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Preface

This volume originated from lectures I have been giving to graduate students. The
students are mostly first and second year graduate students from the Duke University
Program in Cell and Molecular Biology. I presume only a basic knowledge of
biochemistry. I highly recommend that students review basic principles of protein
structure prior to the course. Excellent sources are the texts:Molecular Biology of the
Cell, by Alberts et al, chapter 3, ‘Proteins’; or Cell Biology by Pollard and Earnshaw,
chapter 2 ‘Molecular Structures.’

I also highly recommend that students download a protein structure viewer and
use it to image on their own computer the structures displayed in the figures.
Recommended viewers are Chimera, Pymol and KING.

In recent years the course has comprised six sessions of 80 minutes each, where I
present background material and then lead discussion of the assigned papers. The
chapters included here have evolved from my notes for these class sessions. These
notes may be useful for faculty organizing similar classes, and/or for self-instruction
of students and researchers who find a need to understand principles of protein–
protein association.
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Chapter 1

Size and shape of protein molecules at the nm
level determined by sedimentation, gel filtration

and electron microscopy

This chapter was published in 2009 (Biol. Proced. Online 11:32–51). It presents
methods and calculations that are fundamentally important to determining the
size and stoichiometry of protein complexes. It is reprinted here to have these
resources readily available.

An important part of characterizing any protein molecule is to determine its size and
shape. Sedimentation and gel filtration are hydrodynamic techniques that can be
used for this medium resolution structural analysis. This review collects a number of
simple calculations that are useful for thinking about protein structure at the nm
level. Readers are reminded that the Perrin equation is generally not a valid
approach to determine the shape of proteins. Instead, a simple guideline is presented,
based on the measured sedimentation coefficient and a calculated maximum S, to
estimate if a protein is globular or elongated. It is recalled that a gel filtration column
fractionates proteins on the basis of their Stokes radius, not molecular weight. The
molecular weight can be determined by combining gradient sedimentation and gel
filtration, techniques available in most biochemistry laboratories, as originally
proposed by Siegel and Monte. Finally, rotary shadowing and negative stain
electron microscopy are powerful techniques for resolving the size and shape of
single protein molecules and complexes at the nm level. A combination of hydro-
dynamics and electron microscopy is especially powerful.

1.1 Introduction
Most proteins fold into globular domains. Protein folding is driven largely by the
hydrophobic effect, which seeks to minimize contact of the polypeptide with solvent.
Most proteins fold into globular domains, which have a minimal surface area.

doi:10.1088/2053-2563/ab19bach1 1-1 ª IOP Publishing Ltd 2019
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Peptides from 10–30 kDa typically fold into a single domain. Peptides larger than
50 kDa typically form two or more domains that are independently folded.
However, some proteins are highly elongated, either as a string of small globular
domains, or stabilized by specialized structures such as coiled coils or the collagen
triple helix. The ultimate structural understanding of a protein comes from an
atomic-level structure obtained by x-ray crystallography or NMR. However,
structural information at the nm level is frequently invaluable. Hydrodynamics, in
particular sedimentation and gel filtration, can provide this structural information,
and it becomes even more powerful when combined with electron microscopy (EM).

One guiding principle enormously simplifies the analysis of protein structure. The
interior of protein subunits and domains consists of closely packed atoms [1]. There
are no substantial holes, and almost no water molecules in the protein interior. As a
consequence of this, proteins are rigid structures, with a Young’s modulus similar to
that of Plexiglas [2]. Engineers sometimes categorize biology as the science of ‘soft
wet materials.’ This is true of some hydrated gels, but proteins are better thought of
as hard dry plastic. It is obviously important for all of biology, to have a rigid
material with which to construct the machinery of life. A second consequence of the
close-packed interior of proteins is that all proteins have approximately the same
density, about 1.37 g cm−3. For most of the following we will use the partial specific
volume, v2, which is the reciprocal of the density. v2 varies from 0.70 to 0.76 for
different proteins, and there is a literature on calculating or determining the value
experimentally. For the present discussion we will ignore these variations and
assume the average v2 = 0.73 cm3 g−1.

1.2 How big is a protein molecule?
Assuming this partial specific volume v = −( 0.73 cm g )2

3 1 , we can calculate the
volume occupied by a protein of mass M in Da as follows.

= ×
×

×

= × ×

− −

−

− −

V M

M

(nm )
(0.73 cm g ) (10 nm cm )

6.023 10 Da g
(Da)

1.212 10 (nm Da ) (Da)

(1.1)
3

3 1 21 3 3

23 1

3 3 1

The inverse relationship is also frequently useful: M (Da) = 825 V (nm3).
What we really want is a physically intuitive parameter for the size of the protein.

If we assume the protein has the simplest shape, a sphere, we can calculate its radius.
We will refer to this as Rmin, because it is the minimal radius of a sphere that could
contain the given mass of protein

π= =R V M M R(3 /4 ) 0.066 (For in Da, in nm) (1.2)min
1/3 1/3

min

Some useful examples for proteins from 5000 to 500 000 Da are given in table 1.1.
It is important to emphasize that this is the minimum radius of a smooth sphere

that could contain the given mass of protein. Since proteins have an irregular
surface, even ones that are approximately spherical will have an average radius
larger than the minimum.
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1.3 How far apart are molecules in solution?
It is frequently useful to know the average volume occupied by each molecule, or
more directly, the average distance separating molecules in solution. This is a simple
calculation based only on the molar concentration.

In a 1 M solution there are 6 × 1023 molecules/liter, = 0.6 molecules/nm3, or
inverting, the volume per molecule is V = 1.66 nm3/molecule at 1 M. For a
concentration C, the volume per molecule is V = 1.66/C.

We will take the cube root of the volume per molecule as an indication of the
average separation.

= =d V C1.18/ , (1.3)1/3 1/3

where C is in molar, and d is in nm. Table 1.2 gives some typical values.
Two interesting examples arehemoglobinandfibrinogen.Hemoglobin is 330mgml−1

in erythrocytes, making its concentration 0.005 M. The average separation of
molecules (center to center) is 6.9 nm. The diameter of a single hemoglobin molecule
is about 5 nm. These molecules are very concentrated, near the highest physiological
concentration of any protein (the crystallins in lens cells can be at >50% protein by
weight).

Fibrinogen is a large, rod-shaped molecule that forms a fibrin blood clot when
activated. It circulates in plasma at a concentration of around 2.5 g l−1, about 9 μM.
The fibringogen molecules are therefore about 60 nm apart, comparable to the
46 nm length of the rod-shaped molecule.

1.4 The sedimentation coefficient and frictional ratio. Is the protein
globular or elongated?

Biochemists have long attempted to deduce the shape of a protein molecule from
hydrodynamic parameters. There are two major hydrodynamic methods that are
used to study protein molecules—sedimentation and diffusion (or gel filtration,
which is the equivalent of measuring the diffusion coefficient).

The sedimentation coefficient, S, can be determined in an analytical ultracen-
trifuge. This was a standard part of the characterization of proteins in the 1940s and

Table 1.1. Rmin for proteins of different mass.

Protein M (kDa) 5 10 20 50 100 200 500
Rmin (nm) 1.1 1.42 1.78 2.4 3.05 3.84 5.21

Table 1.2. Distance between molecules as function of concentration.

Concentration 1 M 1 mM 1 μM 1 nM
Distance between molecules (nm) 1.18 11.8 118 1180

Principles of Protein–Protein Association
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1950s, and values of S20,w (sedimentation coefficient standardized to 20 °C in water)
are collected in references such as the CRCHandbook of Biochemistry [3]. Today S is
more frequently determined by zone sedimentation in a sucrose or glycerol gradient,
by comparison to standard proteins of known S. 5%–20% sucrose gradients have
been most frequently used, but we prefer 15%–40% glycerol gradients in 0.2 M
ammonium bicarbonate, because this is the buffer used for rotary shadowing EM
(section 1.8). The protein of interest is sedimented in one bucket of the swinging
bucket rotor, and protein standards of known S (table 1.5) are sedimented in a
separate (or sometimes the same) gradient. Following sedimentation, the gradient is
eluted into fractions and each fraction is analyzed by SDS–PAGE to locate the
standards and the test protein. Figure 1.1 shows an example determining the
sedimentation coefficient of BsSMC (the SMC protein from Bacillus subtilis).

The sedimentation coefficient of a protein is a measure of how fast it moves
through the gradient. Increasing the mass of the protein will increase its sedimenta-
tion, while increasing its size or asymmetry will decrease its sedimentation. The
relationship of S to size and shape of the protein is given by the Svedberg formula:

v vρ ρ πη= − = −S M N f M N R(1 )/ (1 )/ ( 6 ) (1.4)o o s2 2

M is the mass of the protein molecule in Da; No is Avogadro’s number, 6.023 × 1023;
v2 is the partial specific volume of the protein, typical value is 0.73 cm3 g−1; ρ is the
density of solvent (1.0 g cm−3 for H2O); η is the viscosity of the solvent (0.01 g cm−1

for H2O).

Figure 1.1. Glycerol gradient sedimentation analysis of SMC protein from Bacillus subtilis (BsSMC) (upper
panel) and sedimentation standards catalase and bovine serum albumin (lower panel). A 200 μl sample was
layered on a 5.0 ml gradient of 15%–40% glycerol in 0.2 M ammonium bicarbonate, and centrifuged in a
Beckman SW55.1 swinging bucket rotor, 16 h, 38 000 rpm, 20 °C. 12 fractions of 400 μl each were collected
from a hole in the bottom of the tube and each fraction was run on SDS–PAGE. Lane SM shows the starting
material, and fraction 1 is the bottom of the gradient. The bottom panel shows that the 11.3 s catalase eluted
precisely in fraction 4, while the 4.6 s BSA eluted mostly in fraction 8, with some in fraction 9. We estimated
the BSA to be centered on fraction 8.2. Experiments with additional standard proteins have demonstrated that
the 15%–40% glycerol gradients are linear over the range 3–20 s, so a linear interpolation is used to determine S
of the unknown protein. BsSMC is in fractions 7 and 8, estimated more precisely at fraction 7.3. Extrapolating
from the standards we determine a sedimentation coefficient of 6.0 s for BsSMC. Other experiments gave an
average value of 6.3 s for BsSMC [19].
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A critical factor in the equation is the frictional coefficient, f (dimensions g s−1)
which depends on both the size and shape of the protein. For a given mass of protein
(or given volume), f will increase as the protein becomes elongated or asymmetrical.
( f can be replaced by an equivalent expression containing Rs, the Stokes radius, to
be discussed later.) S has the dimensions of time (seconds). For typical protein
molecules S is in the range of 2–20 × 10−13 s, and the value 10−13 s is designated a
Svedberg unit, S. Thus typical proteins have sedimentation coefficients of 2–20 s.

From the above definition of parameters it is clear that S depends on the solvent
and temperature. In classical studies the solvent-dependent factors were eliminated
and the sedimentation coefficient was extrapolated to the value it would have at 20 °
C in water (for which ρ and η are given above). This is referred to as S20,w. In the
present treatment we will be referring mostly to standard proteins that have already
been characterized, or unknown ones that will be referenced to these in gradient
sedimentation, so our use of S will always mean S20,w.

A useful concept is the minimum value of f, which would obtain if the given mass
of protein were packed into a smooth, unhydrated sphere. As we have discussed in
section 1, the radius of this sphere will be Rmin = 0.066 M1/3 (equation (1.2)). In
about 1850 G G Stokes calculated theoretically the frictional coefficient of a smooth
sphere (note that the equation is similar to that for the Stokes radius, to be discussed
later, but the parameters here are different):

πη=f R6 (1.5)min min

We have now designated fmin as the minimal frictional coefficient for a protein of
a given mass, which would obtain if the protein were a smooth sphere of radius Rmin.

The actual f of a protein will always be larger than fmin because of two things.
First, the shape of the protein normally deviates from spherical, to be ellipsoidal or
elongated; closely related to this is the fact that the surface of the protein is not
smooth but rather rough on the scale of the water molecules it is traveling through.
Second, all proteins are surrounded by a shell of bound water, 1–2 molecules thick,
which is partially immobilized or frozen by contact with the protein. This water of
hydration increases the effective size of the protein, and thus increases f.

1.4.1 The Perrin equation does not work for proteins

If one could determine the amount of water of hydration and factor this out, there
would be hope that the remaining excess of f over fmin could be interpreted in terms
of shape. Algorithms have been devised for estimating the amount of bound water
from the amino acid sequence, but these generally do not distinguish between buried
residues, which have no bound water, and surface residues which bind water. Some
attempts have been made to base the estimate of bound water based on polar
residues, which are mostly exposed on the surface. 0.3 g H2O per g protein is a
typical estimate, but in fact this kind of guess is almost useless for analyzing f.

In the older days, when there was some confidence in these estimates of bound
water, physical chemists calculated a value called fo, which was the frictional
coefficient for a sphere that would contain the given protein, but enlarged by the

Principles of Protein–Protein Association
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estimated shell of water. (Other authors use fo to designate what we term fmin [3, 4].
We recommend using fmin to avoid ambiguity.) The measured f for proteins was
almost always larger than fo, suggesting that the protein was asymmetrical or
elongated. A very popular analysis was to model the protein as an ellipsoid of
revolution, and calculate the axial ratio from f/fo, using an equation first developed
by Perrin. This approach is detailed in most classical texts of physical biochemistry.
In fact the Perrin analysis always overestimates the asymmetry of the proteins,
typically by a factor of two to five. It should not be used for proteins.

The problem is illustrated by an early collaborative study of phosphofructoki-
nase, in which the laboratory of James Lee did hydrodynamics and our laboratory
did EM [5]. We found by EM that the tetrameric particles were approximately
cylinders, 9 nm in diameter and 14 nm long. The shape was therefore like a rugby
ball, with an axial ratio of 1.5 for a prolate ellipsoid of revolution. The Lee group
measured the molecular weight and sedimentation coefficient, determined f and
estimated water of hydration and fo. They then used the Perrin equation to calculate
the axial ratio. The ratio was five, which would suggest that the protein had the
shape of a hot dog. The EM structure (which was later confirmed by x-ray
crystallography) shows that the Perrin equation overestimated the axial ratio by a
factor of 3.

Teller et al [6] summarized the situation: ‘Frequently the axial ratios resulting
from such treatment are absurd in light of the present knowledge of protein
structure.’ They explained that the major problem with the Perrin equation is that
it treats the protein as a smooth ellipsoid, when in fact the surface of the protein is
quite rough. Teller et al went on to show how the frictional coefficient can actually
be derived from the known atomic structure of the protein, by modeling the surface
of the protein as a shell of small beads of radius 1.4 Å. The shell coated the surface of
the protein, modeling its rugosity, and increasing the size of the protein by the
equivalent of a single layer of bound water. This analysis has been extended by
Garcia de la Torre and colleagues [7].

1.4.2 Interpreting shape from f /fmin = Smax/S

If the Perrin equation is useless, is there some other way that shape can be
interpreted from f ? The answer is yes, at a semiquantitative level. We have
discovered simple guidelines where the ratio f/fmin can provide a good indication
of whether a protein is globular, somewhat elongated or very elongated.

Instead of proceeding with the classical ratio f/fmin, where f is in non-intuitive
units, we will reformulate the analysis directly in terms of the sedimentation
coefficient, which is the parameter actually measured. We will define a value Smax

as the maximum possible sedimentation coefficient, corresponding to fmin. Smax is
the S value that would be obtained if the protein were a smooth sphere with no
bound water. These two ratios are equal: f/fmin = Smax/S. Combining equations (1.2),
(1.4) and (1.5), we have

v ρ πη= − = × −S M N R M R a10 (1 )/ (6 ) [2.378 10 ]/ (1.6 )omax
13

2 min
4

min
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=S M b0.00361 (1.6 )max
2/3

The leading factor of 1013 in (1.6a) converts Smax to Svedberg units. The numbers
in brackets in (1.6a) are calculated using v2 = 0.73 cm3 g−1, ρ = 1.0 g cm−3, η =
0.01 g cm−1 s−1 = 10−9 g nm−1 s−1. The final expression, equation (1.6b) expresses
Smax in Svedbergs for a protein of mass M in Daltons.

Some typical numerical values of Smax for proteins from 10 000 to 1 000 000 Da
are given in table 1.3.

We have surveyed values of Smax/S for a variety of proteins of known structure.
Table 1.4 presents Smax/S for a number of approximately globular proteins and for a
range of elongated proteins, all of known dimensions. It turns out that Smax/S is an
excellent predictor of the degree of asymmetry of a protein. From this survey of
known proteins we can propose a number of general principals.

• No protein has Smax/S = f/fmin smaller than ∼1.2.
• For approximately globular proteins:

Smax/S is typically between 1.2 and 1.3.
• For moderately elongated proteins:

Smax/S is in the range of 1.5–1.9.

Table 1.3. Smax calculated for proteins of different mass.

Protein Mr (kDa) 10 25 50 100 200 500 1000
Smax Svedbergs 1.68 3.1 4.9 7.8 12.3 22.7 36.1

Table 1.4. Smax/S values for representative globular and elongated proteins.

Globular Protein Standards Dimensions are from pdb files

Protein Dimensions nm Mass Smax S Smax/S

Phosphofructokinase 14 × 9 × 9 345 400 17.77 12.2 1.46
Catalase 9.7 × 9.2 × 6.7 230 000 13.6 11.3 1.20
Serum albumin 7.5 × 6.5 × 4.0 66 400 5.9 4.6 1.29
Hemoglobin 6 × 5 × 5 64 000 5.78 4.4 1.32
Ovalbumin 7.0 × 3.6 × 3.0 43 000 4.43 3.5 1.27
FtsZ 4.8 × 4 × 3 40 300 4.26 3.4 1.25

Elongated Protein Standards—Tenascin fragments [27, 28]; heat repeat [29, 30]

Protein Dimensions nm Mass Smax S Smax/S
TNfn1–5 14.7 × 1.7 × 2.8 50 400 4.94 3.0 1.65
TNfn1–8 24.6 × 1.7 × 2.8 78 900 6.64 3.6 1.85
TNfnALL 47.9 × 1.7 × 2.8 148 000 10.1 4.3 2.36
PR65/A HEAT repeat 17.2 × 3.5 × 2.0 60 000 5.53 3.6 1.54
fibrinogen 46 × 3 × 6 390 000 19.3 7.9 2.44
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• For highly elongated proteins (tropomyosin, fibrinogen, extended fibronectin):
Smax/S is in the range of 2.0–3.0.

• For very long, thread-like molecules like collagen, or huge extended mole-
cules like the tenascin hexabrachion (not shown):

Smax/S can range from 3 to 4 or more.

Apart from indicating the shape of a protein, Smax/S can often give valuable
information about the oligomeric state, if one has some idea of the shape. For
example, if one knows that the protein subunit is approximately globular (from EM
for example), but finds Smax/S = 2.1, this would suggest that the protein in solution is
a actually a dimer. On the other hand if one thinks a protein is a dimer, but finds
Smax/S < 1.0 for the dimer mass, the protein is apparently sedimenting as a
monomer.

The use of Smax/S to estimate protein shape has been described briefly in [8].

1.5 The Kirkwood/Bloomfield calculation
The understanding of how protein shape affects hydrodynamics is elegantly
extended by an analysis originally developed by Kirkwood [9], and later extended
by de la Torres and Bloomfield [10–12]. In its simplest application it calculates the
sedimentation coefficient of a rigid oligomeric protein composed of subunits of
known S and known spacing relative to each other. In more complex applications, a
protein of any complex shape can be modeled as a set of non-overlapping spheres or
beads. See Byron [13] for a comprehensive review of the principals and applications
of hydrodynamic bead modeling of biological macromolecules.

The basis of the Kirkwood/Bloomfield analysis is to account for how each bead
shields the others from the effect of solvent flow, and thereby determine the
hydrodynamics of the ensemble from its component beads. Figure 1.2 shows a
simple example of the bead modeling approach, and provides an instructive look at
how size and shape affect sedimentation. There are several important conclusions.

• A rod of three beads has about a two-fold higher S than a single bead.
• Smax/S is 1.18 for the single bead (the effect of the assumed shell of water);
1.34 for the three-bead rod; 1.93 for the straight 11-bead rod. This is
consistent with the principals given in section 3 for globular, somewhat
elongated and very elongated particles.

• Bending the rod at 90° in the middle causes only a small increase in S.
Bending it into a U-shape with the arms about one bead diameter apart
increases S a bit more. Bending this same 11-bead structure more sharply, so
the two arms are in contact, causes a substantial increase in S, from 5.05 to
5.58. The guiding principle is that folding affects S when one part of the
molecule is brought close enough to another to shield it from water flow.

1.6 Gel filtration chromatography and the Stokes radius
‘Gel filtration chromatography is widely used for determining protein molecular
weight.’ This quote from Sigma–Aldrich bulletin 891A is a widely held
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misconception. The fallacy is obscurely corrected by a later note in the bulletin that
‘Once a calibration curve is prepared, the elution volume for a protein of similar
shape, but unknown weight, can be used to determine the MW.’ The key issue is ‘of
similar shape.’ Generally the calibration proteins are all globular, and if the
unknown protein is also globular the calibrated gel filtration column does give a
good approximation of its molecular weight. The problem is that the shape of an
unknown protein is generally unknown. If the unknown protein is elongated it can
easily elute at a position twice the molecular weight of a globular protein.

The gel filtration column actually separates proteins not on their molecular
weight, but on their frictional coefficient. Since the frictional coefficient, f, is not an
intuitive parameter, it is usually replaced by the Stokes radius Rs. Rs is defined as the
radius of a smooth sphere that would have the actual f of the protein. This is much
more intuitive since it allows one to imagine a real sphere approximately the size of
the protein, or somewhat larger if the protein is elongated and has bound water.

As mentioned above for equation (1.5), Stokes calculated theoretically the
frictional coefficient of a smooth sphere to be:

πη=f R6 (1.7)s

The Stokes radius Rs is larger than Rmin because it is the radius of a smooth sphere
whose f would match the actual f of the protein. It accounts for both the asymmetry
of the protein and the shell of bound water. More quantitatively, f/fmin = Smax/S =
Rs/Rmin.

Siegel and Monte [4] argued convincingly that the elution of proteins from a gel
filtration column correlates closely with the Stokes radius, Rs, presenting exper-
imental data from a wide range of globular and elongated proteins. The Stokes
radius is known for large number of proteins, including ones convenient for

Figure 1.2. Each bead models a 10 kDa domain, with an assumed sedimentation coefficient of 1.42 s. The
radius of the bead is 1.67 nm, using Rmin = 1.42 nm, and adding 0.25 nm for a shell of water. The beads are an
approximation to FN-III or Ig domains, which are ∼1.7 × 2.8 × 3.5 nm. The sedimentation coefficients of
multi-bead structures were calculated by the formula of Kirkwood/Bloomfield.
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calibrating gel filtration columns (table 1.5). Figure 1.3 shows an example where the
Rs of the unknown protein BsSMC was determined by gel filtration.

The standard proteins should span Rs values above and below that of the protein
of interest (but in the case of BsSMC a short extrapolation to a larger value was
used). The literature generally recommends determining the void and included
volumes of the column and plotting a partition coefficient KAV [4]. However, we
have found it generally satisfactory to simply plot elution position versus Rs for the
standard proteins. This generally gives an approximately linear plot, but otherwise it
is satisfactory to draw lines between the points and read the Rs of the protein of
interest from its elution position on this standard curve.

A gel filtration column can determine Rs relative to the Rs of the standard
calibration proteins. The Rs of these standards was generally determined from
experimentally measured diffusion coefficients. Some tabulations of hydrodynamic
data list the diffusion coefficient, D, rather than Rs, so it is worth knowing the
relationship:

πη= =D kT f kT R/ / (6 ) (1.8)s

where k = 1.38 × 10−16 g cm2 s−2 K−1 is Boltzman’s constant and T is the absolute
temperature. k is given here in cgs units because D is typically expressed in cgs; Rs

will be expressed in cm in this equation. Typical proteins have D in the range of
10−6–10−7 cm2 s−1. Converting to nm and for T = 300 K and η = 0.01:

= × −R D(1/ ) 2.2 10 , (1.9)s
6

where Rs is in nm and D is in cm2 s−1.
Simply knowing Rs is not very valuable in itself, except for estimating the degree

of asymmetry, but this would be the same analysis developed above for Smax/S.
However, if one determines both Rs and S, this permits a direct determination of

Figure 1.3. Determination of Rs of BsSMC by gel filtration. The column was calibrated by running standard
proteins BSA, catalase and thyroglobulin over the column, then BsSMC. BsSMC eluted in fraction 14.2, which
corresponds to an Rs of 10 nm on the extrapolated curve. In repeated experiments the average Rs was
10.3 nm [19].
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molecular weight, which cannot be deduced from either one alone. This is described
in the next section.

1.7 Determining the molecular weight of a protein molecule—
combining S and Rs à la Siegel and Monte

With the completion of multiple genomes and increasingly good annotation, the
primary sequence of almost any protein can be found in the databases. The
molecular weight of every protein subunit is therefore known from its sequence.
But an experimental measure is still needed to determine if the native protein in
solution is a monomer, dimer or oligomer, or if it forms a complex with other
proteins. If one has a purified protein the molecular weight can be determined quite
accurately by sedimentation equilibrium in the analytical ultracentrifuge. This
technique has made a strong comeback with the introduction of the Beckman
XL-A analytical ultracentrifuge. There are a number of good reviews [14, 15], and
the documentation and programs that come with the centrifuge are very instructive.

What if one does not have an XL-A centrifuge, or the protein of interest is not
purified? In 1966, Siegel and Monte [4] proposed a method that achieves the results
of sedimentation equilibrium, with two enormous advantages. First, it requires only
a preparative ultracentrifuge for sucrose or glycerol gradient sedimentation, and a
gel filtration column. This equipment is available in most biochemistry laboratories.
Second, the protein of interest need not be purified; one needs only an activity or an

Table 1.5. Standards for hydrodynamic analysis.

Protein Mr aa seq S20,w Smax/S Rs(nm) Source Mr S–M

Ribonuclease A beef pancreas 14 044 2.0a 1.05a 1.64 HBC 13 791
Chymotrypsinogen Abeef pancreas 25 665 2.6 1.21 2.09 HBC 22 849
Ovalbumin hen egg 42 910 s 3.5 1.27 3.05 HBC 44 888
Albumin beef serum 69 322 4.6a 1.33 3.55 S–M,HBC 68 667
Aldolase rabbit muscle 157 368 7.3 1.45 4.81 HBC 147 650
Catalase beef liver 239 656 11.3 1.21 5.2 S–M 247 085
Apo-ferritin horse spleen 489 324 17.6 1.28 6.1 HBC 451 449
Thyroglobulin bovine 606 444 19 1.37 8.5 HBC 679 107
Fibrinogen, human 387 344 7.9 2.44 10.7 S–M 355 449

Gel filtration calibration kits, containing globular proteins of known molecular weight and Rs, are
commercially available (GE healthcare, Sigma–Aldrich). These same proteins can be used for sedimentation
standards. The proteins in these kits are included in the table along with some others that we have found useful.
The values for Mr given in the first column are from amino acid sequence data. Values for S20,w and Rs are
from the Siegel–Monte paper (indicated S–M under source), or the CRC Handbook of Biochemistry [3]
(indicated HBC). They agree with the values listed for Rs in the GE Healthcare gel filtration calibration kit,
with the exception of ferritin. The ‘Mr calc’ in the last column was obtained by our simplification of the Siegel–
Monte calculation (M = 4205 s Rs). Note that the worst disagreement with ‘Mr aa seq’ is about 10%.
aS for ribonuclease A is questionable because of the low Smax/S (1.05). S values for bovine serum albumin vary
in the literature from 4.3 to 4.9. Many sources use 4.3, but we find that 4.6 gives a better fit with other
standards (note that the standard curve in figure 1.5 used 4.3, but 4.6 would have placed it closer to the line).
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antibody to locate it in the fractions. This is a very powerful technique, and should
be in the repertoire of every protein biochemist.

The methodology is very simple. The protein is run over a calibrated gel filtration
column to determine Rs, and hence f. Separately the protein is centrifuged through a
glycerol or sucrose gradient to determine S. One then uses the Svedberg equation
(equation (1.4)) to obtain M as a function of Rs and S.

vπη ρ= −M SN R a(6 )/ (1 ) (1.10 )so 2

setting η = 0.01, v ρ = 0.732 , converting S to Svedberg units and Rs to nm, we can
simplify further:

=M SR b4205 ( ) (1.10 )s

where S is in Svedberg units, Rs is in nm and M is in Daltons.
This is pretty simple! Importantly, in typical applications this method gives the

protein mass within about ±10%. This is more than enough precision to distinguish
between monomer, dimer or trimer.

Application to BsSMC. In the sections above we showed how S of the SMC protein
from B. subtilis was determined to be 6.3 Svedberg units from glycerol gradient
sedimentation, and Rs was 10.3 nm, from gel filtration. Putting these values in equation
(1.10b) we find that the molecular weight of BsSMC is 273 000 Da. From the amino
acid sequence we know that the molecular weight of one BsSMC subunit is 135 000
Da. The Siegel–Monte analysis finds that the BsSMC molecule is a dimer.

Knowing that BsSMC is a dimer with molecular weight 270 000 Da, we can now
determine its Smax/S. Smax is 15.1 (equation (1.6b)) so Smax/S is 2.4. The BsSMC
molecule is thus expected to be highly elongated. EM (see below) confirmed this
prediction.

1.8 Electron microscopy of protein molecules
Since the early 1980s electron microscopy has become a powerful technique for
determining the size and shape of single protein molecules, especially ones larger
than 100 kDa. Two techniques available in most EM laboratories, rotary shadowing
and negative stain, can be used for imaging single molecules. Cryo EM is becoming
a powerful tool for protein structural analysis, but it requires special equipment and
expertise. For a large number of applications rotary shadowing and negative stain
provide the essential structural information.

For rotary shadowing a dilute solution of protein is sprayed on mica, the liquid is
evaporated in a high vacuum, and platinum metal is evaporated onto the mica at a
shallow angle. The mica is rotated during this process, so the platinum builds up on
all sides of the protein molecules. The first EM images of single protein molecules
were obtained by Hall and Slayter using rotary shadowing [16]. Their images of
fibrinogen showed a distinctive trinodular rod. However, rotary shadowing fell into
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disfavor because the images were difficult to reproduce. Protein tended to aggregate
and collect salt, rather than spread as single molecules. In 1976 James Pullman, then
a graduate student at the University of Chicago, devised a protocol with one simple
but crucial modification—he added 30% glycerol to the protein solution. For
reasons that are still not understood, the glycerol greatly helps the spreading of
the protein as single molecules.

Pullman never published his protocol, but two labs saw his mimeographed notes
and tested out the effect of glycerol, as a part of their own attempts to improve
rotary shadowing [17, 18]. They obtained reproducible and compelling images of
fibrinogen (the first since the original Hall and Slayter study, and confirming the
trinodular rod structure) and spectrin (the first ever images of this large protein). The
technique has since been used in characterizing hundreds of protein molecules.

Figure 1.4 shows rotary shadowed BsSMC, fibrinogen and hexabrachion (tenas-
cin). BsSMC is highly elongated, consistent with its high Smax/S discussed above
[19]. The fibrinogen molecules show the trinodular rod, but these images also
resolved a small fourth nodule next to the central nodule [20], not seen in earlier
studies. The central nodule is about 50 kDa, and the smaller fourth nodule is about
20 kDa. The ‘hexabrachion’ tenascin molecule [21] illustrates the power of rotary
shadowing at two extremes. First, the molecule is huge. Each of its six arms is made
up of ∼30 repeating small domains, totaling ∼200 000 Da. At the larger scale the
EM shows that each arm is an extended structure, matching the length expected if
the repeating domains are an extended string of beads. At the finer scale, the EM can
distinguish the different sized domains. The inner segment of each arm is a string of
3.5 kDa EGF domains, seen here as a thinner segment. A string of 10 kDa FN-III
domains is clearly distinguished as a thicker outer segment. The terminal knob is a
single, 22 kDa fibrinogen domain. The Rmin of these domains are 0.8, 1.7 and 2.8
nm, and these can be distinguished by rotary shadowing. Rotary shadowing EM can
visualize single globular domains as small as 10 kDa (3.5 nm diameter), and
elongated molecules as thin as 1.5 nm (collagen).

Negative stain is another EM technique capable of imaging single protein
molecules. It is especially useful for imaging larger molecules with a complex
internal structure, which appear only as a large blob in rotary shadowing.
Importantly, non-covalent protein–protein bonds are sometimes disrupted in the
rotary shadowing technique [8], but uranyl acetate, in addition to providing high

Figure 1.4. Rotary shadowing EM of three highly elongated protein molecules: the SMC protein from B.
subtilis [19], fibrinogen [20], and the hexabrachion protein, tenascin [21]. Reprinted with permission from the
indicated references.
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resolution contrast, fixes oligomeric protein structures in a few milliseconds [22]. An
excellent review of modern techniques of negative staining, with comparison to cryo
EM, is given in [23].

The simple picture of the molecule produced by EM is frequently the most
straightforward and satisfying structural analysis at the 1–2 nm resolution. When
the structure is confirmed by hydrodynamic analysis the interpretation is even more
compelling.

1.9 Hydrodynamic analysis and EM applied to large multi-subunit
complexes

The text box above showed the application of the Siegel–Monte analysis to BsSMC,
which had only one type subunit and was found to be a dimer. Similar hydrodynamic
analysis can be used to analyze multi-subunit protein complexes. There are many
examples in the literature; I will show here an elegant application to DASH/Dam1.

The protein complex called DASH or Dam1 is involved in attaching chromosomal
kinetochores to microtubules in yeast. DASH/Dam1 is a complex of ten proteins that
assemble into a particle containing one copy of each subunit. These complexes further
assemble into rings that can form a sliding washer on the microtubule [24, 25]. The
basic ten-subunit complex has been purified from yeast, and has also been expressed in
E. coli and purified (this required the heroic effort of expressing all ten proteins
simultaneously [24]). Figure 1.5 shows the hydrodynamic characterization of the
purified protein complex, and illustrates several important features.

• For both the gel filtration (size exclusion chromatography, figure 1.5(a)) and
gradient sedimentation, figure 1.5(b), two calibration curves of known protein
standards are shown, green and black. These are independent calibration runs.
In this study the gel filtration column was calibrated in terms of the reciprocal
diffusion coefficient, 1/D, which is proportional to Rs (equation (1.7)).

• The fractions were analyzed by western blot for the location of two proteins
of the complex, Spc34p and Hsk3p. Methods notes that 1 ml fractions from
gel filtration were precipitated with perchloric acid and rinsed with acetone
prior to SDS–PAGE, an essential amplification for the dilute samples of yeast
cytoplasmic extract. These two proteins eluted together in both gel filtration
and sedimentation, consistent with their being part of the same complex.

• The profiles of the two proteins were identical when analyzed in their native
form in yeast cytoplasmic extract, and as the purified complex expressed in E.
coli. This is strong evidence that the expression protein is correctly folded and
assembled.

• There is minimal trailing of any subunits. This means that there is no
significant dissociation during the tens of minutes for the gel filtration, or the
12 h centrifugation. The complex is held together by very high affinity bonds,
making it essentially irreversible.

• Combining the Rs = 7.6 nm from 1/D = 0.35 × 10−7, and S = 7.4, equation
(1.10b) gives a mass of M = 236 kDa, close to the 204 kDa obtained from
adding the mass of the ten subunits. Smax is 12.6 giving Smax/S = 1.7,
suggesting a moderately elongated protein.
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Figure 1.6 shows EM images of DASH/DAM1 by rotary shadowing (figure 1.6a)
and negative stain (figure 1.6b). Rotary shadowing showed irregular particles about
13 nm in diameter [24]. The particles had variable and frequently elongated shapes,
but internal structure could not be resolved. A later study used state of the art
negative staining and sophisticated computer programs to sort images into classes
and average them [26]. These images resolved a complex internal structure. The
negative stain showed most of the particles (80%) to be dimers, with 15% monomers
and 5% trimers. This contradicts the hydrodynamic analysis of Miranda et al [24]
showing that the particles were monomers. The reason for this discrepancy is not
known.

Figure 1.5. Hydrodynamic analysis of the DASH/Dam1 complex. Gel filtration is shown in a and sucrose
gradient sedimentaion in b. Independent calibration curves using standard proteins are shown in black and
green. Dark and light blue show Spc34p in yeast cytoplasmic extract and in the purified recombinant protein.
Red and purple show Hsk3p. The proteins were identified and quantitated by western blot of the fractions,
shown in c. The four protein bands eluted together at 1/D = 0.35 × 107, corresponding to Rs = 7.6 nm, and at
7.4 S. Reproduced from Miranda et al [24] with permission from Springer Nature.
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