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Preface

This two-volume book was accepted for publication by IOPP (Institute of Physics
Publishing) on 20 February 2017, submitted on 14 December 2018 and will appear
in its final form during the spring of 2019. It contains a comprehensive introduction
to the fundamental topic of quantum field theory starting from free fields and their
quantization, renormalizable interactions, critical phenomena, the standard model
of elementary particle physics, lattice field theory, the functional renormalization
group equation, non-commutative field theory, topological field configurations,
exact solutions of quantum field theory, supersymmetry and finally the AdS/CFT
correspondence. The emphasis throughout is put on the physical principle of
symmetry (especially the local principle of gauge symmetry) and on the mathemat-
ical machinery of the renormalization group equation à la Wilson. This book is the
fifth book published by the author1 and it completes therefore his in-depth detailed
and constructive study of all fundamental areas of theoretical physics which took
several years to complete. The author would like to thank his IOPP editor John
Navas for all his help in publishing three of his books.

1 Together with two open and free books on fundamental physics in Arabic.
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Introduction

The luminous matter in the Universe is constituted of elementary fermion particles
of spin 1/2 (leptons and quarks) which interact via elementary boson particles of spin
1 (gauge vector bosons) mediating the three fundamental interactions of nature: the
electromagnetic interaction, the strong nuclear force and the weak nuclear inter-
action. The fourth fundamental force of nature (the gravitational force) is mediated
instead by a tensor particle of spin 2.

These particles are all massless and these forces obey a fundamental symmetry
principle called the gauge principle which can only be broken spontaneously via the
Higgs particle (the breaking of the electroweak force into the observed electro-
magnetic force and weak interactions) which is an (the only) elementary particle of
spin 0 in nature. This process of spontaneous symmetry breaking is what gives all
elementary particles their measured masses and all the forces their observed
strengths.

Quantum field theory is a relativistic quantum theory which describes precisely
this luminous matter and its interactions. In fact, it is widely believed that quantum
field theory should also describe dark matter and perhaps even dark energy (in terms
of vacuum energy). This quantum field theory is perturbatively renormalizable.
However, quantum field theory enjoys also non-perturbative formulation either
directly (through lattice field theory, the renormalization group equation and
conformal field theory) or indirectly by admitting exact solutions (especially in
two dimensions but also in four dimensions via the supersymmetric gauge principle).

Furthermore, the ‘modern’ or ‘new’ quantum field theory includes also gravity via
the AdS/CFT correspondence which is the most celebrated paradigm of gauge/
gravity holographic duality. Hence, modern quantum field theory which governs all
elementary particles and their interactions as well as gravity can be summarized in
three major sub-theories:

1. The standard model of elementary particles: This provides a unified scheme
of the electromagnetic force, the weak interaction, and the strong nuclear
force, and is due historically to the work of Weinberg, Abdu Salam and
Glashow among many other physicists. The standard model is the most
successful (experimentally) quantum field theory to date and perhaps the
most successful theory ever (especially its quantum electrodynamics (QED)
component). It accounts for a large body of phenomenological effects
and observations seen in nature in terms of only a finite (but still relatively
large =19) number of parameters such as the gauge coupling constants, the
Higgs vacuum expectation value, the CKM angles and the theta angle
governing CP violation. The standard model is however, mostly perturbative
and it includes in a fundamental way the phenomena of spontaneous
symmetry breaking and is based entirely on the meta-theory of the renorm-
alization group equation.

The standard model consists of two parts. The first part is the electroweak
force which unifies quantum electrodynamics and quantum flavordynamics
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which describes the weak force. The second part of the standard model
consists of quantum chromodynamics (QCD) which describes the strong
force. QCD admits a non-perturbative definition given typically in terms of a
lattice formulation, and lattice QCD is arguably the most sophisticated
discipline in computational physics.

2. Supersymmetric gauge theory in four dimensions: This allows us a non-
perturbative formulation (one in which we do not need a small parameter of
expansion) of the gauge principle which can be solved exactly (like the
harmonic oscillator in quantum mechanics) in many instances by means of
supersymmetry and holomorphy among other things (Witten–Seiberg–
Nekrasov theory). This is of paramount importance to strongly coupled
systems such as quantum chromodynamics since the strong force is a highly
non-perturbative interaction. However, supersymmetric gauge theory also
gives a profound understanding of the phenomena of spontaneous gauge
symmetry breaking and the associated phenomena of renormalization.

3. AdS/CFT duality: As stated above, the gravitational force is not mediated
via a vector gauge boson but via a tensor particle of spin 2 called the
graviton. The AdS/CFT duality is the theory which allows us to bring gravity
and black holes into the realm of unitary quantum field theory. Although this
theory emerged historically from string theory it is intrinsically a quantum
field theory. It relies heavily on conformal field theory, supersymmetry and
renormalization. It states simply that supergravity theory (string theory in
general) in an anti-de Sitter (AdS) spacetime which is five dimensional is
given precisely by a superconformal gauge field theory (CFT) living on the
boundary of AdS which is an ordinary four dimensional Minkowski space-
time (a concrete realization of the holographic principle). The AdS/CFT
correspondence generalizes to the so-called gauge/gravity duality.

In this book we will mainly focus on the first axis (gauge interactions and the
standard model of elementary particle physics). However, we will also prepare the
ground for the second axis (chapters 14–16 on exact solutions of quantum field
theory, monopoles and instantons and supersymmetry) and for the third axis (in
chapter 17 we give a systematic overview of the AdS/CFT correspondence and then
show how Einstein’s gravity emerges from quantum entanglement).

The main emphasis throughout this book will be on the physical principle of
symmetry (especially the role of symmetry groups in the quantum theory, their
representation theory and conservation laws) but also on the mathematical
machinery of the renormalization group equation (chapters 6–9, 12 and 13).

The renormalization group equation will allow us to study, beside the usual
problems of quantum field theory relevant to particle physics (found in chapters
6–8), two more interesting physical problems: critical exponents of second order
phase transitions in statistical physics (chapter 9) and renormalizability of non-
commutative field theory (in chapter 13). Chapter 12 contains a systematic
presentation of the functional renormalization group equation.

A Modern Course in Quantum Field Theory, Volume 2
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We will start the book in the usual way with canonical quantization of free fields
(scalar field of spin 0 and spinor field of spin 1/2) in chapters 2 and 3. Then we will
consider in chapter 4 perturbation theory of phi-four theory where the S-matrix
structure of quantum field theory is exhibited explicitly. This is our first fundamental
interaction in this book.

Then canonical quantization of the free abelian vector field of spin 1 is considered
in chapter 5 where pure Yang–Mills gauge interactions with SU N( ) groups are also
introduced. In chapter 6 perturbation theory of quantum electrodynamics (which
describes the gauge interaction of a spinor field with a vector field) and its
renormalization is considered in great detail. For example, we derive explicitly
from the renormalization properties of the theory measurable physical effects such
as the electron anomalous magnetic moment. Furthermore, the links to particle
physics, i.e. the relations between quantum field theory correlation functions and
particle physics cross sections and decay rates, are established explicitly in this
chapter which shows more clearly the S-matrix structure of quantum field theory.

The path integral formalism is introduced in chapters 7 (for scalar fields) and 8
(for spinor and vector fields). In chapter 7 perturbative renormalizability of phi-four
theory is considered at the two-loop order using the effective action formalism,
whereas in chapter 8 the Faddeev–Popov quantization of the abelian and non-
abelian vector fields is considered. Perturbative renormalizability of SU N( ) gauge
theory coupled to matter, transforming in some representation of the gauge group, is
then discussed (asymptotic freedom, anomalies, BRST and background field
methods, etc).

In chapter 10 we discuss phenomenology of particle physics, then provide an
explicit and detailed construction of the standard model Lagrangian and explain the
phenomena of spontaneous symmetry breaking via the Higgs mechanism. In chapter
11 we give an explicit construction of scalar, spinor and vector lattice actions, then
discuss the main Monte Carlo algorithms used and some sample numerical
simulations.

In more detail, this book is then organized into chapters as follows:
1. Relativistic quantum mechanics: This chapter contains standard preparatory

material. We will present an overview of special relativity [1], relativistic
Klein–Gordon and Dirac wave equations and the convention in this book
for Dirac spinors [2], and a self-contained discussion of representation
theory of the rotation and Lorentz groups [3].

2. Canonical quantization of free fields: After a brief excursion in classical
mechanics [4] we present in this chapter the canonical quantization of free
scalar and Dirac fields with a detailed calculation of the corresponding
propagators [2, 5]. Then we give a thorough discussion of symmetries
starting with discrete symmetries [2], the Poincaré group and its represen-
tation theory [3, 5], symmetries in the quantum theory, internal symmetries
and the role of Noether’s theorem in conservation principles [5, 6].

3. The phi-four theory: A detailed discussion of the S-matrix, the Gell-Mann–
Low formula, the LSZ reduction formulas, Wick’s theorem, Green’s
functions, Feynman diagrams and the corresponding Feynman rules of

A Modern Course in Quantum Field Theory, Volume 2
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quantum Φ4-theory is presented following [5]. This is our first non-trivial
example of an interacting field theory and its canonical quantization.

4. The electromagnetic field and Yang–Mills gauge interactions: In this chapter
we discuss in great detail the canonical quantization of the electromagnetic
gauge field with emphasis on U(1) gauge invariance and the Gupta–Bleuler
method. Then a pedagogical introduction to Yang–Mills gauge interactions
with SU(2) and SU N( ) gauge groups (and even for general gauge groups) is
presented. These gauge fields describe in Nature spin 1 particles (the so-
called vector bosons) which encompass the carriers of the electromagnetic
force (the photon γ), the nuclear strong color force (the gluons g) and the
nuclear weak radioactive force (the W and Z0 vector bosons).

Good pedagogical references for the canonical quantization of the
electromagnetic field are [5, 6].

5. Quantum electrodynamics: The goal in this chapter is to develop canonical
perturbation theory beyond the free field approximation of QED which is
an interacting (local gauge) theory of the Dirac field (electrons and
positrons) and the gauge vector field (photons). The formalism of canonical
quantization of QED is found in [5], whereas radiative corrections and
renormalization are found in [2].

6. Path integral quantization of scalar fields: In this chapter we will present the
path integral method which is a central tool in quantum field theory and
then give a detailed account of the effective action in the case of a scalar
field theory. A brief discussion of spontaneous symmetry breaking is also
given. These are very standard topics and we have benefited here from the
books [2, 7, 8] and the lecture notes [9].

7. Path integral quantization of Dirac and vector fields: We develop the
powerful and elegant path integral method for spinor fields (Grassmann
variables) and gauge fields (gauge fixing, Faddeev–Popov method, ghosts).
Then we give two important applications based on the path integral
formalism. Firstly, we present a detailed derivation of the one-loop beta
function of QCD with SU N( ) gauge theory and matter fields in the
fundamental representation and discuss the resulting phenomena of asymp-
totic freedom. Secondly, we present the one-loop (and in fact exact) axial or
chiral anomaly in QED and the Fujikawa path integral method. We also
discuss briefly the background field method and symmetries within the path
integral method (Schwinger–Dyson equations and Ward identities).

8. The Callan–Symanzik renormalization group equation: All second-order
phase transitions in Nature are described by the Callan–Symanzik renorm-
alization group equations of Euclidean scalar field theory. In this chapter,
after a detailed discussion of renormalizability of quantum field theories, in
particular the scalar ϕ4 theory, we present an explicit construction of the
Callan–Symanzik renormalization group equations. Then, a detailed cal-
culation of the critical exponents of second-order phase transitions starting
from the renormalization properties of scalar ϕ4 field theory at the two-loop
order is carried out explicitly. We follow closely the book [10].

A Modern Course in Quantum Field Theory, Volume 2
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9. Standard model: The standard model of elementary particle physics
describes all known particles and their interactions which are observed in
Nature. It is based on the following grand theoretical principles:

○ Relativistic invariance.
○ It is a local gauge theory based on the gauge group

× ×SU SU U(3) (2) (1)L Y .
○ The gauge group is spontaneously broken down to ×SU U(3) (1)em.

This generates mass in a gauge-invariant way.
○ It consists of a lepton sector, a quark sector, a Higgs term and a gauge

sector. The matter sector (leptons, quarks and Higgs) are coupled
minimally to the gauge sector (which ensures renormalizability). The
mechanism by which the symmetry is spontaneously broken is the
Higgs mechanism. The Higgs field is coupled to the quarks and
leptons via gauge invariant renormalizable Yukawa couplings.

○ It is a chiral gauge theory, i.e. left-handed quarks and leptons couple
to the gauge field differently (in the fundamental representation) than
right-handed quarks and leptons (singlet representation).

○ Renormalizability: The standard model is a renormalizable theory
(interaction terms between the gauge fields and the matter fields are
given by minimal coupling). The requirement of gauge invariance
guarantees renormalizability and unitarity.

○ The standard model is not invariant under parity P (nor under CP
where C is charge conjugation). But it is invariant under CPT where T
is time reversal. This holds in the lepton sector.

○ Anomaly cancellation: This is the second quantum consistency check
(after renormalizability) which states that any local symmetry like
gauge symmetry cannot be allowed to be anomalous. This is satisfied
in the standard model since the number of lepton families is equal to
the lepton of quark families.

Extensions of the standard model include grand unified theories GUT’s
(such as SU(5) or SO(10) or any other group which contains the standard
model gauge group as a subgroup), supersymmetry (minimal supersym-
metric standard model), non-commutative geometry (Connes’ standard
model) and stringy extensions. Unification of the three forces (color strong,
electromagnetic and weak) described by the standard model with gravity is
however only achieved in string theory.

In this chapter, and after a brief excursion into the phenomenology of
particle physics (isospin symmetry, quark model, neutrino oscillations, etc),
we give a detailed construction of the standard model Lagrangian starting
with the Glashow, Weinberg, Salam electroweak theory, then we discuss the
Higgs mechanism and spontaneous symmetry breaking, Majorana fer-
mions, neutrino mass and the seesaw mechanism, and then finally we
provide an extension to the quark sector and quantum chromodynamics as
well as a summary of anomaly cancellation. We will follow the general
presentations of [3, 9, 11, 12].

A Modern Course in Quantum Field Theory, Volume 2
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10. Introduction to lattice field theory: In this chapter a quick excursion into the
world of lattice field theory is taken. Scalar, fermion and gauge fields are
constructed on the lattice explicitly. Then the two most used Monte Carlo
algorithms in numerical simulations on the lattice (the Metropolis and the
hybrid Monte Carlo algorithms) are explained within the context of very
simple lattice models, namely the scalar phi-four in two dimensions and
quenched electrodynamics. The classic textbooks on the subject of lattice
field theory are [13–17].

11. The Wilson and functional renormalization group equations: The renormal-
ization group equation is a central tool of perturbative and non-perturba-
tive quantum field theory which is vital for a proper understanding of the
renormalizability of the theory and its phase diagram. The Wilson
approach [18] to the renormalization group equation is, in our opinion,
the most profound description of the true nature and final goals of quantum
field theory. In this chapter, and after a careful review of the original Wilson
approach, we describe in great detail the functional renormalization group
equation which is an exact non-perturbative formulation of the Wilson
renormalization group equation. The original literature on the functional
renormalization group equation includes Polchinski [19] (Polchinski’s
equation for the effective action) and Wetterich [20] (Wetterich’s equation
for the average action). See also [21].

12. Non-commutative scalar field theory and its renormalizability: In this
chapter, and after an efficient introduction to non-commutative scalar field
theory, we will apply the Wilson–Polchinski renormalization group equa-
tion, discussed in the previous chapter, to the problem of renormalizing
non-commutative phi-four theory in 2 and 4 dimensions with and without
the harmonic oscillator term. Non-commutative field theory is discussed in
great detail in our book [22], whereas we follow closely the original
programme of Grosse and Wulkenhaar [23–25] in the very difficult problem
of renormalization of non-commutative phi-four theory on Moyal–Weyl
spaces.

13. Some exact solutions of quantum field theory: The non-perturbative physics
of a quantum field theory (as we have seen) can only be probed by means of
Monte Carlo methods on lattices (which can become quite intricate
technically and numerically) and/or by means of the exact renormalization
group equation (which is always quite intricate analytically and mathemati-
cally). But sometimes exact solutions of the quantum field theory model
presents themselves (lower dimensions and/or a high degree of symmetries)
which allow us to access the sought-after non-perturbative physics of the
theory directly. In this chapter we present as examples six models in
dimension two which all enjoy exact solutions, allowing us an unprece-
dented look at the true heart, i.e. the non-perturbative reality, of a quantum
field theory.

14. The monopoles and instantons: Monopoles are non-trivial topological gauge
field configurations which appear in spontaneously broken gauge theory via
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the Higgs mechanism. These are particle-like solitonic configurations
characterized by stability and finite energy among other properties. Their
stability is of a topological origin characterized by the so-called winding
numbers or magnetic charges. For this reason monopoles are one of the
best examples in which physics and topology become intertwined. The
existence of the monopole requires the embedding of electromagnetism, i.e.
the group U(1), as a subgroup in a larger non-abelian group G with
compact cover which then becomes broken spontaneously via the usual
Higgs mechanism.

The original literature on the subject consists of ’t Hooft [26] and
Polyakov [27]. Some of the pedagogical (from my perspective) lectures I
can mention here: Lenz [28], ’t Hooft [29], Coleman [30] and Tong [31]. A
comprehensive book is Shnir [32] and a comprehensive review is given by
Weinberg and Yi [33].

Instantons are another fundamental topological gauge configuration,
perhaps more fundamental than monopoles, which are given by events
localized in spacetime and hence the other name given to them is pseudo-
particles (in contrast with particles such as monopoles which are events
localized in space). Instantons are also the gauge field configurations which
dominate the path integral in the semi-classical limit with the trivial
instanton identified precisely with the perturbative vacuum A = 0.

We will discuss here in great detail the theta term, the role of vacuum
degeneracy, the quantization of the topological charge and the role of
topology in instanton physics. More precisely, the instanton is defined as a
solution of the self-duality equation with zero/finite energy which happens
to saturate the Bogomolnyi bound. The BPST instanton solution is then
derived explicitly. The original literature on the BPST instanton is the paper
by Belavin, Polyakov, Schwartz and Tyupkin [34]. We then discuss in some
detail the moduli space, the collective coordinates, the zero modes, the
ADHM construction, the one-loop quantization in the background of
instantons as well as the connection of instantons to quantum tunneling.
We have benefited here greatly from the pedagogical presentations found in
[31, 35, 36].

15. Introducing supersymmetry: In this chapter we introduce supersymmetry
following mostly [37]. In particular, we will emphasize the formal quantum
field theory aspects of the formalism of global N = 1 supersymmetry with a
detailed calculation of the corresponding F- and d-terms following also [38].
A brief description of N = 2 is also given. The classic text on supersymmetry
of Wess and Bagger [39] remains, in our view, one of the best books on
quantum field theory. We have also benefited from [40, 41].

16. The AdS/CFT correspondence: The goal in this chapter is to provide a
pedagogical presentation of the celebrated AdS/CFT correspondence
adhering mostly to the language of quantum field theory (QFT). This is
certainly possible, and perhaps even natural, if we recall that in this
correspondence we are positing that quantum gravity in an anti-de Sitter
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spacetime +AdSd 1 is nothing else but a conformal field theory (CFT )d at the
boundary of AdS spacetime. Some of the reviews of the AdS/CFT
correspondence which emphasize the QFT aspects and language include
Kaplan [42], Zaffaroni [43] and Ramallo [44].

This chapter contains, therefore, a thorough introduction to conformal
symmetries, anti-de Sitter spacetimes, conformal field theories and the AdS/
CFT correspondence. The primary goal however in this chapter is the
holographic entanglement entropy. In other words, how spacetime geom-
etry as encoded in Einstein’s equations in the bulk of AdS spacetime can
emerge from the quantum entanglement entropy of the CFT living on the
boundary of AdS.

A sample of the original literature for the holographic entanglement
entropy is [45–48]. However, a very good, concise and pedagogical review
of the formalism relating spacetime geometry to quantum entanglement due
to Van Raamsdonk and collaborators is found in [47] and [49].

This book also includes five appendices (two on classical physics, one on
representation theory of Lie groups and Lie algebras, one on homotopy theory
and one contains extra exercises given as examination problems throughout the
years).

This book (especially the first volume) grew from a course of lectures delivered
(five times) since 2010 at Annaba University (Algeria) to theoretical physics students
at the Master level (first and second years).

All illustrations found in this book were created by Dr Khaled Ramda, Z Salem
and L Bouraiou. The Monte Carlo results included in the chapter ‘Introduction to
lattice field theory’ (chapter 11) are from our original numerical simulations.
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