
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 18.118.139.203

This content was downloaded on 27/04/2024 at 03:33

Please note that terms and conditions apply.

You may also like:

Human-Assisted Intelligent Computing

Changes at Network: Computation in Neural Systems

TOPICAL REVIEWS PUBLISHED DURING 1996 AND 1997

Focus on Measurement-Based Quantum Information Processing

Terry Rudolph and Jian-Wei Pan

9th World Congress on Computational Mechanics and 4th Asian Pacific Congress on Computational

Mechanics

N Khalili, S Valliappan, Q Li et al.

https://iopscience.iop.org/page/terms
https://iopscience.iop.org/book/edit/978-0-7503-4801-0
https://iopscience.iop.org/article/10.1088/0954-898X/10/4/001
https://iopscience.iop.org/article/10.1088/0954-898X/9/1/009
https://iopscience.iop.org/article/10.1088/1367-2630/9/6/E03
https://iopscience.iop.org/article/10.1088/1757-899X/10/1/011001
https://iopscience.iop.org/article/10.1088/1757-899X/10/1/011001


IOP Publishing

Computation in Science (Second Edition)
From concepts to practice

Konrad Hinsen

Chapter 7

Outlook: scientific knowledge in the digital age

The goal of scientific research is to discover new scientific knowledge, providing us
with a better understanding of the world around us. In this final chapter, I will look
at how computation and computing are changing the relation between scientists and
scientific knowledge. The impact of these changes has become visible only recently,
as it has taken several decades for computing to influence these very foundations of
science. It is important for scientists to understand these changes, in order to take
advantage of the opportunities they present and to take corrective action wherever
they threaten to undermine the reliability and credibility of science.

For centuries, the nature of scientific knowledge had changed very little. It resided
first and foremost in the heads of practicing scientists, in the form of factual,
procedural, and conceptual knowledge. Factual knowledge consists of the kind of
information you could store in tables or diagrams: the density of water, the names of
the bones in the human body, the resolution of an instrument, etc. Procedural
knowledge is about doing things. At the level of an individual, this can be using a
microscope or finding the integral of a function. Examples at the collective level are
developing a vaccine, or constructing a synchrotron. Conceptual knowledge consists
of principles, classifications, theories, and other means that humans use to organize
and reason about facts and actions. Conceptual knowledge relies on abstractions, as
I explained in section 5.3, and its acquisition is an important part of what we call
understanding.

Since the human brain has a limited capacity for remembering facts reliably,
factual knowledge was the first to be recorded. Scientists have always stored detailed
factual knowledge in lab notebooks and in reference works. Procedural knowledge
soon followed, for example in the form of experimental protocols. Conceptual
knowledge is different because we do not tend to forget concepts once we have firmly
understood them. Conceptual knowledge is recorded in writing not so much as a
memory aid, but for transmitting it to others, in the form of monographs, textbooks,
and encyclopedias. A specific form of scientific document, the journal article, was
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developed for the communication of new discoveries, and usually combines all three
forms of knowledge. All scientific knowledge stored in writing is called collectively
the scientific record.

It is important to understand that the scientific record is a complement to but not
a replacement for the knowledge in the heads of scientists, for two reasons. First, the
scientific record preserves a trace of contributions and a database of established
facts, but says little about the current state of our scientific understanding of the
world. If you want to know current scientific consensus on a topic like climate
change, you cannot just look it up in a library. You have to ask experts who have
followed research on this topic for many years. Second, the contents of the scientific
record are largely unintelligible to an untrained person. Interpreting recorded factual
knowledge requires very specific conceptual knowledge. A table listing the density of
water at different temperatures makes no sense to a person who does not understand
the concept of a density, or the definition of temperature. Recorded scientific
knowledge builds on more fundamental knowledge that the reader must already
possess. General school education provides only a small part of it. All of todayʼs
scientists have received personal training from more experienced scientists to prepare
them for consulting the scientific record and contributing to it.

Information technologies are currently revolutionizing all aspects of working with
scientific knowledge, from its development via its distribution and preservation to its
exploitation. In the following, I will briefly discuss the contribution that computa-
tion makes to this revolution, leaving aside the at least equally important changes in
communication technology, which are profoundly changing how scientists collab-
orate in making new discoveries.

7.1 The scientific record goes digital
The introduction of computers and computer-controlled machines has changed the
storage and retrieval of scientific knowledge in many ways. The most visible change
is the transition from printed paper to digital files as the main medium. Books and
printed journals are increasingly replaced by databases and Web sites. This has led
to profound changes in the economics of scientific publishing. Both the cost of
distribution and the cost of access to scientific knowledge have dropped dramati-
cally, and the traditional roles of both publishers and libraries are losing importance.
Digital data needs to be curated and preserved as well, but the corresponding roles
remain to be defined. A major political struggle is currently going on between the
well-established institutions, publishers and research organizations, while at the
same time many scientists are experimenting with new technology for scientific
communication. Judging from past revolutions in information technology, such as
the invention of printing, we can hope to have a better infrastructure for managing
scientific knowledge in the end, but in the meantime we will suffer accidental losses,
such a Web sites disappearing and hyperlinks rotting.

Information collections that evolve over time mainly fall into one of two
categories, which can be described by the metaphors of streams and gardens [1]. A
stream is a timeline of contributions. Traditional examples are bank ledgers and
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scientific journals, more recent forms are blogs and Twitter timelines. A garden is a
resource that is continuously curated to remain up to date. Encyclopedias, both
traditional paper editions and modern-day Wikipedia, are the best known examples.
In the age of printed paper, gardens were expensive to maintain, and therefore there
were only very few of them. In contrast, digital gardens in the form of a Wiki, a
database, or an evolving piece of software can be maintained with cheap computing
infrastructure, the main cost now being the work of the curators. Unfortunately, the
social norms in academia have not yet adapted to this new economic situation.
Scientists are judged by their contributions to streams, mainly in the form of journal
articles, whereas participation in the curation of gardens is insufficiently appreciated.
As a consequence, science is not yet profiting from digital gardens as much as it
could.

A major advantage of digital data compared to printed paper is the possibility of
automated processing at large scale. Data intensive fields such as bioinformatics
could not even have existed before the transition to digital data. Data mining
techniques have become commonplace in all domains of research, starting with
everyday activities such as the use of Web search engines by scientists. The
possibility to tie together information from many different sources is of course
highly valuable for science, but it also puts a higher responsibility on each scientist
for exercising critical judgment. Unreliable data and the occasional intentional
misinformation are the most obvious issues. However, what might turn out to be the
most serious problem is information stripped of its context by partially or fully
automated processes. Re-using published datasets looks like an obvious gain in
productivity, but transplanting them from their original scientific context to another
one implies the risk of subtle mistakes, which in turn can undermine the public
credibility of science.

7.2 Procedural knowledge turns into software
An important aspect of the digital revolution in science is that procedural knowledge
—algorithms—can now be applied without human intervention. Before computers,
every action, whether in computation or in doing experiments, was performed by a
human. As I pointed out in section 5.3, following a complex sequence of steps
requires abstractions, i.e. conceptual knowledge, and thus a minimum of under-
standing. Using machines, we can apply stored procedural knowledge without
understanding it—in fact, we do this many times every day. We know roughly what
our machines do, at the highest level of abstraction, but we usually do not
understand how they do it, nor are we aware of many details that might well be
relevant for a specific application. The only way to acquire a deep understanding of
how computational models and methods work is to write computer programs that
implement them—see section 1.2. Mere users of black-box tools written by others
put themselves at risk of making serious mistakes. Statistical irreproducibility (see
section 6.3) is one of the symptoms of this development.
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The state of todayʼs computing technology wraps digital scientific knowledge in
another layer of opacity that could be avoided. In section 4.2.1, I explained the
trade-off between performance and clarity in todayʼs programming languages.
Formulating algorithms in a way that humans can easily understand and work
with requires languages that are more clarity-oriented than anything we have
today. In fact, such languages should probably not be called ‘programming’
languages because their primary purpose would be the communication and
preservation of procedural knowledge, rather than its application by a computer.
On the other hand, many of todayʼs large-scale simulations are feasible only due to
efficient programs that are written in performance-oriented languages. As a
consequence of this mismatch, much procedural knowledge of modern science
exists only in the form of software that is efficient but unintelligible to its users. It
even happens that software becomes unintelligible to its authors over the years, as
incidental complexity accumulates (see section 5.5), although few authors will
admit this openly. For the first time in the history of science, we have scientific
knowledge that we can apply but which no scientist understands any more. A
possible antidote could be a wider adoption of the principle of re-editable software
(see section 6.7).

The use of programming languages as the only practical notation for scientific
algorithms has been particular detrimental to computational models [2]. Models are
primarily factual knowledge, stating that certain symbolic representations (equa-
tions, graphs, algorithms, etc) mimic the behavior of physical systems at some level
of accuracy. What is commonly called a computational model is a model in which
the symbolic representation takes the form of an algorithm. Computational
scientists tend to focus on tools rather than on models, and thus on software
implementing the computational aspect of a model, to the point of believing that the
software is the model. The factual statements about these algorithms and their
implementation, which give scientific meaning to the model, are easily neglected.
Moreover, in a piece of software, the algorithms representing computational models
melt together with other algorithms, such as data munging, user interfaces, or
resource management, which often represent the major part of the code of any piece
of scientific software. It thus becomes difficult to precisely identify a model. As a
consequence, it also becomes very difficult to analyze a model or to compare
competing models, even though this ought to be the focus of scientific work. Finally,
computational models expressed as software can easily become victims of the
complexification described in chapter 5, or get lost as a consequence of software
collapse as discussed in section 6.7.

Plain factual data have also been infected by the opacity of scientific software. As
I have explained in section 5.3.2, data have their its own abstractions which should
be implemented as well-documented data formats based on well-designed data
models. In reality, much scientific data are stored using undocumented file formats
that are basically some programʼs internal data structures dumped to a file. The data
can thus be used only using a particular program, making it as fragile as the program
itself.
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7.3 Machine learning: the fusion of factual and procedural
knowledge

For a scientist of the pre-computer age, the distinction between factual and
procedural knowledge was rather obvious, because the latter was associated with
personal action. With the automated application of procedural knowledge by
computers, the distinction becomes almost a technical detail. Consider a mathe-
matical function such as the square root. There are well-known algorithms to
compute it, but you can also make a table of the results and store it for later lookup1.
The two approaches differ in the use of resources, but both give the desired result. As
a user of mathematical software, you probably don’t care how the results are
obtained. However, if you want to understand the concept of a square root, the two
representations provide very different and complementary perspectives. The table,
or better yet a plot of its contents, shows in a direct way how the square root
function behaves, whereas the algorithm illustrates its relation to other mathemat-
ical concepts.

Machine learning techniques introduce a third way of representing such input-to-
output mappings. As I have explained in section 2.2.2, machine learning is based on
very generic mathematical models with a large number of parameters that are fitted
to a large training dataset. Once trained, a machine learning model is used exactly
like an algorithm or a lookup table: they provide output when supplied
suitable input. Another way to look at machine learning is as a method for partially
converting factual knowledge into procedural knowledge, in much the same way as
data compression techniques do.

The use of machine learning techniques in the acquisition and processing of
scientific knowledge is very recent and so far best characterized as experimental. Its
most optimistic proponents have already announced the end of the scientific method
[3] because they believe that machine learning methods will extract from raw data
everything one could possibly want to know about the world. At the other end of the
spectrum, traditionally minded scientists consider machine learning as no more than
sophisticated curve fitting. Both these extreme views will likely turn out to be wrong.
The place that machine learning will occupy in the science of the 21st century depends
on how useful its peculiar input-to-output mappings will be in reasoning about
scientific questions. Current research on machine learning includes the interpretation
of the parameters obtained by training, which would obviously be of interest in
scientific applications. However, the mere fact that a given input-to-output mapping
can be well represented by, say, a neural network of a specific architecture provides
information about the system that is described by the mapping, and could possibly be
exploited. In the long run, we can expect to see machine learning techniques developed
specifically to create interpretable representations, in contrast to todayʼs methods that
focus on creating computational tools.

1 I have discussed this partial equivalence between an algorithm and its result in section 2.2.4 as a way to
measure the complexity of scientific models.
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7.4 The time scales of scientific progress and computing
All knowledge has a finite lifetime. Even if information storage media could be
preserved forever, the meaning of the information they contain is ultimately lost
because the semantic context in which it was encoded cannot be recorded
completely. Extreme examples are historical written documents that nobody can
read today, because the languages and writing systems used at the time have been
forgotten. Scientific knowledge is particularly vulnerable to becoming lost, because
of the large amount of prior knowledge required to make sense of the scientific
record.

Written human languages are the most stable semantic contexts we have: they
change on a time scale of centuries to millennia. Scientific jargon and scientific
notations are more short-lived. Journal articles written 100 years ago are already
difficult to understand for todayʼs scientists. The original writings of Galileo or
Newton can be read only by scholars specialized in the history of science. The time
scale on which original publications remain understandable is a few decades. This
does not mean that knowledge is lost that rapidly. As the original writings become
less and less clear, the aspects that are recognized as particularly important are
constantly reformulated in review articles, monographs, and textbooks. This is why
the insights of Galileo and Newton are still accessible to todayʼs physicists.

The advent of computers has not changed the speed of scientific progress on a
specific problem. Computers allow us to study more complex phenomena, and
attack more questions in parallel, but the translation of individual scientific findings
into robust insights relies on humans and still happens on the time scale of years to
decades. However, computing technology evolves at a much faster pace. This creates
a dilemma for scientific software: as part of the digital garden of scientific knowl-
edge, it should advance at the pace of science, but as a computational tool, it must
evolve at the pace of computing technology, as otherwise it becomes unusable (see
section 6.7). This evolution is referred to as ‘maintenance’, a badly chosen metaphor
because it suggests that software is subject to wear or decay. It is almost
inevitable during maintenance to also change the scientific knowledge embedded
in the code, intentionally or by accident. This is one reason why reproducibility, the
subject of chapter 6, has become such an important subject in recent years.

The consequence of the different time scales on which scientific knowledge and
computing technology evolve is that we are losing access to the original forms of
digital scientific knowledge faster than it can be integrated into the reformulation
process of science. For many computational studies performed during the last
decades, it is already impossible to find the exact models and methods that were
used. We are also losing data stored in formats that are defined by software that
reads and writes them, if that software is not adequately maintained. To solve this
problem, we will have to be more careful about how we store digital scientific
knowledge, and in particular make an effort to isolate it from the rapid changes in
computing technologies. This requires in particular defining data models and data
formats that are independent of specific software packages, and use them to store
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scientific knowledge in curated digital archives. In some disciplines, in particular the
life sciences, this process has already been going on for a few decades.

7.5 The industrialization of science
Taking another step back in looking at the changes to scientific research that
computation has already introduced or will likely introduce in the near future, they
bear a strong resemblance to the transformations that the industrial revolution has
caused in the ways we interact with the material world. In fact, computation
provides the same kind of automation for information processing that industrializa-
tion enabled for processing matter. We can also observe first structural changes in
scientific research that are similar to what happened in the early industrial age.

Since the beginnings of science, researchers have been working like craftspeople.
Individuals define personal research projects and execute them using skills and
competences they have acquired in a prior phase of apprenticeship to more
experienced scientists. Bigger projects are realized through the collaboration of
several individuals with different but overlapping skill sets. The findings resulting
from a research project are considered personal achievements of their authors and
associated with their names. The organizational structures of academia reflect this
analogy very well: PhD students are apprentices, postdocs are journeymen, and
tenured researchers are masters. Universities take the role of the medieval guilds,
overseeing the practice of the crafts but not interfering with the day-to-day work of
practitioners as long as it conforms to the established social norms.

Early industrial products were similar to the products of craftspeople they
replaced, but due to automation they were cheaper and of more consistent, though
not necessarily higher, quality. This is the stage that experimental scientific research
has entered with high-throughput techniques, for example in sequencing genomes.
The data analysis pipelines that bioinformaticians use to make sense of the resulting
genome data can then be seen as the first-stage industrialization of theoretical
science. The intellectual credit for the results of these automated procedures is
attributed to the people who design the automation process, rather than to those
who keep the machines running.

Increased productivity through automation was only the starting point of
industrialization. What followed can be described as the emergence of increasingly
complex organizational structures for the creation of increasingly complex artifacts,
as for example computers. Collaborating craftspeople could never have produced
such artifacts, because they lack the structure required to coordinate the large
number of specialized experts involved in sophisticated technologies. Todayʼs
hierarchically organized companies coordinate the efforts of hundreds to thousands
of people. But production is only one aspect of complex artifacts. They also need to
be evaluated, sold, and maintained, and their impact on public goods such as the
environment or public health requires regulation by public authorities. Industrial
products are thus characterized by the many roles that people take in relation to
them, with each role requiring specific competences. Designing and producing
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computers, developing software, and using computers plus software are examples of
such distinct roles and competences.

The transformation of scientific methods into black-box tools that I have outlined
in section 7.2 can thus be seen as the second stage of the industrialization of scientific
research. The roles of software developers and software users become distinct,
following the lead of commodity software outside of science. The keyword that
signals this stage of industrialization is ‘reusable’, implying the creation of products
meant to be used by someone else than the original author. It is also increasingly
applied to scientific datasets, as part of the FAIR (findable, accessible, interoperable,
reusable) principles [4]. Datasets are thus also on the way to becoming industrial
products.

Many of the problematic aspects of computation in science that I have mentioned
in this book are symptoms of an incomplete transition to an industrial style of
working. In the world of craftspeople, individual scientists are expected to under-
stand the context in which data were collected and the analysis methods they apply
to them. In a world of reusable but also more complex datasets and software-based
methods, this is no longer possible, leading to symptoms such as statistical
irreproducibility (see section 6.3). Likewise, craftspeople doing computational
science have an intimate knowledge of their software tools, which are designed to
be re-editable rather than reusable (see section 6.7). With complex reusable software,
they cannot retain full mastery of their software installations, and suffer computa-
tional irreproducibility (see section 6.4).

There are of course important differences between the production of material
goods and the creation of immaterial goods. For example, economies of scale play a
major role in the former, but are absent in the latter. There is an even more
important particularity in scientific research, whose goal is discovery. Discovery
cannot be planned and thus cannot be organized on a large scale. For the foreseeable
future, research is likely to be dominated by the work of craftspeople, with industry-
like ‘Big Science’ remaining a complement. However, these craftspeople will use
industrially produced tools (software) and components (datasets) for their work,
much like a modern-day carpenter does. What remains to be worked out is the
interfaces between industrial producers and the craftspeople working with their
outputs.

One important aspect of these interfaces is where they are situated in knowledge
space. An industrial product makes sense only if its users can operate with a much
more limited knowledge of its characteristics than its producers. Industrial products
must be specifically designed to be safe to use under such conditions. For example, a
car whose driver can only drive safely if he or she is aware of the inner workings of
the braking system is not acceptable. What this means for the designer is that the
productʼs user interface must be composed of robust abstractions (see section 5.3).
This is not the case today for most scientific software, and even less for published
datasets. Safe use of these supposedly reusable items requires collaboration with
their authors or with a community of power users.

The social aspects of defining the interfaces between industrial products and
craftspeople also require further attention. We need auxiliary professions and
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institutions that formulate best practices for the development, documentation, and
use of industrially produced tools in science, and oversee their correct application.
We must develop the analogues of user manuals, quality labels, expert evaluations,
certified training, and safety regulations that have evolved at the interface of craft
and industry elsewhere. Reproducibility, the subject of chapter 6, is already
becoming a quality label, and certification agencies such as CASCaD [5] or
CODECHECK [6] have started to offer expert services for attributing this label.
Data management plans are an early example of regulation. As with quality labels
and regulations in traditional industries, they do not promise perfection.
Reproducible results can be wrong, and data managed according to best practices
can contain mistakes. The goal is not unattainable perfection, but establishing trust
in the work of others that one cannot verify oneself.

7.6 Preparing the future
In the early days of computing, in the 1950s and 1960s, technology was driven by the
needs of scientific users, who were the most demanding clients at the time. In the
following decades, computers have found their way into all aspects of our lives and
the only computing technology that is still dominated by scientific applications is
high-performance computing. In spite of the latterʼs high visibility, it represents a
small fraction of the computing technology that scientists use for their daily work.
With the exception of domain-specific scientific software, all of the technology that
scientists use was developed outside of the scientific community and often for very
different applications. As a consequence, scientists have started to consider
computing technology as imposed from the outside. Few of todayʼs computational
scientists would even consider working with computer scientists or computer
manufacturers on technological developments that better fit their needs.

All the problematic aspects that I have mentioned in this chapter can be traced
back to the lack of technological developments that cover the specific requirements
of scientific computing. Computer scientists do not develop better formal languages
for scientific models because nobody asks for them. Programming languages are not
tailor-made for scientific computing, except for high-performance languages,
because scientists do not clearly state their needs. Reproducibility and long-term
stability are not priorities in the design of computing systems, because scientists do
not even envisage requesting them.

Computers have become so important for scientific research that computational
scientists should care about their development with the same enthusiasm that their
experimental colleagues show for the improvement of lab instruments. In other
words, scientists must take a more active part in the development of computing
technology again, at all levels from hardware via systems software and applications
software to the management of scientific data. I hope that this book will contribute
to this process by giving its readers sufficient background knowledge that they can
formulate their requirements and discuss them with computer scientists, software
engineers, and hardware designers. Ultimately, this will benefit everyone by leading
to better science.
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7.7 Further reading
The transformation of the concept of knowledge in the context of the information
explosion caused by computers and the Internet is the subject of David Weinbergerʼs
Too Big to Know [7]. Ann Blairʼs similarly titled Too much to know [8] discusses the
same problem in the historical context of the invention of the printing press.

The new communication technologies that were made possible by computers and
the Internet are also likely to introduce profound changes into the process of doing
scientific research. This topic is explored in detail by Michael Nielsenʼs Reinventing
Discovery [9]. Another good use for new technologies is better explanation of
scientific concepts and findings. The Web site ‘Explorable Explanations’ provides
many examples, to which Bret Victorʼs ‘Media for Thinking the Unthinkable’ adds
theoretical underpinnings.

An impressive example of publicly shared datasets explained through tutorials
with embedded code is provided by the tutorials of the LIGO project on the
observation of gravitational waves.

The use of computers for the generation or verification of mathematical proofs is
the subject of an ongoing debate [10–12] about the status of computer-generated
knowledge. A famous example is the proof of the four-color theorem [13].

My own contribution to improving the management of scientific knowledge in the
context of computation is the development of a Digital Scientific Notation for
physics and chemistry [14, 15] which is intended to permit the definition of
computational models in journal articles and textbooks rather than exclusively in
software.
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