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A word to the reader

You are holding a course of lectures from the ‘Higher School of Physics’ series of
ROSATOM State Corporation.

The Higher School of Physics is the initiative of ROSATOM, aimed at training
and educating scientists of a new generation in the field of theoretical and
experimental physics, as well as at attracting talented young people to science and
innovation spheres.

The books of this series have been prepared by leading scientists of the Russian
Academy of Sciences and industry research centers and contain information about
the most topical areas of theoretical and experimental physics.

I hope these books will become handbooks for students and postgraduates of
specialized disciplines, young scientists and all employees of the nuclear industry,
interested in improving their scientific and technical skills.

For ROSATOM, the matter of honor and professional maturity is to breathe
fresh energy into nuclear power engineering and industry: to cultivate a galaxy of
physicists of the future, who will become generators of innovative ideas and drivers
of the world nuclear industry.

V A Pershukov,
Deputy Director General for Innovation Management,

ROSATOM State Corporation
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From the editorial board

The successful history of the nuclear project, which was of key importance for the
stability of our country for many decades was the result of the work of a huge team of
scientists, engineers and workers. The task of forging an atomic shield was solved in a
country destroyed by war, at the cost of incredible efforts, without a developed
instrument-making infrastructure, in the absence of necessary unique materials and
the corresponding industry. Paying tribute to all participants of the project, particular
mention should be made of the decisive contribution of scientists. Bright representa-
tives of physical, chemical, and materials sciences found solutions to the most
complicated problems that were on the way to creating nuclear weapons. We proudly
remember I V Kurchatov, Yu B Khariton, I E Tamm, A D Sakharov, K I Shchelkin,
D A Frank-Kamenetsky, V L Ginzburg, E I Zababakhin and many other prominent
scientists who led their colleagues and students. Success was determined by the talent
and a broad knowledge of the leaders. Even today, their successors and disciples
successfully work in our industry, including civil and defense spheres.

Modern problems of the development of science and technology also call for
scientific leaders—custodians of the traditions initiated by previous generations. The
upbringing of such leaders is the main concern of ROSATOM. That is why an idea
arose to found the Higher School of Physics for young employees of ROSATOM
institutes. The main task of the Higher School of Physics is to broaden the horizons of
young people—students of the School by organizing four two-week modules on the
basis of the largest scientific centers of ROSATOM, during which leading Russian
scientists deliver lectures that represent different fields of physics and related sciences.

The selection of the courses and lecturers is made by the Scientific Council of the
School. The Council includes well-known scientists from All-Russian Scientific
Research Institute of Technical Physics (Snezhinsk), All-Russian Scientific Research
Institute of Experimental Physics (Sarov), Troitsk Institute for Innovation and
Fusion Research (Troitsk), and Institute of Physics and Power Engineering
(Obninsk). Each course consists of six lectures; two courses are read each week;
and the number of students is no more than 20 people, which creates prerequisites
for direct contact of the lecturer with the audience.

It is important that students attend the courses only twice a year for two weeks.
Young employees, who showed their qualities as researchers and leaders, are
selected to join the School by the heads of the institutes.

The present series has been prepared on the basis of the lecture materials of the
Higher School of Physics. The Scientific Council of the School expresses the hope
that the series will appeal to a wide readership who wish to become acquainted with
a brief summary of selected chapters of modern physics.

V P Smirnov,
Academician of the Russian Academy of Sciences,

Chairman of the Scientific Council of the Higher School of Physics of
ROSATOM State Corporation,

Chairman of the Editorial Board of the series
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Author’s preface

This book is based on the lectures delivered by the author at the Higher School of
Physics founded by ROSATOM State Corporation, as well as on plenary, review
and invited papers presented at scientific conferences and symposia.

I am grateful for the opportunity to acquaint students of the School with the
current state and prospects for the development of the physics of extreme states of
matter, with the advantages and limitations of various experimental methods of
generation and diagnostics, and with the results achieved.

In this course, the author has made an attempt to systematize, summarize and
present, from a single point of view, theoretical and experimental material relating
to this new field of science. In addition to the extensive scientific literature, the
author has used a large number of original papers, reports and abstracts that are not
widely available to a wide audience.

In view of the vastness and dissimilarity of the material, the presentation is mainly
of a fact-finding nature, referring the reader to relevant reviews and monographs.
Therefore, many interesting astrophysical, laser and nuclear physics problems, as
well as technical applications, are presented briefly, sometimes even schematically.
The author, of course, did not set a goal to include everything that is known today
about extreme states of matter. The emphasis is laid particularly on those issues that
seem most interesting to the author and on which he and his colleagues had to work
directly.

After the Introduction, the first lecture addresses the classification of states of
matter at high energy densities. The general view of the phase diagram, dimension-
less parameters and physical conditions corresponding to terrestrial and astrophys-
ical objects are discussed.

The means for generating extreme states available to the experimenters are
outlined in the second lecture.

The use of lasers to produce and diagnose states with high energy densities is
considered in the third lecture.

The fourth lecture discusses the problems of the physics of extreme states of
matter in collisions of heavy ions accelerated to sublight velocities, which are
accompanied by the formation of superdense nuclear matter, i.e. compressed
baryonic matter and quark–gluon plasma.

The problems relating to the description of the thermodynamics of a highly
compressed electromagnetic plasma are addressed in the fifth lecture.

The book concludes with a discussion of the most characteristic astrophysical
objects and phenomena associated with the implementation of extreme energy
densities in the Universe under the action of gravity and thermonuclear energy
release.

I hope that the book will be useful to a wide circle of scientists, postgraduates and
students of natural-science specialties, providing access to original works and
allowing them to unravel fascinating problems of modern physics of extreme states
of matter.
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The author will be grateful to readers for their critical comments, suggestions and
amendments that are inevitable in presenting such a rapidly developing field as the
physics of extreme states.

Vladimir E Fortov,
Academician of the Russian Academy of Sciences
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Introduction

The states of matter at extremely high temperatures and densities have always
attracted researchers, owing to the possibility of reaching record parameters,
advancing to new domains of the phase diagram, and producing in the laboratory
the exotic states that gave birth to our Universe through the Big Bang and which
now account for the great bulk (90%–95%) of the mass of baryonic (visible) matter—
in stellar and interstellar objects, planets, and exoplanets [1–9]. That is why the study
of these states of matter—so exotic for us in terrestrial conditions and yet so typical
for the rest of the Universe—is of great cognitive importance, forming our modern
notions of the surrounding world.

Furthermore, a constant pragmatic incentive for such investigations is the
application of highly compressed and heated matter in nuclear, thermonuclear,
and pulsed power engineering, high-voltage and high-power electrophysics, for the
synthesis of superhard materials, for strengthening and welding materials, for
antimeteoritic protection of spacecraft and, of course, for defense. Indeed, the
military application fostered the first successful experiment involving extreme states,
which was conducted more than 3000 years ago—during the battle between David
and Goliath. According to the Old Testament [10], the high-velocity impact of a
stone shot from David’s sling on Goliath’s head killed him. It gave rise to a shock
wave with an amplitude pressure of about 1.5 kbar. This pressure was more than
twice the strength of Goliath’s frontal bone and determined the outcome of the duel,
to the great joy of the army and people of Israel. Discovered to be successful at that
time, this scheme of action is today the ideological basis for all subsequent
experiments in the field of dynamic physics of extreme states of matter.

Since the time of David, the application of more powerful and sophisticated
energy cumulation systems—chemical and nuclear high explosives (HE), powder,
light-gas, and electrodynamic guns, charged-particle fluxes, laser and x-ray radiation—
has enabled the velocity of thrown projectiles to be raised by three to four orders of
magnitude, and the pressure in the shock wave, by six to eight orders of magnitude,
thereby reaching the megabar–gigabar pressure range and ‘nuclear’ energy densities
in substances.

In the 20th century, the mainstream in physics of extreme states of matter was
closely related to the entry of our civilization into the atomic and space era. In
nuclear charges, extreme states of matter [11] generated by intense shock waves serve
to initiate chain nuclear reactions in compressed nuclear fuel, and in thermonuclear
charges and microtargets for controlled fusion, high-energy states are the main
instrument for compressing and heating thermonuclear fuel and initiating thermo-
nuclear reactions in it.

The research of extreme states of matter, starting in the mid-1950s within the
framework of nuclear defense projects [12–16], has received considerable attention
with the advent of new devices for generating high energy densities, such as lasers,
charged particle beams, high-current Z-pinches, explosive-driven electric–discharge
generators of high-power shock waves, multi-stage light-gas guns and diamond
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anvils. These sophisticated and expensive technical devices have made it possible to
advance substantially along the scale of energy densities available for physical
experiment and to obtain, in laboratory or quasi-laboratory conditions, the states of
the megabar-gigabar pressure range unattainable for the traditional techniques of
experimental physics.

Traditionally, energy densities are referred to as ‘extreme’ [1–4, 8] if they exceed
104–105 J cm−3, which corresponds to the binding energy of condensed matter (for
example, high explosives, hydrogen, or metals) and a pressure level of millions of
atmospheres. For comparison, the pressures in the center of the Earth, Jupiter, and
the Sun are about 3.6 Mbar, 40 Mbar, and 200 Gbar, respectively.

As a rule, matter in extreme states is in the plasma state—an ionized state arising
from thermal- and/or pressure-induced ionization. In astrophysical objects, such
compression and heating are caused by gravitational forces and nuclear reactions,
and in laboratory conditions—by intense shock waves, which are excited by a wide
variety of ‘drivers’, ranging from two-stage gas guns to lasers and high-current Z-
pinches with a power of hundreds of terawatts1. However, while the lifetime of
extreme states in astrophysical objects varies from milliseconds to billions of years,
making it possible to conduct detailed observations and measurements with space
probes and orbital and ground-based telescopes of different wavelengths, in
terrestrial conditions we have to do with the microsecond–femtosecond–attosecond
duration range [2, 3], which calls for the application of ultrafast specific diagnostic
techniques.

At present, every large-scale physical facility (megaproject) that generates
extremely high pressures and temperatures is enrolled in work programs (frequently
international) on the fundamental physics of extreme states of matter, in addition to
having practical, applied tasks in impulse energetics or defense. Thus, modern short-
pulse laser systems (NIF, NIKE, USA; TRIDENT, LMJ, France; GEKKO-XII,
Japan; OMEGA, VULKAN, Great Britain; Iskra-6, Russia; etc) are capable of
releasing 1.0–1.8 MJ in a volume of the order of 1 mm3 in several nanoseconds to
produce pressures in the quasi-gigabar range (see tables 1.1 and 2.1).

In addition, the Z-pinch technology is now exhibiting considerable progress: at
the Sandia facility (USA), ≈1.8 MJ soft x-ray radiation was obtained in the collapse
of plasma liners during 5–15 ns in a region measuring about 1 cm3. Supplemented by
experiments with diamond anvils, explosion and electric explosion devices, and
light-gas guns in the megabar pressure range, these record-high parameters are now
the source of new and sometimes unexpected information about the behavior of
highly compressed plasma [3].

Interestingly, in experiments on extreme-state laboratory plasma, even today it is
possible to partly reproduce on a small scale many phenomena and processes
occurring in astrophysical objects, information about which has become accessible
due to the use of ground-based and spaceborne means of observation. These are the
data on hydrodynamic mixing and various instabilities, shock-wave phenomena,

1The total power of Earth’s electric power plants amounts to about 3.5 TW.
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strongly emitting, relativistic and magnetized fluxes and jets, solitons, relativistic
phenomena, equations of state, and the composition and spectra of compressed
nonideal plasma, as well as the characteristics of interstellar cosmic plasma, dust,
and a number of other effects.

Although the limiting pressures of a laboratory plasma are still 20–30 orders of
magnitude higher than the maximum astrophysical values, this gap is being rapidly
bridged, and the physical processes in a laboratory and in space often demonstrate
an astonishing variety and at the same time striking similarities, evidencing at least
the uniformity of physical principles of the behavior of matter in an extremely broad
range of densities (approximately 42 orders of magnitude) and temperatures (up to
1013 K).

The revolutionary discoveries in astronomy of recent decades (neutron stars,
pulsars, black holes, wormholes, γ-ray bursts, exoplanets, etc) [4–9] demonstrate new
examples of extreme states, the investigation of which is important in order to solve
the most fundamental problems of modern astrophysics.

To date, the physics of extreme states of matter has turned into an extensive and
rapidly developing branch of modern science that makes use of the most sophisti-
cated means of generation, diagnostic techniques, and numerical simulations using
high-power supercomputers. It is no accident that half of the 30 problems of ‘the
physics minimum at the beginning of the 21st century’ proposed by Academician
V L Ginzburg [5] are to a greater or lesser degree dedicated to the physics of extreme
states of matter.

The physics of extreme states of matter is closely related to several branches of
science, including plasma physics and condensed-matter physics, relativistic physics,
the physics of lasers and charged-particle beams, nuclear, atomic, and molecular
physics, radiative, gas and magnetic hydrodynamics, astrophysics, etc. In this case, a
distinguishing feature of the physics of extreme states of matter is an extreme
complexity and strong nonlinearity of the physical processes occurring in it, the
significance of collective interparticle interaction, and relativity, which makes the
investigation of the phenomena in this field a fascinating and absorbing task, which
attracts a constantly increasing number of researchers.

With all these reasons taken into account, the National Research Council of the
US National Academies of Sciences formulated a large-scale national program of
research [4] in the area of the physics of extreme states of matter and gave it high
priority. Similar programs are being vigorously pursued in many developed
countries capable of making the unique experimental devices and having qualified
personnel in sufficient number.

The physics of extreme states of matter is a rapidly developing realm of modern
science and technology, so that the material presented here will be permanently
supplemented and improved by new measurements, observations, and models.
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Vladimir E Fortov

Chapter 1

Lecture 1: Matter under extreme conditions:
classification of states

The scale of extreme states realized in Nature defies the most vivid imagination. At
the bottom of the Mariana Trench (at a depth of 11 km), the water pressure, p,
amounts to 1.2 kbar; in the center of the Earth, p ≈ 3.4 Mbar, T ≈ 0.5 eV, and the
density, ρ ≈ 10–20 g cm−3; in the center of Jupiter, p ≈ 40–70 Mbar, ρ ≈ 30 g cm−3,
and T ≈ 2 × 104 K; in the center of the Sun, p ≈ 240 Gbar, T ≈ 1.6 × 103 eV, and ρ ≈
150 g cm−3; and in cooling-down stars (white dwarfs), p ≈ 1010–1016 Mbar, ρ ≈
106–109 g cm−3, and T ≈ 103 eV. In targets for controlled fusion with inertial
confinement of plasma, p ≈ 200 Gbar, ρ ≈ 150–200 g cm−3, T ≈ 108 eV. Neutron
stars, which are elements of pulsars, black holes, γ-ray bursts and magnetars,
apparently have record-high parameters: p ≈ 1019 Mbar, ρ ≈ 1011 g cm−3, and T ≈
104 eV for the mantle and p ≈ 1023 Mbar, ρ ≈ 1014 g cm−3, T ≈ 104 eV for the core at
a giant induction of the magnetic field of 1011–1016 Gs.

Collisions of heavy nuclei accelerated to relativistic velocities in modern accel-
erators lead to the emergence of supercompressed quark–gluon plasma states with
ultra-extreme parameters p ≈ 1030 bar, ρ ≈ 1015–1016 g cm−3, and T ≈ 1014 K, which
exceed those realized in extreme astrophysical objects.

The emergence of extreme states in nature is due to the forces of gravity, which
are inherently long-ranged and unscreened, unlike Coulomb forces (in electro-
magnetic plasma). These forces compress and heat the substance either directly or by
stimulating exothermic nuclear reactions in massive astrophysical objects and in the
early stages of the evolution of the Universe.

What is amazing is not only the breadth of the range of parameters realized in
Nature, but also the huge difference in the characteristic times and dimensions.
The dimensions of the visible part of the Universe amount to 1.3 × 1019 cm.
The impression made by this figure becomes even stronger when it is compared
with the time of 10−24 s taken by light to traverse a distance equal to about the
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proton size (10−13 cm). The theory of relativity and other modern physical models do
operate throughout this tremendous range.

As noted above, the lower boundary of the region of extreme states is considered
to mean the states of a matter with an energy comparable to a binding energy of
condensed matter, 104–105 J cm−2, which corresponds to the binding energy of
valence electrons (of several electron volts) and pressures from about 100 kbar to
1 Mbar. These pressures far exceed the ultimate mechanical strength of materials
and make it necessary to take into account their compressibility during hydrodynamic
motion under pulsed energy release.

In the domain of low pressures and temperatures, matter exhibits an exceptional
diversity of properties and structures thatwe encounter daily under normal conditions [1].

Physical, chemical, structural, and biological properties of a substance under
normal conditions are sharp nonmonotonic functions of the composition. The
classification of these ‘low-energy’ states is complicated and cumbersome. It is
determined by the position, details, and occupation features of electronic levels of
atoms, ions, and molecules, and finally specifies the amazing richness of the forms
and manifestations of organic and inorganic nature on Earth.

Laser and evaporative cooling methods (figure 1.1) enable ultralow (10−9 K) ion
temperatures to be reached and interesting quantum phenomena such as Bose–
Einstein condensation, Rydberg matter, Coulomb condensation, etc to be studied.

Figure 1.1. Methods for obtaining extremely low temperatures. Reprinted from [5] by permission from
Springer. Copyright 2011, Springer.
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With increasing energy density (p and T), substances acquire an increasingly
universal structure [1–3]. The distinctions between the neighboring elements of the
periodic system smooth out and the properties of a substance become progressively
smoother functions of its composition. Owing to an increase in energy density, an
obvious ‘universalization’ or simplification of the substance properties occurs. An
increase in pressure and temperature ruptures molecular complexes to form atomic
states, which then lose outer-shell electrons responsible for the chemical individu-
ality of the substance, due to thermal and/or pressure-induced ionization. Electron
shells of atoms and ions restructure to acquire an increasingly regular level
occupation and a crystal lattice after a number of polymorphic transformations
(this ordinarily takes place for p < 0.5 Mbar) transforms to a close-packed body-
centered cubic structure common to all substances.

These processes of substance ‘simplification’ take place at energy densities
comparable to the characteristic energies of the aforementioned ‘universalization’
processes. When the characteristic energy density becomes of the order of the
valence shell energies, e a/2

0
4 ≈ 3 × 1014 erg cm−3 (a0 = ħ/(me2) = 5.2 × 10−9 cm is

the Bohr radius), the order of magnitude of the lower boundary of substance
‘universalization’, T ≈ 10 eV, р ≈ 300 Mbar, is reached. The exact quantitative
determination of these boundaries is an important task of the experimental physics
of extreme states of matter, especially due to the fact that theory [2, 3] predicts a
highly varied behavior of substances in the ultramegabar pressure range (shell effects
[2, 3], electron and plasma phase transitions [4–8] and other qualitative phenomena).

The upper boundary of the domain of extreme states is defined by the
contemporary level of knowledge about the high-energy-density physics and
observational astrophysical data, and is expected to be limited only by our
imagination.

The ultra-extreme matter parameters available for modern physical concepts are
defined by the so-called Planck quantities, which are combinations of the funda-
mental constants such as the Planck’s constant ħ, the velocity of light c, the
gravitational constant G, and the Boltzmann constant k:

the length

= ℏ = ℏ ≈ × −l
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c m c
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3

33
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= = ℏ = ℏ = × −t
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Such super-extreme parameters of matter, under which the known laws of physics
seem to no longer work, might have been realized at the very beginning of the Big
Bang or at the singularity in the collapse of black holes. In the first case, according to
the model of the expanding Universe (A Friedman, G Lemaître [9, 10]), the Universe
originated from the Planckian area of the order of 10−33 cm with ultra-high
Planckian physical parameters and expanded to modern sizes of the order of
1028 cm over approximately 13.7–14.5 billion years. Here, owing to the gravitational
compression of stars to the stage of black holes, singularities—ultrahigh parameters
of the Planckian scale arise again. In these domains of singularities, physical models
are now proposed according to which our space has more than three dimensions and
that ordinary matter is in a three-dimensional manifold—the ‘3-brane world’ [10]—
embedded in this many-dimensional space. The capabilities of modern experiments
in high-energy-density physics are far from these ‘Planck’ values and allow the
properties of elementary particles to be elucidated up to energies of the order of
0.1–10 TeV and down to distances ≈10−16 cm.

Considering (following paper [1]) the energy range mc2 ≈ 1 GeV, which is
amenable to a more substantial physical analysis and is nonrelativistic for nucleons,
we obtain a boundary temperature of 109 eV, an energy density of 1037 erg cm−2,
and a pressure of about 1025 Mbar, although it is highly likely that even more
extreme states of matter are realized in the cores of massive pulsars and could be
found at early stages of the evolution of the Universe.

While our experimental capabilities are progressing rapidly, of course they are
only partly able to encroach upon the region of ultra-extreme astrophysical states.
Material strengths radically limit the use of static techniques for investigating high-
energy densities, because the overwhelming majority of constructional materials are
unable to withstand the pressures in question. The exception is the diamond—a
record-holder in hardness (σn ≈ 500 kbar); its use in diamond anvils allows a pressure
of 3–5 Mbar to be reached in static experiments.

The palm of supremacy now belongs to dynamic techniques [7, 11, 12], which rely
on the pulsed cumulation of high-energy densities in substances. The lifetime of such
high-energy states is determined by the time of inertial plasma expansion, typically
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in the range 10−10–10−6 s, which calls for the application of sophisticated fast
diagnostic techniques. Physical conditions corresponding to the lower bound of
states in question are listed in table 1.1 [9, 12, 13].

The phase diagram of the matter, corresponding to high-energy densities, is
shown in figure 1.2 [9, 11, 12], which indicates the conditions existing in astrophys-
ical objects as well as in technical and laboratory experimental devices. One can see
that, being the most widespread state of matter in nature (95% of the mass of the
Universe without dark matter), plasma occupies virtually the entire domain of the
phase diagram. In this case, of special difficulty in the physical description of such a
medium is the region of the nonideal plasma, where the Coulomb interparticle
interaction energy e n2 1/3 is comparable to or exceeds the kinetic energy, Ek, of
particle motion. In this domain, at Г = e n2 1/3/Ek > 1, the effects of plasma nonideality
cannot be described within the perturbation theory [1, 12], while the application of
computer parameter-free Monte Carlo and molecular dynamics methods [4] is
fraught with great difficulties of selection of adequate pseudopotentials and correct
inclusion of quantum effects.

Table 1.1. Physical conditions corresponding to high energy densities of 104–105 J cm−3 [9].

Physical conditions Values of physical parameters

Energy density W W ≈ 104–105 J cm−3

Pressure p p ≈ 0.1–1.0 Mbar
Condensed high explosives:
pressure
temperature
density
detonation velocity

W ≈ 104 J cm−3

≈ 400 kbar,
≈ 4000 K,
≈ 2.7 g cm−3,
≈ 9 × 105 cm s−1

Impact of an aluminum plate on aluminum,
velocity (5–13.2) × 105 cm s−1

Impact of a molybdenum plate on molybdenum,
velocity (3–7.5) × 105 cm s−1

Electromagnetic radiation:
laser, intensity q (W ∼ q)
blackbody temperature T (p ∼ T 4)

2.6 × 1015–3 × 1015 W cm−2

2 × 102–4 × 102 eV

Electric field strength E (W ∼ E2) 0.5 × 109–1.5 × 109 W cm−1

Magnetic field induction B (W ∼ B2) 1,6 × 102–5 × 102 T
Plasma density at temperature T = 1 keV
( p = nkT ) 6 × 1019–6 × 1020 cm−3

Laser radiation intensity q:
for λ = 1 μm, W ∼ q2/3

blackbody temperature T ( p ∼ T 3,5)

0.86 × 1012–4 × 1012 W cm−2

66–75 eV
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The effects of electron relativity in the equation of state and transport properties
of the plasma, when mec

2 ≈ kT, correspond to T ≈ 0.5 MeV ≈ 6 × 106 K. Above this
temperature, the matter becomes unstable with respect to spontaneous electron–
positron pair production.

Quantum effects are determined by the degeneracy parameter nλ3 ( ℏ mkT/22 is
the thermal de Broglie wavelength). For a degenerate plasma, nλ3 ≫ 1, and the
kinetic energy scale is the Fermi energy EF ≈ ħ n m/22 2/3 , which increases with
increasing plasma density, making it more ideal as it compresses, → ∞n ; Г =

ħ →me n/( ) 02 2 1/3 . The relativity condition corresponding to mec
2 ≈ EF ≈ 0.5 MeV

yields a density ρ ≈ 106 g cm−3.
Similar asymptotics also takes place in another limiting case →T 0 of a classical

(nλ3 ≪ 1) plasma, where Ek ≈ kT, and the plasma become more ideal [Г ≈ е2n1/3/
(kT)] upon heating. One can see that the periphery of the phase diagram is occupied
by ideal (Г ≪ 1), Boltzmann (nλ3 ≪ 1), or degenerate (nλ3 ≫ 1) plasmas, which are
described by the presently available adequate physical models [1, 4, 6, 11, 12].

The electron plasma in metals and semiconductors corresponds to the degenerate
case with an interaction energy Eint ∼ e2/r0, ħ∣ ∼ ∣r k/0 F, Ek ∼ k m/F

2 ; Г ∼ vħe /2
F ≈ 1–5,

where v ∼ −− −10 10F
2 3 s (s is the speed of light), and the subscript F refers to the

parameters at the Fermi limit.

Figure 1.2. Phase diagram of states of matter [9, 11]. Curves 1–4 denote the states of nuclear matter
component (neon) [1] on the lg ρ scale: 1—boundary of the nucleus degeneracy region; 2—boundary of the
ideality region; 3—melting curve; 4—boundary of the region in which the lattice may be treated as classical.
Reprinted from [5] by permission from Springer. Copyright 2011, Springer.

Lectures on the Physics of Extreme States of Matter

1-7



For a quark–gluon plasma Eint ∼ g2/r0, r0 ∼ 1/T, Ek ∼ T; Г ≈ 300–400. For an
ultracold plasma in traps, Г ∼ (n/109)1/3/Tk. Most challenging for the theory is the
vast domain of nonideal plasmas, Г ⩾ 1, occupied by numerous technical
applications (semiconductor and metal plasma, pulsed energetics, explosions, arcs,
electric discharges, etc), where theory predicts qualitatively new physical effects
(metallization, ‘cool’ ionization, dielectrization, plasma phase transitions, etc
[11, 12]); the study of these effects requires substantial experimental and theoretical
efforts.

Of special interest are plasma phase transitions in strongly nonideal Coulomb
systems: crystallization of dust plasmas (figure 1.3) and ions in electrostatic traps
and cyclotrons, in electrolytes and colloidal systems, and in two-dimensional
electron systems on the surface of liquid helium, as well as exciton condensation
in semiconductors, etc. Special mention should be made of the recently discovered
phase transition in thermal deuterium plasma quasi-adiabatically compressed to
megabar pressures by a series of reverberating shock waves.

The search for qualitatively new effects in the nonideal domain of parameters is a
powerful and permanent incentive to investigate substances at high energy densities.

Another characteristic property of a high-energy-density plasma is the collective
nature of its behavior and the strong nonlinearity of its response to external energy
actions such as shock and electromagnetic waves, solitons, laser radiation, and fast
particle fluxes. Thus, the propagation of electromagnetic waves in plasma excites
several parametric instabilities (Raman, Thomson, and Brillouin scattering) and is
accompanied by self-focusing and filamentation of radiation, by the development of
inherently relativistic instabilities, by the generation of fast particles and jets, and—
at higher intensities—by the ‘boiling’ of the vacuum with the electron–positron pair
production.

Figure 1.3. Plasma dust crystal and plasma liquid. Reprinted from [5] by permission from Springer. Copyright
2011, Springer.
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Of special interest under extreme energy actions are transient hydrodynamic
phenomena such as instabilities of shock waves and laminar flows, transition to the
turbulent mode, turbulent mixing, and dynamics of jets and solitons.

Figure 1.4 borrowed from [9] shows the domains of the dimensionless parameters
[Reynolds number, Re ∼ Ul/ν, and Mach number, M = U/c (c is the velocity of
sound, l is the characteristic size, and ν is the kinematic viscosity)], in which different
hydrodynamic phenomena related to the physics of extreme states of matter are
realized. The flow modes correspond to astrophysical applications, where Re > 104

andM > 0.5. In the explosion of a type Ia supernova, the Mach number ranges from
0.01 in the region of thermonuclear combustion to 100 in the shock wave arising due
to the surface explosion.

All these fascinating and inherently nonlinear phenomenamanifest themselves in both
astrophysical and laboratory plasmas and, despite the enormous difference in spatial
scale, have much in common and make up the subject of ‘laboratory astrophysics’.

Laboratory astrophysics allows the states of matter and processes with high energy
densities typical of astrophysical objects to be reproduced in microscopic volumes.
These are the processes of instability and hydrodynamic mixing; ordinary and
magneto-hydrodynamic turbulence; the dynamics of high-power shock, radiating,
and soliton waves; expansion waves; magnetically compressed and fast relativistic jets;
strongly radiating fluxes, and a number of other interesting and scarcely studied
phenomena.

Of considerable interest is the information about the equation of state, compo-
sition, optical and transport properties, emission and absorption spectra, cross

Figure 1.4. Hydrodynamic modes related to the physics of extreme states of matter. Reprinted from [5] by
permission from Springer. Copyright 2011, Springer.
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sections of elementary processes, radiation thermal conductivity coefficients, and
properties of relativistic plasma. This makes it possible to study and model the
physical conditions, stationary and pulsed processes in astrophysical objects and
phenomena such as giant planets and exoplanets, stellar evolution and supernova
explosions, gamma-ray burst structure, substance accretion dynamics in black holes,
processes in binary and neutron stars as well as in the radiative motion of molecular
interplanetary clouds, collisionless shock wave dynamics, charged-particle acceler-
ation to ultrahigh energies, etc.

Let us now proceed to a more detailed description of the presently developed
laboratory (lectures 2–4) and quasi-laboratory (section 2.2.4) methods for generating
extreme states of matter.
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