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Light emission, detection, and statistics

Gabriel Popescu

Chapter 12

Semiconductor materials

12.1 Insulators and conductors
Photodetection is the process by which light is converted into a measurable quantity,
typically an electrical signal. For example, the optical radiation can induce changes
in the detector material such as resistance or inductance, which in turn produce
changes in the measured current through or voltage across the detector (figure 12.1).
During the detection process, a part of the incident optical power is converted into
electrical power. Thus, photodetection is a dissipative process. In other words, if the
light interacts with the material without exchange of energy, that is, elastically,
detection is not possible.

Light–matter interaction is governed by the displacement of electronic charge
that the optical field induces into the material. The incident light on a material
applies an electric force on the electrons in that material,

= −eF E. (12.1)

In equation (12.1), −e is the charge of the electron and E is the electric field carried
by the optical radiation. Figure 12.2 illustrates the interaction between the light and
a dielectric (insulator) material. Insulators (e.g. glass) contain electrons tightly
bound to the nuclei and the perturbation induced by the incident optical field
happens without loss of energy. The electron behaves as a mass on a spring, with the
electric force exerted by the nucleus acting as the restoring force. As a result, the
incident light is re-radiated by the material with 100% of the original power
recovered as transmitted or reflected light. This process explains why good dielectric
materials are also transparent to electromagnetic radiation.

For conductive materials, the situation is rather different. In an ideal conductor,
which is approximated well by a metal, electrons are free to move around. The
binding to the nuclei is so weak (FN ≅ 0) that the electrons can be considered as a
gas, moving unrestricted in the material. As a result, the electrons are accelerated by
the incident optical field and undergo collisions with the atoms in the lattice
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(figure 12.3). During the collision process, electrons transfer some of their energy to
the vibrational modes of the lattice, which, eventually, converts into heat. Thus, the
interaction of light with conductors is a dissipative process. This description explains
why good conductors, such as metals, are generally opaque to electromagnetic
radiation.

Semiconductors are materials with conductivity that falls between that of metals
and insulators. Because their electrical properties can be tuned with respect to
temperature, concentration of impurities, voltage bias, etc, semiconductors are
commonly used in photodetectors. Next, we discuss the basic properties of semi-
conductor materials (for a classical reference on semiconductor devices, see [1]).

hυ
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Figure 12.1. An example of photodetection mechanism whereby the incident light produces a change in the
measured voltage across the detector or current flow.
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Figure 12.2. Interaction of the optical field, E, wavevector k, with an insulator (dielectric). Electrons (−) are
bound strongly to the nuclei (+) by Force FN, such that the electric force, F, applied by the incident field is
unable to break them away. The light–matter interaction is elastic (no loss).
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12.2 Covalent bonds in semiconductor crystals
Semiconductors are solids in crystalline form, meaning that their atoms and
molecules are arranged spatially in a regular and periodic manner (for a physical
description of crystals, see [2]). A highly ordered three-dimensional distribution of
atoms or molecules is known as a crystal lattice. In semiconductors, the atoms are
held together by covalent bonds, in which pairs of electrons are shared between
atoms (see figures 12.4 and 12.5).

Silicon (Si) and Germanium (Ge) are the most commonly used semiconductor
materials. Both materials have four valence electrons, that is, four electrons on their
outer, incomplete electronic shell. Silicon (Si, atomic number Z = 14) has a total of
14 electrons, 10 of which form complete shells ( s s p s p1 2 2 3 32 2 6 2 2, in orbital notation).
Germanium (Ge, Z = 32) has 32 electrons, 28 of which form complete shells
( s s p s p d s p1 2 2 3 3 3 4 42 2 6 2 6 10 2 2, in orbital notation). The two electronic configurations
are shown in figure 12.4.

Germanium’s valence electrons exist on higher energy levels (farther from the
nucleus) than those of silicon. As a result, the Ge electrons are more mobile,
resulting in higher conductivity compared to Si.

Figure 12.5 illustrates how a Si atom can form covalent bonds with four other
atoms, sharing a total of four pairs of electrons and, thus, creating a complete shell
of electrons.

12.3 Energy band structure
The atomic model put forward by Niels Bohr in 1913 correctly explained the discrete
spectral lines measured from the hydrogen atom. Bohr’s atom consists of a
condensed nucleus surrounded by revolving electrons, as illustrated in
figures 12.4(a) and (b). However, this discrete occupancy of energy levels is not
limited to isolated atoms. The covalently bound atoms in a semiconductor also
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Figure 12.3. Interaction of light with a conductor. Electrons are free to move in the lattice and are accelerated
by the electric field of incident light. Due to collisions with the ions in the lattice, electrons dissipate into heat
some of the field energy.
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Si Si Si

Si

Si
covalent bond

shared electrons

Figure 12.5. Illustration of the covalent bond in crystalline silicon. Pairs of electrons from the outermost shells
are shared by an atom with four other atoms, creating a stable electronic shell (eight electrons).

a)
b)

+14 +32

Figure 12.4. a) Electronic structure of Silicon (Si). Si has three electronic shells: 1s2 (two electrons), 2s2 2p6

(eight electrons), 3s2 3p2 (four electrons). b) Electronic structure of germanium (Ge). Ge has four electronic
shells: 1s2 (2ē), 2s2 2p6 (8ē), 3s2 3p6 3d10 (18ē), and 4s24p2 (4ē). Both materials have four valence electrons,
depicted by empty circles.
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create discrete energy levels. However, unlike with isolated atoms, in a semi-
conductor crystal the energy levels are lumped into two bands: the valence and
the conduction band (for a review of solid-state physics, see [3]).

The valence bond contains many closely packed energy levels. The two bands are
separated by a forbidden energy region, containing no allowed energy levels, referred
to as the band gap. The electrons in the valence band are tightly bound to the atoms,
behaving as in an insulator (recall figure 12.2). They need to receive an energy at
least equal to the bandgap to become free to move, that is, to transition to the
conduction band. Thus, the electrons in the conduction band are loosely bound and
virtually free to move around, like in a conductor (recall figure 12.3).

This energy band structure is not particular to only semiconductors, as conductors
and dielectrics also have their own versions. What distinguishes the three types of
materials is the energy necessary tomovean electron fromthe valence to the conduction
band, that is, the size of the bandgap. Thus, the insulators have a very large bandgap,
while for an ideal conductor, the bandgap is non-existent (see figure 12.6).

When an electron transitions from a bound to free state, that is, when it moves
from the valence to the conduction band, it leaves behind a net positive charge. This
positive charge is referred to as a hole. The hole is not an actual particle containing a
localized positive charge, but, rather, a fictitious particle defined by the absence of a
negative charge. However, the concept of a hole is useful in describing charge
transport in semiconductors.

12.4 Carrier distribution
Previously, when describing the black body radiation, we found that photons, being
non-interacting, indistinguishable particles, or bosons, obey the Bose–Einstein

Conduction 
band Conduction 

band

Valence 
band

Conduction 
band
= 0

Valence 
band

Insulator Semiconductor Conductor

E

Figure 12.6. Energy band structure for insulators, semiconductors and conductors. The bandgap energy is
much higher for insulators vs semiconductors, >E Eg

i
g
s, and non-existent for conductors, =E 0g

c .
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statistics (see section 6.1). Thus, the probability of occupancy for a mode of energy
νh has the form (see Planck’s formula in equation (6.2) and [4])

ν =
−

νf
e

a( )
1

1
(12.2 )h

k TB

where, as usual, kB is the Boltzmann constant and T the absolute temperature.
However, the energy distribution of electrons in a semiconductor is quantitatively
different. Unlike photons, electrons obey Pauli’s exclusion principle, which states
that it is impossible for two electrons in an atom to have the same values of the four
quantum numbers (principal quantum number, n, angular momentum quantum
number, ℓ, magnetic quantum number, me, and ms the spin quantum number). We
discussed in section 5.1 how the electron spin defines the electronic state as a singlet,
doublet or triplet.

Electrons belong to the family of fermions, particles that carry half-integer spin
(note that photons have spin 1). As a result, the occupancy of the energy levels is
governed by the Fermi–Dirac statistics (figure 12.7),

= − +
f E

e
E E

k T
b

( )
1

( )
1

.
(12.2 )F

B

In equation (12.2b), EF denotes the Fermi level. To gain a physical understanding
of the Fermi level, it is informative to study the case of →T 0:

=
<

∞ >→

−
e

if E E

if E E
lim

0,

,
. (12.3)

T 0

E E
k T

f

f

F

B

Therefore, the occupancy probability at =T K0 has the asymptotic values

−

1

1/2

( )

2 > 1
1

2

Figure 12.7. The Fermi–Dirac distribution.
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=
<
>→

f E
if E E

if E E
lim ( )

1,

0,
. (12.4)

T 0

f

f

Equation (12.4) provides an insightful description of the Fermi level: it is the
maximum energy occupied at absolute zero temperature. For intrinsic semiconduc-
tors, containing an equal number of positive and negative charge carriers, the Fermi
level lies in the middle of the bandgap. This is the level at which the probability of
occupancy is ½, =f E( ) 1/2F , meaning that the probability of occupancy at this
energy level is ½. For silicon, = · −E eV1.12 (1.79 10 J)g

19 , which indicates that the
Fermi level lies eV0.56 above the valence band. For comparison, the thermal
energy at room temperature is only =k T eV0.026B . This indicates that at

=T 300 K, the probability of occupancy for energy levels >E EF is very low.
To gain a better understanding of the temperature effect, figure 12.8 shows f E( )

overlaid with the energy bands for a semiconductor, at zero, low, and high
temperatures. The illustration in figure 12.8 provides information about the
conductive properties of the semiconductor. Since there is a gap between the
Fermi level and the conduction band, there will be absolutely no energy levels
allowed in the conduction band at =T 0 K. It is important to note that even though
f E( ) has finite values within the gap, there are still no electrons occupying those
states, consistent with the definition of the gap. In order to understand this better, we
calculate the number of particles per unit volume, n E( ), with energy within the
interval +E E dE( , ). This quantity can be expressed as

ρ=n E dE E f E dE( ) ( ) ( ) . (12.5)

In equation (12.5), ρ E( ) is the density of states, meaning the number of energy
states per unit volume within +E E dE( , ), while f E( ) is the Fermi distribution
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band
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Valence 
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( )

1
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a b cE E E

Figure 12.8. The Fermi distribution overlaid with the energy bands of an intrinsic semiconductor. (a) T = 0 K:
no energy allowed above the Fermi level. (b) Low temperatures: energy levels above the Fermi level; only a few
in the conduction band. c) High temperatures: some energy levels exist in the conduction band.
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(equation (12.2b)). In order to calculate the density of states, we start by evaluating the
number of modes in a cavity of volumeV . Following the same reasoning as in section
6.1, the number of modes per wavenumber interval is (equation 6.15, chapter 6)

π
=dN

V
k dk

2
. (12.6)

2
2

To change the variable from wavenumber to energy, we use the relationships from
quantum mechanics,

=E
p
m

a
2

(12.7 )
2

= ℏ bp k (12.7 )

where p is the momentum of the electron, =p p[ ], m its mass, and πℏ = h/2 the
reduced Planck’s constant. Combining equations (12.7a and b), we obtain the
following −k E relationship

⎛
⎝⎜

⎞
⎠⎟=

ℏ
k

mE a2 (12.8 )
2

1/2

=
ℏ

dk
m
E

dE b1 2
. (12.8 )

If we now plug equations (12.8a and b) into equation (12.6), we obtain

π
π

=
ℏ ℏ

=

dN
V mE m

E
dE

m
h

V E dE

2
2 1 2

4 (2 )
.

(12.9)
2 2

3/2

3

Thus, we can now express the density of states present in equation (12.5) as

ρ

π

=

=

E
V

dN
dE
m

h
E

( )
1

4 (2 )
.

(12.10)
3/2

3

Using equations (12.5) and (12.10), we can now express the number of particles in
the conduction band per unit volume and energy within the interval

+E E dE( , ), namely, ρ=n E E f E( ) ( ) ( ). Semiconductor and conductor materials
are of course, characterized by the same Fermi distribution, f E( ). However, the
density of states for semiconductors is at the top of the gap, in other words, ρ is
shifted by the bandgap energy, Eg. For a conductor, the density of states starts at the
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bottom of valence band (see figure 12.9). Thus, we have the following expressions for
the electron population in the conduction band

π= −− +
n E

m
h e

E E a( )
4 (2 ) 1

, for semiconductors (12.11 )E E
k T

f

3/2

3 1F

B

π= − +
n E

m
h e

E b( )
4 (2 ) 1

, for conductors. (12.11 )E E
k T

3/2

3 1F

B

Finally, we are ready to update figure 12.7 with the electron population curves, as
shown in figure 12.10(d).

valence

−

a) b)

Semiconductor Conductor

Figure 12.9. Density of states starts at the top of the bandgap for a semiconductor (a), and at the bottom of the
valence band for a conductor (b).

Figure 12.10. (a–c) Multiplying the density of states (figure 12.8) with the Fermi distribution yields the carrier
distribution (electron population), n(E). (d) Carrier distribution for the high temperature situation shown in (c).
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In order to find out the total number of electrons in the conduction band, nc, we
integrate n E( ) from the bottom of the conduction band to infinity,

∫=
∞

n n E dE( ) . (12.12)c
Eg

For silicon and germanium at energies in the conduction band, the following
inequality holds, − ⩾E E k TF B . This approximation is well justified if we note that,
at room temperature =T k( 300 )

=k T eV a0.026 (12.13 )B

=E eV b1.1 (12.13 )g
Si

=E eV c0.67 . (12.13 )g
Ge

As a result of this approximation, + ≃
− −

e e1
E EF
kBT

E EF
kBT , and

+
≃

=

−
− −

−

e
e

e

1

1

.

(12.14)
E E
k T

E E
k T

E
k T

( )

2

F

B

F

B

g

B

In equation (12.14), we used the fact that, for an intrinsic semiconductor, EF lies in
the middle of the bandgap and − =E E E /2F g . With this approximation, equation
(12.11a) simplifies to

π= −−n E
m

h
e E E( )

4 (2 )
. (12.15)

E
k T f

3/2

3
2

g

B

Integrating over the energy, equation (12.12) yields for the electron concentration in
the conduction band,

= −n AT e a(12.16 )c
E k T3/2 /2g B

π=

= ×

A
mk
h b

2(2 )

4.83 10
electrons

m k
.

(12.16 )

B
3/2

3

21
3 3/2

Equations (12.16a–b) show that, at room temperature, Si has =nc
Si

×1.4 10 electrons/m16 3. On the other hand, Ge has = ×n 5.9 10 electrons/mc
G 19 3e ,

a significantly larger number.

12.5 Doping
So far, we described the energy band structures and carrier distributions for ideal
semiconductors. These materials are assumed to be free of impurities. This class of
semiconductors are called intrinsic. In such materials, the electrons and holes are
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created in pairs. Thus, the concentration of electrons n( ) in the conduction band
equals that of the holes p( ) in the valence band,

= =n p n (12.17)i

where ni is the carrier concentration for an intrinsic semiconductor. Figure 12.11
illustrates the electron–hole pair (EHP) generation in an intrinsic semiconductor.

Recombination is the reverse process of EHP generation. The rate of generation,
gi, =g[ ] EHP/m si

3 and of recombination, ri, =r[ ] EHP/m si
3 , must be equal, at any

temperature. The rate of recombination is proportional to the equilibrium concen-
trations of both electrons (n0) and holes (p0),

=
=
=

r cn p

cn
g ,

(12.18)
i

i

i

0 0
2

where c is a proportionality constant that depends on the specifics of the
recombination process.

The electrical properties of semiconductors can be modified to accomplish
particular tasks if impurities are added to the intrinsic material. This process is
referred to as doping and is the most common method for tuning the conductivity of
semiconductors. Through doping, a material receives either an excess of electrons,
thus becoming an n-type material, or excess of holes, for a p-type material. As a
result, the equilibrium concentrations, n0, p0, no longer equal the intrinsic carrier
concentration, ni.

N-type semiconductors are typically obtained by adding impurities from column
V of the periodic table (figure 12.12a). These elements have five electrons on their
outer shell, of which only four can form covalence bonds with the crystal (recall
figure 12.5). Therefore, the fifth electron is weakly bound and can participate in
conduction. These elements from column V are called donor impurities, because they
contribute free electrons to the material.

Figure 12.11. Electron–hole pairs in a Si crystal: e−, electron, h+, hole. The concentration of electrons is equal
to that of holes in an intrinsic semiconductor.

Principles of Biophotonics, Volume 2

12-11



P-type semiconductors are obtained by doping with elements from column III of
the periodic table (figure 12.12b). In this case, the three electrons on the outer shell of
these atoms are not sufficient to create the covalent bonds with the crystal. Thus, one
bond remains incomplete as it misses one electron, or possesses an extra hole. We
anticipate that in p-type semiconductors, there is excess of hole concentration (p) in
the valence band.

Doping brings modifications to the band diagram, density of states, Fermi–Dirac
distributions, and the carrier concentrations (see figure 12.13). For an n-type
material (figure 12.13b), due to the excess of electrons, the Fermi level is shifted
up, closer to the conduction band. As a result, the electron concentration is increased
in the conduction band, at the expense of the hole concentration in the valence band.
In p-type semiconductors, the Fermi level is shifted down, such that the hole
concentration is increased in the valence band. The electron concentration in the
conduction band is reduced.

12.6 Electron–hole pair generation by absorption of light
The fundamental process involved in photodetection is the generation of EHPs
through absorption of radiation. These EHPs are often called excess carriers,
indicating that they add to the existing carrier concentration at thermal equilibrium.
Since the generated EHPs are out of equilibrium with their environment, they must
eventually recombine.

As illustrated in figure 12.14, a photon with energy above the bandgap of the
material, >hv Eg, can be absorbed, creating an electron in the conduction band and
one hole in the valence band. As the valence band contains available electrons and
the conduction band has numerous available energy states, the absorption process
has high probability. The electron excited to the conduction band may have an
energy higher that most electrons and will eventually lose this excess energy via

a) b)
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Figure 12.12. (a) N-type semiconductors are obtained by adding impurities from column V of the periodic
table. These elements contribute free electrons. (b) P-type semiconductors are doped with elements from
column III, which create holes.
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scattering with the lattice. This dissipative process excites vibrations in the lattice,
which eventually converts into heat. As a result, the electron will lower its velocity
and reach an energy level close to Ec. Finally, the electron can recombine with a hole
in the valence band. This recombination process can be accompanied by the
emission of a photon, a process called photoluminescence. Luminescence can also
occur as a result of material bombardment with high-energy electrons (cathodolu-
minescence) or running a current through the material (electroluminescence).
Photons with energies below the bandgap cannot excite electrons to the conduction
band and, thus, are not absorbed. The semiconductor is transparent to photons of
energies <hv Eg and cannot act as detector at these wavelengths.

Let us consider a plane wave of photon irradiance −I (in s / m )q
0 1 2 incident on to a

semiconductor of thickness L (figure 12.15). The change in Iq due to the absorption
in a slice of thickness dz is proportional with the photon irradiance at the slice, I z( )q ,
and the thickness of the slice,

Intrinsic

b) 

c)

c

c

a) 

n-type

p-type

n(E)= ρ ( )f(E) ρ ( )

( )

 ρ ( )

 ρ ( )

 ρ ( )

 ρ ( )

 ρ ( )

( )

n(E)

n(E)

p(E)= ρ ( )f(E)

p(E)

p(E)

2
gE

Figure 12.13. Band diagram, density of states (ρ), Fermi–Dirac distribution ( f ), and the carrier concentrations
(n, p): (a) intrinsic, (b) n-type, and (c) p-type semiconductors at thermal equilibrium.
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α= −dI z I z dz( ) ( ) . (12.19)q

In equation (12.19), the proportionality constant, α, is called the absorption
coefficient and the negative sign denotes a decrease in Iq with propagation, as
expected. To obtain the photon irradiance at the exit surface of the material, =z L,
we integrate equation (12.19),

∫ α= −
dI z

I z
z

( )

( )
, (12.20)

L
q

q

L

0
0

hυ >

absorp�on

inelas�c sca�ering

recombina�on

Figure 12.14. Optical absorption of a photon with energy higher than the bandgap creates an EHP. The
electron excited in the conduction band loses energy via inelastic scattering with the lattice and occupies a
lower energy level in the conductance band. Finally, the electron recombines with a hole in the valence band
and can produce photoluminescence.

dz

( )qI L(0)qI

Figure 12.15. Lambert–Beer law for absorption of light in a material of thickness L.
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which yields

= α−I L I e( ) (0) . (12.21)q q
L

Equation (12.21) represents the Lambert–Beer law of absorption.
Note that the absorption coefficient (units of −m 1) has a wavelength dependence

that depends on the material. As discussed, we expect very low absorption for
photon energies below the bandgap. Figure 12.16(a) illustrates the α versus νh
dependence and figure 12.16(b) shows the bandgap energies for various materials
and the corresponding wavelengths. There is a useful relationship that connects the
photon energy in units of eV and its wavelength,

λ
=

μ
E(eV)

1.24
( m)

. (12.22)

As shown in figure 12.16(b), many materials have bandgap energies below the
visible range. For example, Si has a bandgap =E 1.17eVg

Si , which corresponds to

λ = μ

= μ

1.24
1.17

m

1.06 m.
(12.23)g

Si

Thus, Si makes an excellent photodetector material for visible light
λ ∈ μ(0.4, 0.75) m, but becomes essentially transparent for λ > μ1 m.
Germanium, on the other hand, has a smaller bandgap, λ = 0.67 eVg

Ge ; this can
detect longer wavelengths, up to

λ = μ

= μ

1.24
0.67

m

1.83 m.
(12.24)g

Ge

For detecting even deeper into IR, one can use InSb, of bandgap =E 0.17 eVg
InSb ,

which gives

λ = μ

= μ

1.24
0.74

m

7.3 m.
(12.25)g

InSb

Similarly, to detect UV light, we have to use materials of larger bandgap. For
example, Z Sn has a bandgap, =E 3.54 eVg

Z Sn , which yields

λ = μ

= μ

1.24
3.54

m

0.35 m.
(12.26)g

Z Sn

Figure 12.16(c) shows the absorption coefficient of various materials as a function of
wavelength. Various stoichiometries of InGaAs are very popular for building
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Figure 12.16. (a) Absorption coefficient increases abruptly for energies above the bandgap. (b) Energy
bandgap and respective wavelengths for various materials. (c) Wavelength dependence of the absorption
coefficient for various materials.
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photodetectors in the near infrared. The largest wavelength detectable, correspond-
ing to the bandgap, is sometimes called the cut-off wavelength.

Cooling is a valuable procedure to boost the performance of detectors, partic-
ularly at long cut-off wavelengths. By cooling, the number of carriers generated
thermally goes down. Thermal excitation happens by the incident photon exciting
vibrations on the lattice (excites photons) which ultimately increases the temperature
in the material. This temperature rise increases the probability of an electron
occupying the conduction band. This thermal excitation results in noise (dark
current). Since the energy levels in the conduction band are distributed as −e E k T/2g B

(see section 12.4), this thermal noise is particularly significant for Eg materials, that
is, for detection of long wavelengths. Extreme forms of cooling, called cryogenic
cooling, by, for example, liquid nitrogen ( =T 77 K) brings the thermal noise
essentially to zero.

12.7 P–N junction
A p–n junction is, as the name suggests, the interface between a p-type and n-type
semiconductor [5]. P–n junctions are broadly used in semiconductor devices,
including diodes, transistor, solar cells, LEDs, and integrated circuits. Although
both p-doped and n-doped materials are somewhat conducting, the junction
between the two can be depleted of carriers via recombination and, thus, rendered
nonconductive, unless voltage bias is applied across the junction. The junction can
operate as a diode, allowing for current to flow in one direction and not in the other
(see section 12.8 on diodes as photodetectors). Figure 12.17 illustrates a junction and
its circuit symbol.

Recall that for an intrinsic semiconductor the Fermi level lies in the middle of the
bandgap (figure 12.13(a)). The Fermi level is the energy level filled with a probability
of 50%. For an n-type semiconductor, the Fermi level is raised closer to the
conduction band (figure 12.13(b)). This happens because the majority of the carriers
are electrons and are more mobile than the holes, which are trapped. The p-type
materials have the Fermi level shifted toward the valence band (figure 12.13(c)).

p-type silicon n-type silicon
Anode Cathode

Anode Cathode

a)

b)

Figure 12.17. (a) A p–n junction formed by connecting a p-type and an n-type Si material. (b) Diode symbol:
the base of the triangle corresponds to the p (anode) side.
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Forward-and reverse-bias operation correspond to placing the positive voltage at
the anode and cathode, respectively, and allow the junction to operate as a diode.
First, we study the p–n junction in the absence of bias.

12.7.1 Zero bias

Figure 12.18(a) illustrates a p–n junction at thermal equilibrium and zero bias. The
free electrons in the n-type material are attracted by the p-side, where they
recombine with the holes and neutralize. However, the donor dopants in the
n-type material are fixed and remain positive. Conversely, the acceptor dopants in
the p-type material remain negatively charged. Thus, at equilibrium, there is a
potential difference, known as the built-in potential,Vbi (see figure 12.18(a)).

The electric field, E, generated by charge build-up at the interface tends to oppose
the diffusion of both the electrons and holes. Fick’s law states that the diffusion flux,
say for electrons, Jn, is proportional to the particle concentration gradient,

= − ∇D nJ r( ) (12.27)n n

where Dn is the diffusion coefficient for electrons and n their concentration. For
holes, Fick’s law has the analog form, namely,

= −J eD
dp x

dx
( )

, (12.28)d p p,
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Figure 12.18. (a) A p–n junction in thermal equilibrium with zero-bias voltage applied. Under the junction,
plots for the charge density, the electric field, and the voltage are shown. (b) The band diagram for the p–n
junction, indicating that the Fermi levels overlap across the two regions. J indicates particle flux, the
underscript d indicates diffusion flux, while f stands for “field” (directed) flux due to the electric field E. As
usual, e and h stand for electrons and holes, respectively. D is the width of the depletion region.
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where Jd p, is the hole diffusive current (see figure 12.18(b)), flowing from the p- to the
n-side, e is the elementary charge, p is the concentration of holes, assumed to only
vary in 1D, along x, and Dp is the diffusion coefficient of holes.

The current generated by the electric field E represents a drift current, Jf p,

(figure 12.18(b)) defined as

μ= e p xJ E( ) , (12.29)f p p,

where μp is the mobility of holes. At equilibrium, the two currents are equal, that is,

μ =e p x E eD
dp x

dx
( )

( )
. (12.30)p p

Integrating equation (12.30), we obtain

∫ ∫μ =
−

+
E dx D

dp x
p x

( )
( )

, (12.31)p

d

p
p

p

0

where d is the width of the depletion region, −p is the hole concentration in the n-side
and +p the hole concentration in the p-side. Performing the integrals in equation
(12.31), we obtain for the built-in voltage

⎛
⎝⎜

⎞
⎠⎟μ

= +

−
V

D p

p
ln . (12.32)bi

p

p

In equation (12.32), ∫=V E dxbi
d

0
is the built-in voltage (see figure 12.18(a)). In

1905, Einstein derived an expression for the diffusion coefficient of charged particles
at thermal equilibrium, as

μ=D
k T

q
, (12.33)B

where, as usual, kB is Boltzmann’s coefficient,T is the absolute temperature, and q is
the charge of the particle. Thus, the built-in voltage can be expressed by combining
equations (12.32) and (12.33), as

⎛
⎝⎜

⎞
⎠⎟= +

−
V

k T
e

p

p
ln . (12.34)bi

B

Equation (12.34) gives an expression for the voltage at equilibrium, when the
diffusion and drift currents cancel out for both the holes and electrons.

12.7.2 Forward bias

In forward bias, the positive electrode is attached to the p-type material and the
negative electrode to the n-type material (see figure 12.19(b)). In this configuration,
the positive voltage repels holes from the p-side and the negative voltage repels
electrons from the n-side. The overall effect is that the depletion region shrinks. If
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the forward-bias voltage is progressively increased, the depletion region may become
so thin that the built in electric field is not large enough to generate a drift current to
cancel the diffusive current. As a result, the overall resistance of the junction
decreases. In this diffusion-dominant regime, the electrons in the p-region and holes
in the n-region eventually recombine, on average, after a distance called diffusion
length, typically of the order of microns. Note that, although these minority carriers
penetrate only a short distance in the material, the majority carrier current insures
constant charge flow. Thus, in the p-region, the holes travel in the opposite direction
to the electrons and, since their charge is also different in sign, contribute to the same
current. The converse situation happens in the n-region. Thus, increasing the
forward-bias voltage results in a sharp increase in current (see figure 12.20 for the
current versus voltage diagram).

12.7.3 Reverse bias

The reverse bias of the p–n junction is achieved by connecting the negative electrode
to the p-region and vice versa (figure 12.19(c)). Because the negative electrode tends
to pull the holes away from the junction, the depletion region tends to increase in
width (a similar effect happens in the n-region). Overall, this phenomenon leads to
an increased resistance in the junction, which acts roughly as an insulator. Increasing
the reserve bias voltage, that is, applying more negative voltage, yields a high built-
in electric field, but without significant increase in the current. At some point, once
the electric field intensity reaches a critical value, the p–n junction depleted zone

Zero bias
( = 0)

Forward bias 
( = )

Reverse bias 
( = − )

p n

( − )

( + )

( − )

( + )

p n p n

a) b) c)

Figure 12.19. p–n junction, voltage, and energy levels for zero-bias (a), forward bias (b), and reverse bias (c).
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‘breaks down’ and the current begins to flow (figure 12.20). This phenomenon is used
in avalanche or Zener diodes.

12.8 Problems
1. Using the Fermi distribution (equation (12.2b)) show that the probability for

an electron to occupy the Fermi level is ½. Find the energy levels for which
the probability is 0.1 and 0.9.

2. Calculate the intrinsic carrier concentration for Si at =T 100 K, =T 200 K,
and =T 300 K.

3. Calculate the intrinsic carrier concentration for Ge at =T 100 K, =T 200 K,
and =T 300 K.

4. Calculate the relative change in intrinsic charge concentration in Si versus
Ge, n n/Si Ge, for a temperature change from =T 300 K to =T 260 K.
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Figure 12.20. Characteristic I–V curve for a p–n junction: I0, reverse saturation current, Vbreakdown, breakdown
(avalanche or Zener) voltage.
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