J S S JS S2 2 ,
i

N

1

1

i
z

i
z

N
z z

1 1
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where the last term was added so that we have periodic boundary conditions.
a) Show that the operator η = +S S4i i

z
i
z

1 has eigenvalues +1 or −1.
b) Using ηi show that the partition function is =Z J k T[2 cosh( /2 )] .B

N

1.2. Calculate the partition function and the transition temperature for the
quantum ferromagnetic Heisenberg model in three dimensions, using the
mean-field approximation.

1.3. Consider the two-site Hubbard model with 2 electrons and U = 0.
Calculate the ground state eigenstates and eigenenergies.

References
[1] Auerbach A 1998 Interacting Electrons and Quantum Magnetism (Berlin: Springer)
[2] Maplis N 2007 Quantum Theory of Magnetism (Singapore: World Scientific)
[3] Fazekas P 2003 Lecture Notes on Electron Correlation and Magnetism (Singapore: World

Scientific)
[4] Feynman R P 1974 Statistical Mechanics: A Set of Lectures (Reading, MA: W A Benjamin)
[5] Yosida K 1998 Theory of Magnetism (Berlin: Springer)
[6] Plischke M and Bergersen B 2003 Equilibrium Statistical Physics (Singapore: World Scientific)
[7] Huang K 2001 Statistical Physics (London: Taylor & Francis)
[8] Alet F, Walczak A M and Fisher M P A 2006 Exotic quantum phases and transitions in

correlated matter Physica A 369 122–42
[9] Fradkin E 1991 Field Theories of Condensed Matter Systems (Redwood City, CA: Addison-

Wesley Publishing Company)
[10] Tao L 2019 What does the giant thermal Hall effect observed in the high-temperature

superconductors imply? arXiv:1911.03979

Theoretical Tools for Spin Models in Magnetic Systems

1-16

https://doi.org/10.1016/j.physa.2006.04.003
http://arxiv.org/abs/1911.03979


Full list of references

Prelims

[1] Blundell S 2003 Magnetism in Condensed Matter (Oxford: Oxford University Press)
[2] Eriksson O, Bergman A, Bergqvist L and Hellsvik J 2016 Atomistic Spin Dynamics:

Foundations and Applications (Oxford: Oxford University Press)

Chapter 1

[1] Auerbach A 1998 Interacting Electrons and Quantum Magnetism (Berlin: Springer)
[2] Maplis N 2007 Quantum Theory of Magnetism (Singapore: World Scientific)
[3] Fazekas P 2003 Lecture Notes on Electron Correlation and Magnetism (Singapore: World

Scientific)
[4] Feynman R P 1974 Statistical Mechanics: A Set of Lectures (Reading, MA: W A Benjamin)
[5] Yosida K 1998 Theory of Magnetism (Berlin: Springer)
[6] Plischke M and Bergersen B 2003 Equilibrium Statistical Physics (Singapore: World

Scientific)
[7] Huang K 2001 Statistical Physics (London: Taylor & Francis)
[8] Alet F, Walczak A M and Fisher M P A 2006 Exotic quantum phases and transitions in

correlated matter Physica A 369 122–42
[9] Fradkin E 1991 Field Theories of Condensed Matter Systems (Redwood City, CA: Addison-

Wesley Publishing Company)
[10] Tao L 2019 What does the giant thermal Hall effect observed in the high-temperature

superconductors imply? arXiv:1911.03979

Chapter 2

[1] Kittel C 1963 Quantum Theory of Solids (New York: Wiley)
[2] Fazekas P 2003 Lectures Notes on Electron Correlation and Magnetism (Singapore: World

Scientific)
[3] Powalsk M, Schmidt K P and Uhrig G S 2018 Mutually attracting spin waves in the square

lattice quantum antiferromagnet SciPost Phys 4 001–38
[4] Stancel D D and Prabhakar A 2009 Spin Waves Theory and Applications (Berlin: Springer)
[5] Timm C 2015 Theory of Magnetism (Dresden: Technische Universitat Dresden) https://

obelix.physik.uni-bielefeld.de/~schnack/molmag/material/timm-lecturenotes.pdf
[6] Manousakis E 1991 The spin Â½ Heisenberg antiferromagnet on a square lattice and its

application to the cuprous oxides Rev. Mod. Phys. 63 1–62
[7] Cheng R, Okamoto S and Xiao D 2016 Spin Nernst effect of magnons in collinear

antiferromagnets Phys. Rev. Lett. 117 217202
[8] Fradkin E 1991 Field Theories of Condensed Matter Systems (Redwood City, CA: Addison-

Wesley Publishing Company)
[9] Tsvelik A M 1996 Quantum Field Theory in Condensed Matter (Cambridge: Cambridge

University Press)
[10] Blundell S 2003 Magnetism in Condensed Matter (Oxford: Oxford University Press)
[11] Auerbach A 1994 Interacting Electrons and Quantum Magnetism (Berlin: Springer)
[12] Villain J 1974 Quantum theory of one- and two-dimensional ferro-and antiferromagnets with

an easy magnetization plane J. Phys. 35 27–47

Theoretical Tools for Spin Models in Magnetic Systems

https://doi.org/10.1016/j.physa.2006.04.003
http://arxiv.org/abs/1911.03979
https://doi.org/10.21468/SciPostPhys.4.1.001
https://obelix.physik.uni-bielefeld.de/~schnack/molmag/material/timm-lecturenotes.pdf
https://obelix.physik.uni-bielefeld.de/~schnack/molmag/material/timm-lecturenotes.pdf
https://doi.org/10.1103/RevModPhys.63.1
https://doi.org/10.1103/PhysRevLett.117.217202
https://doi.org/10.1051/jphys:0197400350102700


[13] Kosterlitz J M and Thouless D J 1973 Ordering, metastability and phase transitions in
two-dimensional systems J. Phys.: Solid State Phys 6 1181–203

[14] Berezinskii VL 1971Destruction of long-range order in one-dimensional and two-dimensional
systems having a continuous symmetry group Sov. Phys. JETP 32 493–500

[15] Pires A S T 2007 Quantum- phase transition in an XY model Physica A 373 387–91
[16] Samuel S 1982 Perturbative analysis of the planar XY model Phys. Rev. B 25 1755–58
[17] Pires A S T 1995 Perturbative analysis of the classical two-dimensional XY model Solid State

Commun. 96 915–18
[18] Nussinovand Z and van den Brink J 2015 Compass and Kitaev models: theory and physical

motivations Rev. Mod. Phys. 87 1–59
[19] Trousselet F, Oles AM and Horsch P 2010 Compass-Heisenberg model on the square lattice:

spin order and excitations Eur. Lett. 91 40005
[20] Niemeijer T 1967 Some exact calculations on a chain of spins Â½ Physica 36 377–419
[21] Fauseweh B, Stolze J and Uhrig G S 2014 Finite-temperature line shapes of hardcore bosons

in quantum magnets: a diagrammatic approach tested in one dimension Phys. Rev. B 90
024428

[22] Biswas R R, Fu L, Laumann C R and Sachdev S 2011 SU(2)-invariant spin liquids on the
triangular lattice with spinful Majorana excitations Phys. Rev. B 83 245131

[23] Pati S K, Ramasesha S and Sen D 1997 Low-lying excited states and low-temperature
properties of an alternating spin-1-spinâ 1/2 chain: a density matrix renormalization group
Phys. Rev. B 55 8894–904

Chapter 3

[1] Chernyshev A L and Zhitomirsky M E 2009 Spin-waves in triangular lattice antiferromag-
net: decays, spectrum renormalization, and singularities Phys. Rev. B 79 144416

[2] Merdan M and Xian Y 2012 Longitudinal excitations in triangular lattice antiferromagnets
J. Low. Temp Phys. 171 797–807

[3] Zhitomirsky M E and Nikuni T 1997 Two-dimensional Heisenberg antiferromagnet in
strong magnetic fields Physica B 241 573–5

[4] Mourigal M, Zhitomirsky M E and Chernyshev A L 2010 Field-induced decay dynamics in
square-lattice antiferromagnets Phys. Rev. B 82 144402

[5] Blundel S 2003 Magnetism in Condensed Matter (Oxford: Oxford University Press)
[6] Landau D P and Binder K 1981 Phase diagrams and critical behavior of a two-dimensional

anisotropic Heisenberg antiferromagnet Phys. Rev. B 24 1391–403
[7] Stancel D D and Prabhakar A 2009 Spin Waves Theory and Applications (Berlin: Springer)
[8] Moriya T 1960 Anisotropic superexchange interaction and weak ferromagnetism Phys. Rev.

120 91–8
[9] Kittel C 1963 Quantum Theory of Solids (New York: Wiley)
[10] Takahashi M 1989 Modified spin-wave theory of a square-lattice antiferromagnet Phys. Rev.

B 40 2494–501

Chapter 4

[1] Colpa J H P 1978 Diagonalization of the quadratic boson Hamiltonians Physica A 93 327–53
[2] Samajdar R, Chatterjee S, Sachdev S and Scheurer M S 2019 Thermal Hall effect in square

lattice spin liquids: a Schwinger boson mean-field study Phys. Rev. B 99 165126

Theoretical Tools for Spin Models in Magnetic Systems

https://doi.org/10.1088/0022-3719/6/7/010
https://doi.org/10.1016/j.physa.2006.08.004
https://doi.org/10.1103/PhysRevB.25.1755
https://doi.org/10.1016/0038-1098(95)00422-X
https://doi.org/10.1103/RevModPhys.87.1
https://doi.org/10.1209/0295-5075/91/40005
https://doi.org/10.1016/0031-8914(67)90235-2
https://doi.org/10.1103/PhysRevB.90.024428
https://doi.org/10.1103/PhysRevB.90.024428
https://doi.org/10.1103/PhysRevB.83.245131
https://doi.org/10.1103/PhysRevB.55.8894
https://doi.org/10.1103/PhysRevB.79.144416
https://doi.org/10.1007/s10909-012-0778-1
https://doi.org/10.1016/S0921-4526(97)00647-9
https://doi.org/10.1103/PhysRevB.82.144402
https://doi.org/10.1103/PhysRevB.24.1391
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1103/PhysRevB.40.2494
https://doi.org/10.1016/0378-4371(78)90160-7
https://doi.org/10.1103/PhysRevB.99.165126


[3] Canals B 2002 From the square lattice to the checkerboard lattice: spin-wave and large-n limit
analysis Phys. Rev. B 65 184408

[4] Collins A, McEvoy J, Robinson D, Hamer C J and Weihong Z 2006 Quantum spin model
with frustration on the union jack lattice Phys. Rev. B 73 024407

Chapter 5

[1] Auerbach A 1994 Interacting Electrons and Quantum Magnetism (Berlin: Springer)
[2] Mezio A, Sposeti C N, Manuel L O and Trumper A E 2011 A test of the bosonic spinon for

the triangular antiferromagnet spectrum Eur. Phys. Lett. 94 47001
[3] Ceccato H A, Gaza C J and Trumper A E 1993 Nonclassical disordered phase in the strong

quantum limit of frustrated antiferromagnets Phys. Rev. B 12329–32
[4] Mila F, Poilblanc D and Bruder C 1991 Spin dynamics in a frustrated magnet with short

range-order Phys. Rev. B 43 7891–8
[5] Flint R and Coleman P 2009 Symplectic N and time reversal in frustrated magnetism Phys.

Rev. B 79 014424
[6] Read N and Sachdev S 1991 Large-N expansion for frustrated quantum antiferromagnets

Phys. Rev. Lett. 66 1773–6
[7] Yoshioka D 1989 Boson mean-field theory of the square lattice Heisenberg model J. Phys.

Soc. Jpn. 58 3733–45
[8] Schmidt B and Thalmeier P 2017 Frustrated two-dimensional quantum magnets Phys. Rep.

703 1–59
[9] Misguich G and Lhuillier C 2005 Two dimensional quantum antiferromagnets Frustrated

Spin Systems ed H T Diep (Singapore: World Scientific)
[10] Mila F 2015 Frustrated spin systems Many-Body Physics: From Kondo to Hubbard ed E

Pavarini, E Koch and P Coleman (Julich: Forschungszentrum Julich) ch 7
[11] Yang X and Wang F 2016 Schwinger boson spin liquid states on a square lattice Phys. Rev.

B 94 035160
[12] Lhuillier C and Misguich G 2011 Introduction to quantum spin liquids Introduction to

Frustrated Magnetism ed C Lacroix, P Mendels and F Mila (Heidelberg: Springer), pp 23–41
[13] Fradkin E 1991 Field Theories of Condensed Matter Systems (Redwood City, CA: Addison-

Wesley Publishing Company)
[14] Timm C 2011 Theory of Magnetism (Dresden: Technische Universitat Dresden)
[15] Santos R A and Korepin V 2012 Entanglement of disjoint blocks in the one-dimensional spin

1 J. Phys. A: Math.Theor. 45 125307
[16] Affleck I, Kenedy T, Lieb E H and Tasaki H 1987 Rigorous results on valence-bond ground

states in antiferromagnets Phys. Rev. Lett. 59 799–802
[17] Wen X G 2004 Quantum Field Theory of Many-Body Systems (Oxford: Oxford University

Press)
[18] Yu Y, Muller G and Viswanath V S 1996 Dimer and Néel order-parameter fluctuations in

the spin-fluid phase of the s = 1/2 spin chain with first- and second-neighbor couplings Phys.
Rev. B 54 9242–9

[19] Sandvik A W 2007 Evidence for deconfined quantum criticality in a two-dimensional
Heisenberg model with four-spin interactions Phys. Rev. Lett. 98 227202

[20] Shastry B S and Sutherland B 1981 Exact ground state of a quantum mechanical
antiferromagnet Physica B 108 1069–70

Theoretical Tools for Spin Models in Magnetic Systems

https://doi.org/10.1103/PhysRevB.65.184408
https://doi.org/10.1103/PhysRevB.73.024407
https://doi.org/10.1209/0295-5075/94/47001
https://doi.org/10.1103/PhysRevB.43.7891
https://doi.org/10.1103/PhysRevB.79.014424
https://doi.org/10.1103/PhysRevLett.66.1773
https://doi.org/10.1143/JPSJ.58.3733
https://doi.org/10.1016/j.physrep.2017.06.004
https://doi.org/10.1103/PhysRevB.94.035160
https://doi.org/10.1088/1751-8113/45/12/125307
https://doi.org/10.1103/PhysRevLett.59.799
https://doi.org/10.1103/PhysRevB.54.9242
https://doi.org/10.1103/PhysRevLett.98.227202
https://doi.org/10.1016/0378-4363(81)90838-X


[21] Weihong Z, Oitmaa J and Hamer C J 2001 Phase diagram of the Shastry–Sutherland
antiferromagnet Phys. Rev. B 65 014408

[22] Lauchli A, Wessel S and Sigrist M 2002 Phase diagram of the quadrumerized Shastry–
Sutherland model Phys. Rev. B 66 014401

[23] Wu C, Chen B, Dai X, Yu Y and Su Z B 1999 Schwinger boson mean-field theory of the
Heisenberg ferrimagnetic spin chain Phys. Rev. B 60 1057–63

[24] Chen S Q and Zhang F C 2002 Antiferromagnetic Heisenberg model on an anisotropic
triangular lattice in the presence of a magnetic field Phys. Rev. B 66 172407

[25] Ji Y and Dong J 2003 Schwinger-boson mean field solutions of spin-1 (or Â½) 2D
anisotropic Heisenberg antiferromagnet arXiv:cond-mat/0301570

Chapter 6

[1] Sachdev S and Bhatt R N 1990 Bond-operator representation of quantum spins: mean-field
theory of frustrated quantum Heisenberg model Phys. Rev. B 41 9323–9

[2] Matshushita Y, Gelgand M P and Ishii C 1999 Bond-operator mean-field theory for the
bilayer Heisenberg model J. Phys. Soc. Jpn. 68 247–52

[3] Shik H Y, Li Q Y and Lin H Q 2003 Constructing soluble quantum spin models Nucl. Phys.
B 666 337–60

[4] Sachdev S 2011 Quantum Phase Transitions (Cambridge: Cambridge University Press)
[5] Wang H T and Wang Y 2005 Long-range order in gapped magnetic systems induced by

Bose–Einstein condensation Phys. Rev. B 71 104429
[6] Pires A S T 2011 The spin-1 anisotropic Heisenberg antiferromagnet on a square lattice at

low temperatures J. Magn. Magn. Mater. 323 1977–9
[7] Papanicolaou N 1988 Unusual phases in quantum spin-1 systems Nucl. Phys. B 305 367–95
[8] Arovas D P and Auerbach A 1988 Functional integral theories of low-dimensional quantum

Heisenberg models Phys. Rev. B 38 316–32
[9] Muniz R A, Kato Y and Batista C D 2014 Generalized spin-wave theory: application to the

bilinear-biquadratic model Prog. Theor. Exp. Phys. 2014 083101
[10] Zhang Z, Wierschem K, Yap I, Kato Y, Batista C D and Sengupta P 2013 Phase diagram

and magnetic excitations of anisotropic spin-one magnets Phys. Rev. B 87 174405
[11] Pires A S T 2018 Effect of the Higgs mode in the spin transport of a Heisenberg

antiferromagnet on a square lattice Solid State Commun. 281 22–6
[12] Philips P 2003 Advanced Solid State Physics (Boulder, CO: Westview Press)
[13] Zapf V S, Zocco D, Hansen B R, Jaime M, Harrison N, Batista C D, Kenzelmann M,

Niedermayer C, Lacerda A and Paduan-Filho A 2006 Bose–Einstein condensation of S = 1
Nickel spin degrees of freedom in NiCl2–4SC(NH2)2 Phys. Rev. Lett. 96 077204

[14] Niesen I and Corboz P 2017 A tensor network study of the complete ground-state phase
diagram of the spin-1 bilinear-biquadratic Heisenberg model on the square lattice SciPost
Phys. 3 030

[15] Hu W J, Lai H H, Gong S S, Yu R, Dagotto E and Si Q 2020 Quantum transitions of
nematic phases in a spin-1 bilinear biquadratic model and their implication for FeSe Phys.
Rev. Res. 2 023359

[16] Penc K and Lauchli A M 2011 Spin nematic phases in quantum spin systems Introduction to
Frustrated Magnetism ed C Lacroix, P Mendels and F Mila (Berlin: Springer), pp 331–62

[17] Hu W J, Gong S S, Lai H H, Hu H, Si Q and Nevidomsky H 2019 Nematic spin liquid phase
in a frustrated spin-1 system on the square lattice Phys. Rev. B 100 165142

Theoretical Tools for Spin Models in Magnetic Systems

https://doi.org/10.1103/PhysRevB.65.014408
https://doi.org/10.1103/PhysRevB.66.014401
https://doi.org/10.1103/PhysRevB.60.1057
https://doi.org/10.1103/PhysRevB.66.172407
http://arxiv.org/abs/cond-mat/0301570
https://doi.org/10.1103/PhysRevB.41.9323
https://doi.org/10.1143/JPSJ.68.247
https://doi.org/10.1016/S0550-3213(03)00464-4
https://doi.org/10.1103/PhysRevB.71.104429
https://doi.org/10.1016/j.jmmm.2011.02.036
https://doi.org/10.1016/0550-3213(88)90073-9
https://doi.org/10.1103/PhysRevB.38.316
https://doi.org/10.1093/ptep/ptu109
https://doi.org/10.1103/PhysRevB.87.174405
https://doi.org/10.1016/j.ssc.2018.06.013
https://doi.org/10.1103/PhysRevLett.96.077204
https://doi.org/10.21468/SciPostPhys.3.4.030
https://doi.org/10.1103/PhysRevResearch.2.023359
https://doi.org/10.1103/PhysRevB.100.165142


[18] Li P, Zhang G M and Shen S Q 2007 The SU(3) bosons and the spin nematic state of the
spin-1 bilinear-biquadratic triangular lattice Phys. Rev. B 75 104420

[19] Liu C, Lu X, Dai P, Yu R and Si Q 2020 Anisotropic magnetic excitations of a frustrated
bilinear-biquadratic spin model: implications for spin waves of detwinned iron pnictides
Phys. Rev. B 101 024510

[20] Wang Z, Hu W J and Nevidomsky A H 2016 Spin ferroquadrupolar order in the nematic
phase of FeSe Phys. Rev. Lett. 116 247203

[21] Tanaka K and Hotta C 2020 Finite temperature thermodynamic properties of the spin-1
nematics in an applied magnetic field Phys. Rev. B 102 140401

Chapter 7

[1] Shankar R 1994 Principles of Quantum Mechanics (New York: Plenum Press)
[2] Allen P B 2006 Comtemp. Concepts Conden. Matter Sci. 2 165–218
[3] Sentef M, Kollar M and Kampf A P 2007 Spin transport in Heisenberg antiferromagnets in

two and three dimensions Phys. Rev. B 75 214403
[4] Nolting W and Ramakanth A 2009 Quantum Theory of Magnetism (Berlin: Springer)
[5] Ziman J M 1969 Elements of Advanced Quantum Theory (Cambridge: Cambridge University

Press)
[6] Foster D 1975 Hydrodynamics Fluctuations, Broken Symmetry, and Correlation Functions

(Reading, MA: Benjamin)
[7] Florencio J and Alcantara Bonfin O F 2020 Recent advances in the calculation of dynamical

correlation functions arXiv:2005.14222
[8] Pires A S T 1988 The memory function formalism in the study of the dynamics of a

many-body system Helv. Phys. Acta 61 988–1006
[9] Lee M H 1982 Solutions of the generalized Langevin equation by a method of recurrence

relations Phys. Rev. B 26 2547–51
[10] Mori H 1965 A continued-fraction representation of the time-correlation functions Prog.

Theor. Phys. 34 399–416
[11] Lucas A and Sachdev S 2015 Memory matrix theory of magnetotransport in strange metals

Phys. Rev. B 91 195122
[12] Saha P, Zhang D, Lee S H and Chern G W 2021 Spin dynamics of the antiferromagnetic

Heisenberg model on Kagome bilayers arXiv:1904.05863
[13] Sachdev S 2011 Quantum Phase Transitions (Cambridge: Cambridge University Press)
[14] Altland A and Simons B 2006 Condensed Matter Field Theory (Cambridge: Cambridge

University Press)
[15] Kittel C 1963 Quantum Theory of Solids (New York: Wiley)

Chapter 8

[1] Abrikosov A A, Gorkov L P and Dzyaloshinski I E 1963Methods of Quantum Field Theory in
Statistical Physics (New York: Dover Publications)

[2] Fetter A L and Walecka J D 2003 Quantum Theory of Many-Particle Systems (New York:
Dover Publications)

[3] Mahan G D 1990 Many-Particle Physics (New York: Plenum)
[4] Lurie D 1968 Particles and Fields (New York: Interscience Publishers)
[5] Ziman J M 1969 Elements of Advanced Quantum Theory (Cambridge: Cambridge University

Press)

Theoretical Tools for Spin Models in Magnetic Systems

https://doi.org/10.1103/PhysRevB.75.104420
https://doi.org/10.1103/PhysRevB.101.024510
https://doi.org/10.1103/PhysRevLett.116.247203
https://doi.org/10.1103/PhysRevB.102.140401
https://doi.org/10.1016/S1572-0934(06)02006-3
https://doi.org/10.1103/PhysRevB.75.214403
http://arxiv.org/abs/2005.14222
https://doi.org/10.1103/PhysRevB.26.2547
https://doi.org/10.1143/PTP.34.399
https://doi.org/10.1103/PhysRevB.91.195122
http://arxiv.org/abs/1904.05863


[6] Altland A and Simons B 2006 Condensed Matter Field Theory (Cambridge: Cambridge
University Press)

[7] Canali C M and Girvin S M 1992 Theory of Raman scattering in layered cuprate materials
Phys. Rev. B 45 7127–60

[8] Sentef M, Kolar M and Kampf A P 2007 Spin transport in Heisenberg antiferromagnet in two
and three dimensions Phys. Rev. B 75 214403

Chapter 9

[1] Phillips P 2003 Advanced Solid State Physics (Boulder, CO: Westview Press)
[2] von Klitzing K, Dorda G and Pepper M 1980 New method for high-accuracy determination

of the fine-structure constant based on quantized Hall resistance Phys. Rev. Lett. 45 494–97
[3] Pires A S T 2019 A Brief Introduction to Differential Geometry and Topology in Condensed

Matter (San Rafael, CA: Morgan & Claypool Publishers)
[4] Aharonov Y and Casher A 1984 Topological quantum effects for neutral particles Phys. Rev.

Lett. 53 319–21
[5] Meyer F and Loss D 2003 Magnetization transport and quantized spin conductance Phys.

Rev. Lett. 90 167204
[6] Katsura H, Nagaosa N and Balatsky A V 2005 Spin current and magnetoelectric effect in

noncollinear magnets Phys. Rev. Lett. 95 057205
[7] Katsura H, Nagaosa N and Lee P A 2010 Theory of thermal Hall effect in quantum magnets

Phys. Rev. Lett. 104 066403
[8] Nakata K, Klinovaja J and Loss D 2017 Magnonic quantum Hall effect and Wiedemann-

Franz law Phys. Rev. B 95 125429
[9] Nakata K, Kim S K, Klinovaja J and Loss D 2017 Magnonic topological insulators in

antiferromagnets Phys. Rev. B 96 224414
[10] Matsumoto R and Muramaki S 2011 Rotational motion of magnons and thermal Hall effect

Phys. Rev. B 84 184406
[11] Matsumoto R, Shindou R and Murakami S 2014 Thermal Hall effect of magnons in

magnets with dipolar interactions Phys. Rev. B 89 054420
[12] Mook A, Henk J and Mertig I 2014 Magnon Hall effect and topology in kagome lattices: a

theoretical investigation Phys. Rev. B 89 134409
[13] Onose Y, Ideue T, Katsura H, Shioni Y, Nagaosa N and Tokura Y 2010 Observation of the

magnon Hall effect Science 329 297–99
[14] Maki M and Uhrig G S 2019 Topological magnon bands for magnonics Phys. Rev. B 99

174412
[15] He Y, Moore J and Varma C M 2012 Berry phase and anomalous Hall effect in a

three-orbital tight-binding Hamiltonian Phys. Rev. B 85 155106
[16] Shindou R, Matsumoto R, Murakami S and Ohe J 2013 Topological chiral magnonic edge

mode in a magnonic crystal Phys. Rev. B 87 174427
[17] Han J H and Lee H 2017 Spin Chirality and Hall-like transport phenomena of spin

excitations J. Phys. Soc. Jpn. 86 011007
[18] KimSK,OchoaH,ZarzuelaRandTserkovnyakY2016A realization of theHaldane-Kane-Merle

model in a system of localized spins Phys. Rev. Lett. 117 227201
[19] Owerre S A 2016 A first theoretical realization of honeycomb topological magnon insulator

J. Phys.: Condens. Matter 28 386001

Theoretical Tools for Spin Models in Magnetic Systems

https://doi.org/10.1103/PhysRevB.45.7127
https://doi.org/10.1103/PhysRevB.75.214403
https://doi.org/10.1103/PhysRevLett.45.494
https://doi.org/10.1103/PhysRevLett.53.319
https://doi.org/10.1103/PhysRevLett.90.167204
https://doi.org/10.1103/PhysRevLett.95.057205
https://doi.org/10.1103/PhysRevLett.104.066403
https://doi.org/10.1103/PhysRevB.95.125429
https://doi.org/10.1103/PhysRevB.96.224414
https://doi.org/10.1103/PhysRevB.84.184406
https://doi.org/10.1103/PhysRevB.89.054420
https://doi.org/10.1103/PhysRevB.89.134409
https://doi.org/10.1126/science.1188260
https://doi.org/10.1103/PhysRevB.99.174412
https://doi.org/10.1103/PhysRevB.99.174412
https://doi.org/10.1103/PhysRevB.85.155106
https://doi.org/10.1103/PhysRevB.87.174427
https://doi.org/10.7566/JPSJ.86.011007
https://doi.org/10.1103/PhysRevLett.117.227201
https://doi.org/10.1088/0953-8984/27/16/166003


[20] Sil A and Ghosh A K 2020 First and second-order topological phases on ferromagnetic
breathing Kagome lattice J. Phys.: Condens. Matter 32 205601

[21] Cao X, Chen K and He D 2015 Magnon Hall effect on the Lieb lattice J. Phys.: Condens.
Matter 27 166003

[22] Leykam D, Andreanob A and Flach S 2018 Artificial flat band systems: from lattice models
to experiments Adv. Phys. X 3 1473052

[23] Konig M, Buhmann H, Molenkamp L W, Hughes T L, Liu C X, Qi X L and Zhang S C
2008 The quantum spin Hall effect: theory and experiment J. Phys. Soc. Jpn. 77 03007

[24] Cheng R, Okamoto S and Xiao D 2016 Spin Nernst effect of magnons in collinear
antiferromagnets Phys. Rev. Lett. 117 217202

[25] Zyuzin V A and Kovalev A A 2016 Magnon spin Nernst effect in antiferromagnets Phys.
Rev. Lett. 117 217203

[26] Owerre S A 2017 Noncollinear antiferromagnetic Haldane magnon insulator J. Appl. Phys.
121 223904

[27] Shiomi Y, Takashima R and Saitoh E 2017 Signature of magnon Nernst in an antiferro-
magnetic insulator Phys. Rev. B 96 134425

[28] Pires A S T 2019 Topological magnons in the antiferromagnetic checkerboard lattice Physica
E 118 113899

[29] Sitte K E, Masell J, Reeve R M and Klaui M 2018 Perspective: magnetic skyrmions-
overview of recent progress in an active research field J. Appl. Phys. 124 240901

[30] Jiang W, Chen G, Liu K, Zang J, EVeltus S G and Hoffmann A 2017 Skyrmions in magnetic
multilayers Phys. Rep. 704 1–49

[31] Li Z X, Cao Y and Yan P 2020 Topological insulators and semimetals in classical magnetic
systems arXiv:2011.09751

Chapter 10

[1] Alet F, Walczak A M and Fisher M P A 2006 Exotic quantum phases and transitions in
correlated matter Physica A 369 122–42

[2] Fisher M P A 2004 Duality in low dimensional quantum field theories Strong Interactions in
Low Dimensions ed D Baeriswyl and L Degiorgio (Dordrecht: Springer), pp 419–38

[3] Misguich G 2008 Quantum Spin Liquids arXiv:0809.2257
[4] Misguich G and Lhuillier C 2005 Two dimensional quantum antiferromagnets Frustrated

Spin Systems ed H T Diep (Singapore: World Scientific)
[5] Kogut J B 1979 An introduction to lattice gauge theory and spin systems Rev. Mod. Phys. 51

659–713

Chapter 11

[1] Landau D P and Binder K 2000 A Guide to Monte Carlo Simulations in Statistical Physics
(Cambridge: Cambridge University Press)

[2] Wolff U 1989 Collective Monte Carlo updating for spin systems Phys. Rev. Lett. 62 361–64
[3] Evertz H G 2003 The loop algorithm Adv. Phys. 52 1–66
[4] Wang F and Landau D P 2001 Efficient, multiple-range random walk algorithm to calculate

the density of states Phys. Rev. Lett. 86 2050
[5] Sandvik A W 2019 Stochastic series expansion methods Many-Body Methods for Real

Materials Modeling and Simulations ed E Pavarini, E Koch, S Zhang and J Verlag des
Forschungszentrum Julich

Theoretical Tools for Spin Models in Magnetic Systems

https://doi.org/10.1080/23746149.2018.1473052
https://doi.org/10.1143/JPSJ.77.031007
https://doi.org/10.1103/PhysRevLett.117.217203
https://doi.org/10.1103/PhysRevLett.117.217202
https://doi.org/10.1103/PhysRevLett.117.217203
https://doi.org/10.1063/1.4985615
https://doi.org/10.1103/PhysRevB.96.134425
https://doi.org/10.1016/j.physe.2019.113899
https://doi.org/10.1063/1.5048972
https://doi.org/10.1016/j.physrep.2017.08.001
http://arxiv.org/abs/2011.09751
https://doi.org/10.1016/j.physa.2006.04.003
https://arxiv.org/abs/0809.2257
https://doi.org/10.1103/RevModPhys.51.659
https://doi.org/10.1103/RevModPhys.51.659
https://doi.org/10.1103/PhysRevLett.62.361
https://doi.org/10.1080/0001873021000049195
https://doi.org/10.1103/PhysRevLett.86.2050


[6] Lauchli A M 2011 Numerical simulations of frustrated systems Introduction to Frustrated
Magnetism ed C Lacroix, P Mendels and F Mila (Berlin: Springer), p 481

[7] Plischke M and Bergersen B 2003 Equilibrium Statistical Physics (Singapore: World
Scientific)

[8] Oitmaa J, Hamer C and Zheng W 2006 Series Expansion Methods for Strongly Interacting
Lattice Models (Cambridge: Cambridge University Press)

[9] White S R 1992 Density matrix formulation for quantum renormalization groups Phys. Rev.
Lett. 69 2863–66

[10] White S R 1993 Density-matrix algorithms for quantum renormalization groups Phys. Rev.
B 48 10345–56

[11] Schollwock U 2005 The density-matrix renormalization group Rev. Mod. Phys. 77 259–315
[12] Kadanoff L P 1966 Scaling laws for Ising models near TC Fizika 2 263–72
[13] Wilson K G and Kogut J B 1974 The renormalization group and the Îµ expansion Phys. Rep.

12 75–199
[14] Tezuka M 2007 An improved initialization procedure for density-matrix renormalization

group J. Phys. Soc. Jpn. 76 053001
[15] Troyer M 2015 Computational Quantum Physics http://edu.itp.phys.ethz.ch/fs09/cqp/

Script1.pdf
[16] Giannozzi P 2020 Numerical Methods in Quantum Mechanics www.fisica.uniud.it/~gian-

nozz/Corsi/MQ/LectureNotes/mq.pdf
[17] Weisse A and Fehske H 2008 Exact diagonalization techniques Computational Many-

Particle PhysicsLecture Notes in Physics vol 739 ed H Fehshe, R Scneider and A Weisse
(Springer), pp529–44

[18] Bishop R F 1998 The coupled cluster methodMicroscopic QuantumMany-body Theories and
their ApplicationsLecture Notes in Physics vol 510 ed J Navarro and A Polls (Berlin:
Springer), pp 1–70

Appendix A

[1] Wen X 2004 Quantum Field Theory of Many-Body Systems (Oxford: Oxford University Press)

Theoretical Tools for Spin Models in Magnetic Systems

https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1103/PhysicsPhysiqueFizika.2.263
https://doi.org/10.1016/0370-1573(74)90023-4
https://doi.org/10.1143/JPSJ.76.053001
http://edu.itp.phys.ethz.ch/fs09/cqp/Script1.pdf
http://edu.itp.phys.ethz.ch/fs09/cqp/Script1.pdf
www.fisica.uniud.it/~giannozz/Corsi/MQ/LectureNotes/mq.pdf
www.fisica.uniud.it/~giannozz/Corsi/MQ/LectureNotes/mq.pdf

	bk978-0-7503-3879-0ch0
	Preface
	 References

	Acknowledgments
	Author biography
	 Antonio Pires


	bk978-0-7503-3879-0ch1
	Chapter 1 The Heisenberg model
	1.1 Ground state for the ferromagnet
	1.2 Spontaneous broken symmetries
	1.3 Ground state for the antiferromagnet
	1.4 Excited states for the ferromagnet
	1.5 Translational symmetry
	1.6 Two spin waves
	1.7 Long-range order
	1.8 Mermin and Wagner’s theorem
	1.9 The Ising model
	1.10 Brillouin zone
	1.11 Mean-field approximation for the classical ferromagnetic Heisenberg model
	1.12 Landau theory for phase transitions
	1.13 The Hubbard model
	1.14 Exercises
	 References


	978-0-7503-3879-0_combined_ref_web
	Outline placeholder
	 Full list of references 
	 Prelims
	 Chapter 2 
	 Chapter 4 
	 Chapter 5 
	 Chapter 6 
	 Chapter 8 
	 Chapter 9 
	 Chapter 11 
	 Appendix A



