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Appendix A

Revisiting the Einstein–Podosky–Rosen
(EPR) paper

The EPR argument is examined directly under the premises of Heisenberg’s
uncertainty principle Δ Δ ≈x p h.

A.1 Introduction
The contents of the EPR paper entitled ‘Can quantum mechanical description of
physical reality be considered complete?’ (Einstein et al 1935) were challenged by
Niels Bohr also in a paper entitled ‘Can quantum mechanical description of physical
reality be considered complete?’ (Bohr 1935). In that six-page paper, Bohr centered
his argument on Heisenberg’s uncertainty principle (Heisenberg 1927)

Δ Δ ≈x p h (A.1)

and on the complementarity principle. Bohr’s argument, although extensive, appa-
rently failed to convince sectors within the physics community that continued to
doubt the completeness of quantum mechanics for decades. Nevertheless, Bohr
invoked the two crucial words that led to the one equation that can be applied to
neutralize the EPR argument: uncertainty principle.

In this regard, it should be mentioned that Dirac already in the 1947 edition of his
celebrated book included a remark of extraordinary significance: ‘it is evident
physically that a state for which all values of q are equally probable, or one for which
all values of p are equally probable, cannot be attained in practice’ (Dirac 1978).

A.2 EPR and the uncertainty principle
There is a key sentence in the first part of the EPR paper: ‘when the momentum of a
particle is known, its coordinate has no physical reality’ (Einstein et al 1935). A direct
confrontation of this central concept with the uncertainty principle leads to an
interesting result. The explicit argument that follows is based on concepts previously
articulated by Duarte (2014).
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Heisenberg’s uncertainty principle stated in its alternative fractional form
(Feynman et al 1965) is

Δ ≈
Δ

x
h
p

. (A.2)

Measurement of the momentum of a particle p can only be performed according to

± Δp p. (A.3)

An absolutely exact measurement of momentum p with Δ =p 0 is physically
impossible (Duarte 2014). In this regard, it should be mentioned that uncertainties
and errors in measurements have been known to exist since the dawn physics
(Newton 1686, 1704). The EPR sentence ‘when the momentum of a particle is known,
its coordinate has no physical reality’ (Einstein et al 1935) implies an exact and
perfect measurement of momentum p with Δ =p 0, which is a physical impossibility.

A real non-idealized measurement of momentum leads to ± Δp p with a specific
and real non-zero Δp. Once Δp is available, then Δx can be found according to

Δ ≈
Δ

x
h
p

.

In this regard, the ‘all values’ spread in the coordinate, as feared by Einstein et al
(1935), is not allowed. Removal of the ‘all values’ spread in the coordinate x
immediately neutralizes the claim of ‘no physical reality’. Hence, the EPR conclusion
that ‘the quantum mechanical description of physical reality… is not complete’ can be
dismissed.

A.3 Conclusion
Here, it has been shown that Heisenberg’s uncertainty principle can be effectively
applied in a direct and transparent manner to counter EPR’s ‘all values’ argument
that led those authors to the conclusion that the description of reality as given by
wave functions, or probability amplitudes, ‘is not complete’. In this regard, ‘the
uncertainty principle “protects” quantum mechanics’ (Feynman et al 1965).

The dismissal of the EPR argument, or the EPR paradox, as referred to by many
authors, has a profound meaning since it was the EPR argument that led to the
formulation of hidden variable theories as presented by Bohm and colleagues (Bohm
1952, Bohm and Bub 1966) and the eventual derivation of Bell’s theorem (Bell
1964). This theme is given further discussion in chapter 28.
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Appendix B

Revisiting the Pryce–Ward probability
amplitude

The work of Pryce and Ward leading to the probability amplitude, ψ∣ 〉 =
∣ 〉 ∣ 〉 − ∣ 〉 ∣ 〉x y y x( ), is examined from a historical perspective. Ward’s parallel
interests at the time, on quantum electrodynamics, are brought forward.

B.1 Introduction
Some readers may wonder why neither Maurice Pryce nor John Ward published a
separate dedicated journal paper on the probability amplitude for quantum
entanglement, ψ∣ 〉 = ∣ 〉 − ∣ 〉x y y x( , , ), thus leaving Ward’s doctoral thesis as the
only explicit contemporaneous record of this development. Concurrently, some
readers may also wonder why they never championed, or exploited, the ownership of
this most crucial equation, as most physicists would do today if confronted by
similar circumstances. These are questions that apparently were never asked of John
Ward and one aspect of his physics that he never discussed, at least not in the written
record. In this chapter, an attempt is made to find an explanation for this apparent
ineffable set of affairs. This discussion is based on measured speculation, personal
knowledge of the man, and the published record.

B.2 Exciting times and extreme succinctness
According to John Ward, he was introduced to ψ∣ 〉 = ∣ 〉 − ∣ 〉x y y x( , , ) via discus-
sions with Maurice Pryce. These discussions were generated by the interest on the
perpendicularity of the polarization states of two quanta moving in opposite
directions (Ward 2004). At the time, John Ward was working on his doctorate
under the supervision of Maurice Pryce at Oxford (Pryce and Ward 1947). However,
this was not the only focus of Ward’s attention at the time. As his doctoral thesis
already hinted in its title, ‘Some Properties of the Elementary Particles’ (Ward 1949),
he was also already attracted by particle physics and by quantum electrodynamics in
particular. Perhaps the only other human thinking about quantum optics at the time
was Dirac himself.
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An additional preamble forces a departure from physics to introduce some
aspects of John Ward’s personality that might be relevant: he was a master of
succinctness and always got to the point in the most direct possible way. It is as if he
were a living demonstration of the principle of least action. He was a fairly distant
man with few close friends, physicist Richard Dalitz among them. By today’s
standards he was extremely honest, modest, and hated corruption and the practi-
tioners of corruption. The reader can find further details on Ward in his autobiog-
raphy (Ward 2004) and in writings about him (Fraser 2008, Close 2011).

The following facts reinforce and add to the concepts already expressed:
1. His paper with Maurice Pryce entitled ‘Angular correlation effects with

annihilation radiation’ (Pryce and Ward 1947) is slightly longer than half a
page. Ward says that Pryce initially refused being a co-author and that he
only accepted upon Ward’s insistence (Ward 2004).

2. His doctoral thesis Some Properties of the Elementary Particles (Ward 1949)
was a mere 47 pages long and dealt with two subject matters. The first section
was entitled ‘Polarization effects of annihilation radiation’ and the second
section was entitled ‘Some higher order effects in covariant quantum
electrodynamics’.

3. His landmark paper on renormalization theory entitled ‘An identity in
quantum electrodynamics’ (Ward 1950a) was less than half a page long.
The importance of this paper to quantum field theory can be summarized via
the statements of experienced practitioners in the field: ‘the Ward identity …

ensures the universality of the electromagnetic interaction’ (Greiner and
Reinhardt 2009) and ‘the proof that QED can be renormalized relied
on Ward’s Identities … Ward’s Identities lie at the very foundations of
renormalization theory’ (Close 2011).

4. Another of his papers on renormalization theory entitled ‘A convergent non-
linear field theory’ (Ward 1950b) was about a third of a page long.

The evidence above suggests the following as factors that may have
prevented publication of a sole and dedicated journal disclosure on
ψ∣ 〉 = ∣ 〉 − ∣ 〉x y y x( , , ):

(a) In the paper that he wrote with Maurice Pryce, what mattered at the
time was the final scattering result useful to experimentalists interested
in testing the pair theory. In this regard, Pryce and Ward most likely
considered ψ∣ 〉 = ∣ 〉 − ∣ 〉x y y x( , , ) only as a necessary intermediate step
to reach that final result. Adhering to succinctness most likely
dissuaded them from disclosure.

(b) Ward’s attitude appears to express increased appreciation toward this
discovery by the time he presented his thesis since he wrote, ‘it is
essential to derive correctly the state vector which properly describes
the state of the two quanta, including their relative polarization’
(Ward 1949). However, it is quite possible that Ward qualified his
thesis a publication as good as any other, and thus considered the
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subject closed. As a matter of fact he would author and co-author only
some 20 papers in his entire career.

(c) A dedicated disclosure on the subject would have to have been a joint
paper with Pryce, but their paths began to diverge around 1949.

(d) In reference to items 2–4 above it is also quite obvious that the
attention of the young physicist quickly shifted from quantum optics,
a futuristic subject almost not existing at the time, to quantum
electrodynamics and renormalization theory, which were the focus
and attention of the physics community. Indeed, Ward would go on to
co-author some of the papers that took center stage in the develop-
ment of the Standard Model (Salam and Ward 1959, 1961 1964a,
1964b).

(e) In the 1970s when teaching quantum mechanics, via the Feynman
Lectures on Physics (Feynman et al 1965), he would acknowledge with
a shy smile and few words his rendezvous with equations of the form
ψ∣ 〉 = ∣ 〉 − ∣ 〉R L( ). No further details added.

B.3 Conclusion
The matter of ψ∣ 〉 = ∣ 〉 − ∣ 〉x y y x( , , ) did resurface between this author and Ward in
early 2000. His attitude was that everybody knew the score and that eventually it
would be recognized as the work of Pryce and Ward.

What did eventually transpire was that those who knew the score were physicists
of his generation, such as Richard Dalitz, Willis Lamb, Maurice Pryce, and C-S Wu,
but there was a new score being written by a new generation vastly unaware of the
origin of ψ∣ 〉 = ∣ 〉 − ∣ 〉x y y x( , , ).

In this regard, it is fitting to mention a pertinent quote on Ward’s physics: ‘ … he
has drawn attention to fundamental truths, and has laid down basic principles that
physicists have followed in subsequent decades, often without knowing it, and
generally without quoting him’ (Dunhill 1995).

In summary, succinctness, renormalization, the Standard Model, and uncommon
honesty were probably factors in preventing a unique and dedicated disclosure of
ψ∣ 〉 = ∣ 〉 − ∣ 〉x y y x( , , ) by John Ward. Championing his own work was not part of
his ethos.
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Appendix C

Classical and quantum interference

The distinctions between classical interference and quantum interference are
emphasized.

C.1 Introduction
In this appendix a brief description of classical N-slit interference and quantum
N-slit interference is provided. Here it is shown that although interference can be
described classically, this description is only an approximation of the subtle
experimental interferometric phenomenon.

C.2 The classical interference equation
From Maxwell’s electromagnetic theory, Born and Wolf (1999) derived the
interference equation for two-slit interference, or Young’s interference, as

δ= + + −I I I I I2( ) cos (C.1)1 2 1 2
1/2

which has the same form as the equation given by Michelson (1927) except that
Michelson writes it as

δ= + +i a a a a2 cos (C.2)1
2

2
2

1 2

where a1 and a2 are designated as amplitudes. Using the notation of Born and Wolf
(1999), for an array of N-slits the interference equation (C.1) can be extended to

∑ ∑ ∑ δ= +
= = = +

− −I I I I2 cos (C.3)
n

N

n

N

m n

N

1 1 1

n n m
1
2

1
2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where …I I I I, , n1 2 3 refer to the intensities present at each of the …n1, 2, 3 slits, which
are assumed to be uniform and separated by uniform distances. In these equations, δ
is the phase angle derived from the interaction of the light illuminating the slits and
the geometry of the slits.

The following observations are applicable to these classical equations:
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1. These are intensity equations.
2. These are not probability equations.
3. These equations are not applicable to single-photon interference.

C.3 The N-slit interferometer
As already discussed in chapters 2 and 26, the N-slit interferometer is perfectly
described by the generalized interferometric probability in one dimension:

∑ ∑〈 ∣ 〉〈 ∣ 〉 = 〈 ∣ 〉〈 ∣ 〉 〈 ∣ 〉〈 ∣ 〉
= =

*

*

x s x s x j j s x j j s (C.4)
j

N

j

N

1 1

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∑ ∑〈 ∣ 〉〈 ∣ 〉 = Ψ Ψ
= =

* Ω −Ωx s x s r r e( ) ( ) (C.5)
j

N

m

N

1 1

j m
i( )m j

∑ ∑ ∑〈 ∣ 〉〈 ∣ 〉 = Ψ + Ψ Ψ Ω − Ω
= = = +

*x s x s r r r( ) 2 ( ) ( )cos( ) . (C.6)
j

N

j

N

m j

N

1 1 1

j j m m j
2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

These are three equivalent equations that apply to single-photon propagation or to
the propagation of ensembles of indistinguishable photons. Equations (C.5) and
(C.6) are obtained from (C.4) while using complex wave forms to represent the
probability amplitudes (Duarte 1993, 2003) following Dirac’s lead (Dirac 1978).

These equations can also be expressed in two and three dimensions as given in
chapter 2 (Duarte 1995).

The following observations are applicable to these N-slit quantum probability
equations:

1. These are probability equations.
2. These are not intensity equations.
3. These equations describe single-photon interference and interference of

populations of indistinguishable photons.

C.4 The difference between classical and quantum interference
In classical interference

∑ ∑ ∑ δ→ +
= = = +

− −Maxwell equations I I I2 cos . (C.7)
n

N

n

N

m n

N

1 1 1

n n m
1
2

1
2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

In quantum interference

∑ ∑ ∑〈 ∣ 〉〈 ∣ 〉 → Ψ Ψ
= = =

Ω −Ωx j j s r r e( ) ( ) . (C.8)
j

N

j

N

m

N

1 1 1

j m
i( )m j
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It should be noticed that using the semi-coherent version for the quantum
probability given in equation (C.5), that is equation (2.17), and the definition for
intensity given in equation (2.19), the classical equation for interference (equation
(C.3)) can be derived. This is one example that illustrates classical physics as an
approximation of quantum mechanics.
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Appendix D

Interferometers and their probability amplitudes

The probability amplitudes applicable to the Mach–Zehnder interferometer, the
Michelson interferometer, the Sagnac interferometer, and the N-slit interferometer
are given.

D.1 Introduction
In this appendix the probability amplitudes for the Mach–Zehnder, the Michelson,
the Sagnac, and the N-slit interferometer are given via Dirac’s notation (Dirac
1978). This treatment follows the notation given by Duarte (2003, 2014). Excellent
classical discussions on these interferometers can be found in Michelson (1927) and
Steel (1967).

D.2 Interferometers
The Mach–Zehnder, Michelson, and Sagnac interferometers are comprised of beam
splitters and mirrors. Here, the beam splitters are assumed to exhibit perfect 50%
reflectivity and 50% transmission while the mirrors are assumed to be 100% perfect
reflectors.

For a single beam splitter, as described in figure D1, the probability amplitude is
given by

〈 ∣ 〉 = 〈 ∣ ′〉〈 ′∣ 〉 + 〈 ∣ 〉〈 ∣ 〉x s x j j s x j j s (D.1)

where j represents reflection at the beam splitter and ′j stands for transmission. This
equation ultimately leads to

∣ 〉 = ∣ 〉 ± ∣ 〉s A B
1

2
( ) (D.2)

where
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∣ 〉 = ∣ ′〉〈 ′∣ 〉A j j s (D.3)

and

∣ 〉 = ∣ 〉〈 ∣ 〉B j j s (D.4)

provided the two photons are detected by identical detectors x.

D.2.1 The Mach–Zehnder interferometer

Of particular interest to quantum computing is the Mach–Zehnder interferometer,
which is comprised of an input beam splitter, an output beam splitter, and two
mirrors M1 and M2, as illustrated in figure D2. It provides two interferometric
outputs, one at x and the other at ′x . The interference mechanics of the counter-
propagating beams can be described via the following probability amplitude (Duarte
2003, 2014):

〈 ∣ 〉 = 〈 ∣ ′〉〈 ′∣ 〉〈 ∣ 〉〈 ∣ 〉 + 〈 ∣ 〉〈 ∣ 〉〈 ∣ ′〉〈 ′∣ 〉x s x k k M M j j s x k k M M j j s (D.5)1 1 2 2

where j and k refer to the beam splitters in the reflective mode while ′j and ′k refer to
the beam splitters in the transmission mode. Assuming perfect reflectivity at mirrors
M1 and M2, equation (D.5) is equivalent to (Duarte 2003, 2014)

〈 ∣ 〉 = 〈 ∣ ′〉〈 ′∣ 〉〈 ∣ 〉 + 〈 ∣ 〉〈 ∣ ′〉〈 ′∣ 〉x s x k k j j s x k k j j s . (D.6)

Using the Dirac identity ϕ ϕ∣ 〉 = ∣ 〉〈 ∣ 〉j j , and abstracting, equation (D.6) reduces to

〈 ∣ 〉 = 〈 ∣ ′〉〈 ′∣ 〉 + 〈 ∣ 〉〈 ∣ 〉x s x k k C x k k D (D.7)

where

∣ 〉 = ∣ ′〉〈 ′∣ 〉D j j s (D.8)

and

∣ 〉 = ∣ 〉〈 ∣ 〉C j j s . (D.9)

Figure D1. Schematics for a single ideal beam splitter. Interaction of the photon with the beam splitter in the
reflection mode is labeled as j while interaction of the photon with the beam splitter in the transmission mode
is assigned as ′j . Both the transmitted and reflected photons are assumed to be incident on identical detectors x.
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Then, further abstracting the 〈x, and following normalization, equation (D.7) can be
reduced to

∣ 〉 = ∣ 〉 + ∣ 〉s C D
1

2
( ) (D.10)

and once its linear combination is considered the overall probability amplitude
becomes

∣ 〉 = ∣ 〉 ± ∣ 〉s C D
1

2
( ). (D.11)

For the ′x detector,

〈 ′∣ 〉 = 〈 ′∣ 〉〈 ∣ 〉〈 ∣ 〉〈 ∣ 〉 + 〈 ′∣ ′〉〈 ′∣ 〉〈 ∣ ′〉〈 ′∣ 〉x s x k k M M j j s x k k M M j j s (D.12)1 1 2 2

〈 ′∣ 〉 = 〈 ′∣ 〉〈 ∣ 〉〈 ∣ 〉 + 〈 ′∣ ′〉〈 ′∣ ′〉〈 ′∣ 〉x s x k k j j s x k k j j s (D.13)

〈 ′∣ 〉 = 〈 ′∣ 〉〈 ∣ 〉 + 〈 ′∣ ′〉〈 ′∣ 〉x s x k k C x k k D (D.14)

and ultimately to equation (D.11) again. It should be noticed that if the mirrors M1

and M2 are not abstracted, the final result is still given by equation (D.11).

Figure D2. Schematics for the Mach–Zehnder interferometer. Mirrors M1 and M2 are assumed to be lossless
and perfect. The beam splitters j and k are also assumed to be ideal, lossless, 50–50 partial reflectors.
Interaction of the photon with the beam splitters in the reflection mode is labeled as j and k while interaction
of the photon with the beam splitter in the transmission mode is assigned as ′j and ′k (see text).
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Equation (D.11) gives the probability amplitudes that describe single-photon
propagation, or the propagation of an ensemble of indistinguishable photons, in
Mach–Zehnder interferometers. It should be noted that given the assumption of
perfect mirrors only the beam splitters contribute to the final result. In essence, these
equations describe single-photon propagation via two identical beam splitters.

The state ∣ 〉C is different from ∣ 〉A , in equation (D.2), since it includes information
about transmission via the first beam splitter, reflection at M2, and reflection at the
second beam splitter. The same observation is valid when comparing ∣ 〉D to ∣ 〉B .

One final observation is that equation (D.7) can be directly derived from the
generalized Dirac probability amplitude

∑〈 ∣ 〉 = 〈 ∣ 〉 〈 ∣ 〉
=

=

x s x j j s (D.15)
j

N

1

2

for =N 2, which is applicable to the double-slit interferometer (see chapter 17).
However, physically speaking, a Mach–Zehnder interferometer is very different
from a double-slit interferometer. In the double-slit interferometer, the single
photon, or the population of indistinguishable photons, undergoes violent diffrac-
tion at the slits. This diffraction makes the physics between the two interferometers
quite different. The only similarity between the two interferometers is that they are
both two-path interferometers, that is, =N 2. However, while the Mach–Zehnder
interferometer is a two-beam interferometer the double-slit, or two-slit, or Young,
interferometer is a parallel diffraction interferometer.

D.2.2 The Michelson interferometer

The Michelson interferometer (Michelson 1927) is comprised of one beam splitter
and two mirrors M1 and M2 in an L configuration, as depicted in figure D3. In
reference to the schematics, the probability amplitude describing single-photon
propagation from the source s to the detector x is given by

〈 ∣ 〉 = 〈 ∣ 〉〈 ∣ 〉〈 ∣ ′〉〈 ′∣ 〉 + 〈 ∣ ′〉〈 ′∣ 〉〈 ∣ 〉〈 ∣ 〉x s x j j M M j j s x j j M M j j s (D.16)2 2 1 1

where j represents reflection at the beam splitter and ′j stands for transmission.
Assuming perfect reflectivity, equation (D.16) can be abstracted to

〈 ∣ 〉 = 〈 ∣ 〉〈 ∣ ′〉〈 ′∣ 〉 + 〈 ∣ ′〉〈 ′∣ 〉〈 ∣ 〉x s x j j j j s x j j j j s . (D.17)

Further abstraction, using ϕ ϕ∣ 〉 = ∣ 〉〈 ∣ 〉j j , leads to

〈 ∣ 〉 = 〈 ∣ 〉〈 ∣ 〉 + 〈 ∣ ′〉〈 ′∣ 〉x s x j j s x j j s (D.18)

which again leads to a probability amplitude of the form of equation (D.15).
As seen previously, this equation can be abstracted into

Fundamentals of Quantum Entanglement

D-4



∣ 〉 = ∣ 〉 ± ∣ 〉s E F
1

2
( ) (D.19)

where

∣ 〉 = ∣ ′〉〈 ′∣ 〉F j j s (D.20)

and

∣ 〉 = ∣ 〉〈 ∣ 〉E j j s (D.21)

which is not surprising since the mirrors M1 and M2 are being treated as idealized
perfect mirrors leaving all the physics to the beam splitter. A variant of the
Michelson interferometer uses retroreflectors (Steel 1967).

D.2.3 The Sagnac interferometer

The Sagnac interferometer is comprised of one beam splitter and three mirrors, as
illustrated in figure D4. Using the same meaning for j and ′j as previously, the
corresponding probability amplitude can be expressed as

〈 ∣ 〉 = 〈 ∣ 〉〈 ∣ 〉〈 ∣ 〉〈 ∣ 〉〈 ∣ 〉〈 ∣ 〉
+ 〈 ∣ ′〉〈 ′∣ 〉〈 ∣ 〉〈 ∣ 〉〈 ∣ ′〉〈 ′∣ 〉

x s x j j M M M M M M j j s
x j j M M M M M M j j s .

(D.22)3 3 2 2 1 1

1 1 2 2 3 3

Assuming perfect reflectivity at the mirrors,

〈 ∣ 〉〈 ∣ 〉〈 ∣ 〉〈 ∣ 〉 =j M M M M M M j 1 (D.23)3 3 2 2 1 1

〈 ′∣ 〉〈 ∣ 〉〈 ∣ 〉〈 ∣ ′〉 =j M M M M M M j 1 (D.24)1 1 2 2 3 3

and equation (D.22) reduces to

Figure D3. Schematics of the Michelson interferometer.
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〈 ∣ 〉 = 〈 ∣ 〉〈 ∣ 〉 + 〈 ∣ ′〉〈 ′∣ 〉x s x j j s x j j s (D.25)

which can ultimately be expressed as

∣ 〉 = ∣ 〉 ± ∣ 〉s G H
1

2
( ) (D.26)

where

∣ 〉 = ∣ ′〉〈 ′∣ 〉H j j s (D.27)

and

∣ 〉 = ∣ 〉〈 ∣ 〉G j j s . (D.28)

Again, this is due to simplifying assumptions made in equations (D.23) and (D.24).
Furthermore, it should be noted that the physics of equation (D.25) can be traced

back to the probability amplitude given in equation (D.15).
The alternative triangular Sagnac interferometer, with only two mirrors (M1 and

M2), illustrated in figure D5, leads to

〈 ∣ 〉 = 〈 ∣ 〉〈 ∣ 〉〈 ∣ 〉〈 ∣ 〉〈 ∣ 〉
+ 〈 ∣ ′〉〈 ′∣ 〉〈 ∣ 〉〈 ∣ ′〉〈 ′∣ 〉

x s x j j M M M M j j s
x j j M M M M j j s

(D.29)2 2 1 1

1 1 2 2

with the same conclusions as with the Sagnac interferometer with three mirrors.

Figure D4. Schematics of the Sagnac interferometer with three mirrors M1, M2, and M3.
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D.2.4 The N-slit interferometer

As already discussed in chapters 2 and 26, the N-slit interferometer is perfectly
described by the Dirac–Feynman probability amplitude

∑〈 ∣ 〉 = 〈 ∣ 〉 〈 ∣ 〉
=

x s x j j s (D.30)
j

N

1

and leads the generalized probability in one dimension:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑〈 ∣ 〉〈 ∣ 〉 = 〈 ∣ 〉 〈 ∣ 〉 〈 ∣ 〉 〈 ∣ 〉

= =

⁎

⁎

x s x s x j j s x j j s (D.31)
j

N

j

N

1 1

∑ ∑〈 ∣ 〉〈 ∣ 〉 = Ψ Ψ
= =

∗ Ω −Ωx s x s r r e( ) ( ) (D.32)
j

N

j

m

N

1 1

m
i( )m j

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑ ∑〈 ∣ 〉〈 ∣ 〉 = Ψ + Ψ Ψ Ω − Ω

= = = +

⁎x s x s r r r( ) 2 ( ) ( )cos( ) . (D.33)
j

N

j

N

m j

N

1 1 1

j j m m j
2

These three equivalent equations apply to single-photon propagation or to the
propagation of ensembles of indistinguishable photons. For explicit long-hand
versions of equation (D.33) for = …N 2, 3 5, the reader should refer to Duarte
(2014, 2015).

Figure D5. Schematics of the triangular Sagnac interferometer incorporating mirrors M1 and M2.

Fundamentals of Quantum Entanglement

D-7



For instance, for =N 7(Duarte 2015),

∣〈 ∣ 〉∣ = Ψ + Ψ + Ψ + Ψ + Ψ + Ψ + Ψ

+ Ψ Ψ Ω − Ω + Ψ Ψ Ω − Ω

+ Ψ Ψ Ω − Ω + Ψ Ψ Ω − Ω

+ Ψ Ψ Ω − Ω + Ψ Ψ Ω − Ω

+ Ψ Ψ Ω − Ω + Ψ Ψ Ω − Ω

+ Ψ Ψ Ω − Ω + Ψ Ψ Ω − Ω

+ Ψ Ψ Ω − Ω + Ψ Ψ Ω − Ω

+ Ψ Ψ Ω − Ω + Ψ Ψ Ω − Ω

+ Ψ Ψ Ω − Ω + Ψ Ψ Ω − Ω

+ Ψ Ψ Ω − Ω + Ψ Ψ Ω − Ω

+ Ψ Ψ Ω − Ω + Ψ Ψ Ω − Ω

+ Ψ Ψ Ω − Ω

x s r r r r r r r

r r r r

r r r r

r r r r

r r r r

r r r r

r r r r

r r r r

r r r r

r r r r

r r r r

r r

( ) ( ) ( ) ( ) ( ) ( ) ( )

2( ( ) ( )cos( ) ( ) ( )cos( )

( ) ( )cos( ) ( ) ( )cos( )

( ) ( )cos( ) ( ) ( )cos( )

( ) ( )cos( ) ( ) ( )cos( )

( ) ( )cos( ) ( ) ( )cos( )

( ) ( )cos( ) ( ) ( )cos( )

( ) ( )cos( ) ( ) ( )cos( )

( ) ( )cos( ) ( ) ( )cos( )

( ) ( )cos( ) ( ) ( )cos( )

( ) ( )cos( ) ( ) ( )cos( )

( ) ( )cos( )).

(D.34)

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2

1 2 2 1 1 3 3 1

1 4 4 1 1 5 5 1

1 6 6 1 1 7 7 1

2 3 3 2 2 4 4 2

2 5 5 2 2 6 6 2

2 7 7 2 3 4 4 3

3 5 5 3 3 6 6 3

3 7 7 3 4 5 5 4

4 6 6 4 4 7 7 4

5 6 6 5 5 7 7 5

6 7 7 6

D.3 Beam splitter matrices
A straightforward non-polarizing beam-splitter is a partial mirror. The 2 × 2 transfer
matrix describing the action of a partial reflector, or beam splitter, is simply the
identity matrix (Siegman 1986; Duarte 2003)

⎜ ⎟⎛
⎝

⎞
⎠=I 1 0

0 1
(D.35)

If a photon polarized in the ∣ 〉x state encounters a non-polarizing beam splitter,
deployed at θ π= /4, then there is a probability amplitude for straight passage and a
probability amplitude for reflection onto a path orthogonal to initial direction of
propagation. No change in polarization is experienced. The situation is different
when dealing with the Hadamard matrix as a beam splitter. The 2 × 2 Hadamard
matrix, which is described as a time symmetric beam splitter, can be expressed as
(see chapter 24)

⎜ ⎟
⎛
⎝

⎞
⎠=

−
−H 2 1 1

1 1
(D.36)1/2

which is equivalent to (see appendix F)

ψ ψ= ∣ 〉 + ∣ 〉+
−H ( ) (D.37)

The Hadamard H operating on the ∣ 〉x and ∣ 〉y states yields
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∣ 〉 = ∣ 〉 + ∣ 〉−H x x y2 ( ) (D.38)1/2

∣ 〉 = ∣ 〉 − ∣ 〉−H y x y2 ( ) (D.39)1/2

It is immediately clear that equations (D.38) and (D.39) have the same form of
equation (D.2).

References
Dirac P A M 1978 The Principles of Quantum Mechanics 4th edn (Oxford: Oxford University

Press)
Duarte F J 2003 Tunable Laser Optics (New York: Elsevier)
Duarte F J 2014 Quantum Optics for Engineers (New York: CRC)
Duarte F J 2015 Tunable Laser Optics 2nd edn (New York: CRC)
Michelson A A 1927 Studies in Optics (Chicago, IL: The University of Chicago)
Siegman A E 1986 Lasers (Mill Valley, CA: University Science Books)
Steel W H 1967 Interferometry (Cambridge: Cambridge University Press)
Zeilinger A, Bernstein H J and Horne M A 1994 Information transfer with two-state two-particle

quantum systems J. Mod. Opt. 41 2375–84

Fundamentals of Quantum Entanglement

D-9

https://doi.org/10.1080/09500349414552211


IOP Publishing

Fundamentals of Quantum Entanglement

F J Duarte

Appendix E

Polarization rotators

This is a brief introduction to the matrices used to describe polarization rotators
such as wave plates, rhomboids, and broadband prismatic rotators.

E.1 Introduction
Polarization rotation devices are widely utilized in quantum optics. Here, an ultra-
brief introduction is given with attention to the matrices governing the rotation. For
an excellent theoretical review, the book of Robson (1974) is recommended along
with Born and Wolf (1999). A more experimental perspective is given by Duarte
(2014).

E.2 Wave plates
The generalized matrix for birefringent rotators is given by (Robson 1974):

⎜ ⎟⎛
⎝

⎞
⎠

θ θ
θ θ− δ δe e

cos sin
sin cos

. (E.1)
i i

For a quarter-wave plate δ π= /2, the phase term is = +πe ii /2 , so that

⎜ ⎟⎛
⎝

⎞
⎠

θ θ
θ θ

=
−

R
i i
cos sin

sin cos
. (E.2)1/4

For a half-wave plate δ π= and = −πe 1i , so that

⎜ ⎟⎛
⎝

⎞
⎠

θ θ
θ θ

=
−

R cos sin
sin cos

. (E.3)1/2
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Half-wave plates cause rotation of linearly polarized beams by θ π= /2 so that the
rotation matrix reduces to

⎜ ⎟⎛
⎝

⎞
⎠=R 0 1

1 0
. (E.4)1/2

Quarter-wave plates and half-wave plates are wavelength specific. However, their
wavelength performance can be improved using achromatic designs incorporating
multiple crystal materials.

E.3 Rhomboid and prismatic rotators
Other useful polarization rotators include the wavelength-specific double Fresnel
rhomb, illustrated in figure E1, and the broadband collinear multiple-prism rotator
(Duarte 1989), displayed in figure E2. Both these rotators turn linearly polarized
light by θ π= /2 so that their polarization matrix is

⎜ ⎟⎛
⎝

⎞
⎠=R 0 1

1 0
.

The broadband collinear multiple-prism rotator has demonstrated high-fidelity
transmission for θ π= /2 rotation, at efficiencies approaching 95% (Duarte 1992).

Figure E1. Schematics for a generic double Fresnel rhomb utilized for θ π= /2 rotation of linearly
polarized light.

Figure E2. Schematics of the broadband collinear multiple-prism rotator utilized for θ π= /2 rotation of
linearly polarized light (from Duarte 1989).
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Appendix F

Vector products in quantum notation

Vector products are reviewed. Of particular interest are the vector products relevant
to quantum probability amplitudes. These include the product utilized in density
matrix calculations, the vector direct product, the vector outer product, and the
Kronecker or tensor product. The equivalence in vector notation that represents ∣ 〉x
and ∣ 〉y polarization states is also illustrated.

F.1 Introduction
In this appendix some aspects of vector algebra, vector products in particular, are
described from a direct utilitarian perspective.

For a vector in three dimensions x y z( , , ), the sum of two vectors +u w is defined
as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟+ =

+
+
+

u
u
u

w
w
w

u w
u w
u w

(F.1)
1

2

3

1

2

3

1 1

2 2

3 3

while subtraction −u w is defined as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟− =

−
−
−

u
u
u

w
w
w

u w
u w
u w

. (F.2)
1

2

3

1

2

3

1 1

2 2

3 3

Multiplication of a vector u with a scalar number a, yielding a new vector au, is
defined as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟=a

u
u
u

au
au
au

. (F.3)
1

2

3

1

2

3

The length of a vector u is defined as ∣ ∣u :

doi:10.1088/2053-2563/ab2b33ch35 F-1 ª IOP Publishing Ltd 2019

https://doi.org/10.1088/2053-2563/ab2b33ch35


∣ ∣ = = + +( )
u
u
u

u u uu . (F.4)2
1

2

3

2

1
2

2
2

3
2

F.2 Vector products
Various vector products are useful in quantum optics. The vector quantum notation
is used for the density matrix, the vector direct product, the tensor outer product,
and the Kronecker product. The quantum vectors ∣ 〉u and ∣ 〉w are two-dimensional
and thus compatible with ×2 2 matrices.

F.2.1 Dot product

The dot product of two vectors ·u w is a scalar defined as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟· = + +

u
u
u

w
w
w

u w u w u w( ). (F.5)33

1

2

3

1

2

3

1 1 2 2

If the angle between the two vectors is defined as θ,

θ· = ∣ ∣∣ ∣u w u w cos . (F.6)

F.2.2 Cross product

The cross product of two vectors leading to a new vector ×u w is defined as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟× =

−
−
−

u
u
u

w
w
w

u w u w
u w u w
u w u w

. (F.7)
21

1

2

3

1

2

3

2 3 3 2

3 1 1 3

2 1

F.2.3 Density matrix

The density matrix is defined as the product of two vectors, a bra vector and a ket
vector (Dirac 1978):

ρ = ∣ 〉 〈 ∣u u (F.8)

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ρ = ∣ 〉 〈 ∣ = =∗ ∗

* ∗

∗ *( )u u
u
u u u

u u u u

u u u u
( ) . (F.9)1

2
1 2

1 1 1 2

2 1 2 2

F.2.4 Vector direct product

Notice that this is different from the dot product (see, for example, Ayres 1965):

∣ 〉 ∣ 〉 = ∣ 〉 · ∣ 〉u w u w (F.10)T
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∣ 〉 · ∣ 〉 = =( ) ( )u w
u
u w w u w u w

u w u w( ) . (F.11)T 1

2
1 2

1 1 1 2

2 1 2 2

F.2.5 Vector outer product

The vector outer product is sometimes associated with the symbol ⊗. However, it is
handled mechanically as the direct product (Ortega 1987)

∣ 〉 ∣ 〉 = ∣ 〉 ⊗ ∣ 〉u w u w (F.12)T

∣ 〉 ⊗ ∣ 〉 = =( ) ( )u w
u
u w w u w u w

u w u w( ) . (F.13)1

2
1 2

1 1 1 2

2 1 2 2

The symbol ⊗ is also used for the Kronecker product, leading sometimes to
confusion.

F.2.6 Kronecker product or tensor product

The Kronecker product, ⊗U W, is a form of matrix multiplication in which each
element of the product matrix is comprised of each of the elements of the U matrix,
umn, multiplying the whole W matrix, so that the first element is u11 W, and the last
element is umn W (Zehfuss 1858). This means, for example, that the Kronecker
product of two ×2 2 matrices yields a ×4 4 matrix. For simple two-dimensional
vectors this product can be expressed as

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟∣ 〉 ⊗ ∣ 〉 = ⊗ =( ) ( )u w

u
u

w
w

u w
u w
u w
u w

. (F.14)1

2

1

2

1 1

1 2

2 1

2 2

For

⎜ ⎟⎛
⎝

⎞
⎠∣ 〉 =1 1

0
(F.15)

⎜ ⎟⎛
⎝

⎞
⎠∣ 〉 =0 0

1
(F.16)

the following Kronecker products follow:

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
∣ 〉 ⊗ ∣ 〉 =1 1

1
0
0
0

(F.17)
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⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
∣ 〉 ⊗ ∣ 〉 =1 0

0
1
0
0

(F.18)

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
∣ 〉 ⊗ ∣ 〉 =0 1

0
0
1
0

(F.19)

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
∣ 〉 ⊗ ∣ 〉 =0 0

0
0
0
1

. (F.20)

Using the Kronecker product on the Pauli matrices yields the following ×4 4
matrices:

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
σ σ⊗ = ⊗ − =

−

−
i

i

i
i

i
i

0 1
1 0

0
0

0 0 0
0 0 0
0 0 0

0 0 0

(F.21)x y

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
σ σ⊗ = ⊗

−
= −

−

0 1
1 0

1 0
0 1

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

(F.22)x z

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
σ σ⊗ = − ⊗ =

−
−i

i

i
i

i
i

0
0

0 1
1 0

0 0 0
0 0 0
0 0 0

0 0 0

(F.23)y x

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
σ σ⊗ = − ⊗

−
=

−

−

i
i

i
i

i
i

0
0

1 0
0 1

0 0 0
0 0 0

0 0 0
0 0 0

(F.24)y z

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
σ σ⊗ =

−
⊗ =

−
−

1 0
0 1

0 1
1 0

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

(F.25)z x
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⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
σ σ⊗ =

−
⊗ − =

−

−

i
i

i
i

i
i

1 0
0 1

0
0

0 0 0
0 0 0

0 0 0
0 0 0

. (F.26)z y

F.3 Equivalence in vector notation for entangled polarizations
Here, for the sake of transparency, a clarification in the definition of vector notation
is made explicit. In the notation utilized in this monograph, the polarization ∣ 〉x and
∣ 〉y states are represented by ∣ 〉1 and ∣ 〉0 , and their corresponding vectors, as defined
by Fowles (1968) and Robson (1974), are

⎜ ⎟⎛
⎝

⎞
⎠∣ 〉 = ∣ 〉 =x 1 1

0
(F.27)

and

⎜ ⎟⎛
⎝

⎞
⎠∣ 〉 = ∣ 〉 =y 0 0

1
. (F.28)

However, in the contemporaneous literature (see, for example, Nielsen and Chuang
2000) the convention

⎜ ⎟⎛
⎝

⎞
⎠∣ 〉 = ∣ 〉 =x 0 1

0
(F.29)

and

⎜ ⎟⎛
⎝

⎞
⎠∣ 〉 = ∣ 〉 =y 1 0

1
(F.30)

is used. The point to be made here is that both conventions are equivalent as long as
consistency is maintained.

To illustrate the validity of the previous statement, first the definition expressed in
equations (F.27) and (F. 28) is used in

ψ∣ 〉 = ∣ 〉 ∣ 〉 + ∣ 〉 ∣ 〉+
−2 ( 1 0 0 1 ) (F.31)1/2

ψ∣ 〉 = ∣ 〉 ∣ 〉 − ∣ 〉 ∣ 〉−
−2 ( 1 0 0 1 ) (F.32)1/2

ψ∣ 〉 = ∣ 〉 ∣ 〉 + ∣ 〉 ∣ 〉+ −2 ( 1 1 0 0 ) (F.33)1/2

ψ∣ 〉 = ∣ 〉 ∣ 〉 − ∣ 〉 ∣ 〉− −2 ( 1 1 0 0 ) (F.34)1/2
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to yield, using the vector direct product,

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝⎜
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎞
⎠⎟

⎛
⎝⎜
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎞
⎠⎟

⎛
⎝

⎞
⎠

ψ∣ 〉 = · + · = +

=

+
− −

−

2 1
0

0
1

0
1

1
0

2 0 1
0 0

0 0
1 0

2 0 1
1 0

(F.35)

1/2 1/2

1/2

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝⎜
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎞
⎠⎟

⎛
⎝⎜
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎞
⎠⎟

⎛
⎝

⎞
⎠

ψ∣ 〉 = · − · = −

=
−

−
− −

−

2 1
0

0
1

0
1

1
0

2 0 1
0 0

0 0
1 0

2 0 1
1 0

(F.36)

1/2 1/2

1/2

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝⎜
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎞
⎠⎟

⎛
⎝⎜
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎞
⎠⎟

⎛
⎝

⎞
⎠

ψ∣ 〉 = · + · = +

=

+ − −

−

2 1
0

1
0

0
1

0
1

2 1 0
0 0

0 0
0 1

2 1 0
0 1

(F.37)

1/2 1/2

1/2

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝⎜
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎞
⎠⎟

⎛
⎝⎜
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎞
⎠⎟

⎛
⎝

⎞
⎠

ψ∣ 〉 = · − · = −

=
−

− − −

−

2 1
0

1
0

0
1

0
1

2 1 0
0 0

0 0
0 1

2 1 0
0 1

(F.38)

1/2 1/2

1/2

which can be summarized in the following identities (Duarte et al 2019)

ψ σ∣ 〉 =+
−2 (F.39)x

1/2

ψ σ∣ 〉 =−
− i2 (F.40)y

1/2

ψ∣ 〉 =+ − I2 (F.41)1/2

ψ σ∣ 〉 =− −2 . (F.42)z
1/2

Now, using instead the definitions of equations (F.29) and (F.30) and

ψ∣ 〉 = ∣ 〉 ∣ 〉 + ∣ 〉 ∣ 〉+
−2 ( 0 1 1 0 ) (F.43)1/2

ψ∣ 〉 = ∣ 〉 ∣ 〉 − ∣ 〉 ∣ 〉−
−2 ( 0 1 1 0 ) (F.44)1/2

ψ∣ 〉 = ∣ 〉 ∣ 〉 + ∣ 〉 ∣ 〉+ −2 ( 0 0 1 1 ) (F.45)1/2

ψ∣ 〉 = ∣ 〉 ∣ 〉 − ∣ 〉 ∣ 〉− −2 ( 0 0 1 1 ) (F.46)1/2

the reader can verify that equations (F.35)–(F.38) are again reproduced, and so are
the identities expressed in (F.39)–(F.42).
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Furthermore, using the definition of equations (F.27) and (F.28)

σ ∣ 〉 = ∣ 〉1 1 (F.47)z

σ ∣ 〉 = −∣ 〉0 0 (F.48)z

but, using the definitions of equations (F.29) and (F.30)

σ ∣ 〉 = ∣ 〉0 0 (F.49)z

σ ∣ 〉 = −∣ 〉1 1 . (F.50)z

However, the explicit versions of equations (F.47) and (F.48) are

⎜ ⎟⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠−

=1 0
0 1

1
0

1
0

(F.51)

⎜ ⎟⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠−

= −1 0
0 1

0
1

0
1

(F.52)

which, as the reader can verify, are the same as the explicit versions of equations
(F.49) and (F.50).

F.4 The Hadamard matrix and quantum entanglement
The nexus between the Hadamard matrix and the probabilities for quantum
entanglement can be elucidated by considering equations (F.35) and (F.38) in their
final form

⎜ ⎟⎛
⎝

⎞
⎠ψ =+

−2 0 1
1 0

(F.53)1/2

⎜ ⎟⎛
⎝

⎞
⎠ψ =

−
− −2 1 0

0 1
(F.54)1/2

which immediately lead to an expression for the Hadamard matrix in terms of the
probability amplitudes for quantum entanglement (Duarte and Taylor 2019)

ψ ψ= ∣ 〉 + ∣ 〉+
−H ( ) (F.55)

which is equivalent to

σ σ= +−H 2 ( ) (F.56)x z
1/2
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Appendix G

Trigonometric identities

Trigonometric identities useful in the calculation of probability amplitudes and
probabilities related to polarization are listed.

G.I Trigonometric identities
The following are timeless and useful trigonometric identities:

φ φ+ =sin cos 1 (G.1)2 2

φ φ− = −sin( ) sin (G.2)

φ φ− =cos( ) cos (G.3)

φ θ φ θ φ θ+ = +sin( ) sin cos cos sin (G.4)

φ θ φ θ φ θ− = −sin( ) sin cos cos sin (G.5)

φ θ φ θ φ θ+ = −cos( ) cos cos sin sin (G.6)

φ θ φ θ φ θ− = +cos( ) cos cos sin sin (G.7)

φ φ φ=sin 2 2 sin cos (G.8)

φ φ φ= −cos 2 cos sin (G.9)2 2

φ φ= −cos 2 1 2 sin (G.10)2

φ φ= −cos 2 2 cos 1 (G.11)2

φ φ= −2 sin 1 cos 2 (G.12)2
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φ φ= +2 cos 1 cos 2 (G.13)2

φ θ φ θ φ θ+ = − +cos cos 2 cos( )cos( ) (G.14)

φ θ φ θ φ θ− = − − +cos cos 2 sin( )sin( ) (G.15)

φ θ φ θ φ θ− + = − +cos cos 2 sin( )sin( ) (G.16)

φ θ φ θ φ θ− − = − − +cos cos 2 cos( )cos( ) (G.17)

φ θ φ θ φ θ+ = − +sin sin 2 cos( )sin( ) (G.18)

φ θ φ θ φ θ− = − +sin sin 2 sin( )cos( ) (G.19)

φ θ φ θ φ θ− + = − − +sin sin 2 sin( )cos( ) (G.20)

φ θ φ θ φ θ− − = − − +sin sin 2 cos( )sin( ) (G.21)

φ θ φ θ φ θ= − − +sin sin
1
2

(cos( ) cos( )) (G.22)

φ θ φ θ φ θ= − + +cos cos
1
2

(cos( ) cos( )) (G.23)

φ θ φ θ φ θ= + + −sin cos
1
2

(sin( ) sin( )) (G.24)

φ θ φ θ φ θ= + − −cos sin
1
2

(sin( ) sin( )). (G.25)

Of particular interest are the identities related to the Pryce–Ward angle φ2 given in
equations (G.8)–(G.13).
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Appendix H

More on quantum notation

Further aspects of quantum notation, as per Dirac’s identities, are explored.

H.1 Introduction
Although it might be obvious to most readers, here the quantumness of equations
such as ψ∣ 〉 = ∣ 〉 − ∣ 〉x y y x( , , ) is examined further.

H.2 Certainly not classical
Already in 1926, Born, Heisenberg, and Pascal had brought to the physics world
their amazing discovery succinctly expressed as (Born et al 1926)

π
− =PQ QP

h
i

( )
2

(H.1)

− = − ℏPQ QP i( ) (H.2)

which is known as the commutation rule. This equation, discovered by Heisenberg,
Born, and Pascal, illustrates rather dramatically that in the quantum world
expressions such as −AB BA( ) do not banish, that is,

− ≠AB BA( ) 0. (H.3)

This can be easily demonstrated via the expression

σ σ σ σ−( ) (H.4)x y y x

⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

− − − =
−

i
i

i
i

i
i

0 1
1 0

0
0

0
0

0 1
1 0

2 0
0 2

. (H.5)
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Moreover, the Poisson bracket is defined as (Dirac 1978)

ˆ ˆ − ˆ ˆ = ˆ ˆHA AH A H( ) [ , ]. (H.6)

In this equation, Ĥ and Â are operators, and Ĥ is known as the Hamiltonian
(Feynman et al 1965).

H.3 Multiplication of probability amplitudes
In chapter III of his book, in a section entitled ‘Developments in notation’, Dirac
introduces the commutative axiom of multiplication associated with ket vectors
(Dirac 1978). In particular, he introduces the identity

∣ 〉∣ 〉 = ∣ 〉∣ 〉a b b a . (H.7)

Dirac does so using the preamble, ‘We assume that they have a product ∣ 〉∣ 〉a b for
which the commutative and distributive axioms of multiplication hold’.

Here, a subtlety arises: Dirac’s commutative axiom applies perfectly if ∣ 〉a and ∣ 〉b
are probability amplitudes represented by complex wave functions. For instance,

ψ ψ ψ ψ∣ 〉∣ 〉 = =ϕ θ ϕ θ ϕ θ ϕ θ− + − + − + + +a b e e e (H.8)i i i
1

( )
2

( )
1 2

( )1 1 2 2 1 1 2 2

ψ ψ ψ ψ∣ 〉∣ 〉 = =ϕ θ ϕ θ ϕ θ ϕ θ− + − + − + + +b a e e e (H.9)i i i
2

( )
1

( )
2 1

( )2 2 1 1 2 2 1 1

thus clearly showing that ∣ 〉∣ 〉 = ∣ 〉∣ 〉a b b a .
However, the same commutative axiom does not apply if the kets are associated

with vectors. For instance, if

⎜ ⎟⎛
⎝

⎞
⎠∣ 〉 =x 1

0
(H.10)

⎜ ⎟⎛
⎝

⎞
⎠∣ 〉 =y 0

1
(H.11)

using the direct vector product (see chapter 24, and appendix F) yields

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠∣ 〉∣ 〉 = · =x y 1

0
0
1

0 1
0 0

(H.12)

and

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠∣ 〉∣ 〉 = · =y x 0

1
1
0

0 0
1 0

(H.13)

clearly showing that ∣ 〉∣ 〉 ≠ ∣ 〉∣ 〉x y y x . If instead of the direct vector product the
Kronecker ⊗ product is utilized,
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⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
⎛
⎝

⎞
⎠∣ 〉∣ 〉 = ⊗ = =x y 1

0
0
1

0
1
0
0

0 1
0 0

(H.14)

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
⎛
⎝

⎞
⎠∣ 〉∣ 〉 = ⊗ = =y x 0

1
1
0

0
0
1
0

0 0
1 0

(H.15)

thus confirming the previous result. The conversion from a ×4 1 vector to a ×2 2
vector is performed via the vec function (Neudecker 1969).

Assuming that ∣ 〉∣ 〉 = ∣ 〉∣ 〉a b b a applies, then some interesting effects in notation can
arise. For instance, since

∣ 〉 − ∣ 〉 = ∣ 〉∣ 〉 − ∣ 〉∣ 〉 ≠x y y x x y y x( , , ) ( ) 0 (H.16)

∣ 〉∣ 〉 − ∣ 〉∣ 〉 ≠x y x y( ) 0 (H.17)

since the second term in parenthesis can be expressed as

∣ 〉∣ 〉 = ∣ 〉∣ 〉x y y x (H.18)

This would establish a complete equivalence between equations (H.17) and (H.16).
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Appendix I

From quantum principles to classical optics

The Dirac–Feynman principle is utilized to derive the generalized interference
equation that can then be applied to explain interference, diffraction, refraction, and
reflection in a succinct, hierarchical, and unified manner. The uncertainty principle
and the cavity linewidth equation are also explained in interferometric terms.

I.1 Introduction
In chapter 29, the idea articulated by Lamb (1987), essentially advocating that this is
a quantum world, was endorsed via the introduction of the DFL doctrine. Dirac’s
name was incorporated since he was the first to describe macroscopic interference
using quantum principles (Dirac 1978). Feynman’s name was also incorporated
since he used quantum path integrals to describe ‘classical’ beam divergence
(Feynman and Hibbs 1965). Here it is shown that the generalized quantum
interference equation can be applied to describe, in a unified, cohesive, and
hierarchical approach, interference, diffraction, refraction, and reflection (Duarte
1997, 2003).

I.2 From quantum interference to generalized diffraction
The Dirac–Feynman probability amplitude

∑〈 ∣ 〉 = 〈 ∣ 〉〈 ∣ 〉
=

x s x j j s (I.1)
j

N

1

leads, as explained in chapter 2, to the generalized probability in one dimension
(Duarte 1991, 1993):

∑ ∑〈 ∣ 〉〈 ∣ 〉 = 〈 ∣ 〉〈 ∣ 〉 〈 ∣ 〉〈 ∣ 〉
= =

*

*

x s x s x j j s x j j s (I.2)
j

N

j

N

1 1

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
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∑ ∑〈 ∣ 〉〈 ∣ 〉 = Ψ Ψ
= =

* Ω −Ωx s x s r r e( ) ( ) (I.3)
j

N

j

m

N

1 1

m
i( )m j

∑ ∑ ∑〈 ∣ 〉〈 ∣ 〉 = Ψ + Ψ Ψ Ω − Ω
= = = +

*x s x s r r r( ) 2 ( ) ( ) cos( ) . (I.4)
j

N

j

N

m j

N

1 1 1

j j m m j
2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

These three equivalent probability equations apply to single-photon propagation or
to the propagation of ensembles of indistinguishable photons (Duarte 1993).

From the phase term of equation (I.4), it can be shown that (Duarte 1997, 2006)

π
λ

π± Θ ± Φ =d n n M( sin sin )
2

(I.5)m m m1 2
v

where Θm and Φm are the angles of incidence and diffraction, respectively, n1 and n2

are the refractive indices prior- and post-diffraction, and = …M 0, 2, 4, 6, .
For =n n1 2, λ λ= v, and equation (I.5) reduces to the generalized diffraction

grating equation

λ± Θ ± Φ =d m( sin sin ) (I.6)m m m

where = …m 0, 1, 2, 3, are the various diffraction orders.

I.3 From generalized diffraction to generalized refraction
For the condition λ≪dm , the diffraction grating equation can only be solved for
(Duarte 1997)

π
λ

± Θ ± Φ =d n n( sin sin )
2

0 (I.7)m m m1 2
v

which leads directly to the generalized refraction equation

± Θ ± Φ =n n( sin sin ) 0. (I.8)m m1 2

For the case of incidence below the normal (−) and refraction above the normal
(+), equation (I.8) becomes (Duarte 2006)

− Θ + Φ =n nsin sin 0 (I.9)m m1 2

and

Θ = Φn nsin sin (I.10)m m1 2

is the well-known equation of refraction, also known as Snell’s law.
For the case of incidence above the normal (+) and refraction above the normal

(+) (Duarte 2006),

+ Θ + Φ =n nsin sin 0 (I.11)m m1 2
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and

Θ = − Φn nsin sin (I.12)m m1 2

which is the refraction law for negative refraction. This subject is treated in greater
detail by Duarte (2015).

I.4 From generalized refraction to reflection
From the generalized equation of refraction, equation (I.8) (Duarte 1997, 2015), for

=n n1 2,

± Θ ± Φ =( sin sin ) 0. (I.13)m m

For incidence above the normal (+) and reflection below the normal (−),

+ Θ − Φ =sin sin 0 (I.14)m m

which means

Θ = Φ (I.15)m m

where Θm is the angle of incidence, and Φm is the angle of reflection. This is the well-
known law of reflection.

I.5 From quantum interference to Heisenberg’s uncertainty principle
In this section an approximate geometrical derivation of Heisenberg’s uncertainty
principle, via the generalized probability equation for interference, is illustrated. As
already explained, from the generalized interferometric equation

∑ ∑ ∑∣〈 ∣ 〉∣ = Ψ + Ψ Ψ Ω − Ω
= = = +

x s r r r( ) 2 ( ) ( ) cos( )
j

N

j

N

m j

N

1 1 1

j j m m j
2 2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

emerges the generalized diffraction equation (I.6) from which, for positive diffrac-
tion, the usual equation of diffraction

λΘ ± Φ =d m(sin sin ) (I.16)m m m

emerges. For θΘ ≈ Φ =( )m m , the Littrow grating equation

θ λ=d m2 sin (I.17)

can be established.
For an expanded beam of light incident on a reflection diffraction grating, as

depicted in figure I1, θ = Δx lsin / , where l is the length of the grating, and Δx is the
path difference. For an infinitesimal change in wavelength, at two infinitesimally
different wavelengths, from equation (I.17)

λ = Δd
m

x
l

2
(I.18)1

1⎜ ⎟⎛
⎝

⎞
⎠
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λ = Δd
m

x
l

2
. (I.19)2

2⎜ ⎟⎛
⎝

⎞
⎠

Since equation (I.17) can also be expressed as

λ=
Δ

d
m

l
x

2
(I.20)

λ λ λΔ = −( )1 2 yields

λ λΔ =
Δ

Δ − Δl
x

x x
l

. (I.21)1 2⎜ ⎟⎛
⎝

⎞
⎠

To distinguish between a maxima and minima, the difference in path differences
should be λΔ − Δ ≈x x( )1 2 . Thus, equation (I.21) reduces immediately to the
diffraction identity

λ λΔ ≈
Δx

. (I.22)
2

The momentum expression = ℏp k for two slightly different wavelengths leads to

λ λ
λ λ

− = −
p p

h( )
(I.23)1 2

1 2

1 2

Figure I1. Reflection diffraction grating interacting with expanded laser beam.
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and by restating the assumption of two infinitesimally different wavelengths, this
equation reduces to

λ
λ

Δ ≈ Δ
p h . (I.24)

2

Substitution of equation (I.22) into (I.24) immediately yields

Δ Δ ≈p x h (I.25)

which isHeisenberg’s Uncertainty Principle (Dirac 1978). Additional useful forms of
the uncertainty principle are its frequency–spatial version

νΔ Δ ≈x c (I.26)

and its frequency–time version

νΔ Δ ≈t 1. (I.27)

I.6 The cavity linewidth equation
It has already been established that the generalized interferometric equation (I.4)
leads to the generalized diffraction equation (I.6) from which, for positive diffrac-
tion, the usual equation of diffraction

λ± Θ ± Φ =d m( sin sin ) (I.28)m m m

is obtained. As seen previously, for θΘ ≈ Φ =( )m m , the Littrow grating equation

θ λ=d m2 sin

can be established.
Following Duarte (1992) and considering two slightly different wavelengths, an

expression for λ λ λ− = Δ( )1 2 can be written as

λ θ θΔ = −d
m
2

(sin sin ) (I.29)1 2

and for θ θ θ≈ =( )1 2 as

λ θ θ θ θΔ ≈ Δ −
!

+
!

−
!

+ ⋯d
m
2

1
3
3

5
5

7
7

. (I.30)
2 4 6⎛

⎝⎜
⎞
⎠⎟

Differentiation of the Littrow grating equation yields

θ
λ

θ∂
∂

= m
d

cos
2

(I.31)

and substitution of m d( /2 ) into equation (I.30) leads to

λ θ θ
λ

θ θ θ θΔ ≈ Δ ∂
∂

−
!

+
!

−
!

…
−

−1
2 4 6

(cos ) . (I.32)
1 2 4 6

1⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟
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Since the expansion in θ approaches θcos ,

λ θ θ
λ

Δ ≈ Δ ∂
∂

−
(I.33)

1
⎜ ⎟⎛
⎝

⎞
⎠

or

λ θ θΔ ≈ Δ ∇λ
−( ) (I.34)1

which is the well-known cavity linewidth equation (Duarte 1992).

I.7 Generalized multiple-prism dispersion
Since the cavity linewidth equation λ θ θΔ ≈ Δ ∇λ

−( ) 1 depends inversely on the overall
cavity dispersion θ∇λ( ), it is important to have access to generalized equations of
intracavity dispersion applicable to multiple-prism grating assemblies. Precise
knowledge of the overall intracavity dispersion is essential for the design of
optimized high-power pulsed tunable lasers. For instance, a high peak-power
optimized multiple-prism solid-state dye laser oscillator can yield diffraction-limited
beam divergence at a linewidth of νΔ ≈ 350 MHz for a near-Gaussian temporal
pulse at Δ ≈t 3 ns, so that νΔ Δ ≈t 1.05, leading to a performance near the
frequency–time limit allowed by Heisenberg’s uncertainty principle (Duarte 1999).

For a generalized multiple-prism array, as illustrated in figure I2, and the
generalized diffraction equation (I.8) (Duarte and Piper 1982, Duarte 2006),

ϕ ϕ ε α+ = ± (I.35)m m m m1, 2,

ψ ψ α+ = (I.36)m m m1, 2,

ϕ ψ= ±nsin sin (I.37)m m m1, 1,

ϕ ψ= ±nsin sin . (I.38)m m m2, 2,

Here, ϕ m1, and ϕ m2, are the angles of incidence and emergence, and ψ m1, and ψ m2, are
the corresponding angles of refraction at the mth prism. In these equations the
positive sign + indicates positive refraction while the negative sign − refers to
negative refraction.

Differentiating equations (I.37) and (I.38) and using the derivative identity
ψ ψ= −d dn d dn( / ) ( / )m m1, 2, leads to the single-pass dispersion following the mth prism

(Duarte and Piper, 1982, 1983, Duarte 2006):

ϕ ϕ∇ = ± ∇ ± ∇ ± ∇λ λ λ λ
−

−n k k n( ) ( ( ) ) (I.39)m m m m m m m m2, 2, 1, 2,
1

1, 2,( 1)H H

where ∇λ = ∂/∂λ and

ψ
ϕ

=k
cos

cos
(I.40)m

m

m
1,

1,

1,
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ϕ
ψ

=k
cos

cos
(I.41)m

m

m
2,

2,

2,

ϕ
=

n

tan
(I.42)m

m

m
1,

1,H

ϕ
=

n

tan
. (I.43)m

m

m
2,

2,H

k m1, and k m2, represent the beam expansion, at the mth prism, by the incidence and
the emergence beams, respectively. In equation (I.39), (±) refers to deployment in
either a positive (+) or compensating (−) configuration, while the simple ± indicates
either positive or negative refraction (Duarte 2006).

Differentiation of equation (I.41) leads to the generalized single-pass dispersion
equation for positive refraction

ϕ ϕ∇ = ∇ + ∇ ± ∇λ λ λ λ
−

−n k k n( ) ( ). (I.44)m m m m m m m m2, 2, 1, 2,
1

1, 2,( 1)H H

Figure I2. Multiple-prism arrays with the (a) additive configuration and (b) compensating configuration.
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From this equation it can be shown that the generalized double-pass multiple-prism
dispersion is given by (Duarte 1985, 1989)

∑ ∏ ∏

∑ ∏ ∏

∇ Φ = ± ∇

+ ± ∇

= = =

= = =

λ λ

λ

−

MM k k n

k k n

2 ( 1)

2 ( 1)

(I.45)
m

r

j m

r

j m

r

m

r

j

m

j

m

1

1 1 1

P m j j m

m j j m

1 2 1, 1, 2,

1

2, 1, 2,

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

H

H

∏=
=

M k (I.46)
m

r

1

m1 1,

∏=
=

M k . (I.47)
m

r

1

m2 2,

Furthermore, the overall multiple-prism grating multi return-pass laser linewidth is
given by (Duarte and Piper 1984, Duarte 2001)

λ θΔ = Δ ∇ Θ + ∇ Φλ λ
−RM R( ) (I.48)R R G P

1

where R is the number of return intracavity passes elapsed from the leading edge of
the laser excitation pulse to the onset of laser emission (Duarte 2001). This equation
neatly shows the enormous effect on laser emission linewidth that intracavity
multiple-prism factors in the ⩽ ⩽M100 200 range can have since the grating
dispersion is multiplied by M (Duarte 2015).

I.7.1 Generalized multiple-prism dispersion for laser pulse compression

It has been established that the measured laser linewidth λ θ θΔ ≈ Δ ∇λ
−( ) 1 of an

optimized multiple-prism grating laser oscillator can be very narrow and even
approach the limit imposed by Heisenberg’s uncertainty principle. For laser pulse
compression, the reverse is desired. That is, since νΔ Δ ≈t 1, a very broadband laser
emission can lead to a very narrow temporal pulse, and the least amount of
intracavity dispersion is required. This requires detailed knowledge of the first,
second, third, and even higher derivatives of the intracavity dispersion.

Using the identity (Duarte 1987),

ϕ ϕ∇ = ∇ ∇λ λ
−n( ) (I.49)n m m m2, 2,

1

where ∇ = ∂ ∂n/n , the generalized single-pass dispersion, that is, equation (I.44),
becomes (Duarte 1987, 2009)

ϕ ϕ∇ = + ± ∇−
−( ) ( ) (I.50)n m m m n m2, 2,

1
1, 2,( 1)H M H

where

=− − −k k( ) . (I.51)m m
1

1,
1

2,
1M
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The second derivative of ϕ m2, , that is, ϕ∇n m
2

2, , is given by (Duarte 1987, 2000)

ϕ

ϕ

ϕ

∇ = ∇

+ ∇ ± ∇

+ ∇ ± ∇

−
−

−
−( )

( )( )

( ) .

(I.52)

n m n m

n m n m

n m n m

2
2, 2,

1
1, 2,( 1)

1
1,

2
2,( 1)

H
M H

M H

The third derivative of ϕ m2, , ϕ∇n m
3

2, , is given by (Duarte 2009)

ϕ

ϕ

ϕ

ϕ

∇ = ∇

+ ∇ ± ∇

+ ∇ ∇ ± ∇

+ ∇ ± ∇

−
−

−
−

−
−

( )
( )

( )( )

2( )

( ) .

(I.53)

n m n m

n m n m

n n m n m

n m n m

3
2,

2
2,

2 1
1, 2,( 1)

1
1,

2
2,( 1)

1 2
1,

3
2,( 1)

H

M H

M H

M H

The fourth derivative of ϕ m2, , ϕ∇n m
4

2, , is given by (Duarte 2009)

ϕ

ϕ

ϕ

ϕ

ϕ

∇ = ∇

+ ∇ ± ∇

+ ∇ ∇ ± ∇

+ ∇ ∇ ± ∇

+ ∇ ± ∇

−
−

−
−

−
−

−
−

( )
( )

( )

( )
( )

( )

3

3( )

( )

(I.54)

n m n m

n m n m

n n m n m

n n m n m

n m n m

4
2,

3
2,

3 1
1, 2,( 1)

2 1
1,

2
2,( 1)

1 2
1,

3
2,( 1)

1 3
1,

4
2,( 1)

H

M H

M H

M H

M H

and so on.
Eventually, the seventh derivative of ϕ m2, , that is, ϕ∇n m

7
2, , is given by

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

∇ = ∇

+ ∇ ± ∇

+ ∇ ∇ ± ∇

+ ∇ ∇ ± ∇

+ ∇ ∇ ± ∇

+ ∇ ∇ ± ∇

+ ∇ ∇ ± ∇

+ ∇ ± ∇

−
−

−
−

−
−

−
−

−
−

−
−

−
−

( )
( )
( )
( )

( )
( )

( )

( )
( )
( )

( )
( )

6

15

20

15

6( )

( ) .

(I.55)

n m n m

n m n m

n n m n m

n n m n m

n n m n m

n n m n m

n n m n m

n m n m

7
2,

6
2,

6 1
1, 2,( 1)

5 1
1,

2
2,( 1)

4 1 2
1,

3
2,( 1)

3 1 3
1,

4
2,( 1)

2 1 4
1,

5
2,( 1)

1 5
1,

6
2,( 1)

1 6
1,

7
2,( 1)

H

M H

M H

M H

M H

M H

M H

M H

For this series of derivatives, the numerical factors can be predetermined from
Pascal’s triangle relative to N, where +N( 1) is the order of the derivative (Duarte
2009, 2018).
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Observing the series of derivatives, ϕ∇n m
1

2, , ϕ∇n m
2

2, , ϕ ϕ∇ …∇n m n m
3

2,
7

2, , a generalized
equation for the higher derivatives is found (Duarte 2013):

ϕ ζ∇ = ∇ + ∇ +− − −( ) ( ) (I.56)n
r

m n
r

m n
r

2,
1

2,
1 1H M

where

ζ ϕ= ∇ ± ∇ +
− (I.57)s

n
s

m n
s

m1,
1

2,( 1)H

ζ ϕ= = ± ∇ −1 . (I.58)m n m
0

1, 2,( 1)H

The lower derivatives have been used to design multiple-prism pulse compressors,
including up to six prisms, for semiconductor lasers (Pang et al 1992). The lower
derivatives have also been used by Osvay et al (2004, 2005) in practical femtosecond
lasers to calculate intracavity dispersions and laser pulse durations for double-prism
compressors, finding good agreement between theory and experiments.

I.8 Discussion
Here it was clearly and unambiguously demonstrated that from a purely quantum
equation

∑ ∑〈 ∣ 〉〈 ∣ 〉 = 〈 ∣ 〉〈 ∣ 〉 〈 ∣ 〉〈 ∣ 〉
= =

*

*

x s x s x j j s x j j s
j

N

j

N

1 1

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

and representing the probability amplitudes with complex wave equations, as
encouraged by Dirac, the equations for generalized diffraction, generalized refrac-
tion, and reflection can be arrived at in a coherent and unified manner. The
traditional way to present these equations, via classical optics, is in reverse and in the
absence of cohesiveness.

It was also shown that Heisenberg’s uncertainty principle can be derived from
quantum interferometric principles, thus again demonstrating the enormous signifi-
cance of interference at the foundations of quantum optics.

Other equations long thought to be entirely classical in nature and origin can be
traced back to quantum interferometric principles. Such is the case for the cavity
linewidth equation and multiple-prism grating dispersion, a subject that has been of
interest since the times of Newton (1704). These are further examples that reinforce
the DFL doctrine: the foundation of optics is quantum, and as Willis Lamb implied
… it is time we ‘learn to enjoy it’ (Lamb 1987).
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Appendix J

Introduction to Hamilton’s quaternions

Here an introduction to Hamilton’s quaternions, as utilized in the development of
the probability amplitudes for = =n N 3, 6, is given.

J.1 Introduction
Hamilton’s quaternions were introduced by the mathematician of the same name
around the mid-1800s (Hamilton 1866). A more recent review of this subject is given
by Koecher and Remmert (1991).

J.2 Basic quaternion identities
Quaternions extend beyond the realm of complex numbers and obey the main
relation

= = = = −i j k ijk 1 (J.1)2 2 2

and the basis elements i, j, and k obey the commutative law when multiplied by 1:

× = × =i i i1 1 (J.2)

× = × =j j j1 1 (J.3)

× = × =k k k1 1 . (J.4)

The self-consistency of the main relation given in equation (J.1) also implies that

=ij k (J.5)

= −ji k (J.6)

=jk i (J.7)
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= −kj i (J.8)

=ki j (J.9)

= −ik j. (J.10)
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