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Chapter 4

Basic properties of metamaterials

Metamaterials are engineered materials that include specific artificial mesoscopic
features in their designs [1–5]. The mesoscopic features are introduced so as to tailor
the material to exhibit specific permittivity and permeability properties when
interacting with radiation of wavelengths greater than the mesoscopic inclusions.
To such externally applied electromagnetic waves metamaterials appear homoge-
neous just as crystalline materials appear homogeneous for electromagnetic waves at
optical wavelengths. The interest in the artificial mesoscopic inclusions is that they
can be made to exhibit magnetic resonances at much higher frequencies of electro-
magnetic waves than those of the magnetic resonances of atoms and molecules of
natural crystals [1]. This allows systems containing these features to exhibit high
frequency regions of negative permeability, whereas atomic and molecular systems
only display negative permeability at much lower frequencies than those of the
metamaterials. The high frequency magnetic resonances when combined with a
background dielectric medium of negative permittivity gives rise to metamaterials
exhibiting a new property of negative refractive indices. Regions of frequencies with
simultaneous negative permittivity and permeability have not been observed in
naturally occurring materials and are only now available in designs of metamaterials
and for certain configurations of photonic crystals. As a result the possibility of
negative refractive index materials extends what was once considered a fundamental
limitation on optical design. We shall see that the greater refractive properties found
in materials with negative refractive indices extends refractive angles over a greater
range of values.

In the following the properties of the basic split ring resonator (SRR) units
forming metamaterials are explained along with how they can be arrayed in three
dimensions to form bulk materials with engineered diamagnetic response properties.
This is followed by a discussion of the properties of negative refractive index
materials.
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4.1 Properties of SRRs and SRR arrays
The basic design of the inclusions engineered into metamaterials is an SRR [1–4]. There
are many variations on the design that are made for engineering considerations, and
the reader is referred to the literature and some remarks in the chapter 9 of this book
for more details. In its basic design the SRR is a ring with a gap cut into it (see
figure 4.1). The ring acts as an inductance and the gap acts as a capacitor so that the
structure is an LC resonant circuit. The natural frequency of the SRR is then given by

ω =
LC

1
(4.1)0

where L and C are the self-inductance and capacitance of the split ring, and this is
the resonant frequency of the interaction of the SRR with an external driving
electromagnetic wave. In addition to the self-inductance the neighboring rings in the
metamaterial have a mutual inductance.

When an SRR is driven by an external electromagnetic wave of frequency, ω, as
the wave frequency is passed through the natural frequency ω0 of the SRR the SRR
undergoes a resonant interaction with the wave [6–8]. To understand the operation
of an SRR interacting with an external frequency-dependent wave consider the
planar loop in figure 4.2(a) containing an inductor and a capacitor. From Faraday’s
law a time-dependent magnetic field perpendicular to the plane of the loop induces
an electromotive force (emf) in the loop. In the figure the magnetic field is
perpendicular to the page with the positive sense of the field out of the page, and
the positive current in the loop is in the anti-clockwise direction. In the presence of
the induced emf from the time-dependent field the circuit is essentially a forced LRC
electromagnetic oscillator of the type shown in figure 4.2(b). The loop acts both as

Figure 4.1. Basic design of an idealized SRR unit, a metallic ring with a gap filled with dielectric material.
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the self-inductance of the circuit and the origin of the driving emf from its Faraday’s
law interaction with the external field. The equation of the driven oscillator is

+ + =L
Q
t

R
Q
t

Q
C

V
d
d

d
d

(4.2)
2

2

where Q is the charge on the capacitor and V is the forcing emf from Faraday’s law.
For a magnetic field of the form ω=B t B t( ) cos0 the forcing emf in the LRC

circuit is

ω=V V tsin (4.3)0

where ω=V AB0 0 for a loop of area A. From the theory of the LRC forced oscillator
the response of the oscillator to the driving emf is given by the impendence of the
circuit

ω ω
ω

= + −Z R L
C

( )
1 (4.4)2

2⎛
⎝⎜

⎞
⎠⎟

relating the induced current in the circuit to the induced emf and the phase
difference, φ, between the current and the driving emf

φ
ω

ω=
−

−
L

C
R

tan

1

. (4.5)1

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

Consequently, the current in the loop is given by

ω φ= −I t I t( ) sin( ) (4.6)0

where

ω
=I

V
Z( )

. (4.7)0
0

It is interesting to note that at the resonant condition ω ω= =
LC

1
0 so that from

(4.5) φ = 0, and the induced current and emf are in phase. Consequently, the time

Figure 4.2. Schematics of: (a) an LC ring with a time varying magnetic field perpendicular to the plane of the
ring, and (b) an LRC forced harmonic oscillator circuit.
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average resistive power losses in the circuit at resonance, = =( ) ( )P R ,I V R

Z2 2avg
0

2
0

2

2

are a maximum. In addition, the magnetic moment of the loop, μ, is given by

μ =t I t A( ) ( ) (4.8)

and the potential energy of the interaction of the field with the dipole moment is

μ= −U t t B t( ) ( ) ( ). (4.9)

Substituting in (4.9) gives

ω ω φ= − −U t AI B t t( ) cos( ) sin( ) (4.10)0 0

which on time average gives

φ¯ =U
AI B

2
sin( ). (4.11)0 0

From (4.11) it is seen that another consequence of the absence of a phase difference
between the induced current and emf is that at resonance U = 0 and the effective
magnetic moment of the loop is zero.

The regions of interest for metamaterial applications are at frequencies slightly
above or below the resonant frequency. Expanding the frequency of the electro-
magnetic wave about the resonant frequency of the SRR

ω ω ω= + Δ (4.12)0

gives from (4.5) the phase in terms of Δω

φ ω≈ ΔL
R

2 (4.13)

and from (4.4) the impedance

ω≈ + ΔZ R
L
R

1 4 ( ) (4.14)
2

2⎜ ⎟⎛
⎝

⎞
⎠

in terms of Δω. From (4.13) and (4.14) the average power is given by

ω
= ≈

+ Δ
P

V R
Z

V

R
L
R

2 2

1

1 4 ( )
(4.15)
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so that for Δω ≠ 0 the average power in (4.15) is less than at the Z = R resonance
condition.

In addition, from (4.11), (4.13), and (4.14) the average potential energy for the
interaction with the magnetic field is

ω¯ ≈ ΔU AI B
L
R

. (4.16)0 0
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The sign of the average potential energy then depends on the sign of Δω. For
positive Δω the loop is diamagnetic and for negative Δω the loop is paramagnetic.
Defining the effective magnetic moment of the loop as

μ = − Ū
B

(4.17)eff
0

gives the effective moment

μ ω

ω

ω= −

+ Δ

ΔL
R

A B

L
R

1 4 ( )

.
(4.18)

eff 2

2
0

2
2⎜ ⎟⎛

⎝
⎞
⎠

Near resonance the basic properties of the energy loss and effective magnetic
moment of the SRR are simply related to the difference between the frequency of the
electromagnetic wave and the SRR resonant frequency [2]. Plots of these properties
are presented in figure 4.3. From (4.15) and figure 4.3(a) it is seen that the power loss

Figure 4.3. Power loss of the field to the SRR and the effective magnetic moment of the SRR: (a) the
normalized power, RP V2 / ,avg 0

2 and (b) the normalized magnetic moment, μ ωR A B2 / ,eff
2

0 both plotted versus
2L Δ ω/R where Δω = 0 at resonance.

Introduction to Nonlinear Optics of Photonic Crystals and Metamaterials (Second Edition)

4-5



in the LRC circuit exhibits a maximum at the Δω = 0 resonance condition while from
(4.18) and its plot in figure 4.3(b) the effective magnetic moment passes through a sign

change. By setting the values of ωL A B

R

2
0

2
for the amplitude and L

R
for the width of the

resonance of the effective magnetic moment, the SRR passes through regions of
enhanced paramagnetic and diamagnetic responses as the frequency of the electro-
magnetic wave passes through the SRR resonance. The region of enhanced diamag-
netic response has been of great recent interest as in this region it is possible to use
SRRs to facilitate the design of materials with negative permeability. In the additional
presence of negative permittivity a negative refractive index is exhibited [3].

The results in figure 4.3 also illustrate a problem with the implementation of SRR
metamaterials for their negative refractive index possibilities. The maximum of the
losses in the materials occurs near the region of enhanced diamagnetism so that the
region of losses can extend into the region of negative refractive index. It is one of
the design problems of metamaterials to find ways of lessening the losses of the
materials while obtaining a good negative index of refraction. The resonance nature
of the negative index presents another design problem in that resonances are
typically associated with instabilities of the system at a single frequency. This tends
to limit the negative index effect to single frequencies, and the applications which are
discussed later have predominantly been studied for narrow frequency bands.

For a material to display a negative index of refraction it must simultaneously
have a negative permittivity and permeability [4, 5]. From the discussions above it is
seen that a single SRR can be tuned to exhibit a negative permeability for an
electromagnetic wave with a magnetic field polarized perpendicular to the plane of
the SRR. To design a bulk material displaying a three-dimensional, homogeneous,
isotropic diamagnetic response for electromagnetic waves propagating in a general
direction within the bulk it is necessary to make an array of SRRs. An example of
such a three-dimensional array is obtained by placing SRRs periodically in the x–y,
y–z, and x–y planes of the bulk medium. This system of SRRs then forms a three-
dimensional crystal with SRRs as the basis. The resonance conditions of the SRRs
of the array are then tuned so that they give an enhanced diamagnetic response for
waves with long wavelength compared to the size of the SRRs. This creates a bulk
material with a negative permeability. To design a material with a negative
refractive index it only remains to infuse into the SRR crystal a background
material of negative permittivity. We now turn to a discussion of the properties of
negative refractive index materials.

4.2 Negative refractive index metamaterials
To understand the nature of negative refractive materials begin by reviewing the
solution for an electromagnetic plane wave propagating in a general electromagnetic
medium [4, 5]. Consider a plane wave moving along the x-axis with ⃗E and ⃗B
polarized, respectively, along the y- and z-axes. From Faraday’s law

∂
∂

= − ∂
∂

E

x
B
t

(4.19)y z
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and from Ampere’s law

με μσ− ∂
∂

=
∂
∂

+B
x

E

t
E (4.20)z y

y

where ε is the permittivity, μ is the permeability, and σ is a small conductivity. The
plane wave solutions of (4.19) and (4.20) are of the form

= ω−E E ae (4.21 )y
kx t

0
i( )

and

= ω−B B be . (4.21 )z
kx t

0
i( )

Substituting (4.21) into (4.19) and (4.20) gives the matrix equation for the field
amplitudes

μεω μσ
ω

− +
− =k

i k
E
B

a
( )

0 (4.22 )0

0

and the dispersion relation

μεω μσω− + =k i b( ) 0. (4.22 )2 2

For fixed ω > 0 expanding to first order in σ gives

με ω μσ
με

= ± ±k
i

2
(4.23)

where the upper signs come from taking the square root to be a positive number and
the lower signs come from taking the square root to be a negative number. The
positive sign gives a phase velocity in the positive x-direction while the negative sign
gives a phase velocity in the negative x-direction.

Substituting (4.23) into (4.21) gives

= με ω ω
μσ

με± − ∓
E E ae e (4.24 )

y
x t x

0
i( ) 2

and

= με ω ω
μσ

με± − ∓
B B be e (4.24 )

z
x t x

0
i( ) 2

where for the upper sign

με=E
B

A a
1

1

(4.25 )0

0

and for the lower sign

με=
−E

B
A b

1

1

. (4.25 )0

0

Here A is the amplitude of the magnetic induction.
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From (4.24a) and (4.24b) it is seen that in the σ → 0 limit the Poynting vector is
given by

μ μ με
⃗ = ⃗ × ⃗ = ± ˆ⁎

S E B A i
1
2

1 1
2

1 1
. (4.26)2

From the form of the one-dimensional Poynting vector in (4.26) it is seen that the
direction of the energy flow is determined by the sign of the permeability of the
medium. In the case of a positive indexed material (i.e., for ε, μ > 0) the flow of
energy in the system is parallel to the wave vector of the plane wave where from
(4.24) the wave vector is given by ± μεωi. In the case of a negative indexed material
(i.e., for ε, μ < 0) the flow of energy in the system is anti-parallel to the wave vector
where the wave vector is again given by ± μεωi. Consequently, the signs of the one-
dimensional wave vector and Poynting vector agree with one another in a positive
indexed medium and are opposite one another in a negative index medium.

Including consideration of small non-zero conductivity in the electromagnetic
solutions in (4.24) introduces a spatial decay term into the solutions. The spatial
decay for both the electric field and the magnetic induction is given by ∓ μσ

μεe .x2 In the
case of a positive indexed material μσ > 0, and the amplitude of the waves decay in
the direction of the energy flow. In addition, the energy flow is parallel to the
direction of the wave vector. In the case of a negative indexed material μσ < 0, and
the amplitude of the waves again decay in the direction of the energy flow. However,
in this case the wave vector of the waves propagating in the negative indexed
medium is now anti-parallel to the energy flow. The solutions for both the positive
and negative indexed media make sense. In both cases they describe flows of energy
which decay as the flow of energy advances through their respective media.

It may seem contradictory that for propagation in a negative refractive indexed
medium the wave vector and Poynting vector are anti-parallel. This is not the case.
To understand this, first consider a plane wave pulse of radiation propagating in a
non-dissipative positive indexed medium. The pulse is localized in space and
propagates as a spatially localized increase in energy that is moving in the direction
of the wave vector. The wave vector and Poynting vector are parallel and the electric
and magnetic energy density in the pulse are given, respectively, by

ε= ∣ ∣U E x t a
1
2

( , ) (4.27 )E
2

μ
=U B x t b

1
2

1
( , ) . (4.27 )B

2

In the absence of dispersion or for weak dispersion, the magnitude of the Poynting
vector, giving the flow of energy in the direction of the wave vector, is related to the
energies in (4.27) by

v v= =S U U2 2 (4.28)E B

where v is the speed of light in the positive medium. Since ε, μ > 0 the Poynting vector
in (4.27) through (4.28) represents a net flow of positive energy carried by the pulse.
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Now consider the flow of energy associated with a spatially localized field pulse
moving in a negative indexed medium. Equations (4.27) and (4.28) also hold for
such a pulse in the negative indexed medium. However, now ε,μ < 0. The energy
densities in (4.27) are negative and the pulse, written in the field amplitudes ∣E(x, t)∣
and ∣B(x, t)∣, shows up as a spatially localized decrease in energy. Though the pulse
moves in a direction parallel to the wave vector, it is a pulse of energy decrease
rather than a pulse of energy. In terms of the net energy in the system, a flow of
negative energy past a point in space can be viewed as a flow of positive energy in the
opposite direction. For the negative indexed medium, therefore, the amplitude of the
Poynting vector in (4.28) represents a pulse of energy decrease traveling parallel to
the wave vector or, equivalently, the flow of an energy pulse in the direction anti-
parallel to the wave vector.

The flow of energy in positive and negative index media is similar to the flow of
electrical current carried by the motion of holes and electrons in a semiconducting
medium. In semiconductors, positive charged holes move parallel to the electric field
to create the same electric current as negative charged electrons moving anti-parallel
to the electric field. In the absence of an external magnetic field, the flow of the
positive and negative charges cannot be distinguished. As shall be seen later, this
analogy can be extended to considerations of the flow of light energy past an
interface between a positive and negative index medium and the electrical current
flow of electrons and holes through a p–n semiconductor junction. In these
considerations a pulse of light energy is an energy particle in a positive indexed
optical medium and a pulse of decrease of light energy is an energy hole in a negative
indexed optical medium. The energy moves through the positive (negative) indexed
medium by the motion of energy particles (energy holes), just as electrons carry the
current in n-type semiconductors and holes carry the current in p-type semi-
conductors [9].

4.3 Refraction at the interface between positive and negative
index media

As an example of the new properties introduced into optics by negative indexed
materials, the refraction of light at the interface between positive and negative
indexed media is considered [4, 5]. In a first case the refraction of light originating in
the positive indexed medium is treated. This is followed by a treatment of the
refraction of light originating in the negative indexed medium. Following these
treatments a discussion is given of the design of a perfect lens.

4.3.1 Light originating in positive index media

Consider the planar interface between a positive and negative indexed medium. The
positive indexed medium 1 (described by parameters μ ε >, 0)1 1 is in the region y > 0,
and the negative indexed medium 2 (described by parameters μ ε <, 0)2 2 is in the
region y < 0.

In terms of the angles defined in figure 4.4 the wave incident on the interface from
medium 1 is given by
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θ θ⃗ = ˆ + ˆ θ θ ω− −E E i j a(cos sin )e (4.29 )k x y t
I I i i

i[ (sin cos ) ]i i

ω
⃗ = ˆ θ θ ω− −B E

k
k be (4.29 )k x y t

I I
i[ (sin cos ) ]i i

and the reflected wave in medium 1 is given by

θ θ⃗ = − ˆ + ˆ θ θ ω+ −E E i j a( cos sin )e (4.30 )k x y t
R R r r

i[ (sin cos ) ]r r

ω
⃗ = ˆ θ θ ω+ −B E

k
k be (4.30 )k x y t

R R
i[ (sin cos ) ]r r

where

μ ε ω=k . (4.31)1 1

The wave vectors of the incident and reflected waves are

θ θ⃗ = −k k a(sin , cos , 0) (4.32 )i i i

θ θ⃗ =k k b(sin , cos , 0) (4.32 )r r r

and their respective Poynting vectors are

μ ω
⃗ = ⃗S E k a

1
2

1 1
(4.33 )I

1
I

2
i

μ ω
⃗ = ⃗S E k b

1
2

1 1
. (4.33 )R

1
R

2
r

Figure 4.4. Refraction at a planar interface for incident light in a positive medium and refracted light in a
negative medium. The arrows indicate the wave vectors and as represented in the figure θ θ θ >, , 0i r t .
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Equations (4.32) and (4.33) show the standard result of energy flow into and out
of the interface between the two media. Since μ > 01 the Poynting vectors of both the
incident and reflected waves are parallel to their respective wave vectors.

For the case in which medium 2 is a negative indexed medium (i.e., ε μ <, 0)2 2
care must be taken to choose a solution in medium 2 representing an energy flow
away from the interface. The correct form of the solution for the transmitted wave
under these conditions is given by

θ θ⃗ = − ˆ + ˆ θ θ ω+ −E E i j a( cos sin )e (4.34 )q x y t
T T t t

i[ (sin cos ) ]t t

ω
⃗ = ˆ θ θ ω+ −B E

q
k be (4.34 )q x y t

T T
i[ (sin cos ) ]t t

where we use the angles as defined by figure 4.4 for the case of a negative medium 2.
Specifically, the positive angle θt must be in the third quadrant and measured from
the y-axis. The transmitted wave in equation (4.34) now has a wave vector and a
Poynting vector of the respective forms

θ θ⃗ =q q(sin , cos , 0) (4.35)t t t

where μ ε ω=q ,2 2 and

μ ω
⃗ = ⃗S E q

1
2

1 1
(4.36)T

2
T

2
t

which for μ < 02 represent an energy flow away from the interface and into the third
quadrant.

For a comparison, consider the case in which medium 2 is positive indexed (i.e.,
ε μ >, 0)2 2 rather than negative indexed. Now the transmitted wave in medium 2 is
given by

θ θ⃗ = ˆ + ˆ θ θ ω− −E E i j a(cos sin )e (4.37 )q x y t
T T t t

i[ (sin cos ) ]t t

ω
⃗ = ˆ θ θ ω− −B E

q
k be (4.37 )q x y t

T T
i[ (sin cos ) ]t t

where, in the case of a positive medium 2, the positive angle θt must be in the fourth
quadrant and measured from the y-axis. The wave vector and Poynting vector of the
transmitted wave, respectively, are given by

θ θ⃗ = −q q(sin , cos , 0) (4.38)t t t

μ ω
⃗ = ⃗S E q

1
2

1 1
(4.39)T

2
T

2
t

where

μ ε ω=q . (4.40)2 2
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Since μ > 02 it is seen that the wave vector and Poynting vector are parallel, and the
energy of the transmitted wave correctly flows away from the interface and into the
fourth quadrant.

It is interesting to note the similarity of the solutions in (4.34) through (4.36) for the
negative indexed medium 2 with those of the reflected wave for the positive indexed
medium 1 given in (4.30), (4.32b), and (4.33b). In particular, both solutions have wave
vectors with positive y-components. Due to the sign difference between μ > 01 and
μ < 0,2 however, the two solutions represent energy flows away from the y = 0 plane
in opposite directions along the y-axis. Specifically, it is seen from (3.35) and (4.36)
that for μ < 02 the wave vector and Poynting vectors of the transmitted wave are anti-
parallel. Though the wave vector has a positive component along the y-axis, from
(4.36) the energy flow of the transmitted wave is in the negative y-direction, away from
the interface. In the case of the reflected wave, however, the wave vector and Poynting
vectors are parallel and the reflected wave has an energy flow along the positive y-axis.

In addition, it should be noted that, due to the translational symmetry of the planar
interface at y = 0 between media 1 and 2, the solutions in (4.29), (4.30), (4.34), and
(4.37) all have wave vectors with equal x-components. This requires that θ θ=i r and

θ θ=k qsin sin .i t These results arise solely from the translational symmetry and are
independent of whether or not media 1 and 2 are positive or negative indexed materials.

To obtain the electric field amplitudes in these solution forms it is necessary to match
the boundary conditions at the interface between the two media. From the continuity
of the component of the electric field tangent to the interface it follows that

α− =E E E a(4.41 )I R T

where α = θ
θ

cos
cos

t

i
when medium 2 has a positive index and α = − θ

θ
cos
cos

t

i
when medium 2

has a negative index. From the continuity of the component of the magnetic field
tangent to the interface it follows that

β+ =E E E b(4.41 )I R T

where β = μ μ ε
μ μ ε
1 2 2

2 1 1
when medium 2 is either negative or positive indexed. Solving

these gives

α β
=

+
E E a

2
(4.42 )T I

β α
α β

= −
+

E E b. (4.42 )R I

4.3.2 Light originating in negative indexed media

Next, consider the planar interface between a negative indexed medium 1 (i.e.,
μ ε <, 0)1 1 in the region y > 0, and the positive indexed medium 2 (i.e., μ ε >, 0)2 2 is
in the region y < 0. The incident wave is now in the negative indexed medium and
the transmitted wave is in the positive indexed medium [4, 5].
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In terms of the angles defined in figure 4.5 the wave incident on the interface from
medium 1 is given by

θ θ⃗ = ˆ − ˆ θ θ ω+ −E E i j a(cos sin )e (4.43 )k x y t
I I i i

i[ (sin cos ) ]i i

ω
⃗ = − ˆ θ θ ω+ −B E

k
k be (4.43 )k x y t

I I
i[ (sin cos ) ]i i

and the reflected wave in medium 1 is given by

θ θ⃗ = ˆ + ˆ θ θ ω− −E E i j a(cos sin )e (4.44 )k x y t
R R r r

i[ (sin cos ) ]r r

ω
⃗ = ˆ θ θ ω− −B E

k
k be (4.44 )k x y t

R R
i[ (sin cos ) ]r r

where

μ ε ω=k . (4.45)1 1

The wave vectors of the incident and reflected waves are now, respectively,

θ θ⃗ =k k a(sin , cos , 0) (4.46 )i i i

θ θ⃗ = −k k b(sin , cos , 0) (4.46 )r r r

with Poynting vectors

μ ω
⃗ = ⃗S E k a

1
2

1 1
(4.47 )I

1
I

2
i

Figure 4.5. Refraction at a planar interface for incident light in a negative medium and refracted light in a
positive medium. The arrows indicate the wave vectors and as represented in the figure θ θ θ >, , 0i r t .
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μ ω
⃗ = ⃗S E k b

1
2

1 1
(4.47 )R

1
R

2
r

respectively. Equations (4.46) and (4.47) show the standard result of energy flow into
and out of the interface of the two media. Since μ < 01 both incident and reflected
wave Poynting vectors are anti-parallel to the wave vectors of their respective waves.
This is a general property of propagation in a negative indexed medium.

For the present case of a positive indexed medium (i.e., ε μ >, 02 2 ) the transmitted
wave in medium 2 is given by

θ θ⃗ = ˆ + ˆ θ θ ω− −E E i j a(cos sin )e (4.48 )q x y t
T T t t

i[ (sin cos ) ]t t

ω
⃗ = ˆ θ θ ω− −B E

q
k be (4.48 )q x y t

T T
i[ (sin cos ) ]t t

with the wave vector and Poynting vector of the transmitted wave, respectively,
given by

θ θ⃗ = −q q(sin , cos , 0) (4.49)t t t

μ ω
⃗ = ⃗S E q

1
2

1 1
(4.50)T

2
T

2
t

and where

μ ε ω=q . (4.51)2 2

Since μ > 02 the wave vector and Poynting vectors are parallel, and the energy of the
transmitted wave correctly flows away from the interface.

Again, the translational symmetry along the interface of the two media requires
the x-components of the wave vectors of the incident, reflected, and transmitted
waves to be equal. From this it follows that θ θ=i r and θ θ=k qsin sin .i t Upon an
application of the boundary conditions between the two media: (i) the continuity of
the component of the electric field tangent to the interface requires

α+ =E E E a(4.52 )I R T

where α = θ
θ

cos
cos

t

i
when medium 1 is negative indexed and medium 2 is positive

indexed. (ii) At this same interface, the continuity of the components of the magnetic
field tangent to the interface requires

β− + =E E E b(4.52 )I R T

where β = μ μ ε
μ μ ε

.1 2 2

2 1 1
Solving these gives

α β
=

−
E E a

2
(4.53 )T I

α β
α β

= +
−

E E b. (4.53 )R I
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4.3.3 Semiconductor analogy

The refraction of light at the interfaces between the positive and negative indexed
media can be described in analogy with electrical current moving through an n–p or
p–n semiconductor junction [9].

For light incident on the interface from the positive indexed medium an energy
pulse is sent towards the interface. As the pulse travels to the interface it interacts
with an energy hole coming towards the surface from the negative indexed medium.
The hole, propelled in the negative indexed medium towards the interface, exists in
response to the field from the incident pulse at the interface. At the interface the
incident energy pulse and the hole destroy one another in the process of creating an
energy pulse that is reflected from the surface into the positive indexed medium. The
net result in the final state of the system is energy moving away from the surface in
both the positive and negative indexed media.

For light incident on the interface from the negative indexed medium an energy
hole travels away from the interface, creating an energy flow towards the interface.
The field at the interface arising from the hole causes an energy pulse to be created at
the interface. This pulse moves away from the interface and into the positive indexed
medium. In addition, the fields at the interface create a hole traveling towards the
interface through the negative indexed medium. The hole traveling towards the
interface describes the energy reflected from the interface. The net result in the final
state of the system is energy moving away from the interface and into both the
positive and negative indexed media.

It is seen for both types of interfaces the energy transport properties are governed
separately by the nature of the energy pulses in the positive medium and the nature of
the energy holes in the negative indexed medium. The energy currents are parallel
to the wave vector in the positive indexed medium and anti-parallel to the wave vector
in the negative indexed medium. The energy pulses and holes in part destroy one
another at the interface to give rise to various reflected and transmitted flows of energy.

4.3.4 The perfect lens

In traditional optics the refraction of light at the interface between different media is
commonly used to make a focusing lens [8, 10]. The focusing lens directs light
incident on it from an object in such a manner so as to create an image of the object.
The resulting flow of light then appears to come from the created image rather than
the original object. There are many problems in designing a lens that gives a good
image, i.e., a nicely focused representation of the object. Some of these problems
include: the curve of the surface, the dispersive properties of the media, and the
presence of imperfections in the design and the materials [11].

One fundamental problem in the optics of positive indexed materials is that the
refraction of a ray of light incident on a planar interface from the first or second
quadrant can only be refracted into the third or fourth quadrants, respectively
[3, 11]. A consequence of this is that to form a focusing lens from a positive index
material requires at least one concave or convex curved surface. The curvature
allows for the additional bending of the light ray which cannot be accomplished by
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the dielectric mismatch at a series of planar surfaces. As a result of the curvature of
the lens surfaces, the two surfaces intersect one another in a circle of radius R which
is the aperture of the lens. The finite size of the aperture of the lens is a fundamental
limitation on the resolution of the image formed by the lens. Specifically, only
wavelengths less that the diameter of the lens can leave the object, pass through the
lens, and arrive at the focus of the lens. A precise criterion for the focusing power of
a lens is that in forming an image of an object, only wavelengths of light, λ, satisfying

λ < R (4.54)

are resolved in the focused image of the object. Such a lens is basically imperfect
because of the limitation of its focusing ability arising from its finite R. To give a
perfect image of the object, the image formed by the lens should contain all Fourier
components of light rather than a restricted subset.

The new optics of negative indexed materials does not suffer from the necessity of
making lenses of finite apertures. This follows from our earlier discussions of the
refraction of light from a positive indexed medium to a negative indexed medium. In
the optics of negative indexed materials the refraction of a ray of light incident on a
planar interface from the first or second quadrant of a positive indexed medium is
refracted into the fourth or third quadrants of the second negative indexed medium,
respectively. This means that the additional beam bending arising from a curved
surface between the two media is not necessary. In addition, from our earlier
discussions of the refraction of light from a negative indexed medium to a positive
indexed medium: the refraction of a ray of light incident on a planar interface from
the first or second quadrant of a negative indexed medium is refracted into the fourth
or third quadrants of the second positive indexed medium, respectively. This again
precludes the need for additional bending from a curved surface.

In principle a slab of negative indexed medium surrounded by a positive indexed
medium can form a lens with perfect resolution. The system can be used to focus an
image–object pair in the positive indexed medium on the opposite sides of the slab.
Since the slab is of infinite extent with an infinite aperture (i.e., R → ∞) the lens is
able to focus all propagating wavelength components of the object in its image. In
addition the permittivity and permeability can be adjusted so that even the
evanescent components of light from the object are reassembled at the image, giving
a complete characterization in the image of the object [10]. In principle an image
with perfect resolution can be formed by imaging with an infinite slab of negative
index medium. The lens in this sense is a perfect lens. It is important to note,
however, that due to the magnetic resonance origins of engineered negative indexed
materials, the perfect lens model has some additional complications in its exper-
imental realization. Resonances with negative permeabilities only exist over a band
of frequencies. Also, resonances are associated with dielectric losses which become
greater near the frequency peak of the resonance. Consequently, the idea of a perfect
lens has only been very narrowly realized experimentally.

In addition, negative indexed media can allow for the development of an
electromagnetic cloaking. Using a gradual spatial variation of the refractive index
in an engineered medium, light can be steered around an object hidden in the
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medium and sent off parallel to its original direction before it encountered the
cloaking device [8]. To do this requires the use of both positive and negative indexed
media in order to accomplish all of the bending of light required of the cloaking
device. Due to the restrictions from magnetic resonance effects, this has only been
done for the case of a single frequency of incident light. Using the idea of a medium
with a spatial variation of positive and negative index, suggestions for the mimicking
of certain optical effects in general relativity have also been proposed [12–14].

4.3.5 Radiation in negative indexed media

Another example of new effects associated with negative indexed media involves the
properties of radiation fields generated within them. In this subsection, the radiation
fields of an electric dipole antenna located in a negative indexed medium and of a
point change moving within a negative index medium are treated [5, 15]. An
important determiner of the properties of the radiation fields comes from the fact
that the wave vector and Poynting vector of the radiation in a negative indexed
medium are anti-parallel.

In the Lorentz gauge (i.e., ∇• ⃗ = − ∂
∂

A
c

V
t

1

m
2 ) the radiation equations for electro-

magnetic waves generated from a source are [15]

ε
ρ∇ − ∂

∂
= −V

c
V
t

a
1 1

(4.55 )2

m
2

2

2

μ∇ ⃗ − ∂ ⃗
∂

= − ⃗A
c

A
t

J b
1

(4.55 )2

m
2

2

2

where ( ⃗A( ⃗r , t), V( ⃗r , t)) are the vector and scalar potentials and ( ⃗J ( ⃗r , t), ρ( ⃗r , t)) are the
current and charge densities of the source and cm is the speed of light in the medium.
The solutions of (4.55) are

∫πε
ρ⃗ = ⃗′

⃗ − ⃗′
′∓

∓V r t
r t

r r
r a( , )

1
4

( , )
d (4.56 )3

∫μ
π

⃗ ⃗ =
⃗ ⃗′
⃗ − ⃗′

′∓
∓A r t

J r t
r r

r b( , )
4

( , )
d (4.56 )3

where = ∓ ∣ ⃗ − ⃗ ′ ∣
∓t t .r r

cm
In (4.56) the upper (lower) signs are known as the retarded

(advanced) potentials of the fields generated by the source terms. For positive
indexed media the radiation fields describing the motion of radiation away from the
sources are obtained from the retarded potentials. Later, we shall see that the
advanced potentials are those of interest for radiation generated in a negative
indexed medium.

The electric field and the magnetic induction are then obtained from the vector
and scalar potentials as
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⃗ = −∇ − ∂ ⃗
∂

E V
A
t

a(4.57 )

and

⃗ = ∇ × ⃗B A b(4.57 )

respectively. Note that in (4.56) as → ∞cm the potentials, appropriately, reduce to
the scalar and vector potentials of static electric and magnetic fields.

As an example of the formulation consider an electric point dipole source located
at the origin of coordinates and having the form of a harmonic time-dependent
electric dipole given by ω⃗ = ˆp t p t k( ) cos( )0 . In the far field limit in which the point of
observation is a great distance (i.e., kr ≫ 1) from the source, the electric field and
magnetic induction generated by the time-dependent dipole are

μ ω
π

θ ω θ⃗ = − ∓ ˆE
p

r
t

r
c

a
4

sin
cos (4.58 )0

2

m

⎛
⎝⎜

⎞
⎠⎟

μ ω
π

θ ω φ⃗ = ∓ ∓ ˆB
p

c r
t

r
c

b
4

sin
cos (4.58 )0

2

m m

⎛
⎝⎜

⎞
⎠⎟

where (r,θ,φ) are the standard polar coordinates centered at the origin of coordi-
nates. From (4.58) the Poynting vector of the radiation fields is

μ ω
π

θ⃗ = ± ˆS
p

c r
r

32
sin (4.59)0

2 4

2
m

2

2

giving an average power

μ
π

ω
= ±P

p

c12
. (4.60)0

2 4

m

For a positive indexed medium the permeability is positive and the upper sign from
the retarded solution gives an energy flow away from the dipole source. For a
negative indexed medium the permeability is negative and the lower sign from the
advanced solution gives an energy flow away from the dipole source.

An additional important case is that of the determination of the radiation from a
point charge accelerating in a dielectric medium. To handle this system, first
consider the radiation characteristics of a general time-dependent localized charge
distribution, given by (4.56). The results for a general charge and current density are
then immediately specialized to the problem of a single accelerating point charge. In
the case that r′≪r, for a charge distribution located about the origin of coordinates,
the non-relativistic limit of (4.56) becomes

πε
⃗ = + ˆ • ⃗ + ˆ • ̇ ⃗

∓
∓ ∓V r t

Q
r

r p t
r

r p t
c r

a( , )
1

4
( ) ( )

(4.61 )
2

m

⎡
⎣⎢

⎤
⎦⎥
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μ
π

⃗ ⃗ = ̇ ⃗
∓

∓A r t
p t

r
b( , )

4
( )

. (4.61 )

Here Q is the net charge of the distribution and ⃗p (t) is the electric dipole moment of
the charge distribution about the origin of coordinates.

For the accelerating point charge it is only needed to determine the electric dipole
moment of the charge relative to the origin of coordinates. It then follows that the
radiation fields of the charge distribution are

θ φ μ
π

θ θ⃗ = ̈ ⃗ ˆ∓ ∓E r t p t
r

a( , , , )
4

( )
sin

(4.62 )

θ φ μ
π

θ φ⃗ = ± ̈⃗ ˆ∓
∓B r t

p t
c r

b( , , , )
4

( ) sin
(4.62 )

m

where (r, θ, φ) are standard polar coordinates chosen so that the charge is
accelerating along the z-axis. The Poynting vector of these radiation fields is

μ
π

θ⃗ = ± ̈ ˆS
p t

c r
r

[ ( )]
16

sin
(4.63)

2

2
m

2

2

giving a net radiated power

μ
π

= ±P
q a t

c6
( )

(4.64)
2 2

m

where a(t) is the acceleration of the charge. For a positive indexed medium the
permeability and permittivity are positive. In this case, the upper sign from the
retarded solution gives an energy flow away from the dipole source. For a negative
indexed medium the permeability and permittivity are negative and the lower sign
from the advanced solution gives an energy flow away from the dipole source.
Again, in the positive indexed medium the Poynting vector and wave vector are
parallel while they are anti-parallel in the negative indexed medium.
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