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Appendix A

Overview of the theories of the dynamical Stark
broadening of ion spectral lines in plasmas

Here we limit the presentation by the dynamical Stark broadening of hydrogenlike
ion lines by plasma electrons. It was initially developed by Griem and Shen [1] (see
also books [2, 3]). It is often called the conventional theory (CT); sometimes it is
called the standard theory.

The dynamical broadening of spectral lines in plasmas by electrons is effective if
the number νWe of perturbing electrons in the sphere of the electron Weisskopf
radius ρWe is much smaller than unity (see, e.g. review [4]): νWe = 4πNeρWe

3/3 ≪ 1,
where Ne is the electron density and ρWe ~ n2 ħ/(mevTe). Here n is the principal
quantum number of the radiator energy level involved in the radiative transition and
vTe is the mean thermal velocity of plasma electrons. Under this condition, for the
overwhelming majority of perturbing electrons, the characteristic frequency of the
variation of the electron microfield Ωe ~ vTe/ρWe is much greater than the
instantaneous Stark splitting in the electron microfield. Physically, the electron
Weisskopf radius is related to the impact parameters ρ ~ ρWe that contribute most
effectively to the dynamical Stark broadening of spectral lines by electrons in
plasmas [4].

The gist of dynamical effects in the Stark broadening of spectral lines in plasmas
by electrons is the following. Collisions with plasma electrons cause virtual
transitions mostly within the upper (n) and lower (n′) multiplets during the radiative
transition n ↔ n′. The primary outcome is a decrease of the lifetime of the states n′
and/or n of the radiator, thus leading to the broadening of the corresponding spectral
line.

The fact that virtual transitions occur mostly within the upper and lower
multiplets conventionally leads to so-called no-quenching approximation, in which
virtual transitions between states of different principal quantum numbers are totally
disregarded. This approximation allows introducing the so-called line space: a direct
product of the Hilbert space, spanned on the basis vectors of the n-shell, with the
Hilbert space, spanned on the (complex-conjugated) basis vectors of the n′-shell.
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The origin of the CT can be traced back to the impact formalism developed by
Baranger [5] and then by Kolb and Griem [6]. The central point of the impact
formalism is the employment of a coarse-grained time scale Δt. Namely, on the one
hand, Δt should be chosen such that it is much greater than the characteristic time ρ/
v of the variation of the electric field created by the perturbing electron at the
location of the radiating ion. Here ρ is the impact parameter and v is the velocity of
the perturbing electron. On the other hand, Δt should be chosen such that it is much
smaller than [max(γ, Δω, ωpe)]

−1. Here γ is the inversed lifetime of the radiator (the
impact width of the spectral line is of the order of γ), Δω is the detuning from the
unperturbed frequency ω0 of the spectral line, ωpe = (4πNee

2/me)
1/2 is the plasma

electron frequency.
Physically, the coarse-grained time scale means that we are not interested in

details of the evolution of the radiator during the characteristic time of the individual
collision ρ/v. Instead, we are interested in the evolution of the radiator during larger
time intervals Δt. The limits of validity of the impact approximation are controlled
by the introduction of the coarse-grained time.

For completeness we should mention the so-called unified formalism developed
by Vidal, Cooper, and Smith [7]. The primary distinction of the unified formalism
from the impact formalism is the following. The impact formalism considers only
completed collisions, while the unified formalism allows also for incomplete collisions.
Another difference relates to the fact that the unified formalism allows (at least in
principle) a transition to the nearest-neighbor quasistatic result in the wings of the
spectral line. This difference is less important: quantitatively the unified formalism
does not always produce such transition correctly. It should be noted that one of the
conditions for introducing the coarse-grain time scale is somewhat relaxed in the
unified formalism compared to the impact formalism. Namely, in the unified
formalism it is required that ρ/v ⩽ Δt—compared to the requirement ρ/v ≪ Δt in
the impact formalism. Further details on the rigorous description of both formalisms
can be found in the comprehensive review by Sahal-Brechot [8].

The CT leads to the expression for the so-called electron impact broadening
operator containing a diverging integral: the integral over the impact parameters.
This integral diverges at both small and large impact parameters. This divergence is
one of the primary deficiencies of the CT.

The divergence at large ρ is related to the long-range nature of the Coulomb
potential. There occurs the plasma screening of the electric field of the perturbing
electron at the distances larger than the Debye radius

ρ = T pe N[ / )] (A.1)4
D e e( 2 1/2

where Te is the electron temperature. This leads to choosing the upper cutoff at ρmax

~ ρD. In distinction, the divergence at small impact parameters in the CT is due the
employment of the perturbation expansion.

The above deficiency of the CT has been eliminated with the development of the
so-called generalized theory (GT) of the dynamical Stark broadening of hydrogenic
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spectral lines [9, 10] (see also book [11]). The GT is based on a generalization of the
formalism of dressed atomic states (DAS) in plasmas.

Originally the DAS-formalism was introduced for studies of the interaction of a
monochromatic (or quasi-monochromatic) field—such as, for example, laser or
maser radiation—with gases. In the course of further research, the DAS-formalism
was extended to the description of the interaction of a laser or maser radiation with
plasmas [12]. This resulted in more accurate analytical calculations and better (more
robust) codes.

The generalization of DAS in papers [9, 10] was based on utilizing atomic states
dressed not by a monochromatic field, but by a broad-band field of plasma electrons
and ions. As should be expected, the generalized DAS is a more complex concept
than the usual DAS.

Due to the utilization of the generalized DAS, the authors of papers [9, 10]
succeeded in taking into account analytically a coupling of the electron and ion
microfields facilitated by the radiating atom. This coupling increases with the
growth of the principal quantum number n and with the growth of the electron
density Ne, as well as with the decrease of the temperature T.

We mention in passing that some of the later extensions of the GT caused some
discussions in the literature. However, the core GT developed in papers [9, 10] has
stood the test of time.

The GT eliminated large discrepancies—up to a factor of two—between the CT
and benchmark experiments, as presented in part of book [11]. Below are some more
details on the GT.

The Hamiltonian of a hydrogenic atom or ion subjected to the quasistatic part F
of the ion microfield and to the electron-produced dynamic field E(t) can be
represented in the form

= − −H H tdF dE( ), (A.2)0

where H0 is the unperturbed Hamiltonian, d is the dipole moment operator. One
chooses the axis Oz of the parabolic quantization along the field F. Then the
operator—dF is diagonal in any subspace of a fixed principal quantum number n.
For this reason, in the CT this interaction was taken into account ‘exactly’
(neglecting only some corrections due to the matrix elements of the operator dz
corresponding to Δn ≠ 0). The interaction with the field E(t) in the CT was
subsequently treated in the second order of the Dirac’s (time-dependent) perturba-
tion theory.

In distinction, in the GT, the entire z-component of the total field F + E(t) is
allowed for in the same (or analogous) way as the field F was treated in the CT. This
was possible because the interaction −dz[F + Ez(t)] (and not only its part −dzF) is
diagonal in any n-subspace. Therefore, the z-component of the electron microfield
can be taken into account much more accurately than in the CT. In this way, the
Stark sublevels are dynamically dressed by the entire z-component of the total
microfield F + E(t). This is the central feature of the GT that leads to its several
advantages over the CT.
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In the GT electron broadening operator and in the GT correlation function,
whose Fourier transform is the lineshape, there are adiabatic and nonadiabatic
terms. The adiabatic term in the correlation function is proportional to the part dzdz
of the operator dd; the operator dzdz is diagonal in the line space (we recall that the
line space is the Gilbert space spanned on the upper and lower Stark substates
involved in the radiative transition). The rest of the correlation function corresponds
to the non-adiabatic contribution: it is proportional to the operator dxdx + dydy that
has both diagonal and non-diagonal matrix elements in the line space.

In the GT, the adiabatic part of the electron broadening operator and of the
correlation function is calculated exactly. This exact result is equivalent to the
summation of all orders of the corresponding Dyson expansion entering formulas of
both the CT and the GT. This is one of the most important distinctions from the CT,
where all terms in the electron broadening operator and of the correlation function
are calculated only in the first non-vanishing (namely, the second) order of the
Dyson expansion.

As a result, the GT is convergent at small impact parameters while the
corresponding CT for neutral radiators is divergent. (For charged radiators the
CT is formally convergent, but leads quantitatively to wrong results.) It is the
allowance for the ‘dressing’ by the broad band field F + Ez(t) that eliminates the
divergence and enhances the accuracy of the results. In distinction, the higher the
electron density and/or the principal quantum number (or the lower the temper-
ature), the greater becomes the inaccuracy of the CT.

It should be noted that the GT was developed analytically to the same level as the
CT. This is counterintuitive because the starting formulas for the GT are more
complicated than for the CT.

Speaking specifically about the dynamical Stark broadening of hydrogenlike
spectral lines by plasma electrons, there is another fundamental flaw of the CT. This
flaw has been eliminated in paper [13] (see also chapter 12 of book [14]), which we
follow below.

In the CT, the perturbing electrons are considered moving along hyperbolic
trajectories in the Coulomb field of the effective charge Z − 1 (in atomic units),
where Z is the nuclear charge of the radiating ion. In other words, in the CT there
was made a simplifying assumption that the motion of the perturbing electron can be
described in frames of a two-body problem, one particle being the perturbing
electron and the other ‘particle’ being the charge Z − 1.

However, in reality one has to deal with a three-body problem: the perturbing
electron, the nucleus, and the bound electron. Therefore, trajectories of the
perturbing electrons should be more complicated.

In paper [13] the authors took this into account by using the standard analytical
method of separating rapid and slow subsystems—see, e.g. book [15]. The character-
istic frequency of the motion of the bound electron around the nucleus is much
higher than the characteristic frequency of the motion of the perturbing electron
around the radiating ion. Therefore, the former represents the rapid subsystem and
the latter represents the slow subsystem. This approximate analytical method allows
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a sufficiently accurate treatment in situations where the perturbation theory fails—
see, e.g. book [15].

By applying this method the authors of paper [13] obtained more accurate
analytical results for the electron broadening operator than in the CT. They showed
by examples of the electron broadening of the Lyman lines of He II that the
allowance for this effect increases with the electron density Ne, becomes significant
already at Ne ~ 1017 cm−3 and very significant at higher densities. Below are the
details.

In the CT the electron broadening operator is expressed in the form (see, e.g.
paper [1])

∫π ρ ρΦ ≡ −⁎vN d S S2 { 1}, (A.3)bab e a

where Ne, v, and ρ are the electron density, velocity, and impact parameter,
respectively; S (0)a and S (0)b are the S matrices for the upper (a) and lower (b) states
involved in the radiative transition, respectively; {…} stands for the averaging over
angular variables of vectors v and ρ. Further in the CT, the collisions are subdivided
into weak and strong. The weak collisions are treated by the time-dependent
perturbation theory. The impact parameter, at which the formally calculated
expression {SaSb*−1} for a weak collision starts violating the unitarity of the S-
matrices, serves as the boundary between the weak and strong collisions and is called
Weisskopf radius ρWe.

So, in the CT the integral over the impact parameter diverges at small ρ.
Therefore, in the CT this integral is broken down into two parts: from 0 to ρWe

(strong collisions) and from ρWe to ρmax for weak collisions. The upper cutoff ρmax

(typically chosen to be the Debye radius given by equation (A.1)) is necessary
because this integral diverges also at large ρ.

In the CT, after calculating the S matrices for weak collisions, the electron
broadening operator becomes (in atomic units)

∫ ∫ρ ρ ρ ρΦ ≡ Θ = Θ
Θ

Θ
ρ

ρ

Θ

Θ
C d

C
d

d
d

sin
( )
2 2

sin
2

, (A.4)ab
weak 2

2
2

we

max

min

max

where Θ is the scattering angle for the collision between the perturbing electron and
the radiating ion (the dependence between Θ and ρ being discussed below) and the
plasma electron and the operator C is

∫π= −
−

−
∞

⁎rC N dvv f v
m

Z
r

4
3

( )
( 1)

( ) . (A.5)be a
0

3
2

2
2⎡

⎣⎢
⎤
⎦⎥

Here f(v) is the velocity distribution of the perturbing electrons, r is the radius-vector
operator of the bound electron (which scales with Z as 1/Z), and m is the reduced
mass of the system ‘perturbing electron—radiating ion’.

In the CT the scattering occurs in the effective Coulomb potential, so that the
trajectory of the perturbing electron is hyperbolic and the relation between the
impact parameter and the scattering angle is given by
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ρ = − ΘZ
mv

1
cot

2
. (A.6)(0)

2

In paper [13] the authors considered the realistic situation where trajectories of the
perturbing electrons are more complicated because the perturbing electron, the
nucleus, and the bound electron should be more accurately treated as the three-body
problem. We use the standard analytical method of separating rapid and slow
subsystems—see, e.g. book [15]. It is applicable here because the characteristic
frequency vTe/ρWe of the variation the electric field of the perturbing electrons at the
location of the radiating ion is much smaller than the frequency Ωab of the spectral
line (the latter, e.g. in case of the radiative transition between the Rydberg states
would be the Keppler frequency or its harmonics)—more details on this are
presented at the end of this chapter.

The first step in this method is to ‘freeze’ the slow subsystem (perturbing electron)
and to find the analytical solution for the energy of the rapid subsystem (the
radiating ion) that would depend on the frozen coordinates of the slow subsystem (in
our case it will be the dependence on the distance R of the perturbing electron from
the radiating ion). To the first non-vanishing order of the R-dependence, the
corresponding energy in the parabolic quantization is given by

= − +E R
Z
n

nq
ZR

( )
3

2
, (A.7)nq

2

2 2

where n and q = n1−n2 are the principal and electric quantum numbers, respectively;
n1 and n2 are the parabolic quantum numbers.

The next step in this method is to consider the motion of the slow subsystem
(perturbing electron) in the ‘effective potential’ veff(R) consisting of the actual
potential plus Enq(R). Since the constant term in equation (A.7) does not affect the
motion, the effective potential for the motion of the perturbing electron can be
represented in the form

α β α= − + = −V R
R R

Z( ) , 1. (A.8)eff 2

For the spectral lines of the Lyman series, since the lower (ground) state b of the
radiating ion remains unperturbed (up to/including the order ~1/R2), the coefficient β
is

β =
n q

Z

3

2
. (A.9)a a

For other hydrogenic spectral lines, for taking into account both the upper and
lower states of the radiating ion, the coefficient β can be expressed as

β =
−n q n q

Z

3 ( )

2
. (A.10)a a b b

Advances in X-Ray Spectroscopy of Laser Plasmas

A-6



The motion in the potential from equation (A.8) allows an exact analytical solution.
In particular, the relation between the scattering angle and the impact parameter is
no longer given by equation (A.6), but rather becomes (see, e.g. book [16])

π
α

βΘ = −
+

+
β

E M
m

2

1
arctan

4
2

. (A.11)m

M

2
2

2

2⎛
⎝⎜

⎞
⎠⎟

Here E andM are the energy and the angular momentum of the perturbing electron,
respectively. One can rewrite the angular momentum in terms of the impact
parameter ρ as

ρ=M mv (A.12)

Then a slight rearrangement of equation (A.11) yields

π β
ρ α

ρ β− Θ + = +
mv

v
m v mtan

2
1

2
2 . (A.13)

2 2
2 2 2

⎛
⎝⎜

⎞
⎠⎟

After solving equation (A.13) for ρ and substituting the outcome in equation (A.4), a
more accurate expression for the electron broadening operator can be obtained.
However, equation (A.13) does not have an exact analytic solution for ρ so that this
could be done only numerically.

In paper [13], for getting the message across in the simplest form, the authors
provided an approximate analytical solution of equation (A.13) by expanding it in
powers of β. This yields (keeping up to the first power of β)

π π π β
ρ

ρ
α

β
αρ

− Θ + − Θ + − Θ ≈ +
mv

mv
tan

2 2
1 tan

2
. (A.14)2

2 2

2
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥

The authors of paper [13] were seeking the analytical solution for ρ in the form
ρ ρ ρ≈ +(0) (1), where ρ(0) corresponds to β = 0 (and was given by equation (A.6))
and ρ ρ≪(1) (0). Substitution of ρ ρ ρ≈ +(0) (1) into equation (A.14) yields the
expression

π β
ρ

β
αρ

ρ
α

− Θ − ≈Θmv

mv( )

2 sin
. (A.15)

2
2 (0)2 2 (0)

2 (1)

After solving equation (A.15) for ρ(1), one gets the expression for ρ:

ρ α β
α

π≈ Θ + − Θ − Θ
Θmv

cot
2 2cos

tan
2

. (A.16)
2

2 2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

As a reminder, the goal is to perform the integration in equation (A.3) for obtaining
a more accurate analytical result for the electron broadening operator. This can be
more easily accomplished by performing the integration over Θ instead of ρ. For this
purpose, first, the authors of paper [13] squared equation (A.16)
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ρ α β π≈ Θ + − Θ −Θ Θm v mv
cot

2 sin cos
1 , (A.17)

2 2

2
2

2 4
2

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where only the first order terms in β have been kept for consistency. To make
formulas simpler, they denoted ϕ = Θ/2. After differentiating equation (A.17) with
respect to ϕ, the authors of paper [13] obtained

ρ
ϕ

α ϕ
ϕ

β
ϕ ϕ

π ϕ
ϕ ϕ

≈ − − + − −d
d m v mv

2cot
sin

2 1
sin cos 2

1
sin

1
cos

. (A.18)
2 2

2 4 2 2 2 2
⎜ ⎟

⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠
⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥

After substituting in the utmost right side of equation (A.4) first ϕΘ = 2 and then ρ
ϕ

d
d

2

from equation (A.18), the contribution of the weak collisions to the electron
broadening operator becomes

∫ ∫

∫

α ϕ ϕ β ϕ ϕ

β π ϕ ϕ ϕ

Φ = − +

+ − −

ϕ

ϕ
π

π

C
m v

d
mv

d

mv
d

cot tan

2
(1 tan ) .

(A.19)
0

2

0

2

ab
weak

2

2 4 2

2
2

min

max

⎜ ⎟

⎡

⎣
⎢⎢⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥⎥⎥

In equation (A.19), in the two correction terms proportional to β, The authors of
paper [13] extended the integration over the full range of the variation of the angle ϕ.
The corresponding minor inaccuracy would not contribute significantly to the
electron broadening operator, since the terms involving β are considered to be a
relatively small correction to the first term in equation (A.19).

Performing the integrations in equation (A.19), they obtained:

∫π

ϕ
ϕ

β π

Φ = − −

× +
−

−

⁎
∞

rN r dv
f v
v

mv
Z

4
3

( )
( )

log
sin

sin ( 1) 4
1 .

(A.20)
bab e a

weak 2

0

max

min

2

2

2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥

Here and below the expression (ra−rb*)2 stands for the scalar product (also known as
the dot-product) of the operator (ra−rb*) with itself. In the theory of the dynamical
Stark broadening of spectral lines in plasmas by electrons, the corresponding matrix
elements are calculated with respect to the unperturbed wave functions.

Then the authors of paper [13] added the CT estimate for the contribution of
strong collisions

π ρΦ ≈ vN , (A.21)ab e We
strong 2
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where ρWe corresponds to ϕmax. Expressions for ϕmax and ϕmin are given in paper [1]
(in equations (9) and (10a)) as follows

ϕ = −
−

Z Z
n n mv

sin
3
2

( 1)

( )
, (A.22)

a b
max 2 2

ϕ =
+

ρ

ρ

−

−
sin

1
(A.23)

Z

mv

Z

m v

1

( 1)

D

D

min

2

2

2 4 2

It should be emphasized that the factor −n n( )a b
2 2 in the denominator of the right side

of equation (A.22) was an approximate allowance by the authors of paper [1] for the
contribution of the lower level b while estimating the operator ( − ⁎r rba ) for hydrogenic
lines of spectral series other than the Lyman lines. However, for the Lyman lines the
lower (ground) level does not contribute to electron broadening operator, so that for
the Lyman lines equation (A.22) should be simplified as follows:

ϕ = −Z Z
n mv

sin
3
2

( 1)
. (A.24)

a
max 2

It should be noted that at relatively small velocities of perturbing electrons, the right
side of equation (A.22) or equation (A.24) could exceed unity. In this case one
should set ϕ =sin 1max , what corresponds to ρmin = 0, so that there would be no
contribution from strong collisions. Typically, the range of such small velocities has
a very low statistical weight in the electron velocity distribution.

After substituting the above formulas for ϕsin max and ϕsin min into equation
(A.19), and combining the contributions from weak and strong collisions, the
authors of paper [13] obtained the final results for the electron broadening operator:

∫β π

ρ
ρ

β π

Φ = − − − −
−

+
−

+ − +
−

−

⁎
∞

rN r dv
f v
v

Z Z

n n m v

Zv

n n
Z
mv

mv
Z

( )
4
3

( )
( ) 1

2
1

3
2

( 1)

( )

log
3
2 ( )

1
1

( 1) 4
1

(A.25)

bab e a
a b

D

a b D

2

0

2 2

2 2 2 2 2

2 2 2

2 2

2

2

⎪

⎪⎡
⎣⎢

⎤
⎦⎥
⎧
⎨
⎩

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡

⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤

⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟
⎫
⎬⎪
⎭⎪

for the non-Lyman lines and

∫β π

ρ
ρ

β π

Φ = − − − −

+ + − +
−

−

⁎
∞

rN r dv
f v
v

Z Z
n m v

Zv

n
Z
mv

mv
Z

( )
4
3

( )
( ) 1

2
1

3
2

( 1)

log
3
2

1
1

( 1) 4
1

(A.26)

bab e a
a

D

a D

2

0

2 2

4 2 2

2 2

2 2

2

2

⎪

⎪⎡
⎣⎢

⎤
⎦⎥
⎧
⎨
⎩

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤

⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟
⎫
⎬⎪
⎭⎪

for the Lyman lines. Here and below log[…] stands for the natural logarithm.
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In order to determine the significance of this effect, it is necessary then to evaluate
the ratio

π

=

−
−

−

− + +ρ

ρ
−

− −

−

( ) ( )

mv n q n q

Z
ratio

3
2

( )

( 1) 4
1

1 log 1

(A.27)
Z Z

n n m v

Zv

n n

Z

mv

1
2

3
2

( 1) 3
2

1

a a b b

a b

D

a b D

2

2

2

2 2
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for the Lyman lines.
Below we reproduce numerical examples for several Lyman lines from paper [13].

As is customary in the Stark broadening theory, instead of the integration over
velocities, for the numerical examples the authors of paper [13] used the mean
thermal velocity vT of the perturbing electrons. In atomic units, the mean thermal
velocity vT, the Debye radius ρD, and the reduced mass can be expressed as follows

ρ= = × =
+

+−v
T

m
T

N
m0.1917

(eV)
1.404 10

(eV)
(cm )

1

1
, (A.29)

m
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m
Am
2T D

e

e

p

e

p

11
3

where me is the electron mass, mp is the proton mass, and A is the atomic number of
the radiating ion ( ≈A Z2 ).

Table A1 presents the values of the ratio from equation (A.28) for several Lyman
lines of He II at the temperature T = 8 eV and the electron density = ×N 2 10e

17

cm−3.
Figure A1 shows the ratio from equation (A.28) versus the electron density Ne for

the Stark components of the electric quantum number ∣q∣ = 1 of Lyman-alpha
(n = 2), Lyman-beta (n = 3), and Lyman-gamma (n = 4) lines of He II at the
temperature T = 8 eV.

It is seen that for the electron broadening of the Lyman lines of He II, the
allowance for the effect under consideration indeed becomes significant already at
electron densities Ne ~ 1017 cm−3 and increases with the growth of the electron
density. It should be noted that when the ratio, formally calculated by equation
(A.28), becomes comparable to unity, this is the indication that the approximate
analytical treatment based on expanding equation (A.13) up to the first order of
parameter β, is no longer valid. In this case the calculations should be based on
solving equation (A.13) with respect to ρ without such approximation.
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Thus, the authors of paper [13] obtained more accurate analytical results for the
electron broadening operator compared to the CT. By examples of the electron
broadening of the Lyman lines of He II, we demonstrated that the allowance for this
effect becomes significant at electron densities Ne ~ 1017 cm−3 and very significant at
higher densities. It is well-known that for relatively low-Z radiators, the broadening
by electrons is comparable to the broadening by ions, so that the correction to the
broadening by electrons, introduced in the present paper, should be significant for
the total Stark width.

It is important to emphasize that the authors of paper [13] were able to obtain the
above analytical results primarily due to the underlying fundamental symmetry of
the class of potentials v(R) = −A/R + B/R2, where A and B are constants. Namely,
this class of potentials possesses an additional conserved quantity Meff

2 = M2 +

Table A1. Ratio from equation (A.28) for the Stark components of several
Lyman lines of He II. at the temperature T = 8 eV and the electron density

= ×N 2 10e
17 cm−3 [13].

n ∣q∣ ratio

2 1 0.3261
3 1 0.3748
3 2 0.7496
4 1 0.5156
4 2 1.0311
4 3 1.5467

Figure A1. Ratio from equation (A.28) versus the electron density Ne for the Stark components of the electric
quantum number ∣q∣ = 1 of Lyman-alpha (n = 2), Lyman-beta (n = 3), and Lyman-gamma (n = 4) lines of He
II at the temperature T = 8 eV [13].
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2mB, whereM is the angular momentum and m is the mass of a particle, so thatMeff

is the effective angular momentum. As for the impact approximation, it was not
crucial to work [13]—the authors used it only for the following two purposes: first, to
get the message across in a simple form, and second, for the comparison with the CT
(in which the impact approximation was crucial), so that we would compare ‘apples
to apples’ rather than ‘apples to oranges’.

The authors of paper [13] also mentioned that in 1981, Baryshnikov and Lisitsa
[17] published very interesting results for the electron broadening of hydrogen-like
spectral lines in plasmas (also presented later in book [18]) in frames of the quantum
theory of the dynamical Stark broadening, while we obtained our results in frames of
the semiclassical theory of the dynamical Stark broadening, just as in the CT. (For
clarity: in the semiclassical theory, the radiating atom/ion is treated quantally, and
perturbing electrons classically; in the quantum theory both the radiating atom/ion
and perturbing electrons are treated quantally.) Both in paper [17] and in paper [13],
there was used the underlying symmetry of the class of potentials v(R) = −A/R + B/
R2 for obtaining analytical solutions.

A specific result for the line width Baryshnikov and Lisitsa [17] obtained for
Lyman lines in the classical limit using the impact approximation, as presented in
their equations (4.5) and (4.6). The authors of paper [13] compared their results from
equations (4.5) and (4.6) with the CT [1] for He II Lyman lines. It turned out that for
Ne ~ (1017–1018) cm−3, i.e. for the range of electron densities, in which the
overwhelming majority of measurements of the width of He II lines were performed,
Baryshnikov–Lisitsa’s line width exceeds the CT line width by two orders of
magnitude or more. In view of the fact that the width of He II lines, measured by
various authors in benchmark experiments (i.e. experiments where plasma param-
eters were measured independently of the line widths), never exceeded the CT width
by more than a factor of two (see, e.g. benchmark experiments [19–21]), this seems to
indicate that something might be incorrect in equations (4.5) and (4.6) from paper
[17] (though methodologically it was a very interesting paper). In distinction, the
corrections to the CT introduced in paper [13], do not exceed the factor of two for
He II lines in the range of Ne ~ (1017–1018) cm−3.

Finally, the authors of paper [13] provided a detailed proof of the applicability of
the analytical method (that they used) as follows. The characteristic frequency of the
motion of the perturbing electron around the radiating ion in the process of the
Stark broadening of spectral lines is the so-called Weisskopf frequency

ω
ρ

= ∼
− ℏ

∼
− ℏ

v Zmv

n n
ZT

n n( ) ( )
. (A.30)We
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T

a b a b

2

2 2 2 2

The characteristic frequency of the motion of the bound electron around the nucleus
is the frequency of the spectral line
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where UH is the ionization potential of hydrogen. The ratio of these two frequencies
is

ω
Ω

∼
−
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n n

n n( )
. (A.32)We
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For the simplicity of estimating this ratio, the authors of paper [13] considered na »
nb, so that

ω
Ω

∼ ≪T
Zn U

1 (A.33)We

a H
2

⎛
⎝⎜

⎞
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as long as

≪T Zn(eV) (13.6eV) . (A.34)a
2

For example, for Z = 2 the above validity condition becomes

≪T n(eV) (27.2eV) (A.35)a
2

and is satisfied for a broad range of temperatures, at which He II spectral lines are
observed in plasmas.
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Appendix B

Diagnostic of Langmuir solitons in plasmas by
using hydrogenic spectral lines

Langmuir solitons are relatively strong Langmuir waves in plasmas—the waves
having a certain spatial formfactor (see, for example book [1]). There are only very
few theoretical papers on their spectroscopic diagnostics in plasmas—in distinction
to a large number of works on various spectroscopic diagnostics of relatively weak
Langmuir waves in plasmas and their successful implementation (see, e.g. books
[2–4] and references therein).

In paper [5] the author calculated analytically the shape of satellites of dipole-
forbidden lines in a spectrum spatially-integrated through a Langmuir soliton (or
through a sequence of Langmuir solitons separated by a distance L). The dipole-
forbidden lines are the characteristic feature of He and Li spectral lines or of the
spectral lines of He-like and Li-like ions. In the profiles of these spectral lines,
Langmuir waves can give rise to satellites of the dipole-forbidden components of
these lines. The primary outcome of paper [5] (presented also in section 7.3 of book
[2]) was the following.

In the case of Langmuir solitons, the peak intensity of the satellites of the dipole-
forbidden lines can be significantly enhanced—by orders of magnitude—compared
to the case of non-solitonic Langmuir waves. This specific feature allows distinguish-
ing Langmuir solitons from non-solitonic Langmuir waves.

In distinction to the above method based on the dipole-forbidden spectral lines of
He, Li, as well as He-like and Li-like ions, speaking of using hydrogenic spectral
lines, one should mention that Hannachi et al [6] performed simulations for finding
the effect of Langmuir solitons on the hydrogen Lyα line. The outcome was an
additional broadening. However, even at the low electron density Ne = 1014 cm−3,
this additional broadening was very small compared to the Stark broadening by
plasma microfields. Moreover, the additional broadening rapidly diminished with
the increase of Ne—as a result, there would be practically no additional broadening
at Ne > 1015 cm−3. In paper [7] Hannachi et al introduced into consideration
additionally a magnetic field. Hannachi et al [7] performed simulations at the
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electron density Ne = 1013 cm−3. However, this electron density is unrealistically low
for the modern tokamaks (applications to which were hoped for by the authors of
paper [7]) and again, the additional broadening would rapidly diminish for more
realistic values of the electron density (that is, for higher values of the electron
density). Therefore, it appears highly questionable that the results by Hannachi et al
[6, 7] could be of any use for the experimental diagnostics of Langmuir solitons. The
results from paper [6] were also reproduced in one part of paper [8] by Stamm et al1.

In paper [10], which we follow here, the author conducted a general study effects
of Langmuir solitons on arbitrary spectral lines of hydrogen or hydrogen-like ions.
Then by using the Ly-beta line as an example, he compared the main features of the
profiles for the case of the Langmuir solitons with the case of the non-solitonic
Langmuir waves of the same amplitude. He demonstrated how the line profiles
depend on the amplitude of the Langmuir solitons and on their separation from each
other within the sequence of the solitons.

Langmuir solitons (or a set of Langmuir solitons separated by a distance L) have
the following spatial formfactor [1]:

ω λ λ= = ≪F x t E x t E x E ch x L( , ) ( ) cos , ( ) / ( / ), . (B.1)0

Here

ω ω ω λ= − ( )Te m3 / 2 , (B.2)epe pe
2

where

ω π= e N m(4 / ) (B.3)e epe
2 1/2

is the plasma electron frequency (me being the electron mass) and λ is the
characteristic size of the soliton. A diagnostic of Langmuir solitons consists not
only in finding experimentally the electric field oscillating at the frequency ~ωpe, but
also in ensuring that the spatial distribution of the amplitude corresponds to the
formfactor E(x) from equation (B.1).

The author of paper [10] started by considering the splitting of hydrogenic
spectral lines at the fixed value of x. Then he averaged the result over the formfactor
E(x) from equation (B.1) to produce new results.

Blochinzew in his pioneering work of 1933 [11] considered the splitting of a model
hydrogen line, consisting of just one Stark component, under a linearly-polarized
electric field E0 cos ωt. He demonstrated that the model line splits up in satellites
separated by pω (p = ±1, ±2, ±3, …) from the unperturbed frequency ω0 of the
spectral line:

1 It should be noted that paper [8] by Stamm et al had a broad title ‘Line shapes in turbulent plasmas’.
Regrettably, the authors of paper [8] seem to be ignorant of dozens and dozens of theoretical and experimental
papers on the subject of line shapes in turbulent plasmas that started in Sholin’s group as early as in the 1970s
and continued by various theoretical and experimental groups around the world through 2017—see, e.g. paper
[9], book [2] and references from paper [9] and book [2].
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∑ω ω ε δ ω ωΔ = Δ −
=−∞

+∞

S J X p( / ) ( ) ( ( / ) ), (B.4)
p

p k
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where Jp(u) are the Bessel functions, ε is the scaled amplitude of the field:

ε ħ ω= E Z m e3 /(2 ). (B.5)r e0

Here Zr is the nuclear charge of the radiating atom/ion and

= −X nq n q , (B.6)k 0 0

where n, q and n0, q0 are the principal and electric quantum numbers of the upper
and lower energy levels, respectively, involved in the radiative transition. From the
physical point of view, the greater the product Xkε, the larger is the phase
modulation of the atomic oscillator. In paper [12] Blochinzew’s result was gener-
alized to profiles of real, multicomponent hydrogenic spectral lines in the ‘reduced
frequency’ scale as follows (presented later also in book [4], section 3.1)

∑ω ω ε δ ω ωΔ = Δ −
=−∞

+∞

S I p p( / ) ( , ) ( / ) , (B.7)
p

where

∑ε δ ε= + + Σ
=

( )I p f f J X f f( , ) 2 ( ) / 2 . (B.8)
k

k

1

p k p k k0 0
2

0

max⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

Here f0 is the total intensity of all central Stark components, fk is the intensity of the
lateral Stark component with the number k = 1, 2, …, kmax.

In the typical case of the strong modulation (Xkε ≫ 1), from equations (B.4),
(B.7), (B.8) it is seen that there could be numerous satellites of significant intensities.
Often the situation is such that the individual satellites merge together by broad-
ening mechanisms. In this situation only the envelope of these satellites can be
observed. The most intense part of the satellites envelope has the shape of the Airy
function, as shown in paper [12] and reproduced in book [4], section 3.1. Based on
these analytical results, the following practical formulas have been derived and
presented in paper [12] and reproduced in book [3] (section 3.1) for the position pmax

of the satellite having the maximum intensity (and thus corresponding to the
experimental peak)

ε= + = − =p a a a d a a a X( ) ( /2) 0.809( ) , , (B.9)kmax
1/3

Ai
1/3

where dAi = −1.019 is the first zero of the derivative of the Airy function.
In paper [10] the author started the averaging over the formfactor E(x) from

equation (B.1) by substituting E(x) into the argument of the Bessel function in
equation (B.4) and integrating over x from −λ to λ, or equivalently
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∫ ∫=
−

f p a b b dyJ a ch y( , , ) (1/ ) [ / ( )], (B.10)
b

b

p
/2

/2
2

where he denoted

λ λ= =b L y x/ , / . (B.11)

Since the maximum intensity has the satellite at the position pmax(a) given by
equation (B.9), then its spatially integrated intensity from equation (B.10) is I = f
[pmax(a), a, b]. Figure B1 shows I versus b for a = 10 (solid line), a = 15 (dashed line),
and a = 20 (dotted line). It is seen that the integrated intensity of the most prominent
satellite decreases as either a increases (e.g. the field amplitude E0 increases) or as b
increases (i.e. the distance L between Langmuir solitons in the sequence increases).

Figure B2 presents a three-dimensional plot of the spatially integrated intensity of
the most prominent satellite versus both a and b.

Figure B3 shows a three-dimensional plot of the ratio f[pmax(a), a, b]/f[0, a, b]
versus a and b. This is the ratio of the spatially integrated intensity of the most
prominent satellite to the spatially integrated intensity of the ‘zeroth’ satellite, the
latter being the intensity at the unperturbed position of the one-component spectral
line. It is seen that this ratio is generally a non-monotonic function of the scaled
amplitude a of the solitons electric field.

Then the author of paper [10] proceeded to real, multi-component hydrogenic
spectral lines. As an example, he utilized the Ly-beta line in the observation
perpendicular to the solitons electric field.

Figure B4 presents the profile of the Ly-beta line versus the scaled distance Δω/ω
from the unperturbed position of this line for the (differently) scaled amplitude
ε = 3ħE0/(2Zrmeeω) = 1 and the scaled distance b = L/λ = 2 between the Langmuir
solitons in the sequence (solid line). Also shown is the corresponding profile for the
case of the non-solitonic Langmuir waves for the same value of ε = 1 (dashed line).

Figure B1. Spatially integrated intensity I of the most prominent satellite versus the scaled distance b = L/λ of
Langmuir solitons in the sequence for three values of the scaled amplitude a = 3ħXkE0/(2Zrmeeω) of the
solitons electric field: a = 10 (solid line), a = 15 (dashed line), and a = 20 (dotted line) [10].
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The direction of the observation is perpendicular to vector E0. The profiles are
continuous (rather than being a set of satellites isolated from each other) because
additional broadening mechanisms (the Stark broadening by plasma microfields and
the Doppler broadening) were taken into account in the amount of δω = 2ω. The
latter relation could be satisfied, for example, in plasmas of multi-charged ions
produced by a powerful Nd-glass laser, where at the surface of the critical density,
the electron density is Ne = 1021 cm−3 (or slightly higher due to relativistic effects)
and the temperature would be up to T ~ 103 eV.

Figure B2. Spatially integrated intensity of the most prominent satellite versus the scaled amplitude
a = 3ħXkE0/(2Zrmeeω) of the solitons electric field and versus the scaled distance b = L/λ of Langmuir
solitons in the sequence [10].

Figure B3. The ratio f[pmax(a), a, b]/f[0, a, b] of the spatially integrated intensity of the most prominent satellite
to the spatially integrated intensity of the ‘zeroth’ satellite versus the scaled amplitude a = 3ħXkE0/(2Zrmeeω) of
the solitons electric field and versus the scaled distance b = L/λ of Langmuir solitons in the sequence [10].
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It is seen that in the case of the solitons, the profile is narrower than in the non-
solitonic case. It is also seen that both profiles have practically the bell-shape without
any significant features.

Figure B5 shows the same as figure B4, but for stronger Langmuir waves,
corresponding to ε = 3. Both profiles have features. Namely, in the non-solitonic
case (dashed line), the profile has two maxima both in the red and blue sides. In the
case of solitons, the primary maximum in each side remains, but the secondary
maximum in each side transforms into a shoulder.

Figure B6 shows the same as figure B5, but for even stronger Langmuir waves,
corresponding to ε = 6. Both profiles have more features than in figure B5: three
maxima both in the red and blue sides. In the case of solitons, the second maximum

Figure B4. The profile of the Ly-beta line versus the scaled distance Δω/ω from the unperturbed position of
this line for the (differently) scaled amplitude ε = 3ħE0/(2Zrmeeω) = 1 and the scaled distance b = L/λ = 2 of
Langmuir solitons in the sequence (solid line) [10]. Also shown is the corresponding profile for the case of the
non-solitonic Langmuir waves for the same value of ε = 1 (dashed line). The direction of the observation is
perpendicular to vector E0.

Figure B5. The same as figure B4, but for stronger Langmuir waves, corresponding to ε = 3 [10].
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in each side is more pronounced than for the non-solitonic case. For the third
maximum the situation is opposite: the case of solitons, the third maximum is less
pronounced than for the non-solitonic case.

Then the author of paper [10] exhibited how the Ly-beta profiles for the case of
the Langmuir solitons, depend on the scaled distance b = L/λ between Langmuir
solitons in the sequence. In figure B7 the Ly-beta profiles corresponding to ε = 3, are
presented for b = 2 (solid line), b = 4 (dashed line), and b = 6 (dash-dotted line). It is
seen that as the scaled distance b = L/λ between Langmuir solitons in the sequence
increases, the features (such as maxima, minima, shoulders) gradually disappear.

The above shows that the diagnostic of Langmuir solitons, while employing, for
example, the Ly-beta line, can be based on the following feature. In the non-solitonic
case, there could be distinct secondary maxima in each wing of the line, whereas in

Figure B6. The same as figure B5, but for even stronger Langmuir waves, corresponding to ε = 6 [10].

Figure B7. Dependence of the Ly-beta profiles for the case of the Langmuir solitons on the scaled distance
b = L/λ between the Langmuir solitons in the sequence: for b = 2 (solid line), b = 4 (dashed line), and b = 6
(dash-dotted line) [10].
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the case of solitons the would-be secondary maxima look more or less like shoulders
—see figures B5 and B6, and the solid line in figure B7.

In summary, in paper [10] the author suggested using the following manifestations
of Langmuir solitons as the diagnostic tool. For the case of the Langmuir solitons,
some maxima in the line profiles become less pronounced or even transform into
shoulders—compared to the non-solitonic Langmuir waves of the same amplitude.
Also, as the amplitude of the Langmuir solitons increases, more features (such as
maxima and minima) appear in the line profiles. However, when the separation
between the solitons within their set increases, there are less features in the line
profiles.

These manifestations can be used for the experimental determination of the
amplitude of the Langmuir solitons and of their separation from each other in their
sequence.
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Appendix C

Profiles of hydrogenic spectral lines under
stochastic electric fields of plasma turbulence:
applications to diagnostics of the Langmuir

turbulence

At sufficiently high electron densities Ne ≫ 1018 cm−3, the Langmuir turbulence can
cease to be quasimonochromatic and rather represents a broadband electric field
with the peak intensity at the plasma electron frequency ωpe, where

ω π= e N m(4 / ) (C.1)e epe
2 1/2

(here e and me are the electron charge and mass, respectively). This happens mostly
due to electron collisions. The electric field of the Langmuir turbulence becomes
multi-mode and can be even stochastic.

In this scenario the Langmuir turbulence can lead to a broadening of hydrogenic
spectral lines. In the 1970s, this effect was pointed out by Sholin [1] and then
developed in more detail by Oks and Sholin [2]. This effect was used for interpreting
some experimental results in papers [3–5].

A further theoretical study related to this physical situation was performed by
Gavrilenko [6] in 1996. Specifically, he considered modifications of profiles of
hydrogen spectral lines under a multi-mode non-monochromatic linearly-polarized
electric field1.

In paper [6] Gavrilenko obtained his results for the case where the power spectrum
of the stochastic electric field is Lorentzian. In paper [8] the author extended
Gavrilenko’s results to the scenario where the power spectrum of the stochastic

1 It should be mentioned that in 1958, Lifshitz [7] studied theoretically the influence of a multi-mode
monochromatic linearly-polarized electric field on a model hydrogen line, consisting of just one Stark
component. That study was not relevant to the problem of broadening hydrogenic spectral lines by the
multi-mode non-monochromatic electric field of the Langmuir turbulence in plasmas of sufficiently high
electron densities.
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electric field is Gaussian. In addition, he studied theoretically the general case of
hydrogenlike spectral lines—rather than only hydrogen spectral lines considered by
Gavrilenko [6].

In paper [8] the author first deduced a general analytical result for the correlation
function, whose Fourier transform determines the shape of the spectral line. Then he
demonstrated that when the power spectrum of the field is sufficiently broad,
hydrogenic line profiles are significantly narrower in his case compared to
Gavrilenko’s case—despite the power spectra of the field in both cases having the
same full width at half maximum (FWHM). Below are a few more details.

Following notation by Gavrilenko [6], the correlation function of the field can be
represented in the form

τ τ+ = =t t BG BE E E{ ( ) ( )} ( ), { } (C.2)av
2

av

where G(τ) is a correlation coefficient.
In paper [8] the author considered the case where the correlation coefficient is

τ τ ωτ= −G g( ) exp( / )cos , (C.3)2 2

so that the power spectrum of the field E(t) has the Gaussian form. The author of
paper [8] introduced the following notation

= αβb C B, (C.4)2

where

= −αβ α βC n q n q Z3( )/(2 ). (C.5)a b

In equation (C.5), Z is the nuclear charge; n and q are the principal and electric
quantum numbers, respectively, of the upper (a, α) and lower (b, β) Stark sublevels
involved in the radiative transition (q = n1 − n2, where n1 and n2 are the parabolic
quantum numbers). In equations (C.4), (C.5), and below, the atomic units are used:

ħ = = =e m 1.e

Further, the author of paper [8] denoted as D the detuning in the frequency scale
from the unperturbed position of the spectral line:

δ= ΔΩ −D . (C.6)ab

Below are three figures from paper [8] as the illustrations of the analytical results
from paper [8] for the correlation coefficient of the electric field given by equation
(C.3). In all figures below, the quantities b, g, and D are measured in units of the
carrier frequency ω (for example, δ ω= ΔΩ −D ( )/ab ).

Figure C1 exhibits the profile of any Stark component for b = 20 and g = 0.2 (bold
solid line). Also shown is the Lorentzian of π= bgFWHML

1/2 (dashed line) and
the Gaussian of FWHMG = 2(2b ln 2)1/2 (thin solid line). It is seen that the bulk of
the profile is close to the Lorentzian shape and that in the wings there occurs the
transition to the Gaussian shape. This kind of spectral line shape is a counter-
intuitive result.
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In figure C2, the calculated three-dimensional plot demonstrates the trans-
formation of the profile of any Stark component as the quantity g varies, while
the quantity b = 30. It is seen that as the quantity g increases, so does the width of the
profile

In figure C3 the calculated three-dimensional plot demonstrates the transforma-
tion of the profile of any Stark component as the quantity b varies, while the
quantity g = 0.2. It is seen that as the quantity b increases, so does the width of the
profile.

From figures C2 and C3 one can clearly see that as b or g increases, so does the
width of the profile of any Stark component. This is consistent with the analytical
results from paper [8].

By analyzing the corresponding theoretical profiles of the hydrogenic Ly-beta
line, the author of paper [8] proposed a new diagnostic method allowing for the first
time not only to measure experimentally the average field of the Langmuir turbulence
in dense plasmas, but also to find out the information on the power spectrum of the
Langmuir turbulence. This diagnostic method is not limited to using the Ly-beta line
of hydrogenic atoms/ions. This method would work while using other intense
hydrogenic spectral lines that, like the Ly-beta line, do not have the central Stark
components. Examples are the hydrogenic spectral lines Ly-delta, Balmer-beta, and
Balmer-delta. Thus, this method could serve as a tool for the experimental testing of
the field correlation function.

Figure C1. The calculated profile of any Stark component for b = 20 and g = 0.2 (bold solid line) versus the
scaled dimensionless detuning δ ω= ΔΩ −D ( )/ab . Also shown is the Lorentzian of π= bgFWHML

1/2 (dashed
line) and the Gaussian of FWHMG = 2(2b ln 2)1/2 (thin solid line) [8]. The profiles are peak-normalized. The
quantities g and b from equations (C.3) and (C.4) are in units of the carrier frequency ω. Reprinted from [8],
copyright 2020, with permission from Elsevier.
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Figure C2. The calculated three-dimensional plot showing the transformation of the profile of any Stark
component as the quantity g varies, while the quantity b = 30 [8]. The quantities g and b from equations (C.3)
and (C.4) are in units of the carrier frequency ω. Reprinted from [8], copyright 2020, with permission from
Elsevier.

Figure C3. The calculated three-dimensional plot showing the transformation of the profile of any Stark
component as the quantity b varies, while the quantity g = 0.2 [8]. The quantities g and b from equations (C.3)
and (C.4) are in units of the carrier frequency ω. Reprinted from [8], copyright 2020, with permission from
Elsevier.
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