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Appendix D

Lie algebra representation theory: a primer

In this primer I follow the excellent pedagogical presentation of Zuber [1].

D.1 The Cartan subalgebra
We consider a semi-simple1 Lie algebra g of finite dimension over the complex
numbers C. The Cartan subalgebra is the maximal abelian subalgebra h of g such
that all its elements are diagonalizable in the adjoint representation. The elements of
g can be chosen to be hermitian. The Cartan subalgebra is not unique and different
choices are related by an automorphism of the algebra, i.e. as ⟶ −h ghg 1. The
dimension l of h is called the rank of g. For example, for su n( ) the Cartan subalgebra
can be generated by the following = −l n 1 diagonal traceless matrices

= − … = − … … = … −−H H H(1, 1, , 0), (0, 1, 1, , 0), , (0, , 1, 1). (D.1)n1 2 1

Let Hi, = …i l1, , be the basis elements of h which are chosen to be hermitian. By
definition we have

= ⇔ =H H H H[ , ] 0 [ad , ad ] 0. (D.2)i j i j

Thus, from = =HH H Had [ , ] 0i j i j we see that Hj are eigenvectors of Had i with
eigenvalues 0. The other linearly independent eigenvectors with eigenvalues αi, not
all vanishing, will be denoted by αE , viz

α= =α α αHE H E Ead [ , ] . (D.3)i i i

1A semi-simple algebra has no abelian ideal but {0}, whereas a simple algebra has no ideal but {0}. In other
words, the semi-simple is more general since it can have ideals. Thus, any semi-simple algebra can be
decomposed into a direct sum of simple algebras.
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These eigenvalues are real since Had i are hermitian after multiplication by i. We
compute for = ∑H h Hi

i
i that

∑α α α= =α αHE H E H had ( ) , ( ) . (D.4)
i

i
i

Obviously, α α= ∑H h( ) i
i

i is a linear form on h. Linear forms on a vector space E
form the dual vector space *E . Thus the set of all α H( ) form the dual space *h of h.
This dual space is called the root space and α H( ) is called a root. We note that

α α=H( ) . (D.5)i i

The total number of the eigenvectors Hj and αE of Hi is equal to the dimension d of
the adjoint representation of the Lie algebra g. Since the number of theHj is equal to
the rank l and the roots are not degenerate we conclude that the number of the roots
is d − l. This number is even since if α is a root α− is also a root.

The Killing form in the basis αH E( , )i of g is given by

α β= = + =α α βH E E E( , ) 0, ( , ) 0 unless 0. (D.6)i

The Killing form is defined by the trace in the adjoint representation in an obvious
way, viz

=α αH E H E( , ) tr ad ad . (D.7)i i

The Killing form on h is non-degenerate, i.e. there exists an isomorphism between h
and *h which allows us to associate to every element α ∈ *h a unique element

= ∑ ∈α αH h H Hi
i

i as follows

∑ ∑ ∑ ∑

∑ α α α

= =

= = ≡

α α αH H h h H H h h g

h H

( , ) ( , )

( ) .
(D.8)

i j i j

j

i j
i j

i j
ij

j
j

In the above equation, we have used the fact that the metric =g H H( , )ij i j is
invertible since the Killing form was assumed to be non-degenerate, and
α = ∑ αh gj i

i
ij. The bilinear form on the space of roots *H can then be defined by

α β〈 〉 = α βH H, ( , ). (D.9)

In order to compute the commutation relations of the αE , we compute using Jacobi
identity the following

α β

=
= − −
= +

α β α β

β α α β

α β

H E E H E E
E H E E E H

E E

ad [ , ] [ , [ , ]]
[ , [ , ]] [ , [ , ]]

( ) [ , ].
(D.10)

i i

i i

i

We have three possibilities. If α β+ is a root then =α β αβ α β+E E N E[ , ] . If α β+ ≠ 0 is
not a root then =α βE E[ , ] 0. If α β+ = 0 then = ∈α α−E E H h[ , ] . We compute
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α
α

=
=
=
= ⇒
=

α α α α

α α

α α

α α α α α

α α α

− −

−

−

− −

−

H E E H E E
E E

E E
H H E E E E
E E H

( , [ , ]) tr ad [ad , ad ]
tr ad ad

( , )
( , )( , ) [ , ]
( , ) .

(D.11)

i i

i

i

i

In summary, we have obtained the commutation relations

α= =α αH H H E E[ , ] 0, [ , ] (D.12)i j i i

α β
α β

= + =
= + =
=

α β αβ α β

α α α α α

α α

+

− −

−

E E N E

E E E E H
E E

[ , ] , root

[ , ] ( , ) , 0
[ , ] 0, otherwise.

(D.13)

Since the restriction of the Killing form to h is positive definite we can choose the
normalization

δ δ= =α β α β+H H E E( , ) , ( , ) (D.14)i j ij ,0

Thus δ=gij ij, α = αhi
i and hence

∑ ∑α α α α= 〈 〉 = =α α αH H H H, , ( , ) . (D.15)
i i

i i i
2

We get finally the commutation relations

α α= ±〈 〉 =α α α α α α± ± −H E E E E H[ , ] , , [ , ] . (D.16)

Thus we get an su(2) Lie algebra for every root.

D.2 Roots, Cartan matrix and Dynkin diagrams
We have established that we have d − l roots. Their inner product is inherited from
the Killing form, viz α β α β〈 〉 = = ∑α βH H, ( , ) i i i. It is obvious that α α〈 〉αH / , plays
the role of Jz in su(2), whereas the αE and α−E play the role of the raising and
lowering operators +J and −J , respectively, in su(2). We also compute

α β= = 〈 〉α β α β βH E H E Ead [ , ] , . (D.17)

Let ⩽p 0 be the smallest integer such that α β−
∣ ∣E E(ad ) p is non-zero, i.e.

=α β−
∣ ∣+E E(ad ) 0p 1 . This means that α β− +E k , = … ∣ ∣k p1, , , correspond to non-zero

roots α β− +k . Let ⩾q 0 be the largest integer such that α βE E(ad )q is non-zero, i.e.
=α β

+E E(ad ) 0q 1 . This means that α β+Ek , = …k q1, , , correspond to non-zero roots
α β+k . The set β β α β β α′ = + … … +β′E q p{ ; , , , , } is called the α-chain through

β. Similarly to su(2), the β′E form a representation of the su(2) algebra generated by
α±E and αH . Furthermore, the eigenvalues corresponding to the highest state β α+E q

and the lowest state β α+E p given, respectively, by
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α β α
α β α

= 〈 + 〉
= 〈 + 〉

α β α β α

α β α β α

+ +

+ +

H E q E

H E p E

[ , ] , ,

[ , ] , ,
(D.18)

q q

p p

are opposite to each other, i.e.

α β α α β α α β
α α

〈 + 〉 = −〈 + 〉 ⇒ 〈 〉
〈 〉

= − − = ∈

q p

q p m Z

, , 2
,
,

.
(D.19)

The set of all roots, which are not linearly independent in *h , is denoted by Δ and it is
decomposed into positive and negative roots. Obviously, the opposite of a positive
root is a negative root and vice versa. A basis in Δ can be given by the so-called
simple roots denoted by αi, = …i l1, , , such that the positive (negative) roots are
linear combinations of simple roots with positive (negative) integer coefficients. A
simple root cannot be rewritten as the sum of two positive roots. The choice of
simple roots is not unique and different choices are related by the Weyl group, which
leaves the set of roots globally invariant.

Let α and β be two simple roots. Then obviously α β− cannot be a root and as a
consequence p = 0 and = − ⩽m q 0. In other words, α β〈 〉 ⩽, 0. The Cartan matrix
is defined in terms of the simple roots by

α α
α α

=
〈 〉
〈 〉

C 2
,

,
. (D.20)ij

i j

j j

This is not a symmetric matrix. We compute for ≠i j , using α β α β θ〈 〉 = ∣ ∣∣ ∣, cos , that

α α
α α

α
α

θ=
〈 〉
〈 〉

= ∣ ∣
∣ ∣

= ⩽C m2
,

,
2 cos 0 (D.21)ij

i j

j j

i

j
ij i

α α
α α

α
α

θ=
〈 〉
〈 〉

=
∣ ∣
∣ ∣

= ⩽C m2
,

,
2 cos 0. (D.22)ji

j i

i i

j

i
ij j

By multiplying the last two equations and using the Schwarz inequality
α β α α β β〈 〉 < 〈 〉〈 〉, , ,2 we obtain

<m m 4. (D.23)i j

The value =m m 4i j is forbidden because α α≠ −i j. We also compute by dividing the
above two equations the following

α
α

θ∣ ∣
∣ ∣

= = −m
m

m m, cos
1
2

. (D.24)
i

j

i

j
ij i j

The only allowed angles are, therefore, π /2, π2 /3, π3 /4 and π5 /6 corresponding to
the cosine equals 0,−1/2,− 2 /2,− 3 /2. The allowed ratios of lengths of roots are,
therefore, 0, 1, 2 and 3 .
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If the set of roots decomposes into two mutually orthogonal subsets then the
corresponding semi-simple algebra g decomposes into the direct sum of two simple
algebras corresponding to the orthogonal sets. In the following we will only consider
simple algebras following [1].

For rank 1 there is one complex simple Lie algebra which is =A sl C(2, )1 . For
rank 2 there are two complex simple Lie algebras which are =A sl C(3, )2 and

=B so C(5, )2 and one complex semi-simple Lie algebra which is =D so C(4, )2 .
There is also another rank 2 complex simple algebra G2 which is an exceptional
algebra of dimension 14. For higher ranks, the Cartan classification of complex
simple algebra is given by

= + = +
= =

A sl l B so l
C sp l D so l

C C
C C

( 1, ), (2 1, ),
(2 , ), (2 , ).

(D.25)l l

l l

These four infinite families are the so-called classical Lie algebra. The unique real
compact forms of these algebras are given, respectively, by = +A su l( 1)l ,

= +B so l(2 1)l , =C usp l(2 )l , =D so l(2 )l .
Furthermore, the full Cartan classification of the exceptional complex simple

algebra is given by the following five cases

E E E F G(78), (133), (248), (52), (14). (D.26)6 7 8 4 2

The number in brackets is the dimension.
For higher ranks we use the Dynkin diagram which encodes the Cartan matrix to

visualize the root system. The Dynkin diagram is constructed as follows
• Each simple root is represented by a vertex.
• Any two roots such that α α〈 〉 ≠, 0i j are linked by a line.
• The line is simple if

⎛
⎝⎜

⎞
⎠⎟θ π α

α
= = − = ∣ ∣

∣ ∣
=C C 1,

2
3

, 1 . (D.27)ij ji ij
i

j

• The line is double if

⎛
⎝⎜

⎞
⎠⎟θ π α

α
= − = = − = ∣ ∣

∣ ∣
=C C2, 1,

3
4

, 2 . (D.28)ij ji ij
i

j

• The line is triple if

⎛
⎝⎜

⎞
⎠⎟θ π α

α
= − = = − = ∣ ∣

∣ ∣
=C C3, 1,

5
6

, 3 . (D.29)ij ji ij
i

j

• The line carries an arrow from i to j if α α∣ ∣ > ∣ ∣i j .

D.3 Weights, Dynkin labels and representations
The roots studied so far provide one particular finite dimensional irreducible unitary
representation of the algebra g known as the adjoint representation. A general finite
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dimensional irreducible unitary representation of the algebra g is given by the so-
called weights. We start with the Cartan subalgebra generated by the commuting
elements Hi. These can be obviously diagonalized simultaneously. Let λ∣ 〉a be the
eigenvectors of the Cartan elements Hi with eigenvalues λi, viz

λ λ λ∣ 〉 = ∣ 〉H . (D.30)i a i a

The vector of eigenvalues λ λ λ= …( , , )l1 is called a weight and is associated with the
vectors λ∣ 〉a where the index a denotes possible degeneracy of the eigenvalue λ.
Obviously, for = ∑H h Hi

i
i we have

∑λ λ λ λ λ∣ 〉 = ∣ 〉 =H H H h( ) , ( ) . (D.31)
i

a a
i

i

Thus, λ is a linear form on h and thus an element in *h which is the space of roots.
SinceH is hermitian the weights are real. The set of weights in a given representation
forms what we call a weight diagram.

Let us call the representation space E. The dimension of the representation space
E is equal to the total number of λa including their multiplicities. Since there is an
su(2) Lie algebra for every root α, the space E contains subspaces corresponding
to the d− l su(2) Lie algebras α α α−H E E{ , , } satisfying α α= ±〈 〉α α α± ±H E E[ , ] , ,

=α α α−E E H[ , ] .
We compute

λ λ α λ∣ 〉 = ± ∣ 〉α α± ±HE E( ) . (D.32)i a i a

Thus, the vector λ∣ 〉αE a is an eigenvector associated with the eigenvalue λ α+ . In
other words, all vectors in the representation space E are obtained from each other
by the action of the α±E . We also conclude that any two weights of the same
representation can only differ by a linear combination of roots with integer
coefficients.

The weight λ will be associated with the operator λE . Let ′ ⩽p 0 be the smallest
integer such that λ∣ 〉α−

∣ ∣E( ) p
a is non-zero, i.e. λ∣ 〉 =α−

∣ ′∣+E( ) 0p
a

1 . This means that
λ∣ 〉α−E( )k

a , = … ∣ ′∣k p1, , , correspond to non-zero weights α λ− +k . Let ′ ⩾q 0 be
the largest integer such that λ∣ 〉α

′E( )q
a is non-zero, i.e. λ∣ 〉 =α

′+E( ) 0q
a

1 . This means
that λ∣ 〉α λ+Ek a , = … ′k q1, , , correspond to non-zero weights α λ+k . The weights
β λ α λ λ α′ = − ∣ ′∣ … … + ′p q{ , , , , }will be associated with the operator β′E . Similar
to before, the operators β′E{ } form a representation of the su(2) algebra generated by

α±E and αH . Furthermore, the eigenvalues corresponding to the highest state λ α+ ′E q

and the lowest state λ α+ ′E p given, respectively, by

α λ α
α λ α

= 〈 + ′ 〉
= 〈 + ′ 〉

α λ α λ α

α λ α λ α

+ ′ + ′

+ ′ + ′

H E q E

H E p E

[ , ] , ,

[ , ] , ,
(D.33)

q q

p p

are opposite to each other, i.e.

A Modern Course in Quantum Field Theory, Volume 2

D-6



α λ α α λ α α λ
α α

〈 + ′ 〉 = −〈 + ′ 〉 ⇒ 〈 〉
〈 〉

= − ′ − ′ = ′ ∈

q p

q p m Z

, , 2
,
,

.
(D.34)

Since we are dealing with an su(2) algebra, the number of the states β′E{ } is exactly
given by ′ − ′ + = +q p j1 2 1, i.e. ′ − ′ =q p j2 .

In the above space we can clearly introduce an ordering given by λ λ′ > if
λ λ α′ − = ∑ ni i i where ni are positive integers. There exists, therefore, a highest
weight state denoted by ∣Λ〉 such that if α is any positive root we have

∣Λ〉 =αE 0. (D.35)

In this case ′ =q 0 and ′ = −p j2 and hence

α α α〈Λ 〉 = 〈 〉 >j2 , , 0. (D.36)

We define the Dynkin labels of a weight λ by

λ λ α
α α

= 〈 〉
〈 〉

∈ Z2
,
,

. (D.37)i
i

i i

The α are simple roots and, therefore, there are l Dynkin labels. If we choose the
weight λ to be the highest weight Λ we obtain

λ α
α α

= 〈Λ 〉
〈 〉

= ∈j N2
,
,

. (D.38)i
i

i i

We define the fundamental weights Λi by the formula

δ α
α α

= 〈Λ 〉
〈 〉

2
,
,

. (D.39)ij
i i

i i

Clearly, there are l of them and they provide a basis in *h . Also, it is obvious that any
highest weight state can be rewritten as a linear combination of the fundamental
weights with coefficients given by the Dynkin labels, viz

∑ λ λΛ = Λ ∈
=

N, . (D.40)
i

l

1

i i i

Any irreducible unitary representation is completely characterized by its highest
weight state. The fundamental weights define the so-called fundamental representa-
tions. Hence, we have l fundamental representations characterized by Λi.

The dimension and the Casimir operators of a given irreducible representation
characterized by a highest weight state Λ are given in terms of the Weyl vector
defined by the half sum of the positive roots or by the sum of the fundamental roots
as follows
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∑ ∑ρ α= = Λ
α>

1
2

. (D.41)
i0

i

The dimension and the quadratic Casimir of the irreducible representation Λ are
given respectively by the Weyl formulas

∏ ρ α
ρ α

Λ = 〈Λ + 〉
〈 〉α>

dim( )
,

,
(D.42)

0

ρΛ = 〈Λ Λ + 〉C ( )
1
2

, 2 . (D.43)2

D.4 Explicit construction of Lie algebra representations
D.4.1 Al = su(l + 1)

In this case the dimension of *h is = −l n 1, i.e. =* −h Rn 1. Let êi, = …i n1, , , be an
orthonormal basis in Rn satisfying

δ〈 ˆ ˆ 〉 =e e, . (D.44)i j ij

We define any hyperplane in Rn by the vector normal to it. We consider the
hyperplane given by the normal vector

∑ρ̂ = ˆ
=

e . (D.45)
i

n

1

i

We project the êi on this hyperplane to obtain vectors ei given by

ρ= ˆ − ˆe e
n
1

. (D.46)i i

Indeed, we check that ρ〈 ˆ 〉 =e, 0i . Furthermore, we check that

δ〈 〉 = −e e
n

,
1

. (D.47)i j ij

We also check that ∑ =e 0i i . In other words, the ei are not linearly independent and
they form a basis in −Rn 1. We define the = −l n 1 simple roots and the

− = −d l n n( )/2 ( 1)/2 positive roots, respectively, by

α α= = − = …+ +e e i l, 1, , (D.48)i ii i i1 1

α = − < = …e e i j n, 1, , . (D.49)ij i j

The simple roots satisfy

α α δ δ δ〈 〉 = − −+ +, 2 . (D.50)i j ij ij i j1 1
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From this equation, we can infer directly the value of the Cartan matrix. We have

α α δ δ δ= 〈 〉 = − −+ +C , 2 . (D.51)ij i j ij ij i j1 1

In order to compute the Weyl vector we divide the positive roots as
α = − = …e e i n{ , 2, , }i i1 1 ( −n 1 roots), α = − = …e e i n{ , 3, , }i i2 2 ( −n 2 roots),
α = − = …e e i n{ , 4, , }i i3 3 ( −n 3 roots), …, α = − = −− −e e i n n{ , 1, }n i n i2 2 (2
roots), α = − =− −e e i n{ , }n i n i1 1 (1 root). We have then

∑ ∑ρ α α= =

= − + − + − + ⋯
+ − + + ⋯ − −

α> <

n e n e n e
n i e n e

2

( 1) ( 3) ( 5)
( 2 1) ( 1) .

(D.52)
i j0

ij

i n

1 2 3

The index i in the above formula goes from i = 1 to n. Now, if we re-express the ei in
terms of the simple roots αi we find that the coefficient of each αi is the sum of the
coefficients of ej with ⩽j i, viz

∑ − + = − = … −
=

n j i n i i n( 2 1) ( ), 1, , 1 (D.53)
j

i

1

We obtain then

ρ α α α
α α

= − + − + − + ⋯
+ − + ⋯ + − −

n n n
i n i n

2 ( 1) 2( 2) 3( 3)
( ) ( 1) .

(D.54)
i n

1 2 3

1

By using ∑ =e 0i i we can also rewrite the Weyl vector as

∑ρ = −
=

n i e( ) . (D.55)
i

l

1

i

From equation (D.50) we have α α〈 〉 =, 2i i . Thus, the fundamental weights must be
defined by the condition α δ〈Λ 〉 =,j i ij. A solution is given by

∑Λ =
=

e . (D.56)
j

i

1

i j

We verify that α δ δ〈Λ 〉 = ∑ − ∑= =
−,j i k

j
ki k

j
ki1 1

1 . For i = j we get 1 − 0, for >i j we get
0 − 0, whereas for <i j we get 1 − 1. Hence

α
α α

δ
〈Λ 〉
〈 〉

=2
,

,
. (D.57)

j i

i i
ij

Explicitly, we have
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= Λ
= Λ − Λ = … −
= − Λ

−

−

e
e i n
e

, 2, , 1
.

(D.58)i i i

n n

1 1

1

1

Furthermore, we compute

α〈Λ 〉 = − ⩽i n j
n

i j,
( )

, . (D.59)j i

We need now to compute the dimension of the irreducible representation with
highest weight state λΛ = ∑ Λ=i

l
i i1 . We have

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

∑ ∑

∑

α

λ δ

δ

〈Λ 〉 = 〈Λ 〉 − 〈Λ 〉

= − − ⟶

= − − ⟶

= −

= ′=

=

′

e e

n
i j

f
n

i j

f f

, , ,

1
( )

1
( )

.

(D.60)
k

l

k

k

p

l
1 1

1

ij i j

k k i

p pi

i j

The fi is defined by the equation

∑ λ= = … =
=

f i l f, 1, , ; 0. (D.61)
q i

l

i q n

Further, we compute in the same way

∑

ρ α ρ ρ〈 〉 = 〈 〉 − 〈 〉

= − + 〈 〉 − ⟶

= −
=

e e

n k e e i j

j i

, , ,

1
2

( 2 1) , ( )

.

(D.62)
k

l

1

ij i j

k i

Hence, we find the dimension

∏Λ =
− + −

−<

f f j i

j i
dim( ) . (D.63)

i j

i j

The Casimir operator is given by

∑ ∑ λ λΛ = + 〈Λ Λ 〉
= =

C ( )
1
2

( 2) , . (D.64)
i

l

j

l

1 1

i j i j2

We compute
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〈Λ Λ 〉 = − ⩽i n j
n

i j,
( )

, (D.65)i j

〈Λ Λ 〉 = − >j n i
n

i j,
( )

, . (D.66)i j

Example: su(4) In this case n = 4, = − =d n 1 152 , l = 3 and thus =*h R3. We
have − =d l( )/2 6 positive roots. The simple roots are

α α α α
α α

= = − = = −
= = −

e e e e
e e

, ,
. (D.67)1 12 1 2 2 23 2 3

3 34 3 4

The other positive roots are

α α α= − = − = −e e e e e e, , . (D.68)13 1 3 14 1 4 24 2 4

The Weyl vector is (using also ∑ =e 0i i )

ρ
α α α

= + − − = + +
= + +

e e e e e e e2 3 3 6 4 2
3 4 3 .

(D.69)1 2 3 4 1 2 3

1 2 3

The weights are

Λ = Λ = + Λ = + +e e e e e e, , . (D.70)1 1 2 1 2 3 1 2 3

The Weyl vector can also be rewritten as

ρ = Λ + Λ + Λ . (D.71)1 2 3

The Casimir operator and the dimension are given by

λ λ λ λ λ λ λ λ

λ λ λ λ

Λ = + + + + + + +

+ + + +

C ( )
1
8

(3 2 12)
1
4

( 2 8)

1
8

( 2 3 12)
(D.72)

2 1 1 2 3 2 1 2 3

3 1 2 3

λ λ λ λ λ

λ λ λ λ λ

Λ = + + + + +

× + + + + +

dim( )
1

12
( 1)( 1)( 1)( 2)

( 2)( 3).
(D.73)1 2 3 1 2

2 3 1 2 3

For example = +C n n n n( , 0, ) ( 3)2 and = + + +n n n n ndim( , 0, ) ( 1) ( 2) (2 3)/122 2 .

D.4.2 Bl = so(2l + 1)

In this case the dimension is = +d l l(2 1) and the rank is l, i.e. =*h Rl. We choose a
basis in Rl given by ei, = …i l1, , , such that δ〈 〉 =e e,i j ij. The l simple roots are

α α= − = … − =+e e i l e, 1, , 1; . (D.74)i i i l l1
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There are − =d l l( )/2 2 positive roots. Here they are

∑ α= = …
=

e i l, 1, , (D.75)
k i

l

i k

∑ α− = ⩽ < ⩽
=

−

e e i j l, 1 (D.76)
k i

j 1

i j k

∑ ∑α α+ = + ⩽ < ⩽
=

−

=

e e i j l2 , 1 . (D.77)
k i

j

k j

l1

i j k k

The Weyl vector is the half sum of the positive roots. We get

∑ ∑ ∑

∑

∑ ∑

∑ ∑

∑

ρ

α

α

α

= + − + +

= − +

= − +

= − +

= · −

= < <

=

= =

= =

=

e e e e e

e l i

l i

l k

i l i

2 ( ) ( )

(2 2 1)

(2 2 1)

(2 2 1)

(2 ).

(D.78)

i

l

i j i j

i

l

i

l

k i

l

i

l

k

i

i

l

1

1

1

1 1

1

i i j i j

i

k

i

i

The non-zero elements of the Cartan matrix are given by

α α〈 〉 = = … −i l, 2, 1, , 1 (D.79)i i

α α〈 〉 =, 1 (D.80)l l

α α〈 〉 = − ⩽ = + = + ⩽i j j i l, 1, 1 1, 1 . (D.81)i j

The fundamental weights are defined by

∑ ∑Λ = = … − Λ =
= =

e i l e, 1, , 1;
1
2

. (D.82)
j

i

j

l

1 1

i j l j

We can re-express the basis vectors in terms of the fundamental weights as

= Λ = Λ − Λ ⩽ ⩽ − = Λ − Λ− −e e i l e; , 2 1; 2 . (D.83)i i i l l l1 1 1 1
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The Dynkin labels of the roots are given by

α = Λ − Λ = − …2 (2, 1, ) (D.84)1 1 2

α = −Λ + Λ − Λ = … − − … = … −− + i l2 ( , 1, 2, 1, ), 2, , 2 (D.85)i i i i1 1

α = −Λ + Λ − Λ = … − −− − −2 2 ( , 1, 2, 2) (D.86)l l l l1 2 1

α = −Λ + Λ = … −− 2 ( , 1, 2). (D.87)l l l1

In general, irreducible representations of +so l(2 1) are characterized by the highest
weight vectors Λ which can be rewritten as Λ = ∑ = …n e n n( , , )i i i l1 with

⩾ ⋯ ⩾ ⩾ ⩾−n n n 0l l1 1 with dimensions (see [2] page 407)

∏ ∏… =
−
−

= + − + = − +

<

n n
l l

m m
l
m

l n l i m l i

dim( , , )

1
2

,
1
2

.

(D.88)i j i

l
i j

i j

i

i

i i i

1

2 2

2 2

Example: so(5) In this case l = 2 and thus =*h R2. The simple roots are

α α= − =e e e, . (D.89)1 1 2 2 2

There are four positive roots. These are the two simple roots plus

α α α α= + + = +e e e, 2 . (D.90)1 1 2 1 2 1 2

The Weyl vector is

ρ α α= + = +e e
3
2

1
2

3
2

2 . (D.91)1 2 1 2

The fundamental weights are

α α

α α

Λ = = +

Λ = + = +

e

e e
1
2

( )
1
2

.
(D.92)

1 1 1 2

2 1 2 1 2

A straightforward calculation gives the dimension and the Casimir

λ λ λ λ λ λΛ = + + + + + +dim( )
1
6

( 1)( 1)( 2)(2 3) (D.93)1 2 1 2 1 2

λ λ λ λ λ λΛ = + + + + +C ( )
1
4

(2 6)
1
4

( 4). (D.94)2 1 1 2 2 1 2

The highest weight state λΛ = ∑ Λi i i is usually expressed as Λ = ∑ n ei i i where the
spin quantum numbers ni are defined in terms of the Dynkin labels λi by λ = −n n1 1 2
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and λ = n22 2. The dimension and the Casimir operator become in terms of ni
given by

Λ = + + − + + +n n n n n ndim( )
1
6

(2 3)(2 1)( 1)( 2) (D.95)1 2 1 2 1 2

Λ = + + +C n n n n( )
1
2

( 3)
1
2

( 1). (D.96)2 1 1 2 2

D.4.3 Dl = so(2l)

In this case the dimension is = −d l l(2 1) and the rank is l, i.e. =*h Rl. We choose a
basis in Rl given by ei, = …i l1, , , such that δ〈 〉 =e e,i j ij. The l simple roots are

α α= − = … − = ++ −e e i l e e, 1, , 1; . (D.97)i i i l l l1 1

There are − = −d l l l( )/2 ( 1) positive roots. Here they are

∑ α− = ⩽ < ⩽
=

−

e e i j l, 1 (D.98)
k i

j 1

i j k

∑ ∑α α α α+ = + + + ⩽ < ⩽ −
=

−

=

−

−e e i j l2 , 1 1 (D.99)
k i

j

k j

l1 2

i j k k l l1

∑ α α+ = + ⩽ ⩽ −
=

−

e e i l, 1 1. (D.100)
k i

l 2

i l k l

The Weyl vector is the half sum of the positive roots. We get

∑

∑

ρ

α α α

= −

= · − − + − +

=

−

=

−

−

l i e

i l i
l l

2 2( )

(2 1)
( 1)

2
( ).

(D.101)i

l

i

l
1

1

1

2

i

i l l1

The non-zero elements of the Cartan matrix are given by

α α〈 〉 = = …i l, 2, 1, , (D.102)i i

α α〈 〉 = − = = − = − =i l j l i l j l, 1, , 2; 2, (D.103)i j

α α〈 〉 = − ⩽ = + = + ⩽ −i j j i l, 1, 1 1, 1 2. (D.104)i j

The fundamental weights are defined by
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∑

α α α α α

α α

Λ =

= + + ⋯ + − + + ⋯ +

+ + = … −

=

− −

−

e

i i
i

i l

2 ( 1) ( )

2
( ), 1, , 2

(D.105)
j

i

1

i j

i i l

l l

1 2 1 2

1

α α α α α

Λ = + ⋯ + −

= + + ⋯ + − + + −

− −

− −

e e e

l
l l

1
2

( )

1
2

( 2 ( 2) )
4

2
4

(D.106)
l l l

l l l

1 1 1

1 2 2 1

α α α α α

Λ = + ⋯ + +

= + + ⋯ + − + − +

−

− −

e e e

l
l l

1
2

( )

1
2

( 2 ( 2) )
2

4 4
.

(D.107)
l l l

l l l

1 1

1 2 2 1

In general, irreducible representations of so l(2 ) are characterized by the highest
weight vectors Λ which can be rewritten as Λ = ∑ = …n e n n( , , )i i i l1 with

⩾ ⋯ ⩾ ⩾ ∣ ∣ ⩾−n n n 0l l1 1 with dimensions (see [2] page 409)

∏… =
−
−

= + − = −
<

n n
l l

m m

l n l i m l i

dim( , , )

, .

(D.108)
i j

l
i j

i j

i i i

1

2 2

2 2

Example: so(6) In this case l = 3 and thus =*h R3. The simple roots are

α α α= − = − = +e e e e e e, , . (D.109)1 1 2 2 2 3 3 2 3

There are six positive roots. These are the three simple roots plus

α α α α
α α α

− = + + = +
+ = + +

e e e e
e e

, ,
. (D.110)1 3 1 2 1 3 1 3

1 2 1 2 3

The Weyl vector is

ρ α α α= + = + +e e2 2
3
2

3
2

. (D.111)1 2 1 2 3

The Cartan matrix is

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟=

− −
−
−

C
2 1 1
1 2 0
1 0 2

(D.112)

The fundamental weights are
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α α α

α α α

α α α

Λ = = + +

Λ = + − = + +

Λ = + + = + +

e

e e e

e e e

1
2

1
2

1
2

( )
1
2

3
4

1
4

1
2

( )
1
2

1
4

3
4

.

(D.113)

1 1 1 2 3

2 1 2 3 1 2 3

3 1 2 3 1 2 3

A straightforward calculation gives the dimension and the Casimir

λ λ λ λ λ

λ λ λ λ λ

Λ = + + + + +

× + + + + +

dim( )
1

12
( 1)( 1)( 1)( 2)

( 2)( 3)
(D.114)1 2 3 1 2

1 3 1 2 3

λ λ λ λ λ λ λ λ

λ λ λ λ

Λ = + + + + + + +

+ + + +

C ( )
1
4

(2 8)
1
8

(2 3 12)

1
8

(2 3 12).
(D.115)

2 1 1 2 3 2 1 2 3

3 1 2 3

In terms of the spin quantum numbers ni defined by λ = −n n1 1 2, λ = −n n2 2 3 and
λ = +n n3 2 3 we have

Λ = + − +

− + + −

n n n

n n n

dim( )
1

12
(( 2) )(( 2)

( 1) )(( 1) )
(D.116)

1
2

3
2

1
2

2
2

2
2

3
2

Λ = + + + +C n n n n n( )
1
2

( 4)
1
2

( 2)
1
2

. (D.117)2 1 1 2 2 3
2
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Appendix E

On homotopy theory

• Compactification: In one dimension we can compactify R by adding one point
(at) ∞ to obtain the one-sphere S1. Conversely, by removing one point from
the circle we get essentially R. This is called Alexandroff one-point compac-
tification. Generalization to higher dimensions is obvious.

• Topological spaces and manifolds: A topological space is a collection of open
subsets (they do not contain any of their boundary points) with certain
properties which allow the introduction of the concept of continuity (smooth-
ness). Manifolds have the added property of differentiability.

• Homeomorphic: Two spaces are said to be homeomorphic if they can be
mapped continuously and bijectively onto each other. Two homeomorphic
spaces are topologically identical and posses the same connectedness proper-
ties (i.e. they are homotopically equivalent).

• Homotopic equivalence: Two spaces X and Y are homotopically equivalent
if there exist continuous mappings ⟶f X Y: and ⟶g Y X: such
that ◦ =g f 1X , ◦ =f g 1Y . A very important example is the sphere Sn and
the punctured +Rn 1 (i.e. +R /{0}n 1 )1.

• Homotopy: A homotopy (or a deformation) of a smooth map f between two
smooth manifolds X and Y is a smooth map × ⟶F X I Y: , =I [0, 1] with
the property =F x f x( , 0) ( ). The maps =f x F x t( ) ( , )t are said to be
homotopic.

• Homotopy classes: The relation homotopy divides the set of smooth maps
between two smooth manifolds X and Y into equivalence classes called
homotopy classes.

1 This can be shown using the stereographic projection.
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• Connected spaces: An arcwise connected space is one in which every two
points are connected by some path.

• Loops: A loop is a closed path. A loop through a point ∈x M0 is a map
α ⟶ M: [0, 1] such that α α= = x(0) (1) 0.

A product of two loops α and β is a loop γ α β= * which corresponds to
traversing the original loops consecutively, viz γ α=t t( ) (2 ), ⩽ ⩽t0 1/2 and
γ β= −t t( ) (2 1), ⩽ ⩽t1/2 1. The inverse loop α−1 corresponds to traversing
the loop α in the opposite direction. The constant loop is obviously given by

=c t x( ) 0 for all t.
Two loops are said to be homotopic, and we write α β∼ , if they can be

continuously deformed into each other. Thus, there must exist a mapping
× ⟶H M: [0, 1] [0, 1] which satisfy α=H s s( , 0) ( ), β=H s s( , 1) ( ) and

= =H t H t x(0, ) (1, ) 0.
• The fundamental group: The fundamental group of M, denoted π M x( , )1 0 ,
consists of all the equivalence (homotopy) classes of loops through ∈x M0 .
The product of homotopy classes is given by the product of their representa-
tives and thus π M x( , )1 0 is a group where the neutral element is given by the
constant loop. For arcwise connected space the fundamental group is
independent of the base point x0.

• Homotopic equivalence: Homotopically equivalent spaces have the same
fundamental group.

• Simply connected: In a simply connected space every loop can be contracted
to a point. The fundamental group in this case is trivial, viz π = 01 .

• The circle: Let us consider =M S1. The maps θ ⟶S S: 1 1 are phases. We
can divide the first S1 by 2π to get the interval [0, 1]. An arbitrary phase on S1

always satisfies θ =(0) 0, θ π π= m(2 ) 2 . This can be continuously deformed to
the linear function ϕm . To see this consider the map

ϕ θ ϕ ϕ θ π
π

= − +H t t t( , ) (1 ) ( )
(2 )
2

. (E.1)

This satisfies θ= =H t(0, ) (0) 0, π θ π=H t(2 , ) (2 ). In other words, ϕH t( , ) is
a homotopy and as a consequence θ ϕ( ) is in the same equivalence class as ϕm .
The set of homotopy (equivalence) classes is therefore Z. The fundamental
group of the circle is

π =S Z( ) . (E.2)1
1

• Higher spheres: All higher spheres are simply connected and as a consequence

π = ⩾S n( ) 0, 2. (E.3)n
1

The reason is very simple. Any loop in +R /{0}n 1 can always avoid the point
defect at the origin and be shrunk to a point.

• Torus: The fundamental group of a product of spaces X and Y is
π π π⊗ = ⊗X Y X Y( ) ( ) ( )1 1 1 . Thus for a two-dimensional torus we have

π = ⊗T Z Z( ) . (E.4)1
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• Higher homotopy groups: The fundamental group uses loops and their behavior
under deformations to characterize topological properties. Furthermore, the
fundamental group (using loops) cannot detect point defects in dimensions
higher than two. The higher homotopy groups uses generalizations of the one-
dimensional loop to detect point defects in higher dimensions.

• The n-cubes and n-loops: An n-cube is defined by

= … ∣ ⩽ ⩽I s s s s{( , , ) 0 1 all }. (E.5)n
n i i1

The boundary is defined by

∂ = … ∈ ∣ = =I s s I s s{( , , ) 0 or 1}. (E.6)n
n

n
i i1

An n-loop is a continuous map from the n-cube to the topological space X, viz

α ⟶I X: , (E.7)n

which satisfies

α = ∈ ∂s x s I( ) , . (E.8)n
0

In other words, all the points on the boundary are mapped to a single point
∈x X0 . Thus, n-loops are topologically equivalent to n-spheres.
As before a homotopy is a continuous deformation of the above n-loop.

We define

× ⟶F I I X: . (E.9)n

We demand

α
β

… = …
… = …

F s s s s s
F s s s s s

( , , , 0) ( , , , ),
( , , , 0) ( , , , )

(E.10)n

n

1 2 1 2

1 2 1 2

… = … ∈ ∂F s s t x s s s I( , , , ) , ( , , , ) . (E.11)n
n

1 2 0 1 2

The two n-loops α, β are therefore homotopic, viz α β∼ .
• Higher homotopy groups: Again the homotopy relation defines an equivalence
relation and as a consequence the space of n-loops is turned into a set of
equivalence classes. For arcwise connected spaces (i.e. the base point x0 is
irrelevant) the set of equivalence classes is denoted by π X( )n and it is a group.
The higher homotopy groups for >n 1 are all abelian as opposed to the
fundamental group which can be non-abelian. Some of the most important
examples are

π =S Z( ) (E.12)n
n

π = <S m n( ) 0, . (E.13)m
n
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