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Chapter 6

Black body radiation

The most commonly encountered electromagnetic radiation is of thermal origin. A
black body is an idealized model of a physical object that absorbs all incident
electromagnetic radiation. Because it is a perfect absorber at all wavelengths, a black
body is also an ideal emitter of thermal radiation. This black body radiation has a
certain frequency (or wavelength) distribution, which is characterized by a max-
imum. This spectral distribution of radiation by bodies at thermal equilibrium was a
problem of critical interest at the turn of the 20th century, and led to the develop-
ment of quantum mechanics.

Thermal radiation is emitted by a body that exists at a temperature higher than
absolute zero. In essence, this radiation is generated by converting the internal
energy of the body at thermal equilibrium and represents the reverse process to
absorption. The spectral content of the radiation is determined by the mode
distribution, that is, the spatial frequency content of the electromagnetic field within
a certain bounded space, or cavity (figure 6.1). A mode of the electromagnetic field in
the cavity satisfies the condition of vanishing electric field at the wall. Clearly, as the
wavelength decreases, there are increasingly more ways of ‘fitting’ the modes in the
cavity. The formula that correctly predicts the thermal radiation by a black body
was derived by Planck in 1900 [1], as described below.

6.1 Planck’s radiation formula
Let us consider a radiating cavity, with its dimensions much larger than the
wavelength of light (see, e.g., [2]). The problem of finding the spectral distribution,

ν νdu d( )/ (energy per unit frequency, ν), of the radiation emitted by this cavity,
approximated by a black body, comes down to calculating the number of modes, νd ,
into the volume V, that exist within a certain frequency range dν. The radiated
energy per mode, per unit volume is
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ν ν=du f
h
V

dN( ) 2 . (6.1)

In equation (6.1), f is the probability of occupancy associated with a given mode, h is
Planck’s constant = · −h( 6.6 10 J s)34 , and the factor two accounts for the two
polarization modes that can exist in the cavity. The expression for f is obtained from
the Bose–Einstein statistics that apply to indistinguishable particles with an
unlimited state of occupancy, i.e. not obeying Pauli’s exclusion principle [2],

=
−

νf
e

1

1
, (6.2)h

k TB

where kB is Boltzmann’s constant, = · −k 1.38 10 J KB
23 . The average energy per

mode is

ν
ν

=

=
−

ν

E fh
h

e 1

. (6.3)
h

k TB

Planck’s formula predicts the spectral density of the radiation emitted by a black
body, at thermal equilibrium, as a function of temperature. Let us assume a cavity of
size much larger than the wavelength of light. Black body radiation applies to an
object that absorbs all radiation incident to it, and re-radiates energy that depends

11n =

0n =

...n =

Figure 6.1. Cavity modes: the sinusoids represent the real part of the electric field. All surviving field modes
have zero values at the boundary. The modes are indexed by n, the number of zeros along an axis
(orange dots).
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only on its temperature and not the incident radiation. The radiated field can be
considered as consisting of the resonant modes of the cavity.

In order to find the number of modes per frequency interval, let us consider the
wavevector space in figure 6.2(a). The spherical shell in the first octant of the k-space
is

π

π

=

=

dV k dk

k dk

1
8

4

2
.

(6.4)
k

2

2

The number of modes within this interval is

=dN
dV

V
, (6.5)k

k
min

where Vk
min is the volume in k-space formed by the smallest spatial frequencies,
π=V

L L Lk
x y z

min
3

, with =L L L Vx y z the volume of the cavity (figure 6.2(b)). Equation

(6.5) can now be expressed as

π
π

=dN
V

k dk
2

. (6.6)
3

2

In order to find the number of modes dN per frequency interval, dν, rather than dk,
we use the dispersion relation, namely, that the magnitude of the wavevector, = ∣ ∣k k
equals the wave number in vacuum,

π ν=k
c

2 , (6.7)

Combining equations (6.6) and (6.7), we obtain

dk

zk

yk

xk

a

xk

yk
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/ zLπ

/ yLπ/ xLπ

b

min

Figure 6.2. a) Mode distribution in a cavity. b) The cube at the origin in a) is the smallest volume in k-space,
defined by the inverse dimensions of the cavity.
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Finally, plugging equation (6.8) into equation (6.1), we obtain the radiated energy
per unit frequency range and unit volume, ρ ν( ), that is, Planck’s formula derived in
1900 (for a review of Planck’s work on the theory of heat radiation, see [1]):

ρ
ν

π ν

=

=
−

ν

v
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d
h

c e

( )
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1
.

(6.9)

h
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3

3

B

Equation (6.9) is fundamental to calculating any quantity related to black body
radiation. For example, from equation (6.9), we can calculate the power flowing
from the cavity, through a surface A and element of solid angle dΩ, per unit of
frequency (see figure 6.3),

ν ν θ
π

ρ ν ν θ
π

= Ω

= Ω

d P
c

du
A d
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( )
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2
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(6.10)

2

where A is the area, θ is the angle with respect to the surface normal, and the solid
angle element, π θ θΩ =d d2 sin . Integrating on the hemisphere, we obtain the total
power
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(6.11)
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Figure 6.3. Power flow out of a black body surface.
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Further, the spectral exitance, that is, the power per surface area per frequency

(see section 2.11),
ν

=νM
d P

dA d

2
, has the form

ρ ν
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The spectral exitance can be expressed in terms of the wavelength as

ν λ ν
λ

π
λ

= =
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λ ν

λ
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d
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(6.13)

hc
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2

5

Note that simply replacing ν with λ in equation (6.12) yields the wrong formula. The

Jacobian factor,
ν
λ

d
d

, is very important, as it ensures that the λM is a distribution. One

way to remember the change from a frequency to a wavelength distribution is that
the exitance in each infinitesimal range is constant, namely,

λ ν=λ νM d M d . (6.14)

Figure 6.4 illustrates λM for different temperatures.

Figure 6.4. Spectral exitance of black bodies at different temperatures.
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6.2 Wien’s displacement law
We note immediately that both the energy per unit volume and unit frequency, ρ ν( ),
and the spectral exitance, νM , the power per surface area per frequency, exhibit a
maximum at a particular frequency, νmax, which is a function of temperature (see
figure 6.5),

ρ ν
ν ν

= =
ν ν

ν

ν ν= =

d
d

dM
d

( )
0. (6.15)

max max

The dependence of νmax on temperature is known as Wien’s displacement law (see
problem 6.2),

ν ∝ T.max

An equivalent way of expressing the displacement law is via the wavelength of the
maximum emission,

λ ∝ a
T

,max

where a is a constant, a = 2900 μmK. Note that λmax is obtained by finding the
maximum of the function λM with respect to λ (see problem 6.2). Simply substituting
νmax yields the wrong result, in other words, λ ν≠ c/max max .

This relationship between the temperature of the source and the peak wavelength
of its emission led to some researchers expressing the ‘color’ of thermal light by the

Temperature Source

1850 K Candle flame, sunset/sunrise

2400 K Standard incandescent lamps

2700 K "Soft white" compact fluorescent and LED lamps

3000 K “Warm white” compact fluorescent and LED lamps

3200 K Studio lamps, photofloods, etc.

5000 K Compact fluorescent lamps (CFL)

6200 K Xenon short-arc lamp

6500 K Daylight, overcast

6500 – 9500 K LCD or CRT screen

15,000 – 27,000 K Clear blue sky

Figure 6.5. Color temperature for various thermal sources.
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temperature of the source. For example, color temperature is a typical measure on
commercial microscopes when adjusting the power of the illuminating lamp. It has
become customary to compare light sources (light bulbs, light emitting diodes,
incandescent lamps, computer monitors, etc) in terms of their color temperatures.
Thus, the color temperature defines which black body radiation would most closely
match the light in question, from ‘warm reddish’ to ‘cool blueish’ (see figure 6.5).
For example, the blue–white fluorescent light in most offices may have a color
temperature of 5000 K, while an incandescent bulb has a temperature of 2000–2500 K,
giving it a more reddish, ‘warmer’ appearance.

We experience Wien’s displacement formula in our daily activities, as follows. (1)
The Sun’s effective temperature is 5800 K, which places its peak emission at ~500 nm
(green), near the maximum sensitivity of our eye. This fact suggests that humans
evolved to gain maximum sensitivity of their visual system at the most dominant
wavelength emitted by the Sun. (2) Dimming the light on an incandescent light bulb
will result in shifting the color toward red (longer wavelengths). (3) Heating a piece
of metal will eventually produce radiation, first of red color and then blue–white
when the temperature increases further. One can say that ‘white-hot’ is hotter than
‘red-hot’. (4) Warm-blooded animals at, say, T = 310 K (37 °C), emit peak radiation
at ~10 μm, in the infrared region of the spectrum, outside our eye sensitivity. Some
reptiles and specialized cameras can sense these wavelengths and, thus, detect the
presence of such animals. (5) Wood fire can have temperatures of 1500–2000 K, with
peak radiation at ~2–2.5 μm. This means that most of the radiation is in the infrared
spectrum, which we sense as heat, but only a small portion of the spectrum is visible.

6.3 Stefan–Boltzmann law
Another fundamental property of black body radiation is that the frequency-
integrated spectral exitance, meaning, the exitance (in W/m2), is proportional to
the fourth power of temperature (proof left as an exercise, see problem 6.1),

∫ ν

σ

=

=

ν

∞
M M d

T .
(6.16)0

4

Equation (6.16) is known as the Stefan–Boltzmann law, and the proportionality
constant, or the Stefan–Boltzmann constant, has the value σ = · − − −5.67 10 Wm K .8 2 4

The total power emitted by a black body isMA, where A is the area of the source.
As a result, the Stefan–Boltzmann law becomes a practical means to estimate the
size of other stars. Thus, the total power emitted by the Sun (S) and the star of
interest (x), are, respectively

π σ=P R T4S S S
2 4

and

π σ=P R T4 .x x x
2 4

The unknown radius can be easily obtained as
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⎛
⎝⎜

⎞
⎠⎟=R R

T
T

P
P

.x S
S

x

x

S

2

Note that the effective temperature of the star can be measured from the spectral
distribution of the radiation fitted with Planck’s formula.

A body that does not absorb all the incident radiation emits less total energy than
a black body and is sometimes called a gray body. These bodies are characterized by
an emissivity, ε < 1, such that the exitance is scaled down as

εσ=M T .4

6.4 Asymptotic behaviors of Planck’s formula
Investigating Planck’s formula we can readily find two asymptotic behaviors for the
black body radiation, as follows. At low temperatures, ν ≫h k TB , we obtain

ρ ν π ν

≃

≃

ν

ν

−

−

f e
h

c
e( )

8
.

(6.17)

h
k T

h
k T

3
3

B

B

This formula approximates well the high frequency portion of the curve (figure 6.6).
This behavior is known as the Wien approximation.

At high temperatures, ν ≪h k TB , the following approximations apply

Figure 6.6. The asymptotic behavior of Planck’s formula (blue curve) for high temperature (low-frequency,
Rayleigh–Jeans, red curve) and low-temperature (high-frequency, Wien, green curve).
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(6.18 )

B
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Equation (6.18a and b) is known as the Rayleigh–Jeans law and describes well the
low-frequency curve of Planck’s equation (figure 6.6). Note that the Rayleigh–Jeans
law is known as the classic limit formula. It strongly disagrees with Planck’s law at
high frequencies: one consequence of the Rayleigh–Jeans formula is that the amount
of energy radiated over the entire spectral range diverges. This was known as the
‘ultraviolet catastrophe’ and was the main motivation behind developing a better
understanding of black body radiation. Planck’s work elucidated the problem and,
at the same time, opened the door for quantum physics.

6.5 Einstein’s derivation of Planck’s formula
Einstein was able to arrive at the same solution for the energy density per frequency
interval, ρ ν( ), (equation (6.9)) by using the discrete energy levels of atomic systems.
Thus, the quantum of energy ν=E h is assumed to be the difference between two
atomic energy levels,

ν− =E E h . (6.19)2 1

Furthermore, Einstein considered that there are only three fundamental processes by
which the atomic system can exchange energy with the environment: absorption,
spontaneous emission, and stimulated emission (figure 6.7).

Let us consider these three processes separately by denoting the number density of
each level by N1 and N2. Absorption is the process by which an atom in state 1
absorbs an incident photon and is excited to energy level 2. The rate of increase of N2

due to absorption is proportional to the number density of the atoms in level 1, N1,
and the incident energy density, ρ,

ρ ν=dN
dt

B N ( ) (6.20)2
12 1

where B12 is the absorption rate, = −B s[ ]12
1. As a result of absorption, incident

energy is converted into the excitation of atoms from level 1 to 2.
Spontaneous emission is the process whereby an atom from level 2 decays

radiatively (with emission of a photon) to the lower state,

= −dN
dt

A N . (6.21)2
21 2

Principles of Biophotonics, Volume 2

6-9



The coefficient A21 is the spontaneous emission rate constant. Note that the inverse
of A21 can be interpreted as the decay time constant, or natural lifetime (see section
5.5), τ = A1 21.

Stimulated emission is the process by which, in the presence of an incident photon,
an excited atom decays to level 1 and releases a photon of the same energy
(frequency), direction of propagation, polarization, and phase. Stimulated emission
can be regarded as the exact reverse of absorption. This process contrasts with
spontaneous emission, where the emitted photon has no phase relationship with the
stimulating photon, that is, it is emitted with equal probability in all directions of
propagation, and with a random direction of the electric field vector (polarization).
The rate depends on both the population density in state 2 and the strength of the
stimulating light

ρ ν= −dN
dt

B N ( ). (6.22)2
21 2

Einstein combined all these processes to express the rate equations,

ρ ν ρ ν= − + −

= −

dN
dt

A N B N B N

dN
dt

( ) ( )

.
(6.23)

2
21 2 12 1 21 2

1

Equation (6.23) also states that the rate of increase in the population of level 2,
dN dt2 , must be accompanied by an identical decrease (hence the negative sign) in
the population of level 1, −dN dt1 . Note that here all the nonradiative processes

c)

b)

a)

hv

2hv

1

1

1

1

1

1

2

2

2

2

2

2

12B

21B

21A

Absorption

Spontaneous emission

Stimulated emission

hv

hv

Figure 6.7. Radiative processes in a two-level atomic system: a) absorption, b) spontaneous emission, c)
stimulated emission. Note how the stimulated rather than spontaneous emission is the reversed process to
absorption.
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(resulting in loss by heat dissipation) have been ignored. At thermal equilibrium, the
excitation and decay mechanisms must balance each other completely, such that

= =dN
dt

dN
dt

0. (6.24)2 1

Combining equations (6.23) and (6.24), we obtain the ratio of the two population
densities,

ρ ν
ρ ν

=
+

N
N

B
A B

( )
( )

. (6.25)2

1

12

21 21

Further, Einstein used the classic Boltzmann statistics, which gives the ratio of the
two populations as

= ·
ν−N

N

g

g
e . (6.26)

h
k T2

1

2

1

B

In equation (6.26), quantities g1 and g2 are the degeneracy factors for the two states,
that is, the number of configurations in which a molecule can have the same energy.
If we combine equations (6.25) and (6.26) to solve for ρ ν( ), we obtain

ρ ν =
−

ν

A
B B g

B g
e

( )
1

1
.

(6.27)h
k T

21

21 12 1

21 2

B

By comparing equation (6.27) with Planck’s formula (equation (6.9)), Einstein
realized that they are identical, provided two conditions are met

=gB g B a(6.28 )1 12 2 21

π ν=A
B

h
c

b
8

. (6.28 )21

21

3

3

Equations (6.28a and b) connect the three Einstein coefficients. Therefore, measure-
ments on a certain radiative process, for example, measuring A21, can inform about
the other two coefficients as well as radiation.

6.6 Problems
1. Prove the Stefan–Boltzmann law (equation (6.16)).
2. Prove Wien’s displacement law, that is, that the frequency maximum of

Planck’s curve is proportional to the temperature of the black body,
ν ∝ Tmax (equation (6.15)). Calculate λmax.

3. How many electromagnetic modes exist in a 1 m3 cavity for light of central
wavelength λ = 633 nm0 and bandwidth λΔ = 1 nm? What are the central
frequency and frequency bandwidth, ν νΔ,0 ? What are the central angular
frequency and angular frequency bandwidth, ω ωΔ,0 0?
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4. What is the temperature of a black body whose maximum emission is at
λ λ λ= = =600 nm, 550 nm, 400 nm? Plot the three corresponding
spectral emission curves as a function of wavelength, λI ( ), for all cases.

5. What is the frequency maximum of the Sun’s radiation =T( 5800 K). If
the Sun cooled by 1 F, how much lower would the total (frequency
integrated) exitance be?

6. What is the temperature of the black body whose maximum spectral
exitance corresponds to the maximum of the photopic curve?

7. A black body source of area =A 10 cms
2 and temperature =T 1000 K

emits radiation, which is captured by a photodetector of area =A 1 cmD
2,

=L 100 m away, as depicted in figure 6.8.
Consider the source and detector parallel and centered on the same

optical axis.
a) Calculate the power falling on the detector, within the wavelengths

interval λ ∈ μ[8,12] m.
b) The detector is moved 10 m farther from the source. What should be

the new temperature that will yield the same power, in the same
wavelength range, as before?

c) The detector is moved to a new distance = =L T1 m ( 1000 K)1

from the source. What should be the new wavelength interval,
centered at λ = μ10 m, which will result in the same power at the
detector as in a)?

8. A black body emits radiation with its maximum spectral exitance, ννM ( ), at
frequency νmax. Express the spectral exitance in terms of wavelength, λλM ( ),
find the wavelength at maximum, λmax, and determine the relationship
between νmax and λmax.

9. Express the spectral exitance of a black body (Planck’s formula) in terms of
inverse wavelengths, λ1/ .

10. The wavelength-based spectral exitance of a black body is μ1 W/(m m)2 at
its peak. What is the temperature of the source in K?

11. A black body has a temperature of 1000 K and weighs 1 kg.
a) Assuming constant temperature, how long will it take for the entire

mass to be converted into radiation?
b) The temperature is now T = 10 000 K. What is the new time of total

mass energy conversion?

Figure 6.8. Problem 6.7.
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12. A black body is cooling at a rate α = s1 K/ , starting at =T 5000 K. Plot
the following versus time:

a) frequency of maximum emission, νmax

b) total exitance, ∫ ν ν= ν

∞
M M d( )

0
c) total exitance within the wavelength interval λ ∈ μ(1,2) m.

13. Assume the Sun is a black body that floods the Earth’s surface with
1 kWm−2 of irradiance (assume isotropic radiation). If the radii of the
Earth and Sun are = ×R 6 10 KmE

3 and = ×R 7 10 KmS
5 , respectively,

and the distance Sun–Earth is eight light-minutes (see figure 6.9):
a) What is the total exitance of the Sun?
b) What is the temperature of the Sun?
c) What is the total power emitted by the Sun (assuming a spherical

shape)?
d) What is the total power falling on Earth?
e) If Earth reflects off 20% of the light from the Sun and becomes a

Lambertian source, what is the total power received back by the Sun?
14. Plot the following parameters versus temperature ∈T (0, 10 000) K for a

black body radiator’s spectral exitance, ννM ( ).
a) νmax , ν< >, and ν ν< > − max , where <> denotes the ensemble average

over the spectral distribution.
b) σν, the standard deviation and the spectral variance,

σ ν ν= < > − < >ν
2 2

c) skewness, ν< >3

d) kurtosis, ν< >4 .
15. Plot the temporal autocorrelation function associated with the black body

radiation field at =T 300 K.
16. Plot the even and odd components of the black body radiation spectral

exitance, respectively,

ν ν ν

ν ν ν

= + −

= + −

ν
ν ν

ν
ν ν

M
M M

M
M M

( )
( ) ( )

2

( )
( ) ( )

2
.

e

o

Prove that, indeed, νM e and νM o are even and odd, respectively.

Figure 6.9. Problem 6.13.
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17. A flat black body source, of area =A 1 mS
2, and temperature

=T 5000 K, emits radiation that is collected by a detector, of area
=A 1 mmD

2, at a distance =L 1 m.
a) How much power falls on the detector?
b) What percentage of the power at the detector is in the visible spectral

range, λ ∈ (380, 760) nm ?
c) How many photons reach the detector?

18. Derive an expression for the spectral exitance change per unit temperature,
assuming a black body source.

19. A Lambertian, black body source and photodetector are placed in four
different configurations, as indicated (figure 6.10). If temperature is

= = = =T A A L3000 K, 1 cm , 1 mm , and 1 m,s D
2 2 compute the power

at the detector in all configurations.
20. A normal human body temperature is = °T 37 C.

a) What is the wavelength of maximum spectral exitance, λmax?
b) By how much does λmax change if the person runs a high fever,

= °T 40 C?
c) What is the λmax emitted by an alligator in a pond of temperature

= °T 25 C?
21. In order to measure the temperature of an unknown object, one exper-

imentalist performs measurements of the black body radiation power within
narrow spectral ranges centered at λ = μ10 m1 and λ = μ20 m2 . It was
found that =P P/ 0.12 1 . What is the temperature of the body?
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Figure 6.10. Problem 6.19.
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