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Preface

Turbulence is a subject of fundamental interest and importance within the field of
fluid mechanics and has attracted wide and detailed attention for well over 150
years, not least from physicists and engineers in industry, academia, and government
research laboratories of many kinds. Numerous books on the subject of turbulence
have been variously aimed at late undergraduates, postgraduates, or full-time
researchers. Some of these have become almost classical texts, containing much of
the received wisdom that is of foundational importance to any students of the
subject; such texts are often used as the basis for, or at least as adjuncts to, university
courses in the subject. Other texts are essentially monographs, useful for deeper
exploration of more specialised topics. However, although the number of research
papers discussing turbulent flows in the contexts of aerodynamics, hydrodynamics,
meteorology, oceanography, and even astronomy has grown exponentially over the
last twenty years or so, hardly any modern books that can serve as general
introductions to the topic have appeared since the very early years of this century.
In this text, we have sought to provide such an introduction whilst, at the same time,
giving students embarking on the subject a flavour of some of the more recent ideas.
Like many earlier texts, we have unashamedly concentrated on what might be called
canonical turbulent flows. This is not simply because they provide the necessary
foundations for a basic understanding of turbulence, but also because it is largely
those canonical flows which have attracted the most attention over the last few
decades, particularly because of the increasing ability of computational approaches
to yield accurate solutions to them under certain circumstances, thus allowing early
hypotheses to be tested even more comprehensively than by physical experiments.

We have aimed our text at typical physics or engineering students who have
already studied basic courses in fluid mechanics and are thus probably in their third
or fourth year of undergraduate study, or perhaps starting postgraduate research
work involving some kind of turbulent flow. In either case, such students might be
engaging with their first formal course on turbulence. The flow of the book is similar
to a typical order of presentation used in such courses (as, indeed, used by the
authors in their own courses developed and taught at the University of
Southampton). The level of mathematical understanding required is no more than
the student would have acquired during their earlier studies. We purposely do not
discuss experimental or computational methods. There are texts that cover both
these topics, but the techniques involved generally move significantly faster than our
level of understanding of turbulence so, in our view, the student is better served by
keeping up to date with these techniques through the journal literature. However,
this book does include a substantial section on the tools commonly used to interpret
the data (which are usually time records of fluctuating quantities) produced by
numerical or physical experiments; these tools are undoubtedly longer-lasting. We
have also included short biographies of some of the ‘Giants of Turbulence’ at the
end of each chapter, highlighting some of the important figures on whose shoulders
so many subsequent researchers have stood in order to expand the understanding of
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turbulence over the last 150 years. Material for some of these sections has been
partly culled from the splendid 2011 (CUP) book A Voyage Through Turbulence
edited by Davidson et al, which provides much more extensive and fascinating
reading for those particularly interested in the history of the subject and the
development of the pivotal ideas.

Each chapter concludes with exercises which are designed to enhance the
understanding of the chapterʼs subject matter. Many of these require the use of
one or more of the data sets supplied in the associated ‘GitHub’ website freely
available online at

https://cvanderwel.github.io/TurbulentFlows/

This online repository contains a copy of the exercises, all necessary data files, and
partial worked solutions (mainly in MATLAB and Python). It will be maintained by
CV and readers are encouraged to contact her with any queries or potential updates
they would like to see included. The programming scripts in the repository are
provided under the MIT License, which means that readers are free to use, copy, and
modify the content to help them learn about turbulent flows. Our hope is that this
will be useful not just to students but also to teachers who might like to expand the
set of examples, use the codes provided as a basis to help with their own work,
generate full worked solutions, etc.

Ian P Castro
Christina Vanderwel

August 2021
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Symbols

Roman

A A B B, , ,1 1 Nondimensional constants (used variously)
or (for B) the Loitsyanskii integral (m7 s−2) (Equation (5.23))

a Signal amplitude
or nondimensional constant (used variously)

aij The anisotropy tensor (m2 s−2) (Equation (5.37))
bij Normalised anisotropy tensor (Equation (5.38))
C Autocovariance function (m2 s−2),

or Fourier integral of the fluctuating velocity (m),
or C, *C , additional log law constants

Cp Heat capacity (J kg−1 K−1)
Cϵ The Kolmogorov constant
Cc Corrsin–Obukhov constant (Equation (9.32))
Cd Total drag coefficient
c Scalar concentration (kg m3)
cf Local skin friction coefficient
D Body drag
d Jet nozzle, or cylinder, or sphere diameter (m),

or zero plane displacement (m)
κE( ) Energy spectrum function (m3 s−2)

E11 One-dimensional spectral functions for the ′u 1 velocity component (m3 s−2)
and similarly for E22 and E33

E f( ) Energy spectrum function (m2 −s )1

F Force (kg m s−2)
f Frequency (s−1),

or nondimensional longitudinal correlation function,
or friction factor,
or ′f , normalised mean velocity similarity variable

fi, fo Mean velocity similarity variables
f̂ A normalised arbitrary flow variable
g Gravitational acceleration (m s−2),

or nondimensional transverse correlation function,
or Richardsonʼs constant (Equation (9.25))

H Boundary layer shape factor
h Roughness depth (m),

or elevation of mass source (m),
or channel half-height (m)

i j k, , Tensor indices for the x1, x2 and x3 directions
I1, I2 Boundary layer integral parameters (equations (8.36) and (8.37))
K A (nondimensional) function of the longitudinal triple correlation
l L, General length scales (m)
L L,x y Longitudinal and transverse length scales (m)
M Mach number,

or Turbulence grid mesh size (m),
or a puff of material (kg)

Mo Jet momentum flux (m4 s−2)
m Mass (kg)
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ṁi Mass flux (kg s−1)
N Number of samples
P Mean pressure (kg m−2 s−2),
p Instantaneous pressure (kg m−2 s−2)

′p Fluctuating pressure (kg m−2 s−2)
p P, or probability density and cumulative probability density functions
Pk Turbulence energy production rate (m2 s−3)
Pe Peclet number (Equation (9.5))
PeT Turbulent Peclet number
Pr Prandtl number (Equation (9.3))
PrT Turbulent Prandtl number (Equation (9.28))
Q A scalar source mass flow rate (kg s−1),

or an arbitrary flow variable,
or the second invariant of the velocity gradient tensor (s−2)

q An arbitrary flow variable
qi Heat flux (m3 K s−1)
R Correlation function (m2 s−2)

or pipe radius (m)
RT Flow constant (entrainment parameter)
Rs Scaling quantity for the Reynolds stress (m2 s−2)
r Spatial separation (m)

or Radial coordinate (m)
Re A general Reynolds number
Sij Rate of strain tensor (s−1) (Equation (2.9))
Sc Schmidt number (Equation (9.3))
ScT Turbulent Schmidt number (Equation (9.28))
T Energy transfer rate (m3 s−3),

or Temperature (K),
or timescale (s)

t Time (s)
T Lagrangian integral turbulence timescale (s)
U V W, , Mean velocities in the three coordinate directions (m s−1)

vu w, , Instantaneous velocities in the three coordinate directions, usually x y z, , (m s−1)
v′ ′ ′u w, , Fluctuating velocities in the three coordinate directions (m s−1)

UB Bulk velocity (m s−1)
Uc Centreline velocity in a channel or pipe (m s−1)
Um Maximum velocity (m s−1)
Us A characteristic mean velocity scale (m s−1)
Uw Wall velocity (m s−1)

∞U Freestream velocity (m s−1)
û A characteristic turbulence velocity scale (m s−1)
uτ Friction velocity (m s−1)
V Volume (m3) (see also the entry for U, V, W)
v A Lagrangian velocity fluctuation (m s−1) (see also the entry for u, v, w)
vη Kolmogorov velocity scale (m s−1) (Equation (3.6))
w Boundary layer wake function (Equation (8.28)) (see also the entry for u, v, w)
X 2 Ensemble variance of particle displacements (m2) (Equation (9.16))
x y z, , Cartesian coordinate directions

or, (for x in chapter 4), any random process
yo Roughness length (m) (Equation (8.51))
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Greek

β Mean flow shear rate (s−1) (Equation (5.28)),
or flow spreading parameter,
or Dissipation spectrum constant

Γ Circulation (m2 s−1)
γ Molecular diffusivity (m2 s−1) (Equation (9.2)),

or intermittency factor (Equation (6.51)),
or normalised central moment of a probability distribution (Equation (4.10))

γT Turbulent diffusivity (m2 s−1) (Equation (9.13))
Δ Rotta–Clauser boundary layer integral thickness (m) (Equation (8.24))
Δ +U Roughness function (Equation (8.49))
δ Flow width (m)
δij Kronecker delta −1 if i = j, 0 otherwise (Equation (A.3))
δ* Boundary layer displacement thickness (m) (Equation (8.10))
ϵ Turbulence kinetic energy dissipation rate (m2 s−3)
ϵ ϵσ,U 2 Standard errors
ϵc Dissipation rate of the scalar concentration (kg2 m6 s−1) (Equation (9.31))
η Kolmogorov length scale (m) (Equation (3.6)),

or similarity coordinate ( δy ),
or a normalised cross-stream location

ηB Batchelor length scale (m) (Equation (9.30))
θ Geometric angle,

or Boundary layer momentum thickness (m) (Equation (8.11)),
or as θ′, temperature fluctuation (K)

κ Thermal diffusivity (m2 s−1) (Equation (9.1)),
or wavenumber (m−1),
or von Kármán constant

κ1 Streamwise wavenumber (m−1)
λ Wavelength (m)

or the Taylor (dissipation) microscale (Equation (3.4))
μ Fluid viscosity (kg m−1 s−1)
ν Kinematic viscosity (m2 s−1)
νT Turbulent (eddy) viscosity (m2 s−1) (Equation (2.25))
Π Kármán measure (diagnostic function) (Equation (7.32))

or the Coles’ wake strength parameter (Equation (8.27))
ρ Density (kg m−3)
σ Standard deviation
σij The general stress tensor (kg m−2 s−2)
τ Shear stress (kg m−1 s−2)

or time lag (s)
τη Dissipation timescale (s) (Equation (3.10))
τw Wall shear stress (kg m−1 s−2) (Equation (8.8))
Φ Mean velocity gradient profile function (and Φi, Φo)
ψ Kolmogorov spectrum function
Ψ Compensated Kolmogorov spectrum function

or pressure-gradient parameter (Equation (8.47))
κΦ t( , )ij Three-dimensional wavenumber spectrum (m5 s−2)

ω Vorticity (s−1)
Ωi ith mean vorticity component (s−1)
Ωij Rate of rotation tensor (s−1) (equation (2.10))
ζ A Lagrangian time (s)
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