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Appendix A

Unit conversion

Length
1 mile = 5280 feet = 1.61 km
1 inch = 25.4 mm = 2.54 cm
1 foot = 12 inches = 30.48 cm
1 meter = 1.094 yd =
1 yd = 3 feet = 36 inches

Mass
1 pound = 16 ounces
1 gallon = 4 quarts
1 quart = 2 pints
1 pound = 454 grams
1 liter = 1.06 quarts
1 ton = 908 kg

Time
1 year = 12 months = 365 days = 3.15 × 107 s
1 day = 24 h = 1440 min = 86 400 s

Capacity
1 fl oz = 29.57 ml
1 quart (qt.) = 2 pints (pt.) = 0.946 l
1 pt = 0.473 l
1 gallon (gal) = 4 qt = 3.785 l
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Appendix B

Velocity and acceleration in various coordinates

B.1. Velocity and acceleration in polar coordinates
In polar coordinates, the position of a particle is found by knowing the radial
distance (r) from a user defined origin (O) and the angle (ϕ) (figure B.1).

The position vector of a particle
The trajectory of a particle is found by evaluating r and ϕ as a function of t. The
position vector of a particle is mathematically given as

⃗ = ∣ ⃗∣ˆr r r. (B.1)

Velocity and acceleration of a particle
To find velocity and acceleration, let us begin with unit vectors r̂ and ϕ̂ in terms of
their Cartesian components along î and ĵ . The unit vectors expressed in Cartesian
coordinates are

⎪

⎪⎧⎨
⎩

ϕ ϕ
ϕ ϕ ϕ
ˆ = ˆ + ˆ
ˆ = − ˆ + ˆ
r i j

i j

cos sin

sin cos .
(B.2)

Differentiating we obtain

⎧
⎨
⎪⎪

⎩
⎪⎪ ϕ

ϕ ϕ ϕ

ˆ =

ˆ = − ˆ + ˆ ≡ ˆ

dr
dr
dr
d

i j

0

sin cos
(B.3)
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⎧
⎨
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⎩
⎪⎪

ϕ

ϕ
ϕ

ϕ ϕ

ˆ
=

ˆ
= − ˆ − ˆ ≡ −̂

d
dr
d
d

i j r

0

cos sin .

(B.4)

Velocity vector
We can now derive equation (B.1) with respect to time and write

v ϕϕ⃗ = ˙ˆ + ˙̂ = ˙ˆ + ˙ ˆrr rr rr r . (B.5)

Here, v˙ ≡r r is called the radial velocity component and vϕ̇ ≡ ϕr is called the

transverse or the circumferential velocity component. Note that, v v v+ ≡ϕ .r
2 2

Acceleration vector
Differentiating equation (B.5) with respect to time, we obtain the acceleration as

ϕϕ ϕϕ ϕϕ⃗ = ¨ˆ + ˙˙̂ + ˙ ¨ ˆ + ¨ ˆ + ˙ ˙̂a rr rr r r r . (B.6)

In this equation we can rewrite the second term as

ϕ
ϕ ϕ

ϕ ϕϕ˙˙̂ = ˙ ˆ = ˙ ˆ = ˙ ˆ ˙rr r
dr
dt

d
d

r
dr
d

d
dt

r

and the last term can be rewritten as

ϕϕ ϕ ϕ ϕ
ϕ

ϕ ϕ
ϕ

ϕ ϕ ϕ ϕ˙ ˙̂ = ˙ ˆ
= ˙ ˆ

= ˙ −ˆ ˙ = − ˙ ˆr r
d
dt

d
d

r
d
d

d
dt

r r r r( ) .2

Putting these values in equation (B.6) and rearranging we obtain

ϕ ϕ ϕ ϕ⃗ = ¨ − ˙ ˆ + ¨ + ˙ ˙ ˆa r r r r r( ) ( 2 ) , (B.7)2

Figure B.1. Polar coordinates.
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where ϕ≡ ¨ − ˙a r r( )r
2 is called the radial acceleration component, and

ϕ ϕ= ¨ + ˙ ˙ϕa r r( 2 ) is called the transverse or the circumferential acceleration compo-

nent. Please note that + ≡ϕa a ar
2 2 .

B.2. Velocity and acceleration in cylindrical coordinates
In the case of 3D motion the position vector of a particle in cylindrical coordinators
is given as (figure B.2):

⃗ = ˆ + ˆr rr zz. (B.8)

We know from equation (B.2) the unit vectors r̂ and ϕ̂, which are the same for
cylindrical coordinates. Additionally we will have ˆ = ˆz k as the third coordinate.
Their derivatives will be given as

⎧
⎨⎪

⎩⎪

ϕϕ

ϕ ϕ

˙̂ = ˙ ˆ

˙̂ = − ˙ˆ
˙̂ =

r

r

k 0.

(B.9)

The kinematic vectors can now be expressed relative to the unit vectors. Thus, the
velocity vector will be given as

v ϕϕ⃗ = ˙ˆ + ˙ ˙̂ + ˙ ˆrr r zk. (B.10)

Taking the derivative w.r.t. time again, we obtain acceleration vector as

ϕ ϕ ϕ ϕ⃗ = ¨ − ˙ ˆ + ¨ + ˙ ˙ ˆ + ¨ ˆa r r r r r zk( ) ( 2 ) . (B.11)2

Note the similarities between equations (B.5) and (B.10) for the velocity vectors and
between equations (B.7) and (B.11) for acceleration vectors.

Figure B.2. Cylindrical coordinates.
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B.3. Velocity and acceleration in spherical coordinates
In spherical coordinates, we use a distance (r) and two angles (θ ϕ, ) to specify the
position of a particle as shown in figure B.3.

The unit vectors written in Cartesian coordinates are

⎧
⎨⎪

⎩⎪
θ ϕ θ ϕ θ

θ θ ϕ θ ϕ θ
ϕ ϕ ϕ

ˆ = ˆ + ˆ + ˆ

ˆ = ˆ + ˆ − ˆ
ˆ = − ˆ + ˆ

r i j k

i j k

i j

sin cos sin sin cos

cos cos cos sin sin

sin cos .

(B.12)

It can easily be seen that the derivatives of these unit vectors may be simplified using
equation (B.12) as

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

ϕ θϕ θθ

θ θ ϕ θϕ

ϕ ϕ θ ϕ θϕ

ˆ = ˙ ˆ + ˙ ˆ

ˆ
= − ˙ˆ + ˙ ˆ

ˆ
= − ˙ ˆ − ˙ ˆ

dr
dt
d
dt

r

d
dt

r

sin

cos

sin cos .

(B.13)

The kinematic vectors can now be expressed relative to the unit vectors. Thus, the
position vector will be given as

⃗ = ˆr rr. (B.14)

The velocity vector will be given as

v ϕ θϕ θθ⃗ = ˙ˆ + ˙ ˆ + ˙ ˆrr r rsin . (B.15)

Taking derivative w.r.t. time again we obtain the acceleration vector as

ϕ θ θ θ θ ϕ θ θ θ
ϕ θ ϕ θ θϕ θ ϕ

⃗ = ¨ − ˙ − ˙ ˆ + ¨ + ˙ ˙ − ˙ ˆ

+ ¨ + ˙ ˙ + ˙ ˙ ˆ
a r r r r r r r

r r r

( sin ) ( 2 sin cos )

( sin 2 sin 2 cos ) .
(B.16)

2 2 2 2

Figure B.3. Spherical coordinates.
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Appendix C

Noether’s theorem

Noether’s theorem was presented in 1918 CE by Emmy Noether and is one of the
most beautiful theorems in physics. Noether’s theorem is very useful in providing
insights into general theories in physics. Noether’s theorem allows us to relate
symmetries of a theory with its laws of conservation. For example:

• If a system is invariant (does not change) under spatial translation we obtain
the law of conservation of linear momentum.

• If a system is invariant under rotation we obtain the law of conservation of
angular momentum.

• If a system does not change over time we obtain the law of conservation of
energy.

Why do we even expect conservation laws to be related to symmetry?
At the outset, it is not at all clear what the relation between conservation laws
and symmetries is. We resort to a simple example. Consider Newton’s second
law: the rate of change of linear momentum equals the net external force acting
on a body, i.e.

⃗ =F
dp
dt

. (C.1)

Suppose that the force field ⃗F is derived from an external potential, i.e. ⃗ = −ΔF V ,
and the problem in 1D is then

ε
ε

= −∂
∂

= + −
ε→

dp
dt

V
x

V x U x
lim

( ) ( )
. (C.2)

0

Note that when potential (V) is a constant then ε+ =V x V x( ) ( ). This means that
⃗F = 0 and hence from Newton’s law, we can write = 0dp

dt
with linear momentum

(p) = constant.
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Next, when we say =V x V y( ) ( ) it is the same as saying that potential V is
invariant under translations → ′x x , i.e. that translation in space is a symmetry of
the function V. Hence we have found that the translational symmetry of V implies
conservation of linear momentum.

Noether’s theorem establishes such relationships between symmetries of the
action and quantities conserved along the trajectory.
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Appendix D

Configuration space

Configuration space is also called C-space. In classical mechanics, the parameters
that define the configuration of a system are called generalized coordinates and the
vector space defined by these coordinates is called the configuration space of the
physical system. Configuration space is a way to visualize the state of an entire
system as a single point in a higher dimensional space:

• A single particle’s position in a 3D Euclidean 3-space is

⃗ =r x y z( , , ), (D.1)

then its C-space = R3.
If a particle is constrained in some way, for example, if it can only move

along a wire, then the C-space is the subset of R3 that defines point on the
wire, i.e. S1.

If the particle can only move in 2D, for example when we play air-hockey,
the puck can only move on the table-top. Then the C-space is given as S2.

Similarly if the particle moves on a sphere, the C-space is also given as S2.
• For a system made up of n-particles, the C-space will be given by R n3 .
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