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Principles of Biophotonics, Volume 1
Linear systems and the Fourier transform in optics

Gabriel Popescu

Chapter 1

Superposition principle

The superposition principle is encountered in many branches of physics and
engineering and can be employed to solve essentially all linear problems. This
principle states that, for linear systems, the output of a sum of inputs equals the sum
of the respective outputs. This property of linearity will be mathematically defined
shortly; for now, we discuss the physical significance of this fundamental principle.
Note that the term input is quite general: it can refer to a force applied to a mass on
a spring, a voltage applied to a RLC circuit, or an optical field impinging on a
piece of tissue. Similarly, the output can be anything from the displacement of the
mass attached to the spring, the transport of charge through a wire, or the optical
field scattered by the tissue. By system we understand the mechanism that
transforms the input into output, e.g. a mass-spring ensemble, RLC circuit, or
the tissue in the examples above. The essential consequence of the superposition
principle is that the solution (output) to a complicated problem (input) can be
obtained by solving a number of simpler problems, the results of which can be
summed up at the end.

Figure 1.1 illustrates this idea with an example of two optical fields interacting
simultaneously with a medium (system). In order to find the response to applying the
two fields through the system, we have two choices: (i) add the two inputs +U U1 2

and solve for the output; (ii) find the individual outputs, ′ ′U U,1 2 and add them up,
′ + ′U U1 2. Of course, it is the second option that relies on the principle of

superposition. It is not clear a priori which of the two approaches provides a
more direct access to the solution ′ + ′U U( )1 2 . However, the superposition principle
allows us to decomposeU1 andU2 into yet simpler signals, for which the solutions can
be easily found. In the following we discuss two very common such decompositions
that allow us to solve complicated (but linear!) problems very efficiently: Green’s
method and Fourier’s method. These decompositions are employed all the time in
solving optics problems.
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1.1 Green’s function method
Green’s method of solving linear problems refers to ‘breaking down’ the input signal
into a succession of pulses that are infinitely thin, mathematically expressed by Dirac
delta distributions. Figure 1.2 illustrates δ-functions in 1D, 2D, and 3D.
Superficially, we can think of the Dirac delta distribution as a function, which is
zero everywhere except at the origin, where it is infinite,

δ = ∞ =
≠

x
x

x
( )

, 0
0, 0,

⎧⎨⎩
where δ satisfies the normalization to unit area,

∫ δ =
−∞

∞
x dx( ) 1.

Figure 1.2. Delta function in 1D (a), 2D (b) and 3D (c).

Figure 1.1. The superposition principle. The response of the system (e.g. a piece of glass) to the sum of two
fields, U1 + U2, is the same as summing the individual outputs, ′ + ′U U1 2.
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Typically, these distributions are illustrated in 1D and 2D by arrows of unit length,
to suggest their infinitely thin width and unit normalization (figure 1.2(a)). Note that
representing δ(x,y,z) in 3D would require a 4D plot. Thus, we illustrate the 3D
δ-function by a dot, keeping in mind that its amplitude is 1.

The Dirac delta is more rigorously described as a distribution whose properties
are revealed when integrated against other functions. For example, for an arbitrary
function f, the following property holds:

∫ δ =
−∞

∞
x f x dx f( ) ( ) (0).

Another related property of the Dirac delta is that, when multiplied by a function it
‘samples’ the function at the position of the delta,

δ δ− = −f x x a f a x a( ) ( ) ( ) ( ).

This property will prove very useful in expressing complicated input signals as a
sequence of delta impulses.

Throughout the book, we will deal with temporal signals, spatial signals, or a
combination of the two. Like in most references, we will sometimes refer loosely to
the delta distribution as ‘function’, keeping in mind the understanding above.
Figure 1.3 illustrates how an arbitrary temporal (figure 1.3(a)) and spatial (figures 1.3(b)
and (c)) input can be described as an ensemble of pulses. Using the basic property of
δ-functions, the signal in figure 1.3(a) can be written as

∫ δ

δ

= ′ − ′ ′

= ⓥ
−∞

∞
U t U t t t dt

U t t

( ) ( ) ( )

( ) ( )
(1.1)

which definesU t( ) as a summation over infinitely short pulses, each characterized by
a position in time, − ′t t , and amplitude, ′U t( ). The type of integral in equation (1.1)
is called convolution, which we are denoting by symbol ⓥ. If the delta function is
shifted to a certain coordinate, a, the result of equation (1.1) will also be shifted,
i.e. δⓥ − = −U t t a U t a( ) ( ) ( ).

Similarly, this decomposition is applied to 2D and 3D signals (figures 1.3(b)
and (c)). Exploiting the superposition principle, the response to this temporal signal
can be obtained by finding the response to each impulse and summing up the results.
This type of problem is useful in dealing with, for instance, the propagation of light
pulses through various media.

Similarly, the response to the spatial 2D input, U x y( , ), shown in figure 1.3(b),
can be obtained by solving the problem for each impulse and adding up the results,
because U can be written as

∫ ∫ δ= ′ ′ − ′ − ′ ′ ′
−∞

∞

−∞

∞
U x y U x y x x y y dx dy( , ) ( , ) ( , ) . (1.2)
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This type of input is encountered often in problems related to imaging. Of course,
the 3D case is similar (figure 1.3(c)),

∫ ∫ ∫ δ= ′ ′ ′ − ′ − ′ − ′ ′ ′ ′
−∞

∞

−∞

∞

−∞

∞
U x y z U x y z x x y y z z dx dy dz( , , ) ( , , ) ( , , ) . (1.3)

Green’s method is extremely powerful because solving linear problems with an
‘impulse’ input is typically an easy task. The response to such an impulse is called
Green’s function or the impulse response of the linear system. This fundamental
property of linear systems will be described mathematically in more detail in
chapters 2 and 3 and Green’s method for solving linear problems will be used
broadly throughout the book.

1.2 Fourier transform method
Another efficient way of decomposing an input into simpler bits is to break it down
into sinusoidal signals of suitable frequencies, amplitudes, and phases. Essentially,
any curve can be reconstructed by summing up such sine waves, as illustrated for
both temporal and spatial input signals in figure 1.4. Again, the main advantage of
such a decomposition is that solving a linear problem for a single sinusoid as input is
a simple task. Thus, the output is simply the summation of all responses associated
with these sinusoids, which typically can be calculated easily. The signals illustrated
in figure 1.4 are real, i.e. the inputs are reconstructed from a summation of cosine
signals. The Fourier decomposition of a signal is the generalization of this concept
whereby a signal, which generally can be complex, is decomposed in a series of
elements of the form ω ω−A e( ) i t (for temporal signals), with ω the temporal angular
frequency, and ·A ek( ) ik r (for spatial signals), with = k k kk ( , , )x y z the angular spatial
frequency. The superposition principle allows us to express an arbitrary input into a
summation of sines and cosines, solve for the output of each sinusoidal and add up
the results. We will see that, because the FT of a complex exponential is a δ-function,

Figure 1.3. 1D (a), 2D (b), and 3D (c) signals can be described as an ensemble of impulses. The delta functions
have their amplitudes equal to the signal evaluated at the position of the delta function, namely ′U t( ( ),

′′U y( (x , ), ′′ ′U y z( (x , , )).
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the Green’s and Fourier decomposition methods are in fact related. We will discuss
much more on this subject in chapter 3, once we study linear systems in more depth.

1.3 Problems
1. Express the functions below in terms of convolutions with δ-functions. Write

the results using the following symbols: Π (rectangular function),
Γ (Heaviside step function), Λ (triangle function), sign, sinc, chapter 4.
Plot all these functions.

a) Π −x( 5)
b) Π + − Π −( 3) ( 2)x x3

2
5
2

c) Γ − + +x sinc( 2) ( 5)x2
3

d) ∑ Λ −=
x

n
2

2n 1
5 ⎜ ⎟

⎛
⎝

⎞
⎠

e) −sign x( 7) .

Figure 1.4. A signal can be decomposed into a sum of sinusoids: 1D (a), 2D (b), 3D (c).
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2. Use our typical symbols to describe the following signals.

3. Prove the sampling property of the delta function,

δ δ− = −f x x a f a x a( ) ( ) ( ) ( ) .

4. Calculate the following expressions.
a) δ+ +x x x( 2 4) ( )3

b) δ+ + −x e x(ln( ) 1) ( 1)x2

c) δ+
−

−x
x

x
1
1

( 3)
x2

2

ln( )⎛
⎝⎜

⎞
⎠⎟

5. Calculate the following integrals.

a) ∫ δ + +
−∞

∞
x x x dx( )[ 1]2

b) ∫ δ
−∞

∞
x e dx( )[ ]ixb , b real constant

c) ∫ δ − + +
−∞

∞
x x x dx( 5)[ 1]2

d) ∫ δ −
−∞

∞
x e dx( 5) ixb , b real constant

Further reading
[1] Feynman R P, Leighton R B and Sands M L 1963 The Feynman Lectures on Physics

(Reading, MA: Addison-Wesley)
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