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Chapter 5

Gravitational waves from a strongly first-order
electroweak phase transition

The discovery of gravitational waves by LIGO [1] ushered in a new way of looking
at the Universe. Since the Universe is transparent to gravitational waves right back
to the beginning of time, any event that generated gravitational waves back then can
in principle be observed today. This is a remarkable advantage when we compare
rival techniques to probe the early Universe. The Universe stops being transparent
to light if we try and peer before a million years after its birth. Indirectly, we can peer
back to when the Universe was a minute old by counting the abundances of light
elements produced during big bang nucleosynthesis. However, even this early time
corresponds to a temperature of a mere MeV. Current terrestrial colliders probe
energies many orders of magnitude higher.

It has been long known that a strong first-order electroweak phase transition
would leave a gravitational wave background. Given this is a necessary condition
for electroweak baryogenesis, this is in principle exciting. It remains unclear though
whether a signal that can be observed with projected technology is consistent with
any model of electroweak baryogenesis. The issue is that projected technology
requires a very strong transition generating a lot of latent heat. Such a large amount
of latent heat released implies a huge amount of pressure accelerating the expansion
of the bubble wall. If the bubble wall becomes ultra-relativistic, it might be difficult
for charge asymmetries to diffuse as they need to in order to bias the sphalerons in
front of the bubble wall. Whether this is possible in such a powerful transition as we
would need to observe it is an open question of research (for a recent exploration see
reference [2]). In this chapter, we will assume it is a possible discovery channel for the
paradigm to justify its discussion.

Let us begin this chapter with a very brief, albeit slightly formal introduction to
gravitational waves in general before diving into the specific example of phase
transitions. Einstein’s equation predicting the relationship between any source and
gravity has the form
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π− =μν μν
μνR g R T

1
2

8 . (5.1)

The compact form of this equation is somewhat deceptive, we will need to
manipulate this quite heavily in order to extract how a source corresponds to a
gravitational wave spectrum. To begin with let us note that any gravitational wave
sources we would realistically consider are small perturbations to a flat space–time
metric

η∼ +μν μν μνg h . (5.2)

To first order in h, the linearized version of Einstein’s equation has the form

η π□ + ∂ ∂ − ∂ ∂ − ∂ ∂ = −μν μν
ρ σ

ρσ
ρ

ν μρ
ρ

μ νρ
μνh h h GTh 16 . (5.3)

Here we have used the usual shorthand that η= −μν μν μνh h h1
2

and η= μν
μνh h . At first

glance, we have ten free parameters in a 4×4 symmetric tensor, however the degrees
of freedom are a lot less than 10. First, general relativity is invariant to diffeo-
morphisms of the form ξ→ +μ μ μx x x( ). This can be used to greatly reduce the
number of free parameters. In particular we can choose a gauge where

∂ =ν
μνh 0. (5.4)

This allows us to eliminate four free parameters, leaving us with six and the
linearized Einstein equation becomes

π□ = −μν
μνGTh 16 . (5.5)

For freely propagating gravitational waves away from their source, we can also
ignore the stress energy tensor and we are free to make an additional coordinate
transformation ξ→ +μ μ μx x x( ), where ξ□ =μ 0 without spoiling our gauge con-
dition, to eliminate a further four free parameters. This leaves us with two free
parameters left to match the number of degrees of freedom in a massless boson. We
can use our freedom to make the trace vanish, h = 0 and transverse in the sense that
the wave vector is perpendicular to the metric, ∂ =h 0i

ij . The neat feature of the
transverse traceless gauge is that you can project onto the transverse traceless gauge
with a projection operator

Λ = −P P P P
1
2

(5.6)ij kl ik jl ij kl,

where

δ= −P n n (5.7)ij ij i j

and n is a unit vector pointing in the same direction as the wave vector of the
gravitational wave. It is straight forward to verify that this operator is indeed a
projector, as Λ Λ = Λij kl kl mn ij mn, , , and it is transverse in its indices

Λ = Λ = … =n n 0. (5.8)i
ij kl

j
ij kl, ,
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Most importantly, the operator projects onto the transverse traceless gauge

= Λh h . (5.9)ij
TT

ij kl kl,

We can therefore use this projector to project out the part of the stress energy tensor
that sources gravitational waves. Let us now proceed to derive the equation for the
gravitational wave power spectrum. We will begin by writing everything as an
expansion around the perturbation, h. For example, the Ricci tensor has the form1

= + +μν μν μν μνR R R R , (5.10)1 2

where the subscripts indicate the power in h. We can then separate the equation into
low frequency and high frequency modes. The zeroth-order term depends upon the
large distance behavior of the metric only, so it is a low frequency term. The term
that is linear order depends on gravitons, so is a short distance or high frequency
effect. The second-order term, however, can contain high frequency and low
frequency modes. For example, two large wave number modes can combine to
give a small wave number mode. The total low frequency part of the equation then
has the form

π= − + −μν μν μν μνR R G T g T8
1
2

. (5.11)2 Low
Low⎡⎣ ⎤⎦ ⎛

⎝⎜
⎞
⎠⎟

Using our gauge condition, we can write the Ricci scalar contribution to the above
equation as

= ∂ ∂ + ∂ ∂μν μ αβ ν
αβ αβ

μ ν αβR h h h h
1
2

1
2

. (5.12)2 ⎛
⎝⎜

⎞
⎠⎟

Taking the average and integrating by parts, we have

= − ∂ ∂μν μ αβ ν
αβR h h

1
4

. (5.13)2

Thus, we can write the expectation value of the low frequency part of the Einstein
equation as

π
− = ∂ ∂μν μν μ αβ ν

αβT g T
G

h h
1
2

1
32

. (5.14)
Low⎛

⎝⎜
⎞
⎠⎟

To derive the power spectrum, we need to project the LHS onto the transverse
traceless mode. We then need to take the 00 component which corresponds to the
energy part of the spectrum. After taking the Fourier transform one has

∫π
ω ω ω ω ω ω

Φ
= Λ ˆ − − ˆE G

d T n T n
d
d 2

( , ) ( , ). (5.15)ij kl ij kl2 ,
2

1 For a more detailed discussion see reference [2].
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HereTij is the Fourier transform of the stress energy tensor and Φ is the solid angle,
usually denoted by the character Ω which we will reserve for an abundance. Indeed,
it is both convenient and customary to consider the abundance of gravitational
waves in each frequency bin observed today,

ρ
ρ

Ω = k
k

d

d
, (5.16)

c

GW

where

ρ
Φ

= Λ
k

G k T T
d

d d
2 . (5.17)GW

ij kl ij kl
2

,

The power spectrum above is written in terms of the wave number, which can easily
be converted into a frequency when accounting for a factor of 2π and a redshift
factor. We will discuss this conversion later in the chapter. We now have the
formalism needed to derive the gravitational wave spectrum so long as we can
identify the relevant parts of the stress energy tensor. During a phase transition,
there are three components to the stress energy tensor that leads to gravitational
waves. Two of these are easy to model,

1. The contribution from the scalar shell which can be identified as the scalar field
contribution to the stress energy tensor ϕ ϕ ϕ= ∂ ∂ − ∂ ∂ −μν μ ν μν ρ

ρT x g V( ) .1
2

⎡⎣ ⎤⎦
2. A contribution from soundwaves, where the plasma initially departs from its

equilibrium state near the bubble wall then advances as sound shells that
eventually collide. This contribution to the stress energy tensor has the form,

∫= ∑ = + +
πμν μ ν μ ν μνT x k k f k e p U U g p( ) ( ) ( )k

E

d

(2 ) 2

3

3 where w is the enthalpy,

U the fluid velocity and p is the pressure.

The other contribution to gravitational waves is from turbulence—when the sound
shells collide larger scales break down into smaller scales in a reasonably long lived
process. This last contribution is very difficult to model (for an attempt, see reference
[3]). Of the other two components, the sound shells dominate unless there is an
extreme amount of energy in the bubble wall, a rare scenario that can be achieved
with a great deal of supercooling (see for example reference [4]). It is also believed,
though not proven until numerical simulations give better information, that the
sound shell contribution dominates over turbulence as well. We therefore focus on
this contribution.

We will need to derive the fluid velocity profile that arises from an expanding
bubble. We will take the approximation that the gravitational wave spectrum arising
from many sound shell collisions can be modelled as an incoherent superposition of
the contribution of individual sound shells that are in free propagation after the
phase boundaries collide [5, 6]. To derive the fluid velocity we use the equations that
arises from the conserved current involving the stress energy tensor. That is, the
stress energy tensor obeys the usual conservation law that its divergence vanishes

=μ
μνT 0; . We can separate the two components by including a friction term that
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captures the interaction between the fluid and the scalar shell. For simplicity we will
work in Minkowski space, for this calculation performed in an expanding back-
ground see reference [7]. Since the expansion of the Universe is often quite slow
compared to the time scale of the transition, ignoring the expansion of the Universe
is often a reasonable approximation. The two components of the divergence of the
stress energy tensor have the form,

ϕ ϕ
ϕ

ϕ δ= ∂ ∂ − ∂
∂

∂ =μ
μν ν ν ν

∣T
V

( ) . (5.18); field
2

ϕ
δ= ∂ + + ∂ + ∂

∂
= −μ

μν
μ

μ ν μν
μ

ν
∣T e p U U g p

V
[( ) ] . (5.19); fluid

It is trivial to see that the sums of the two terms are zero, as they should be, and the
friction term can be modeled as the interaction between the fluid and the field gradients
δ η ϕ ϕ= ∂ ∂ν μ

μ
νU . Let us define a couple of shorthands for notational compactness

vγ γ= + =Z e p E e( ) , . (5.20)i i2

We will also take the fluid velocity to have the form, v vγ= ˆμU ( , )i . We can write the
equations of motion arising from the divergence of the stress energy tensor in spatial
and temporal components as

v ⃗ϕ ϕ
ϕ

ηγ ϕ ϕ− ̈ + ∇ − ∂
∂

= ̇ + · ∇V
( ), (5.21)2

v v⃗ ⃗
ϕ

ϕ ηγ ϕ ϕ ϕ̇ + ∇ · ∇ + ∂ + ∂
∂

∂ = − ̇ + · ∇ ∂Z p
V

( Z ) ( ) , (5.22)i i
i i i

v v v v⃗ ⃗ ⃗ ⃗γ γ γ
ϕ

ϕ ϕ ηγ ϕ ϕ̇ + ̇ + ∇ · + ∇ · − ∂
∂

̇ + · ∇ = ̇ + · ∇E p E
V

( ) ( ) ( ) ( ) , (5.23)2 2

v v v v v v v

v v v

γ
ϕ

ϕ ϕ

ηγ ϕ ϕ ϕ ϕ

̇ + ˆ · + + ̇ + ˆ · ∇ + ∂
∂

̇ + ˆ · ∇

= − ̇ + ˆ · ̇ + · ∇

e p p p
V

( )( ) ( )

( )( ).

(5.24)
2 2

Unless the bubble walls runaway such that the boost factor is very large, the field
components of the above equation can be safely ignored and we have the
significantly simpler system of equations

v ⃗̇ + ∇ · + ∂ =Z Z p( ) 0, (5.25)i i
i

v v⃗ ⃗γ γ̇ + ̇ + ∇ · + ∇ · =E p E( ) ( ) 0, (5.26)

v v v v vγ ̇ + ˆ · + + ̇ + ˆ · ∇ =e p p p( )( ) 0. (5.27)2 2
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We can make two further simplifications. First let us assume spherically symmetric
sound shells, then we can note that because there is no characteristic scale in the
problem, the solution should only depend on the ratio ξ = r/t. We can then denote v(ξ)
as the fluid velocity in the rest from of the center of the bubble and the gradients become

v
γ ξ∂ = − ∂μ

μ
ξU

t
( ) . (5.28)

We can then combine our equations into a single equation which has the form

v
v

v
v

v
ξ

γ ξ ξ
ξ

= − −
−

− ∂ξ
c

2 (1 )
( )
(1 )

1 . (5.29)
s

2
2

2 2

⎛
⎝⎜

⎞
⎠⎟

Here, cs
2 is the speed of sound, given by =c p ed /d ,s

2 which we take to be its
equilibrium value of 1/3 throughout. For a more precise treatment see reference [7].
To solve this equation, we require boundary condition at the bubble wall. We can
use the bag equation of state where the pressure and energy are made continuous at
the boundary by means of a bag constant

ϵ= − =+ + + − − −p a T p a T
1
3

,
1
3

, (5.30)4 4

ϵ= + =+ + + − − −e a T e a T, . (5.31)4 4

where ϵ and a T1
3 x x

4 gives the Stephann Boltzmann pressure in each phase, that is

∑π= +a n n
30

7
8

, (5.32)b f

2

and nb f/ are the number of relativistic bosonic/fermionic degrees of freedom in each phase,
respectively. We can then match the stress energy tensor at the bubble wall boundary

v vγ γ+ = + =+ + + + − − − − + −w p w p T T( ), (5.33)rr rr2 2 2 2

v vγ γ= =+ + + − − − + −w w T T( ). (5.34)rt rt2 2

In the above we put the matching condition we were using in the parenthesis. From
these two equations we can derive

v v
v
v

=
−
−

=
+
++ −

+ −

+ −

+

−

+ −

+ −

p p

e e

p e

e p
, . (5.35)

Using these boundary conditions, one can acquire a solution for the velocity field.
It is not difficult to solve these equations numerically, however, we will later use a fit
for the fluid velocity. Let us conclude by sketching the derivation of the gravitational
wave power spectrum. We will parameterize the power spectrum as follows

ρ
π π

= ̇
d

d k G
k

P k t
Log

1
32 2

( , ). (5.36)GW
h

3

2
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Assuming the fluid sheer stress, which we denote by v vτ = +e p( )ij i j, dominates the
spatial components we can make an assumption of homogeneity and write the
transverse traceless component of the two point unequal time correlator by para-
metrizing it as

τ τ π δΛ = Π +t t k t t k k( ) ( ) ( , , )(2 ) ( ). (5.37)ij kl k
ij

k
kl

, 1 2
2

1 1 2
3

1 21 2

Here thedelta function ensures homogeneitywhich canbe seenas follows: take theFourier
transformof bothmomenta variables and after the application of the delta function, it will
onlybea functionof the relative coordinate.Wewill averageover aperiodT for time scales
much longer than the characteristic period of the gravitational waves,

∫π= − Π̇P k t dt dt
k t t

k t t( , ) (16 G)
cos[ ( )]

2
( , , ). (5.38)h

T
2

0
1 2

1 2 2
1 2

Let us assume the unequal time correlator is only a function of the difference in
times. We can further assume the fluid stress is characterized by a typical length
scale, L ,f and does not evolve after creation. Under these assumptions we can
parametrize

Π = + Π∼ −k t t p e U L kL k t t( , , ) (( ) ) ( , ( )), (5.39)f f f
2

2 1 2
2 2 3 2

1 2

where Π∼ is a dimensionless function and the bars indicate averages, then

∫= Π∼P kL
k L

z
z

kL z( )
1

d
cos[ ]

2
( , ). (5.40)GW f

f
f

2

In the above − =k t t z( )1 2 . Averaging over the lifetime, vτ , and identifying the
average energy density as the critical energy density ρ π= =e H G4 /8c

2 , we can write
the gravitational wave abundance as [5, 6, 8]

vτ
π

Ω = + p
e

U H HL
kL

P kL3 1 ( )( )
( )

2
( ). (5.41)GW f f

f
GW f

2
4

3

2
⎜ ⎟⎛
⎝

⎞
⎠

The factor vτH( ) is often less than one and is a suppression factor from the finite
lifetime of the sound wave. A careful derivation on an expanding background gives a
slightly different factor (see reference [7]) which we will simply quote at the end. The
function P kL( )GW f needs to be numerically solved, as does the average fluid velocity.
There are, however, some good fits for both of these in terms of thermal parameters
in the phase transition. We will return to this shortly. First let us describe the
spectrum in terms of thermal parameters. The first component to consider is the
redshift factor. The total energy dilutes as radiation, whereas the critical energy
density will only dilute as radiation until matter domination, after which it dilutes
slower. This means the relationship between the gravitational wave abundance at the
time compared to today is given by

Ω = ↔ Ω =* *
* *h z z f h

z
z

H
H

z z z f z( , ) ( , / ). (5.42)GW GW
2

0
2

0

4

0

2

0

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
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Here and throughout, the starred subscript refers to the time of percolation which
occurs approximately when the effective action of the bounce profile discussed in
chapter 4, is two orders of magnitude larger than the temperature (a more exact
approach is to calculate the volume fraction in each phase and take the temperature
when there is an order one fraction in the low temperature phase). After applying
this redshift factor and numerically solving for the power spectrum one finds the fit

Ω = × Γ ϒ−

* *
* *h f

g T
U H R A S f t( ) 4.98 10

100
( )

( ) ( ) ( ). (5.43)GW f SW
2 5

1/3
2 4

⎛
⎝⎜

⎞
⎠⎟

Here the numerical factor A = 0.058, Γ = 4/32 , the spectral form is

=
+

S f
f

f f f
( )

7
4 3( / )

, (5.44)
SW SW

3

2

7/2⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

which peaks at the frequency

v
= × − * *

* *

f Hz
g T T z

H R
2.65 10

1 ( )

100 100 GeV 10
1

, (5.45)SW
w

s p5
1/6

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

∼z 7p is a simulation factor and the suppression factor from the finite time of the
soundwaves takes the form

τ
ϒ = −

+ *

t
H

( ) 1
1

1 2
, (5.46)SW

SW

andof course *H is the value ofHubble at the timeof the phase transition.Wenowhave
several thermal parameters left to calculate. The bubblewall velocity is by far themost
complicated and we will tackle it in chapter 8. To properly calculate the mean bubble
separation, *R , one should calculate the cubed route of the bubble number density at
the time of percolation. From this one can estimate the lifetime of the soundwaves
τ = *R U/SW f . A more approximate approach that agrees to within around 20% of the
true value is to take the derivative of the effective action of the bounce profile

vπ
β

β= =*
* *

R
H

T
S T

T
(8 ) ,

d( / )
d

. (5.47)w E

T

1/3

The fluid velocity also can be approximated in terms of the trace anomaly,

κα=U
3
4

, (5.48)f
2

where the trace anomaly is

α
ρ

= Δ − ΔV Td V dT/
, (5.49)

c

and ΔV is the difference in the effective potential between the two phases, defined as
to be positive semi-definite. Finally, the efficiency factor has the form [9]
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v

v
v

v

κ

α
α α

α
α α

α
α

=

+ +
∼

− +
<

+ +
= c

0.73  0.083
, 1

6.9
1.36  0.037

, 0.1

0.017 (0.997 )
,

. (5.50)

w

w
w

w s

6/5

2/5

2/5

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

Of course, it is more accurate to numerically solve the fluid equations. Beyond this,
numerical simulations seemto indicate that thesoundshellmodeldoesapoor jobcapturing
the suppression from energy that goes into vorticity modes. Unfortunately, this effect can
only be captured numerically using a fit [10]. Beyond this, the power spectrum has two
observables in itspeak frequencyandamplitudeas the soundshellmodelpredicts a spectral
form that is independent of the thermalparameters.Thismappingof twoobservables from
four thermal parameters which are in turn derived from any number of multiparameter
models canmake the inverse problem lookatfirst formidable. Simulations, however, seem
to indicate a more promising picture, where the precise shape of the power spectrum is
sensitive to all four thermal parameters, indicating that any observation of a gravitational
wave signature would contain a lot of information about the underlying model that
produced it [11].Ofcourse, thispieceofgoodnews isalsobadnews forphenomelogistswho
mightwish for a simplemappingbetween theirmodel and thepredicted gravitationalwave
signal, simulations are formidably expensive! Still, this is a work in progress and the above
spectral form should be taken with a grain of salt as a starting point in understanding the
signals fromagiven theory (figure5.1).Anexampleofhowthesoundshellmodel cangivea

Figure 5.1. The gravitational wave spectrum for a benchmark as predicted from simulations (black) versus the
spectrum predicted by the sound shell model (red) compared to the sensitivity of LISA (blue) [12]. The shape
and amplitude differ dramatically for this benchmark which demonstrates the need for further development in
predicting the gravitational wave spectrum. Benchmark and simulation data taken from reference [11].
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different prediction of the spectrum compared to a simulation is given below. Note the
existence of the breakpoint and thepeakallowsone to inprinciple reconstruct four thermal
parameters.
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