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Appendix A

Exercises1

Exercise 1: We consider the two Euclidean integrals

∫ π
=

+
I m

d k
k m

( )
(2 )

1
.2

4

4 2 2

∫ π
=

+ − +
J p m

d k
k m p k m

( , )
(2 )

1 1
( )

.2 2
4

4 2 2 2 2

• Determine in each case the divergent behavior of the integral.
• Use dimensional regularization to compute the above integrals. Determine in
each case the divergent part of the integral. In the case of J p m( , )2 2 assume
for simplicity zero external momentum p = 0.

Exercise 2: The two integrals in exercise 1 can also be regularized using a cut-off Λ.
First we perform Laplace transform as follows

∫ α
+

= α
∞

− +

k m
d e

1
.k m

2 2 0

( )2 2

• Do the integral over k in I m( )2 and J p m( , )2 2 . In the case of J p m( , )2 2 assume
for simplicity zero external momentum p = 0.

1These exercises were given as QFT examinations.
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• The remaining integral over α is regularized by replacing the lower bound
α = 0 by α = Λ1/ 2. Perform the integral over α explicitly. Determine the
divergent part in each case.

Hint: Use the exponential-integral function

∫ ∫− = = + + −
−∞

− −
Ei x

e
t

dt x dt
e

t
C( ) ln

1
.

x t x t

0

Exercise 3: Let zi be a set of complex numbers, θi be a set of anticommuting
Grassmann numbers and let M be a hermitian matrix. Perform the following
integrals

∫ ∏ + − − −+ + +
dz dz e .

i
i i

M z z z j j zij i j i i i i

∫ ∏ θ θ θ θ θ η η θ+ − − −+ + +
d d e .

i
i i

Mij i i i i i i

Exercise 4: Let θS r( , ) be an action dependent on two degrees of freedom r and θ
which is invariant under two-dimensional rotations, i.e. θ⃗ =r r( , ). We propose to
gauge fix the following two-dimensional path integral

∫= ⃗⃗W e d r .iS r( ) 2

We will impose the gauge condition

θ =g r( , ) 0.

• Show that

∫θ
θ

ϕδ θ ϕ∂
∂

+ =
=

g r
d g r

( , )
( ( , )) 1.

g 0

• Use the above identity to gauge fix the path integral W.

Exercise 5: The gauge fixed path integral of quantum electrodynamics is given by

∫ ∫ ∫ ∫∏
ξ

= −
∂

− −
μ

μ
μ

μ

μν
μν

μ
μZ J A i d x

A i
d xF F i d xJ A[ ] exp

( )

2 4
.4

2
4 4

⎛
⎝⎜

⎞
⎠⎟D

• Derive the equations of motion.
• Compute Z J[ ] in a closed form.
• Derive the photon propagator.
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Exercise 6: We consider phi-four interaction in four dimensions. The action is
given by

∫ϕ ϕ ϕ ϕ λ ϕ= ∂ ∂ − −
!μ

μS d x m[ ]
1
2

1
2 4

( ) .4 2 2 2 2
⎡
⎣⎢

⎤
⎦⎥

• Write down Feynman rules in momentum space.
• Use Feynman rules to derive the 2-point proper vertex Γ p( )2 up to the 1-loop
order. Draw the corresponding Feynman diagrams.

• Use Feynman rules to derive the 4-point proper vertex Γ p p p p( , , , )4
1 2 3 4 up to

the 1-loop order. Draw the corresponding Feynman diagrams.
• By assuming that the momentum loop integrals are regularized perform
1-loop renormalization of the theory. Impose the two conditions

λΓ = Γ =m(0) , (0, 0, 0, 0) .R R
2 2 4

Determine the bare coupling constants m2 and λ in terms of the renormalized
coupling constants mR

2 and λR.
• Determine Γ p( )2 and Γ p p p p( , , , )4

1 2 3 4 in terms of the renormalized coupling
constants.

Exercise 7:
• Write down an expression of the free scalar field in terms of creation and
annihilation.

• Compute the 2-point function

ϕ ϕ− = 〈 ∣ ˆ ˆ ∣ 〉D x x T x x( ) 0 ( ) ( ) 0 .F 1 2 1 2

• Compute in terms of DF the 4-point function

ϕ ϕ ϕ ϕ= 〈 ∣ ˆ ˆ ˆ ˆ ∣ 〉D x x x x T x x x x( , , , ) 0 ( ) ( ) ( ) ( ) 0 .1 2 3 4 1 2 3 4

• Without calculation what is the value of the 3-point function
ϕ ϕ ϕ〈 ∣ ˆ ˆ ˆ ∣ 〉T x x x0 ( ) ( ) ( ) 01 2 3 . Explain.

Exercise 8: The electromagnetic field is a vector in four-dimensional Minkowski
spacetime denoted by

= ⃗μA A A( , ).0

A0 is the electric potential and ⃗A is the magnetic vector potential. The Dirac
Lagrangian density with non-zero external electromagnetic field is given

ψ γ ψ ψγ ψ= ¯ ∂ − − ¯μ
μ μ

μi m e A( ) .L

Derive the Euler–Lagrange equation of motion.
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Exercise 9: Compute the integral over p0:

∫ ∫ δ⃗ −d p dp p m( ).3 0 2 2

What do you conclude for the action of Lorentz transformations on

⃗d p
E2

.
p

3

Exercise 10: The Yukawa Lagrangian density describes the interaction between
spinorial and scalar fields. It is given by

ψ γ ψ ϕ ϕ ϕ ϕψψ= ¯ ∂ − + ∂ ∂ − − ¯μ
μ μ

μi m g( )
1
2

( ) .2L

Derive the Euler–Lagrange equation of motion.

Exercise 11: Show that the Feynman propagator in one dimension is given by

∫ π ϵ
− =

− +
=⃗ ′

⃗

− −
− ∣ − ∣

⃗

′
⃗ ′

G t t
dE i

E E i
e

e
E

( )
2 2

.p
p

iE t t
iE t t

p
2 2

( )
p

Exercise 12:
• What is the condition satisfied by the Dirac matrices in order for the Dirac
equation to be covariant.

• Write down the spin representation of the infinitesimal Lorentz
transformations

ϵΛ = − μν
μνi

1
2

.L

Exercise 13:
• Show that gamma matrices in two dimensions are given by

γ γ= − =i
i

i
i

0
0

, 0
0

.0 1⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

• Write down the general solution of Dirac equation in two dimensions in the
massless limit.

Exercise 14:
• Write down the vacuum stability condition.
• Write down Gell-Mann–Low formulas.
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• Write down the scattering S-matrix.
• Write down the Lehmannn–Symanzik–Zimmermann (LSZ) reduction for-
mula which expresses the transition probability amplitude between 1-particle
states in terms of the 2-point function.

• Write down the Lehmannn–Symanzik–Zimmermann (LSZ) reduction for-
mula which expresses the transition probability amplitude between 2-particle
states in terms of the 4-point function.

• Write down Wick’s theorem. Apply for 2, 4 and 6 fields.

Exercise 15: We consider phi-cube theory in four dimensions where the interaction
is given by the Lagrangian density

λ ϕ= −
!3

.int
3L

• Compute the 0-point function up to the second order of perturbation theory
and express the result in terms of Feynman diagrams.

• Compute the 1-point function up to the second order of perturbation theory
and express the result in terms of Feynman diagrams.

• Compute the 2-point function up to the second order of perturbation theory
and express the result in terms of Feynman diagrams.

• Compute the connected 2-point function up to the second order of perturba-
tion theory and express the result in terms of Feynman diagrams.

Exercise 16: We consider phi-four theory in four dimensions where the interaction is
given by the Lagrangian density

λ ϕ= −
!4

.int
4L

Compute the 4-point function up to the first order of perturbation theory and
express the result in terms of Feynman diagrams.

Exercise 17: Show that

∫ϕ ϕ
π ϵ

〈 ∣ ˆ ˆ ∣ 〉 =
− +

− −T x y
d p i

p m i
e0 ( ) ( ) 0

(2 )
.ip x y

4

4 2 2
( )

We give

∫ϕ
π

ˆ =
⃗

ˆ ⃗ + ˆ ⃗− +x
d p

E p
a p e a p e( )

(2 )
1

2 ( )
( ( ) ( ) ).ipx ipx

3

3
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Exercise 18: Show that the scalar field operator ϕ̂ x( )I and the conjugate momentum
field operator π̂ x( )I (operators in the interaction picture) are free field operators.

Exercise 19: Calculate the 2-point function ϕ ϕ〈 ∣ ˆ ˆ ∣ 〉T x x0 ( ( ) ( )) 01 2 in ϕ-four theory up
to the second order in perturbation theory using the Gell-Mann Low formula and
Wick’s theorem. Express each order in perturbation theory in terms of Feynman
diagrams.

Exercise 20: We consider a single forced harmonic oscillator given by the equation
of motion

∂ + =E Q t J t( ) ( ) ( ).t
2 2

• Show that the S-matrix defined by the matrix elements = 〈 ∣ 〉S m nout inmn is
unitary.

• Determine S from solving the equation

ˆ = ˆ = ˆ +−S a S a a
i

E
j E

2
( ).1

in out in

• Compute the probability ∣〈 ∣ 〉∣n out 0 in 2.
• Determine the evolution operator in the interaction picture Ω t( ) from solving
the Schrödinger equation

∂ Ω = ˆ Ω ˆ = − ˆi t V t t V t J t Q t( ) ( ) ( ), ( ) ( ) ( ).t I I I

• Deduce from (4) the S-matrix and compare with the result of (2).

Exercise 21: The probability amplitudes for a Dirac particle (antiparticle) to
propagate from the spacetime point y (x) to the spacetime x (y) are

ψ ψ− = 〈 ∣ ˆ ˆ̄ ∣ 〉S x y x y( ) 0 ( ) ( ) 0 .ab a b

ψ ψ¯ − = 〈 ∣ ˆ̄ ˆ ∣ 〉S y x y x( ) 0 ( ) ( ) 0 .ba b a

• Compute S and S̄ in terms of the Klein–Gordon propagator −D x y( )
given by

∫ π
− =

ℏ ⃗
− ℏ −D x y

d p
E p

e( )
(2 )

1
2 ( )

.
i p x y

3

3
( )
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• Show that the retarded Green’s function of the Dirac equation is given by

ψ ψ− = 〈 ∣ ˆ ˆ̄ ∣ 〉S x y x y( ) ( ) 0 { ( ), ( )} 0 .R ab a b

• Verify that SR satisfies the Dirac equation

γ δ δℏ ∂ − − = ℏ −μ
μi mc S x y i

c
x y( ) ( ) ( ) ( ) .x

ca R ab cb
4

• Derive an expression of the Feynman propagator in terms of the Dirac fields
ψ̂ and ψ̂̄ and then write down its Fourier expansion.

Exercise 22:
• Compute the electron 2-point function in configuration space up to 1-loop
using the Gell-Mann Low formula and Wick’s theorem. Write down the
corresponding Feynman diagrams.

• Compute the electron 2-point function in momentum space up to 1-loop
using Feynman rules.

• Use dimensional regularization to evaluate the electron self-energy. Add a
small photon mass to regularize the IR behavior. What is the UV behavior of
the electron self-energy.

• Determine the physical mass of the electron at 1-loop.
• Determine the wave-function renormalization Z2 and the counter term

δ = − Z12 2 up to 1-loop.

Exercise 23:
• Write down all Feynman diagrams up to 1-loop which contribute to the
probability amplitude of the process μ μ+ ⟶ +− − − ′ − ′e p k e p k( ) ( ) ( ) ( ).

• Write down using Feynman rules the tree-level probability amplitude of the
process μ μ+ ⟶ +− − − ′ − ′e p k e p k( ) ( ) ( ) ( ). Write down the probability ampli-
tude of this process at 1-loop due to the electron vertex correction.

• Use Feynman parameters to express the product of propagators as a single
propagator raised to some power of the form

ϵ− Δ +L i
1

[ ]
.

q2

Determine the shifted momentum L, the effective mass Δ and the power q.
Add a small photon mass μ2.

• Verify the relations

γ γ γ γ
γ γ γ γ

γ γ γ γ γ γ γ γ γ

· = − ·
· = −

· · = · − · + · − · ·

μ μ μ

μ μ μ

μ μ μ μ μ′ ′ ′ ′ ′

p p p
p p p

p p p p p p p p p p

( ) 2 ( )
( ) 2 ( . )

( ) ( ) 2 ( ) 2 2 ( ) ( ) ( ).
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• We work in d dimensions. Use Lorentz invariance, the properties of the
gamma matrices in d dimensions and the results of question (4) to show that
we can replace

γ γ γ γ γ γ· · + · · · + ⟶ + + + −λ μ
λ

μ μ μ′ ′ ′i l m i l m A p p B p p C( ) ( ) ( ) ( ) .e e

Determine the coefficients A, B and C.
• Use Gordon’s identity to show that the vertex function Γ ′p p( , ) is of the form

γ
σ

Γ = +μ μ
μν

ν′p p F q
i q

m
F q( , ) ( )

2
( ).

e
1

2
2

2

Determine the form factors F1 and F2.
• Compute the integrals

∫ ∫π π+ Δ + Δ( ) ( )
d L L

L

d L

L(2 )
,

(2 )
1

.
d

E
d

E

E

d
E
d

E

2

2 3 2 3

• Calculate the form factor F q( )1
2 explicitly in dimensional regularization.

Determine the UV behavior.
• Compute the renormalization constant Z1 or equivalently the counter term

δ = −Z 11 1 at 1-loop.
• Prove the Ward identity δ δ=1 2.

Exercise 24:
• Write down using Feynman rules the photon self-energy Πμνi q( )2 at one-loop.
• Use dimensional regularization to show that

ηΠ = Π −μν μν μ νq q q q q( ) ( )( ). (A.1)2 2
2 2

Determine Π q( )2
2 . What is the UV behavior.

• Compute at one-loop the counter term δ = −Z 13 3 .
• Compute at one-loop the effective charge eeff

2 . How does the effective charge
behave at high energies.

Exercise 25: Compute the unpolarized differential cross section of the process
μ μ+ ⟶ +− + − +e e in the center of mass system.
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Appendix B

Classical mechanics

B.1 D’Alembert principle
We consider a system of many particles and let ⃗ri and mi be the radius vector and the
mass, respectively, of the ith particle. Newton’s second law of motion for the ith
particle reads

∑⃗ = ⃗ + ⃗ =
⃗

F F F
dp

dt
. (B.1)

j

i i
e

ji
i( )

The external force acting on the ith particle is ⃗Fi
e( )
, whereas ⃗Fji is the internal force on

the ith particle due to the jth particle ( ⃗ =F 0ii and ⃗ = − ⃗F Fij ji). The momentum vector

of the ith particle is v⃗ = ⃗ = ⃗p m m dr
dti i i i

i . Thus we have

∑⃗ = ⃗ + ⃗ = ⃗
F F F m

d r
dt

. (B.2)
j

i i
e

ji i
i( ) 2

2

By summing over all particles we get

∑ ∑ ∑⃗ = ⃗ = ⃗ =
⃗

F F m
d r
dt

M
d R
dt

. (B.3)
i i i

i i
e

i
i( ) 2

2

2

2

The total mass M is = ∑M mi i and the average radius vector ⃗R is ⃗ = ∑ ⃗R m r M/i i i .
This is the radius vector of the center of mass of the system. Thus the internal forces
if they obey Newton’s third law of motion will have no effect on the motion of the
center of mass.
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The goal of mechanics is to solve the set of second-order differential equations

(B.2) for ⃗ri given the forces ⃗Fi
e( )
and ⃗Fji. This task is, in general, very difficult and it is

made even more complicated by the possible presence of constraints which limit the
motion of the system. As an example, we take the class of systems known as rigid
bodies in which the motion of the particles is constrained in such a way that the
distances between the particles are kept fixed and do not change in time. It is clear
that constraints correspond to forces which cannot be specified directly but are only
known via their effect on the motion of the system. We will only consider holonomic
constraints which can be expressed by equations of the form

⃗ ⃗ ⃗ … =f r r r t( , , , , ) 0. (B.4)1 2 3

The constraints which cannot be expressed in this way are called non-holonomic. In
the example of rigid bodies, the constraints are holonomic since they can be
expressed as

⃗ − ⃗ − =r r c( ) 0. (B.5)i j ij
2 2

The presence of constraints means that not all the vectors ⃗ri are independent, i.e. not
all the differential equations (B.2) are independent. We assume that the system
contains N particles and that we have k holonomic constraints. Then there must
exist −N k3 independent degrees of freedom qi which are called generalized
coordinates. We can therefore express the vectors ⃗ri as functions of the independent
generalized coordinates qi as

⃗ = ⃗ …

⃗ = ⃗ …

−

−

r r q q q t

r r q q q t

( , , , , )
...

( , , , , ).

(B.6)
N k

N N N k

1 1 1 2 3

1 2 3

Let us compute the work done by the forces ⃗Fi
e( )
and ⃗Fji in moving the system from

an initial configuration 1 to a final configuration 2. We have

∫ ∫ ∫∑ ∑ ∑= ⃗ ⃗ = ⃗ ⃗ + ⃗ ⃗W Fds F ds F ds . (B.7)
i i i j,

i i i
e

i ji i12
1

2

1

2 ( )

1

2

We have on one hand

⎛
⎝⎜

⎞
⎠⎟

v
v

v

∫ ∫

∫

∑ ∑

∑

= ⃗ ⃗ = ⃗ ⃗

=

= −

W Fds m
d
dt

dt

d m

T T

1
2

.

(B.8)
i i

i

i i i
i

i

i i

12
1

2

1

2

1

2
2

2 1

The total kinetic energy is defined by

v∑=T m
1
2

. (B.9)
i

i i
2
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We assume that the external forces ⃗Fi
e( )
are conservative, i.e. they are derived from

potentials Vi such that

⃗ = −∇⃗F V . (B.10)
i

e
i i

( )

Then we compute

∫ ∫∑ ∑ ∑⃗ ⃗ = − ∇⃗ ⃗ = − ∣F ds Vds V . (B.11)
i i i

i
e

i i i i i
1

2 ( )

1

2

1
2

We also assume that the internal forces ⃗Fji are derived from potentials Vij such that

⃗ = −∇⃗F V . (B.12)ji i ij

Since we must have ⃗ = − ⃗F Fij ji we must take Vij as a function of the distance ∣ ⃗ − ⃗ ∣r ri j

only, i.e. =V Vij ji. We can also check that the force ⃗Fij lies along the line joining the
particles i and j.

We define the difference vector by ⃗ = ⃗ − ⃗r r rij i j. We have then

∇⃗ = −∇⃗ = ∇⃗V V Vi ij j ij ij ij. We then compute

∫ ∫

∫

∫

∑ ∑

∑

∑

∑

⃗ ⃗ = − ∇⃗ ⃗ + ∇⃗ ⃗

= − ∇⃗ ⃗ − ⃗

= − ∇⃗ ⃗

= − ∣
≠

F ds V ds V ds

V ds ds

V dr

V

1
2

( )

1
2

( )

1
2

1
2

.

(B.13)

i j i j

i j

i j

i j

, ,

,

,

ji i i ij i j ij j

ij ij i j

ij ij ij

ij

1

2

1

2

1

2

1

2

1
2

Thus the work done is found to be given by

= − +W V V . (B.14)12 2 1

The total potential is given by

∑ ∑= +
≠

V V V
1
2

. (B.15)
i i j

i ij

From the results = −W T T12 2 1 and = − +W V V12 2 1 we conclude that the total energy
T + V is conserved. The term ∑ ≠ V1

2 i j ij in V is called the internal potential energy of
the system.

For rigid bodies the internal energy is constant since the distances ∣ ⃗ − ⃗ ∣r ri j are
fixed. Indeed, in rigid bodies the vectors ⃗drij can only be perpendicular to ⃗rij and

therefore perpendicular to ⃗Fij and as a consequence the internal forces do no work
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and the internal energy remains constant. In this case the forces ⃗Fij are precisely the
forces of constraints, i.e. the forces of constraint do no work.

We consider infinitesimal virtual displacements δ ⃗ri which are consistent with the
forces of constraints imposed on the system at time t. A virtual displacement δ ⃗ri is to
be compared with a real displacement ⃗dri which occurs during a time interval dt.
Thus during a real displacement the forces and constraints imposed on the system
may change. To be more precise, an actual displacement is given in general by the
equation

∑⃗ = ∂ ⃗
∂

+ ∂ ⃗
∂=

−

dr
r
t

dt
r
q

dq . (B.16)
j

N k

1

3

i
i i

j
j

A virtual displacement is given on the other hand by an equation of the form

∑δ δ⃗ = ∂ ⃗
∂=

−

r
r
q

q . (B.17)
j

N k

1

3

i
i

j
j

The effective force on each particle is zero, i.e. ⃗ = ⃗ − =⃗
F F 0

dp

dti i
i

eff . The virtual work

of this effective force in the displacement δ ⃗ri is therefore trivially zero. Summed over
all particles we get

⎛
⎝⎜

⎞
⎠⎟∑ δ⃗ −

⃗
⃗ =F

dp

dt
r 0. (B.18)

i

i
i

i

We decompose the force ⃗Fi into the applied force ⃗Fi
a( )
and the force of constraint ⃗fi ,

viz ⃗ = ⃗ + ⃗F F fi i
a

i

( )
. Thus we have

⎛
⎝⎜

⎞
⎠⎟∑ ∑δ δ⃗ −
⃗

⃗ + ⃗ ⃗ =F
dp

dt
r f r 0. (B.19)

i i
i

a i
i i i

( )

We restrict ourselves to those systems for which the net virtual work of the forces of
constraints is zero. In fact, virtual displacements which are consistent with the
constraints imposed on the system are precisely those displacements which are
perpendicular to the forces of constraints in such a way that the net virtual work of
the forces of constraints is zero. We get then

⎛
⎝⎜

⎞
⎠⎟∑ δ⃗ −
⃗

⃗ =F
dp

dt
r 0. (B.20)

i
i

a i
i

( )

This is the principle of virtual work of D’Alembert. The forces of constraints, which
as we have said are generally unknown but only their effect on the motion is known,
do not appear explicitly in D’Alembert principle which is our goal. Their only effect
in the equation is to make the virtual displacements δ ⃗ri not all independent.
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B.2 Lagrange’s equations
We compute

∑ ∑

∑

δ δ

δ

⃗ ⃗ = ⃗ ∂ ⃗
∂

=

F r F
r
q

q

Q q .
(B.21)i i j

j

,
i

a
i i

a i

j
j

j j

( ) ( )

The Qj are the components of the generalized force. They are defined by

∑= ⃗ ∂ ⃗
∂

Q F
r
q

. (B.22)
i

j i
a i

j

( )

Let us note that since the generalized coordinates qi need not have the dimensions of
length the components Qi of the generalized force need not have the dimensions of
force.

We also compute

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥v v

v

∑ ∑

∑

∑

δ δ

δ

δ

⃗
⃗ = ⃗ ∂ ⃗

∂

= ⃗ ∂ ⃗
∂

− ⃗ ∂ ⃗
∂

= ⃗ ∂ ⃗
∂

− ⃗ ∂ ⃗
∂

dp

dt
r m

d r
dt

r
q

q

m
d
dt

dr
dt

r
q

dr
dt

d
dt

r
q

q

m
d
dt

r
q q

q .

(B.23)

i i j

i j

i j

,

,

,

i
i i

i i

j
j

i
i i

j

i i

j
j

i i
i

j
i

i

j
j

2

2

By using the result v =∂ ⃗
∂ ˙

∂ ⃗
∂q

r
q

i

j

i

j
we obtain

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥

v
v

v
v∑ ∑

∑

δ δ

δ

⃗
⃗ = ⃗ ∂ ⃗

∂ ˙
− ⃗ ∂ ⃗

∂

= ∂
∂ ˙

− ∂
∂

dp

dt
r m

d
dt q q

q

d
dt

T
q

T
q

q .

(B.24)
i i j

j

,

i
i i i

i

j
i

i

j
j

j j
j

The total kinetic term is v= ∑T m1
2i i i

2. Hence D’Alembert’s principle becomes

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥∑ ∑δ δ⃗ −

⃗
⃗ = − − ∂

∂ ˙
+ ∂

∂
=F

dp

dt
r Q

d
dt

T
q

T
q

q 0. (B.25)
i j

i
a i

i j
j j

j

( )

Since the generalized coordinates qi for holonomic constraints can be chosen such
that they are all independent we get the equations of motion
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⎛
⎝
⎜⎜

⎞
⎠
⎟⎟− + ∂

∂ ˙
− ∂

∂
=Q

d
dt

T
q

T
q

0. (B.26)j
j j

Above = …j n1, , where = −n N k3 is the number of independent generalized

coordinates. For conservative forces we have ⃗ = −∇⃗F Vi
a

i
( )

, i.e.

= −∂
∂

Q
V
q

. (B.27)j
j

Hence we get the equations of motion

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∂

∂ ˙
− ∂

∂
=d

dt
L
q

L
q

0. (B.28)
j j

These are Lagrange’s equations of motion where the Lagrangian L is defined by

= −L T V . (B.29)

B.3 Hamilton’s principle: the principle of least action
In the previous section we have derived Lagrange’s equations from considerations
involving virtual displacements around the instantaneous state of the system using
the differential principle of D’Alembert. In this section we will rederive Lagrange’s
equations from considerations involving virtual variations of the entire motion
between times t1 and t2 around the actual entire motion between t1 and t2 using the
integral principle of Hamilton.

The instantaneous state or configuration of the system at time t is described by the
n generalized coordinates …q q q, , , n1 2 . This is a point in the n-dimensional
configuration space with axes given by the generalized coordinates qi. As time
evolves the system changes and the point …q q q( , , , )n1 2 moves in configuration
space, tracing out a curve called the path of motion of the system.

Hamilton’s principle is less general than D’Alembert’s principle in that it
describes only systems in which all forces (except the forces of constraints) are
derived from generalized scalar potentialsU. The generalized potentials are velocity-
dependent potentials which may also depend on time, i.e. = ˙U U q q t( , , )i i . The
generalized forces are obtained from U as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟= −∂

∂
+ ∂

∂ ˙
Q

U
q

d
dt

U
q

. (B.30)j
j j

Such systems are called monogenic where Lagrange’s equations of motion will still
hold with Lagrangians given by = −L T U . The systems become conservative if the
potentials depend only on coordinates. We define the action between times t1 and t2
by the line integral
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∫= = −S q Ldt L T V[ ] , . (B.31)
t

t

1

2

The Lagrangian is a function of the generalized coordinates and velocities qi and q̇i
and of time t, i.e. = … ˙ ˙ … ˙L L q q q q q q t( , , , , , , , , )n n1 2 1 2 . The action I is a functional.

Hamilton’s principle can be stated as follows. The line integral I has a stationary
value, i.e. it is an extremum for the actual path of the motion. Therefore, any first-
order variation of the actual path results in a second-order change in I so that all
neighboring paths which differ from the actual path by infinitesimal displacements
have the same action. This is a variational problem for the action functional which is
based on one single function which is the Lagrangian. Clearly I is invariant to the
system of generalized coordinates used to express L and as a consequence the
equations of motion, which will be derived from I, will be covariant. We write
Hamilton’s principle as follows

∫δ
δ

δ
δ

= … ˙ ˙ … ˙
q

S q
q

L q q q q q q t dt[ ] ( , , , , , , , , ) . (B.32)
i i t

t

n n1 2 1 2
1

2

For systems with holonomic constraints it can be shown that Hamilton’s principle is
a necessary and sufficient condition for Lagrange’s equations. Thus we can take
Hamilton’s principle as the basic postulate of mechanics rather than Newton’s laws
when all forces (except the forces of constraints) are derived from potentials which
can depend on the coordinates, velocities and time.

Let us denote the solutions of the extremum problem by q t( , 0)i . We write any
other path around the correct path q t( , 0)i as α αη= +q t q t t( , ) ( , 0) ( )i i i where the ηi
are arbitrary functions of t which must vanish at the end points t1 and t2 and are
continuous through the second derivative and α is an infinitesimal parameter which
labels the set of neighboring paths which have the same action as the correct path.
For this parametric family of curves the action becomes an ordinary function of α
given by

∫α α α= ˙S L q t q t t dt( ) ( ( , ), ( , ), ) . (B.33)
t

t

i i
1

2

We define the virtual displacements δqi by

⎛
⎝⎜

⎞
⎠⎟δ

α
α η α=

∂
∂

∣ =α=q
q

d d . (B.34)i
i

i0

Similarly the infinitesimal variation of I is defined by

⎛
⎝⎜

⎞
⎠⎟δ

α
α= ∣α=S

dS
d

d . (B.35)0

We compute

A Modern Course in Quantum Field Theory, Volume 1

B-7



⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

∫

∫

∫

∫

α α α

α α

α α

α α α

= ∂
∂

∂
∂

+ ∂
∂ ˙

∂ ˙
∂

= ∂
∂

∂
∂

+ ∂
∂ ˙

∂
∂

∂
∂

= ∂
∂

∂
∂

+ ∂
∂ ˙

∂
∂

= ∂
∂

∂
∂

− ∂
∂ ˙

∂
∂

+ ∂
∂ ˙

∂
∂

dS
d

L
q

q L
q

q
dt

L
q

q L
q t

q
dt

L
q

q L
q

d
dt

q
dt

L
q

q d
dt

L
q

q
dt

L
q

q
.

(B.36)

t

t

i

i

i

i

t

t

i

i

i

i

t

t

i

i

i

i

t

t

i

i

i

i

i

i

t

t

1

2

1

2

1

2

1

2

1

2

The last term vanishes since all varied paths pass through the points t y t( , ( , 0))i1 1 and
t y t( , ( , 0))i2 2 . Thus we get

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠
⎟⎟∫δ δ= ∂

∂
− ∂

∂ ˙
S

L
q

d
dt

L
q

q dt. (B.37)
t

t

i i
i

1

2

Hamilton’s principle reads

⎛
⎝⎜

⎞
⎠⎟

δ
α α

= ∣ =α=
S

d
dS
d

0. (B.38)0

This leads to the equations of motion

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠
⎟⎟∫ η∂

∂
− ∂

∂ ˙
=L

q
d
dt

L
q

dt 0. (B.39)
t

t

i i
i

1

2

This should hold for any set of functions ηi. Thus by the fundamental lemma of the
calculus of variations we must have

⎛
⎝⎜

⎞
⎠⎟

∂
∂

− ∂
∂ ˙

=L
q

d
dt

L
q

0. (B.40)
i i

Formally we write Hamilton’s principle as

⎛
⎝⎜

⎞
⎠⎟

δ
δ

= ∂
∂

− ∂
∂ ˙

=S
q

L
q

d
dt

L
q

0. (B.41)
i i i

These are Lagrange’s equations.

B.4 The Hamilton equations of motion
Again we will assume that the constraints are holonomic and the forces are
monogenic, i.e. they are derived from generalized scalar potentials as in equation
(B.30). For a system with n degrees of freedom we have n Lagrange’s equations of
motion. Since Lagrange’s equations are second-order differential equations the
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motion of the system can be completely determined only after we also supply n2
initial conditions. As an example of initial conditions we can provide the n qis and
the n q̇i’s at an initial time t0.

In the Hamiltonian formulation we want to describe the motion of the system in
terms of first-order differential equations. Since the number of initial conditions
must remain n2 the number of first-order differential equation which are needed to
describe the system must be equal n2 , i.e. we must have n2 independent variables. It
is only natural to choose the first half of the n2 independent variables to be the n
generalized coordinates qi. The second half will be chosen to be the n generalized
momenta pi defined by

=
∂ ˙

∂ ˙
p

L q q t

q

( , , )
. (B.42)i

j j

i

The pairs q p( , )i i are known as canonical variables. The generalized momenta pi are
also known as canonical or conjugate momenta.

In the Hamiltonian formulation the state or configuration of the system is
described by the point … …q q q p p p( , , , , , , , )n n1 2 1 2 in the n2 -dimensional space
known as the phase space of the system with axes given by the generalized
coordinates and momenta qi and pi. The n2 first-order differential equations will
describe how the point … …q q q p p p( , , , , , , , )n n1 2 1 2 moves inside the phase space as
the configuration of the system evolves in time.

The transition from the Lagrangian formulation to the Hamiltonian formulation
corresponds to the change of variables ˙ ⟶q q t q p t( , , ) ( , , )i i i i which is an example of
a Legendre transformation. Instead of the Lagrangian which is a function of qi, q̇i
and t, viz = ˙L L q q t( , , )i i we will work in the Hamiltonian formulation with the
Hamiltonian H which is a function of qi, pi and t defined by

∑= ˙ − ˙H q p t q p L q q t( , , ) ( , , ). (B.43)
i

i i i i i i

We compute on one hand

= ∂
∂

+ ∂
∂

+ ∂
∂

dH
H
q

dq
H
p

dp
H
t

dt. (B.44)
i

i
i

i

On the other hand we compute

= ˙ + ˙ − ∂
∂ ˙

˙ − ∂
∂

− ∂
∂

= ˙ − ∂
∂

− ∂
∂

= ˙ − ˙ − ∂
∂

dH q dp p dq
L
q

dq
L
q

dq
L
t

dt

q dp
L
q

dq
L
t

dt

q dp p dq
L
t

dt.

(B.45)

i i i i
i

i
i

i

i i
i

i

i i i i

By comparison we get the canonical equations of motion of Hamilton
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˙ = ∂
∂

− ˙ = ∂
∂

q
H
p

p
H
q

, . (B.46)i
i

i
i

We also get

− ∂
∂

= ∂
∂

L
t

H
t

. (B.47)

For a large class of systems and sets of generalized coordinates the Lagrangian can
be decomposed as ˙ = + ˙ + ˙L q q t L q t L q q t L q q t( , , ) ( , ) ( , , ) ( , , )i i i i i i i0 1 2 where L2 is a
homogeneous function of degree 2 in q̇i, whereas L1 is a homogeneous function of
degree 1 in q̇i. In this case we compute

˙ = ˙ ∂
∂ ˙

+ ˙ ∂
∂ ˙

= +q p q
L
q

q
L
q

L L2 . (B.48)i i i
i

i
i

1 2
1 2

Hence

= −H L L . (B.49)2 0

If the transformation equations which define the generalized coordinates do not depend
on time explicitly, i.e. ⃗ = ⃗ …r r q q q( , , , )i i n1 2 then v ⃗ = ∑ ˙∂ ⃗

∂
qr

qi j
i

j
j and as a consequence

=T T2 where T2 is a function of qi and q̇i which is quadratic in the q̇i’s. In general, the
kinetic termwill be of the form = ˙ + ˙ +T T q q t T q q t T q t( , , ) ( , , ) ( , )i i i i i2 1 0 . Further, if the
potential does not depend on the generalized velocities q̇i then =L T2 , =L 01 and

= −L V0 . Hence we get

= +H T V . (B.50)

This is the total energy of the system. It is not difficult to show using Hamilton’s
equations that = ∂

∂
dH
dt

H
t
. Thus if V does not depend on time explicitly then L will not

depend on time explicitly and as a consequence H will be conserved.

B.5 Canonical transformations
A change of coordinates in configuration space is given by ⟶ =q Q Q q t( , )i i i i . This
is known as a point transformation. A change of coordinates in phase space is given
by ⟶ =q Q Q q p t( , , )i i i j j and ⟶ =p P P q p t( , , )i i i j j . The qi’s and pi’s are assumed
to solve Hamilton’s equations of motion, i.e.

˙ = ∂
∂

− ˙ = ∂
∂

q
H
p

p
H
q

, . (B.51)i
i

i
i

These equations can be derived from the modified Hamilton’s principle

∫δ ˙ − =p q H q p t( ( , , )) 0. (B.52)
t

t

i i
1

2

A Modern Course in Quantum Field Theory, Volume 1

B-10



The transformation ⟶ =q Q Q q p t( , , )i i i j j , ⟶ =p P P q p t( , , )i i i j j is known as a
canonical transformation if the new Qi’s and Pi’s are canonical variables. This
means that there must exist a function K Q P t( , , ) such that

˙ = ∂
∂

− ˙ = ∂
∂

Q
K
P

P
K
Q

, . (B.53)i
i

i
i

Clearly these equations can also be derived from a modified Hamilton’s principle
given by

∫δ ˙ − =PQ K Q P t( ( , , )) 0. (B.54)
t

t

i i
1

2

Thus one must have

∫ ∫δ δ˙ − = ˙ − =p q H q p t PQ K Q P t( ( , , )) ( ( , , )) 0. (B.55)
t

t

i i
t

t

i i
1

2

1

2

Or equivalently

λ ˙ − = ˙ − +p q H q p t PQ K Q P t
dF
dt

( ( , , )) ( , , ) . (B.56)i i i i

The transformations of canonical coordinates for which λ ≠ 1 are called extended
canonical transformations. The transformations for which λ = 1 are called canonical
transformations. Thus canonical transformations are such that

˙ − = ˙ − +p q H q p t PQ K Q P t
dF
dt

( , , ) ( , , ) . (B.57)i i i i

The canonical transformations which do not depend on time explicitly, viz
=Q Q q p( , )i i j j and =P P q p( , )i i j j are called restricted canonical transformations.
By a scale transformation such as ′ μ⟶ =Q Q Qi i i, ′ ν⟶ =P P Pi i i we

obtain ′ ′μν ˙ − = ˙ − ′PQ K P Q K( )i i i i , i.e. μν′ =K K . Thus, any extended canonical
transformation ′⟶q Qi i , ′⟶p Pi i with λ ≠ 1, i.e. λ ˙ − =p q H q p t( ( , , ))i i

′ ′˙ − ′ ′ ′ + ′P Q K Q P t( , , ) dF
dti i can be composed of the canonical transformation

⟶q Qi i, ⟶p Pi i given by equation (B.57) followed by a scale transformation
′ μ⟶ =Q Q Qi i i, ′ ν⟶ =P P Pi i i with μν λ= and μν′ =F F .

The function F is a function of the phase space coordinates qi, Qi, pi and Pi and
time with continuous second derivatives. By using =Q Q q p t( , , )i i j j and

=P P q p t( , , )i i j j and their inverses we can express F in terms partly of half of the
old set of canonical variables and partly of half of the new set of canonical variables.
Assuming that this can be done, the function F will act precisely as the generating
function of the canonical transformation. We consider in some detail the following
two general types of generating functions

=F F q Q t( , , ). (B.58)i i1
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= −F F q P t Q P( , , ) . (B.59)i i2

In the first case we compute

˙ − = ˙ − + ∂
∂

+ ∂
∂

˙ + ∂
∂

˙p q H PQ K
F
t

F
q

q
F
Q

Q . (B.60)i i i i
i

i
i

i
1 1 1

Since qi and Qi are separately independent we must have

= ∂
∂

= − ∂
∂

p
F
q

P
F
Q

, . (B.61)i
i

i
i

1 1

= + ∂
∂

K H
F
t

. (B.62)1

In the second case we compute

˙ − = − ˙ − + ∂
∂

+ ∂
∂

˙ + ∂
∂

˙p q H Q P K
F
t

F
q

q
F
P

P. (B.63)i i i i
i

i
i

i
2 2 2

Again since qi and Pi are separately independent we must have

= ∂
∂

= ∂
∂

p
F
q

Q
F
P

, . (B.64)i
i

i
i

2 2

= + ∂
∂

K H
F
t

. (B.65)2

There are two more general types of generating functions given by

= +F F p Q t q p( , , ) . (B.66)i i i i3

= + −F F p P t q p Q P( , , ) . (B.67)i i i i i i4

B.6 Poisson brackets
For restricted canonical transformations the generating function does not depend on
time explicitly and as a consequence K = H. Let η be the n2 -dimensional column
vector constructed out of qi and pi and ξ be the n2 -dimensional column vector
constructed out of Qi and Pi. The equations of restricted canonical transformations

=Q Q q p( , )i i j j and =P P q p( , )i i j j can be rewritten as ξ ξ η= ( ). The Hamilton’s
equations of motion in the η variables read

η
η

˙ = ∂
∂

J
H

. (B.68)

The ×n n2 2 matrix J is given explicitly by
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⎛
⎝⎜

⎞
⎠⎟=

−
J

0 1
1 0

. (B.69)n

n

Similarly, the Hamilton’s equations of motion in the ξ variables read

ξ
ξ

˙ = ∂
∂

J
H

. (B.70)

We define the matrix M by

ξ
η

= ∂
∂

M . (B.71)ij
i

j

We have

ξ η

η

ξ

ξ

˙ = ˙

= ∂
∂

= ∂
∂

= ∂
∂

M

M J
H

M J M
H

MJM
H

( ) .

(B.72)

i ij j

ij jk
k

ij jk lk
l

T
il

l

We must then have

=MJM J. (B.73)T

This is the symplectic condition. The matrix M is a symplectic matrix. The
symplectic condition is a necessary and sufficient condition for all canonical
transformations, even those which depend explicitly on time. Further, the symplectic
condition implies the existence of a generating function. The symplectic or the
generator formalisms can be used to show that the set of all canonical trans-
formations form a group.

Let us introduce infinitesimal canonical transformations. First we note that
=F q Pi i2 generates the canonical transformation which acts as the identity. Indeed,

this transformation gives =Q qi i, =P pi i and K = H. An infinitesimal canonical
transformation corresponds to

ϵ= +F q P G q P t( , , ). (B.74)i i j j2

We compute ϵ= − ∂
∂

P p G
qi i
i
, ϵ ϵ= + = +∂

∂
∂
∂

Q q qG
P

G
pi i i i
i
. In other words, we can think

of G as a function of q and p (instead of q and P) and time. The function G is called
the generating function of the infinitesimal canonical transformation. We write
δ ϵ= − = − ∂

∂
p P p G

qi i i
i
, δ ϵ= − = ∂

∂
q Q q G

pi i i
i
in a compact form as
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δη ϵ
η

= ∂
∂

J
G

. (B.75)

We also introduce the notion of Poisson brackets. The Poisson bracket of any two
functions u and v with respect to the canonical variables qi and pi is defined by

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

v
v v

v

∑

η η

= ∂
∂

∂
∂

− ∂
∂

∂
∂

= ∂
∂

∂
∂

ηu
u
q p

u
p q

u
J

[ , ]

.

(B.76)i i i i i

T

We compute

v
v

v

v

v

η η

ξ
ξ
η

ξ
η ξ

ξ ξ

= ∂
∂

∂
∂

= ∂
∂

∂
∂

∂
∂

∂
∂

= ∂
∂

∂
∂

=

η

ξ

u
u

J

u
J

u
MJM

u

[ , ]

( )

[ , ] .

(B.77)

i
ij

j

k

k

i
ij

l

j l

k

T
kl

l

In other words, the Poisson brackets are canonical invariant. This is the single most
important property of Poisson brackets. We also write down the fundamental
Poisson brackets

η η =η J[ , ] . (B.78)

In components we have

δ= = =η η ηq q p p q p[ , ] 0, [ , ] 0, [ , ] . (B.79)i j i j i j ij

Let u be some function of the canonical variables qi, pi and time, i.e. =u u q p t( , , )i i .
The total time derivative of u is given by

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

∑

∑

= ∂
∂

˙ + ∂
∂

˙ + ∂
∂

= ∂
∂

∂
∂

− ∂
∂

∂
∂

+ ∂
∂

= + ∂
∂η

du
dt

u
q

q
u
p

p
u
t

u
q

H
p

u
p

H
q

u
t

u H
u
t

[ , ] .

(B.80)

i

i

i
i

i
i

i i i i

This is the equation of motion of the function u. Hamilton’s equation (B.68) can be
obtained as a special case. Indeed, if we choose =u q p,i i then ˙ = ηq q H[ , ]i i ,

A Modern Course in Quantum Field Theory, Volume 1

B-14



˙ = ηp p H[ , ]i i . In symplectic notation these equations can be rewritten as

η η˙ = =
η

∂
∂ηH J[ , ] H which is Hamilton’s equation of motion (B.68).

The infinitesimal canonical transformation (B.75) can also be expressed in terms
of Poisson brackets. By choosing η=u and v = G in equation (B.76) we get

η =
η

∂
∂ηG J[ , ] G . The infinitesimal canonical transformation (B.75) can then be put in

the form

δη ϵ η= ηG[ , ] . (B.81)

Let us choose ϵ = dt and G = H then δη η η= ˙ =dt d . In other words, the
Hamiltonian is the generator of the evolution of the system in time. As a second
example let us choose ϵ = dx and =G pj then δ δ= =ηq dx q p dx[ , ]i i j ij and
δ = =ηp dx p p[ , ] 0i i j and as a consequence translation in the jth direction is
generated by the momentum pj.

Finally, we note that canonical transformations can be understood either
passively or actively. In the passive view of a canonical transformation we change
from the phase space η with coordinates qi and pi to the phase space ξ with
coordinates Qi and Pi. Thus the system at some time t which is described by the
configuration =A q p( , )i i can also be described by the transformed configuration

′ =A Q P( , )i i . In other words, any function u of the system variables should have the
same value in the two phase spaces, i.e. = ′u A u A( ) ( ) although the functional
dependence of u on qi and pi is in general different from its functional dependence on
Qi and Pi.

In the active interpretation of a canonical transformation the coordinates Qi and
Pi should be thought of as the coordinates of a point B in the same phase space as the
point A. Thus the canonical transformation moves the system point from =A q p( , )i i
to =B Q P( , )i i in the sense that it re-expresses the configuration B in terms of the
configuration A and vice versa. Hence, under this view the value of a function u of
the system variables will change when we go from A to B although in this case the
functional dependence is the same. The change ∂u in the value of the function when
we go from A to B is

η δη η

η
δη

ϵ
η η

ϵ

∂ = −
= + −

= ∂
∂

= ∂
∂

∂
∂

= η

u u B u A
u u

u

u
J

G

u G

( ) ( )
( ) ( )

[ , ] .

(B.82)

For the Hamiltonian the situation is more involved. Even under the passive view of a
canonical transformation the Hamiltonian will change from H A( ) to ′K A( ) as we go

from A to ′A where ϵ= + = +∂
∂

∂
∂

K H HF
t

G
t

2 . In this case ∂H will be given by the
difference in the value of the Hamiltonian under the two interpretations, viz
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ϵ

ϵ

ϵ ϵ

ϵ

∂ = − − ′ −
= − ′

= − ′ − ∂
∂

= − − ∂
∂

= − ∂
∂

= −

η

H H B H A K A H A
H B K A

H B H A
G
t

H B H A
G
t

H G
G
t

dG
dt

( ( ) ( )) ( ( ) ( ))
( ) ( )

( ) ( )

( ) ( )

[ , ]

.

(B.83)

The crucial conclusion is that if G is a constant of the motion then G will generate an
infinitesimal canonical transformation which does not change the value of the
Hamiltonian, i.e. it leaves the Hamiltonian invariant.

B.7 Hamilton–Jacobi equation
We consider a canonical transformation from q p( , )i i to Q P( , )i i where Qi and Pi are
constant in time, i.e. β=Qi i and α=Pi i. This can be achieved by requiring that the
transformed Hamiltonian K Q P t( , , ) vanishes identically. Since =K Q P t( , , )

+ ∂
∂

H q p t( , , ) F
t
we must then have

+ ∂
∂

=H q p t
F
t

( , , ) 0. (B.84)

We take =F F q P t( , , )i i2 . Since = ∂
∂

p F
qi
i

2 we can write the above action as

⎛
⎝⎜

⎞
⎠⎟… ∂

∂
∂
∂

… ∂
∂

+ ∂
∂

=H q q q
F
q

F
q

F
q

t
F
t

, , , , , , , , 0. (B.85)n
n

1 2
2

1

2

2

2 2

This is the Hamilton–Jacobi equation. It is a partial differential equation in the +n 1
variables …q q, , n1 and t for the generating function F2. We denote the solution by

α α α= = … … +F S S q q t( , , , , , , , )n n n2 1 1 1 and call it Hamilton’s principal function.
The +n 1 numbers αi are the constants of integration. Clearly if S is a solution then

α+S is also a solution. In other words, one of the constants of integration is
irrelevant since it appears only additively and thus will drop from the partial
derivatives. Further, we are at liberty to choose the new n momenta Pi which are
constants such that α=Pi i. A complete solution of the above first-order partial
differential equation is therefore given by

= = … …F S S q q P P t( , , , , , , ). (B.86)n n2 1 1

From = = α∂
∂

∂
∂

p F
q

S q t
q

( , , )
i

i i

2 at time t0 we can fix αi in terms of the initial values of qi

and pi, whereas from β= = =α
α

∂
∂

∂
∂

Q F
P

S q t( , , )
i i i i

2 at time =t t0 we can determine βi in
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terms of αi and the initial values of qi. We can then invert β=α
α

∂
∂

S q t( , , )

i i to provide the

qi in terms of αi, βi and time, viz α β=q q t( , , )i i . Then by substituting α β=q q t( , , )i i

in = α∂
∂

p S q t
q

( , , )
i

i
we can find the pi in terms of αi, βi and time, viz α β=p p t( , , )i i .

Therefore, we conclude that finding Hamilton’s principal function α=S S q t( , , )
through solving the Hamilton–Jacobi equation is equivalent to finding a solution to
the original Hamilton’s equations of motion. We also compute

= ∂
∂

˙ + ∂
∂

= −
=

dS
dt

S
q

q
S
t

p q H
L.

(B.87)i
i

i i

In other words, S is essentially the action, viz

∫= +S Ldt constant. (B.88)

If the Hamiltonian does not depend on time explicitly then the Hamilton–Jacobi
equation will read

⎛
⎝⎜

⎞
⎠⎟

∂
∂

+ ∂
∂

=H q
S
q

S
t

, 0. (B.89)i
i

We can then separate time by writing

α α α= −S q t W q t( , , ) ( , ) . (B.90)i i i i 1

The Hamilton–Jacobi equation reduces to

⎛
⎝⎜

⎞
⎠⎟ α∂

∂
=H q

W
q

, . (B.91)i
i

1

The function W is known as Hamilton’s characteristic function. It generates a
canonical transformation in which all new coordinates are cyclic, i.e. they do not
appear in the transformed Hamiltonian. Indeed, let us consider the canonical
transformation ⟶q p Q P( , ) ( , )i i i i where the new momenta Pi are constants of the
motion αi and with a generating functionW q P( , )i i which does not depend explicitly
on time and hence =K Q P H q p( , ) ( , )i i i i . Let H q p( , )i i be equal to the constant of the

motion α1. As before we must have = ∂
∂

p W
qi
i
and = =

α
∂
∂

∂
∂

Q W
P

W
i i i

and thus the

requirement α=H q p( , )i i 1 is identical to equation (B.91). Let us note that under
this canonical transformation we have =K Q P P( , )i i 1, i.e. the transformed
Hamiltonian is independent of the new coordinates Qi so that they are all cyclic.
Further, we can derive from Hamilton’s equations that β= +Q t1 1 and β=Qi i for

≠i 1, i.e. all new coordinates with the exception of Q1 are constants of the motion.
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Appendix C

Classical electrodynamics

C.1 Coulomb’s and Gauss’s laws
Electrostatics is the theory of stationary charges. Coulomb’s law, together with the
superposition principle, are the two main foundations of electrostatics.

Coulomb’s law states that the force ⃗F on a test charge Q placed at a point P due
to a stationary single point charge q a distance R away is proportional to the product
of the charges qQ and inversely proportional to the square of the separation distance
R2. It is given by

πϵ
⃗ = ˆF

qQ
R

u
1

4
. (C.1)

0
2

The force points along the line from the source charge q to the test charge Q. Let ⃗r
and ⃗rq be the position vectors of Q and q, respectively, then

⃗ = ⃗ − ⃗ = ˆR r r Ru. (C.2)q

The force is attractive if the two charges have opposite signs and it is repulsive if the
two charges have the same sign. The permittivity of the vacuum ϵ0 is given by

ϵ = × − − −N m8.85 10 C . (C.3)0
12 2 1 2

In the case of N point charges …q q q, , , N1 2 the total force ⃗F on Q is obtained using
the superposition principle. It is given by

doi:10.1088/2053-2563/ab0547ch11 C-1 ª IOP Publishing Ltd 2019

https://doi.org/10.1088/2053-2563/ab0547ch11


∑

∑
πϵ

⃗ = ⃗

= ˆ

= ⃗

=

=

F F

Q q

R
u

QE

4

.

(C.4)
i

N

i

N
1

1

i

i

i
i

0
2

The vector ⃗E is the electric field of the source charges. It depends on the position
vector ⃗r of the field point P and not on the test charge Q. It is given by

∑
πϵ

⃗ ⃗ = ˆ
=

E r
q

R
u( )

1
4

. (C.5)
i

N

1

i

i
i

0
2

For a continuous charge distribution the sum will be replaced by an integral, viz

∫πϵ
⃗ ⃗ = ˆE r

dq
R

u( )
1

4
. (C.6)

0
2

In this formula ⃗R is the vector from the infinitesimal source charge dq to the the field
point P, i.e. ⃗ = ⃗ − ⃗ = ⃗ − ′⃗ = ˆR r r r r Rudq . For a continuous charge distribution
contained inside a volume V with a charge density ρ the above equation can be
put in the form

∫πϵ
ρ⃗ ⃗ = ′ ⃗′ ˆE r dV

r
R

u( )
1

4
( )

. (C.7)
V0

2

Next we compute the divergence ∇⃗ ⃗E of ⃗E where

∇⃗ = ˆ ∂
∂

+ ˆ ∂
∂

+ ˆ ∂
∂

i
x

j
y

k
z

. (C.8)

First, we extend the integral in equation (C.7) to all space since the charge density ρ
vanishes outside the volume V anyway. We have

∫πϵ
ρ⃗ ⃗ = ′ ⃗′ ˆE r dV

r
R

u( )
1

4
( )

. (C.9)
0

2

We then compute

∫πϵ
ρ∇⃗ ⃗ ⃗ = ′ ⃗′ ∇⃗ ˆ

E r dV r
u

R
( )

1
4

( ) . (C.10)
0

2

⎛
⎝⎜

⎞
⎠⎟

In spherical coordinates we have

θ θ
θ

θ ϕ
∇⃗ ⃗ = ∂

∂
+ ∂

∂
+

∂
∂θ

ϕ

r r
r

r r
1

( )
1

sin
(sin )

1
sin

. (C.11)r2
2v v v

v

We consider the vector
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⃗ = r̂
r

. (C.12)
2

v

We get immediately that

∇⃗ ⃗ = ⃗ ≠r0, for any 0. (C.13)v

The divergence theorem states

∫ ∮∇⃗ ⃗ = ⃗ · ⃗dV X X dS. (C.14)
V S

The closed surface S is the boundary of the volume V. We apply this theorem to the
vector ⃗ = ⃗X v with S being the surface of a sphere with radius r. We get

∫ ∮
∮ θ θ ϕ

π

∇⃗ ⃗ = ⃗ · ⃗

= ·

=

dV dS

r
r d d

1
sin

4 .

(C.15)
V S

S 2
2

v v

The vector π∇⃗ ⃗/4v vanishes for all ⃗ ≠r 0 and its integral over any volume containing
the origin is 1. This is precisely the behavior of the Dirac delta function, viz

πδ∇⃗ ⃗ = ⃗r4 ( ). (C.16)3v

Hence

∫πϵ
ρ πδ

ϵ
ρ

∇⃗ ⃗ ⃗ = ′ ⃗′ ⃗

= ⃗

E r dV r R

r

( )
1

4
( )4 ( )

1
( ).

(C.17)0

3

0

This is Gauss’s law in differential form. We apply now the divergence theorem to the
electric field ⃗E . We obtain

∮ ∫
∫ ϵ

ρ

ϵ

⃗ · ⃗ = ∇⃗ ⃗

= ⃗

=

E dS dV E

dV r

q

1
( )

1
.

(C.18)

S V

V 0

0
enc

This is Gauss’s law in integral form. The integral ∮ ⃗ · ⃗E ds
S

is the flux of the electric
field through the surface S.

Next we compute the curl of ⃗E . We have

∫πϵ
ρ∇⃗ × ⃗ ⃗ = ′ ⃗′ ∇⃗ × ˆ

E r dV r
u

R
( )

1
4

( ) . (C.19)
0

2

⎛
⎝⎜

⎞
⎠⎟
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In spherical coordinates we have

θ θ
θ

ϕ θ ϕ
θ

θ
ϕ

∇⃗ × ⃗ = ∂
∂

− ∂
∂

ˆ + ∂
∂

−
∂

∂
ˆ

+ ∂
∂

− ∂
∂

ˆ

ϕ
θ ϕ

θ

r
r

r

r

r

r
r
r

1
sin

(sin )
1 1

sin

( )

1 ( )
.

(C.20)

r

r

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

v v
v v v

v v

We can immediately conclude that

∇⃗ × ˆ =r
r

0. (C.21)
2

Hence

∇⃗ × ⃗ ⃗ =E r( ) 0. (C.22)

Stokes’ theorem states

∫ ∮⃗ · ∇⃗ × ⃗ = ⃗ · ⃗dS X X dl. (C.23)
S l

The closed line l is the boundary of the surface S. If we apply this theorem to the
electric field ⃗E we get

∮ ∫⃗ · ⃗ = ⃗ · ∇⃗ × ⃗

=

E dl dS E

0.
(C.24)l S

C.2 Lorentz, Biot–Savart’s and Ampère’s laws
Magnetostatics is the theory of steady currents. The Lorentz force law and the Bito–
Savart’s law together with the superposition principle are three main foundations of
magnetostatics.

A current at a given point in a one-dimensional wire is the charge per unit time
which passes that point, viz

λ λ= = =I
dq
dt

dl
dt

. (C.25)v

A steady current is a current which is the same all along the wire, viz

∂
∂

=I
l

0. (C.26)

By charge conservation the charge per unit time leaving a segment l is equal to the
decrease per unit time of the charge inside l. In other words

∫
∫

λ

λ

= −

= −

= − ∂
∂

dQ

dt

dQ

dt
d
dt

dl

t
dl.

(C.27)
l

l

leaving inside
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The charge dQleaving is the charge which leaves the segment l from both endpoints in

a time interval dt. Let =l a b[ , ]. We write = −dQ dQ dQb a
leaving leaving leaving where

dQ b
leaving is the charge which exits through the endpoint b and −dQ a

leaving is the charge
which exits through the endpoint a. Clearly we have

∫= ∂
∂

dQ

dt
I
l

dl. (C.28)
l

leaving

Hence we get the one-dimensional continuity equation

λ∂
∂

= − ∂
∂

I
l t

. (C.29)

Thus, for a steady current we must have

λ∂
∂

=
t

0. (C.30)

Thus, for a steady current the charge cannot accumulate at, or dissipate from, any
point on the wire. In other words given a segment l the charge leaving l is equal to
the charge entering l.

Now we generalize to three dimensions. We assume that the flow of charge is
distributed throughout a three-dimensional region. Thus

ρ= =I
dq
dt

dV
dt

. (C.31)

Let ⊥dS be the cross-section of an infinitesimal tube which runs parallel to the flow of
charge and dI be the current in this tube. Then ρ= ⊥dI dS dl dt/ where dl is length of
the infinitesimal tube. The quantity ρ ⊥dS dl is the charge which passes in a time
interval dt across any given section of the tube. Thus dl/dt is precisely the speed of the
charge. The volume current density is defined by

ρ= =
⊥

J
dI
dS

. (C.32)v

In other words J is the current per unit area perpendicular to the flow. Clearly the
volume current density is a vector

ρ⃗ =
⃗

= ⃗
⊥

J
dI
dS

. (C.33)v

The total current crossing a surface S is

∫= ⃗ · ⃗I J dS (C.34)
S

Thus the total charge per unit time leaving a volume V is

∮ ∫= ⃗ · ⃗ = ∇⃗ ⃗dQ

dt
J dS JdV . (C.35)

S V

leaving

The conservation of electric charge gives
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∫
∫

ρ

ρ

= −

= −

= − ∂
∂

dQ

dt

dQ

dt
d
dt

dV

t
dV .

(C.36)
V

V

leaving inside

We get therefore the continuity equation

ρ∇⃗ ⃗ = − ∂
∂

J
t

. (C.37)

For a steady current the charge cannot accumulate at, or dissipate from, any point.
This means that given a volume V the charge leaving V is equal to the charge
entering V. Hence we must have

ρ∂
∂

=
t

0. (C.38)

Thus, for a steady current the volume current density is constant throughout the
current distribution in the sense that

∇⃗ ⃗ =J 0. (C.39)

The magnetic field due to a steady current I at a point P with position vector ⃗r is
given by the Biot–Savart law:

∫μ
π

⃗ =
⃗ ⃗′ × ˆ ′B

J r u
R

dV
4

( )
. (C.40)0

2

The integration is over the region in which the volume current density ⃗J does not
vanish. As before, ⃗ = ⃗ − ′⃗ = ˆR r r Ru where ′⃗r is the position vector of the infin-
itesimal current ′⃗ ′⃗ ⊥J r da( ) . The permeability of the vacuum μ0 is given by

μ π= × − N A4 10 / . (C.41)0
7 2

The magnetic force exerted by this magnetic field ⃗B on another volume current
density ⃗J0 is given by Lorentz force law:

∫
∫
∫

ρ

⃗ = ⃗ × ⃗

= ⃗ × ⃗

= ⃗ × ⃗

F dq B

B dV

J B dV

( )

( )

( ) .

(C.42)

0 0

0 0

0

v

v

The integration is now over the region in which the volume current density ⃗J0 does
not vanish. For a single point charge q0 with velocity 0⃗v the Lorentz force law reads
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⃗ = ⃗ × ⃗F q B( ). (C.43)0 0v

Next we compute the curl of the magnetic field ⃗B . We have

∫μ
π

∇⃗ × ⃗ = ∇⃗ ×
⃗ ⃗′ × ˆ ′B

J r u
R

dV
4

( )
. (C.44)0

2

⎛
⎝⎜

⎞
⎠⎟

Using the identities

∇⃗ × ⃗ × ⃗ = ⃗ ∇⃗ ⃗ − ⃗ ∇⃗ ⃗ + ⃗ ∇⃗ ⃗ − ⃗ ∇⃗ ⃗A B B A A B A B B A( ) ( . ) ( . ) ( . ) ( . ). (C.45)

∇⃗ ⃗ = ∇⃗ ⃗ + ⃗∇⃗fA f A A f( ) . (C.46)

We get (using also the fact that ⃗ ′⃗J r( ) does not depend on ⃗r and ∇⃗′ ⃗ ′⃗ =J r( ) 0)

πδ

πδ

∇⃗
⃗ ⃗′ × ˆ = − ⃗ · ∇⃗ ˆ + ⃗ ∇⃗ · ˆ

= ⃗ · ∇⃗′ − ′ ˆ + ⃗ · ∇⃗′ − ′ ˆ

+ ⃗ · ∇⃗′ − ′ ˆ + ⃗ ⃗

= ∇⃗′ ⃗ − ′ ˆ + ∇⃗′ ⃗ − ′ ˆ

+ ∇⃗′ ⃗ − ′ ˆ + ⃗ ⃗

J r u
R

J
u

R
J

u
R

J
x x

R
i J

y y
R

j

J
z z

R
k J R

J
x x

R
i J

y y
R

j

J
z z

R
k J R

( )
( )

( ) ( )

( ) (4 ( ))

(4 ( ))

(C.47)

2 2 2

3 3

3
3

3 3

3
3

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

The first three terms give boundary integrals which are zero. The last term gives

μ∇⃗ × ⃗ = ⃗B J . (C.48)0

This is the differential form of Ampère’s law. Using Stokes’ theorem we have

∮ ∫
∫μ

μ

⃗ · ⃗ = ∇⃗ × ⃗ · ⃗

= ⃗ · ⃗

=

B dl B dS

J dS

I .

(C.49)
l S

S
0

0 enc

The current Ienc is the total current passing through the surface S, i.e. the total
current enclosed by the loop l which is the boundary of the surface S. This is the
integral form of Ampère’s law.

Similarly we compute the divergence of the magnetic field ⃗B . We have

∫μ
π

∇⃗ ⃗ = ∇⃗
⃗ ⃗′ × ˆ ′B

J r u
R

dV
4

( )
. (C.50)0

2

⎛
⎝⎜

⎞
⎠⎟
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Now we use the identity

∇⃗ ⃗ × ⃗ = ⃗ ∇⃗ × ⃗ − ⃗ ∇⃗ × ⃗A B B A A B( ) ( ) ( ). (C.51)

We get that

∇⃗
⃗ ⃗′ × ˆ =J r u

R
( )

0. (C.52)
2

⎛
⎝⎜

⎞
⎠⎟

Hence

∇⃗ ⃗ =B 0. (C.53)

C.3 Electromagnetic induction and Faraday’s laws
Electromotive force

In a closed circuit, because of resistivity (electrical friction), there must be some force
which we call electromotive force or emf to maintain a steady current. An ideal
source of emf will provide a constant voltage between two terminals. An example of
a source of emf is a battery.

We consider an electric circuit consisting of a battery connected to a resistor. Let
a and b be the negative and positive terminals, respectively, of the battery. The
current I generated outside the battery will flow from the positive terminal b to the
negative terminal a opposite the direction of flow of electrons. Equivalently we can
pretend that actually positive charges move in the direction of the current from b to a.

The chemical force per unit charge ⃗Fs generated within the battery is directed from
negative to positive terminals and it is only confined to the battery. From Ohm’s
law σ⃗ = ⃗J E where σ is the conductivity we see that a current density is non-zero
outside the battery only if an electrostatic field ⃗E exists. Therefore, there must exist
outside the battery an electrostatic field ⃗E which helps to maintain the flow of the
charges. The electric potential is defined for an electrostatic field such as ⃗E by

⃗ = −∇⃗E V . (C.54)

The potential difference between the terminals a and b is

∫ ∫− = − ⃗ ⃗ = ∇⃗ ⃗ =+ −V V Edl Vdl . (C.55)
a

b

a

b

E

Thus, when a positive charge passes from the negative terminal a to the positive
terminal b within the battery its potential will increase by the amount E . By
conservation of energy the chemical energy in the battery will decrease by the
amount E . The work done per unit charge by the battery is therefore equal to E , viz

∫= ⃗ ⃗F dl. (C.56)
a

b

sE

This means in particular that within the battery ⃗ = − ⃗F Es .
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This can also be seen as follows. The chemical force ⃗Fs inside the battery will cause
charges to be displaced which in turn will create an electrostatic field ⃗E . Thus by
Ohm’s law the current within the battery is σ⃗ = ⃗ + ⃗J E F( )s or equivalently

ρ⃗ + ⃗ = ⃗E F Js where ρ σ= 1/ is the resistivity of the battery. For an ideal battery
ρ = 0 and hence ⃗ + ⃗ =E F 0s .

The quantity E is called the electromotive force or emf which can also be rewritten
as

∮= ⃗ ⃗F dl. (C.57)sE

We think of ⃗Fs as an electric field but it is not electrostatic since its curl is non-zero.
In summary, the battery or any other source of emf will establish and maintain a
constant voltage difference equal to the emf E between two terminals.

Motional emf

The generator is another source of emf in a circuit. The emf in this case is known as a
motional emf since it arises from the motion of the circuit in a magnetic field. Let us
consider a rectangular loop in the xy plane placed in a uniform magnetic field ⃗B
which is pointing along the positive z direction. The circuit consists only of a resistor.
The segment cbad where =y ya b, =y yc d , − = − =x x x x ha b d c and

− = − =y y y y sc b d a is in the region where ≠B 0. Clearly, if we decrease s by
pulling the entire loop with a velocity v along the positive y direction the magnetic
flux through the rectangular loop will change and as a consequence an electric
current will be induced in the loop. Indeed, the magnetic force per unit charge in the
segments ⃗ba, ⃗ad and ⃗cb given by ⃗ = ⃗ × ⃗ = ˆF B Bimag v v will drive a current in the

segment ⃗ba and not in the segments ⃗ad and ⃗cb.
The motional emf E is the constant voltage difference Va − Vb. In other words, as

a positive charge moves from b to a its potential will increase by the amount E . Thus
by conservation of energy E must be equal to the work of the mechanical force ⃗Fpull

which is pulling with a velocity v, i.e.

∫= ⃗ ⃗F dl. (C.58)
b

a

pullE

The existence of a current means that positive charges will have, in addition to the
velocity ⃗v, another velocity ⃗u which is always in the direction of the current. The
total magnetic force is therefore ⃗ = ⃗ + ⃗ × ⃗F u B( )mag v . In the segment ⃗ba the magnetic

force ⃗Fmag will have a horizontal component given by − ˆuBj . The mechanical force

which is pulling with a velocity v is therefore equal to ⃗ = ˆF uBjpull . Let θ be the angle
which the velocity ⃗ = ⃗ + ⃗w uv makes with the x-axis, i.e. θ =w ucos and θ =w sin v.
The actual displacement of the charges in the segment ⃗ba will be in the direction of
w⃗. The integration path for the calculation of the work of ⃗Fpull is this displacement
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which makes an angle θ with the x-axis and which is of length θh/ cos . Thus the
work of ⃗Fpull is

∫ θ
π θ= ⃗ ⃗ = − =F dl uB

h
Bh( )

cos
cos

2
. (C.59)

b

a

pull ⎜ ⎟⎛
⎝

⎞
⎠E v

It is not difficult to check that

∮
∫
∫

= ⃗ ⃗

= ⃗ ⃗

=

=

F dl

F dl

Bdx

Bh.

(C.60)b

a

mag

mag

E

v

v

The motional emf E is not the work of ⃗Fmag since magnetic forces never do work.
Indeed, the integration in the last equation above is done around the loop at a given
instant of time.

Now we relate the motional emf with the flux of the magnetic field. The flux Φ of
the magnetic field ⃗B through the loop is given by

∫ ∫Φ = ⃗ ⃗ = =BdS Bdxdy Bhs. (C.61)

As we decrease s the flux decreases so Φd dt/ must be negative. By using the fact that
= −ds dt/v since ds/dt is negative we obtain the result

Φ = −d
dt

Bh . (C.62)v

In other words

= − Φd
dt

. (C.63)E

This is the flux rule which applies quite generally to non-rectangular loops moving in
arbitrary directions in non-uniform magnetic fields.

Transformer emf

Another source of emf is the transformer. The emf in this case may be called
transformer emf. Let us consider the previous setup, only now the rectangular loop is
kept stationary. Next we either move the electromagnet which created the magnetic
field ⃗ = ˆB Bk with a velocity v along the negative y direction or we vary the current in
the coil of the electromagnet so that the strength of the magnetic field ⃗B changes. In
both cases a current will flow in the loop.

In these cases the loop is stationary and therefore the force responsible for the
flow of the current is not magnetic since stationary charges cannot experience a
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magnetic force. Faraday concluded that there must exist an electric field ⃗E in the
loop which causes the current to flow. This electric field, which was induced by
changing the magnetic field, is not electrostatic. The work done by the induced
electric field ⃗E around the loop is the transformer emf E , i.e.

∮= ⃗ ⃗Edl. (C.64)E

Empirically we find that E is again given by the flux rule, viz

= − Φd
dt

. (C.65)E

In other words

∮ ∫⃗ ⃗ = − ∂ ⃗
∂

⃗Edl
B
t

dS. (C.66)

This is Faraday’s law in integral form. Using Stokes’ theorem we obtain Faraday’s
law in differential form, viz

∇⃗ × ⃗ = − ∂ ⃗
∂

E
B
t

. (C.67)

C.4 Maxwell’s equations
In summary, we have obtained the following laws:

ρ
ϵ

∇⃗ ⃗ =E . (C.68)
0

∇⃗ ⃗ =B 0. (C.69)

∇⃗ × ⃗ = − ∂ ⃗
∂

E
B
t

. (C.70)

μ∇⃗ × ⃗ = ⃗B J . (C.71)0

However, we know that for any vector ⃗X the identity ∇⃗ ∇⃗ × ⃗ =X( ) 0 must hold. This
identity holds for ⃗ = ⃗X E . Indeed we have

∇⃗ ∇⃗ × ⃗ = −∇⃗ ∂ ⃗
∂

= − ∂
∂

∇⃗ · ⃗ =E
B
t t

B( ) ( ) 0. (C.72)
⎛
⎝⎜

⎞
⎠⎟

But for ⃗ = ⃗X B we have

μ μ∇⃗ ∇⃗ × ⃗ = ∇⃗ ⃗ = ∇⃗ ⃗B J J( ) ( ) . (C.73)0 0
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This is zero only for steady currents, i.e. when ∇⃗ ⃗ =J 0. Therefore, either the identity
∇⃗ ∇⃗ × ⃗ =X( ) 0 is not true, which is simply impossible, or Ampère’s law (C.71) is
wrong for non-steady currents.

For non-steady currents we must use the continuity equation

ρ ϵ ϵ∇⃗ ⃗ = − ∂
∂

= − ∂
∂

∇⃗ ⃗ = −∇⃗ ∂ ⃗
∂

J
t t

E
E
t

( ) . (C.74)0 0

⎛
⎝⎜

⎞
⎠⎟

In other words

μ μ ϵ∇⃗ ⃗ + ∂ ⃗
∂

=J
E
t

0. (C.75)0 0 0

⎛
⎝⎜

⎞
⎠⎟

Therefore, Ampère’s law must be modified such that

μ μ ϵ∇⃗ × ⃗ = ⃗ + ∂ ⃗
∂

B J
E
t

. (C.76)
0 0 0

Now clearly ∇⃗ ∇⃗ × ⃗ =B( ) 0. The quantity ϵ⃗ = ∂ ⃗ ∂J E t/D 0 is called the displacement
current and it is generally very small compared to ⃗J .

In analogy with Faraday’s law (C.70) which states that a changing magnetic field
induces an electric field the Ampère–Maxwell’s law (C.76) states that a changing
electric field induces a magnetic field. Maxwell’s equations consist of Gauss’s law
(C.68), Faraday’s law (C.70), Ampère–Maxwell’s law (C.76) and equation (C.69).
Together with the Lorentz force law they summarize classical electrodynamics. The
continuity equation can be derived by applying the divergence to Ampère–
Maxwell’s law (C.76).

C.5 Electromagnetic energy and Poynting’s theorem
The work done by the Lorentz force on a charge dq is

ρ

= ⃗ · ⃗

= ⃗ + ⃗ × ⃗ · ⃗
= ⃗ ⃗
= ⃗ ⃗

dW F dl
dq E B dt

dVE dt

EJdVdt

( )

.

(C.77)
v v

v

The work per unit time done on all charges inside a volume V is

∫= ⃗ ⃗dW
dt

EJdV . (C.78)
V

By using Ampère–Maxwell’s and Faraday’s laws we compute
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μ
ϵ

μ μ
ϵ

μ
ϵ

μ

⃗ ⃗ = ⃗ ∇⃗ × ⃗ − ⃗ ∂ ⃗
∂

= ⃗ ∇⃗ × ⃗ − ∇⃗ ⃗ × ⃗ − ∂
∂

⃗

= − ∇⃗ ⃗ × ⃗ − ∂
∂

⃗ + ⃗

EJ E B E
E
t

B E E B
t

E

E B
t

E B

1
( )

1
( )

1
( )

1
2

1
( )

1
2

1
2

.

(C.79)

0
0

0 0
0

2

0
0

2

0

2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Hence, by using the divergence theorem we get

∮= − − ⃗ · ⃗dW
dt

dU
dt

S dA. (C.80)
A

em

The total energy stored in the electromagnetic field isUem and it is given by

∫ ϵ
μ

= ⃗ + ⃗U E B dV
1
2

1
2

. (C.81)
V

em 0
2

0

2⎛
⎝⎜

⎞
⎠⎟

The vector ⃗S is called the Poynting vector and it is defined by

μ
⃗ = ⃗ × ⃗S E B

1
( ). (C.82)

0

This is the energy per unit time per unit area transported by the field. Thus the
Poynting vector expresses the flow of energy. The work done on the charges
increases their mechanical energyUmech, i.e.

=dW
dt

dU
dt

. (C.83)mech

Thus we get Poynting’s equation

∮+ + ⃗ · ⃗ =d
dt

U U S dA( ) 0. (C.84)
A

em mech

The rate of change of the total energy (mechanical energy of the charges +
electromagnetic energy stored in the field) within a volume V is equal to the energy
per unit time transported by the field across the surface A which encloses the volume
V. This is Poynting’s theorem which expresses conservation of energy. Let uem be the
energy density of the electromagnetic field and umech be the energy density of the
charges. In other words

ϵ
μ

= = ⃗ + ⃗u
dU
dV

E B
1
2

1
2

. (C.85)em
em

0
2

0

2

=u
dU

dV
. (C.86)mech

mech
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Poynting’s equation becomes

∂
∂

+ + ∇⃗ ⃗ =
t

u u S( ) 0. (C.87)em mech

C.6 Electromagnetic waves
Maxwell’s equations in a vacuum read

∇⃗ ⃗ =E 0. (C.88)

∇⃗ ⃗ =B 0. (C.89)

∇⃗ × ⃗ = − ∂ ⃗
∂

E
B
t

. (C.90)

μ ϵ∇⃗ × ⃗ = ∂ ⃗
∂

B
E
t

. (C.91)
0 0

We compute

∇⃗ × ∇⃗ × ⃗ = ∇⃗ ∇⃗ ⃗ − ∇⃗ ⃗ = −∇⃗ ⃗E E E E( ) ( ) . (C.92)2 2

∇⃗ × ∇⃗ × ⃗ = ∇⃗ ∇⃗ ⃗ − ∇⃗ ⃗ = −∇⃗ ⃗B B B B( ) ( ) . (C.93)2 2

On the other hand

μ ϵ∇⃗ × ∇⃗ × ⃗ = ∇⃗ × − ∂ ⃗
∂

= − ∂
∂

∇⃗ × ⃗ = − ∂ ⃗
∂

E
B
t t

B
E
t

( ) ( ) . (C.94)0 0

2

2

⎛
⎝⎜

⎞
⎠⎟

μ ϵ μ ϵ μ ϵ∇⃗ × ∇⃗ × ⃗ = ∇⃗ × ∂ ⃗
∂

= ∂
∂

∇⃗ × ⃗ = − ∂ ⃗
∂

B
E
t t

E
B
t

( ) ( ) . (C.95)0 0 0 0 0 0

2

2

⎛
⎝⎜

⎞
⎠⎟

Thus we get the equations

μ ϵ∇⃗ − ∂
∂

⃗ =
t

E 0. (C.96)2
0 0

2

2

⎛
⎝⎜

⎞
⎠⎟

μ ϵ∇⃗ − ∂
∂

⃗ =
t

B 0. (C.97)2
0 0

2

2

⎛
⎝⎜

⎞
⎠⎟

These are three-dimensional wave equations since they are of the form

∇⃗ − ∂
∂

=
t

f
1

0. (C.98)2

2

2

2

⎛
⎝⎜

⎞
⎠⎟v
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Thus, there exist electromagnetic waves in the vacuum propagating with a speed
equal to

μ ϵ
= = × −1

3 10 m s . (C.99)
0 0

8 1v

This is precisely the speed of light.
An interesting set of solutions to the wave equations (C.96) and (C.97) is given by

the set of monochromatic plane waves. A monochromatic plane wave with a
frequency ω and propagating in the direction ⃗k is given by

⃗ ⃗ = ⃗ ⃗ ⃗ = ⃗ω ω⃗ ⃗− ⃗ ⃗−E r t E e B r t B e( , ) , ( , ) . (C.100)i kr t i kr t
0

( )
0

( )

These fields satisfy equations (C.96) and (C.97) provided

ω=k
c

. (C.101)

The Maxwell’s equations ∇⃗ ⃗ = ∇⃗ ⃗ =E B 0 lead to the constraints

⃗ ⃗ = ⃗ ⃗ =kE kB 0. (C.102)

The electric and magnetic fields are perpendicular to the directions of the
propagation of the waves. We say that the electromagnetic wave is transverse.
The electric and magnetic fields are themselves perpendicular to each other. Indeed
we derive from the Maxwell’s equation ∇⃗ × ⃗ = −∂ ⃗ ∂E B t/ the constraint

⃗ = ˆ × ⃗B
c

k E
1

. (C.103)0 0

C.7 Potential and fields
Given any vector ⃗X we have the identity ∇⃗ ∇⃗ × ⃗ =X( ) 0. Therefore, Maxwell’s
equation ∇⃗ ⃗ =B 0 means that we can write ⃗B as

⃗ = ∇⃗ × ⃗B A . (C.104)

The vector ⃗A is called the vector potential. Putting this equation in Faraday’s law
yields

∇⃗ × ⃗ = − ∂
∂

∇⃗ × ⃗E
t

A( ). (C.105)

This can be put into the form

∇⃗ × ⃗ + ∂ ⃗
∂

=E
A
t

0. (C.106)
⎛
⎝⎜

⎞
⎠⎟

Given any functionV we have the identity ∇⃗ × ∇⃗ =V( ) 0. Hence we can parameter-
ize the electric field as
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⃗ = −∇⃗ − ∂ ⃗
∂

E V
A
t

. (C.107)

The function V is called the scalar potential. With the introduction of V and ⃗A we
have solved Maxwell’s equations (C.69), (C.70). In terms of V and ⃗A Gauss’s
equation (C.68) becomes

ρ
ϵ

∇⃗ + ∂
∂

∇⃗ ⃗ = −V
t

A . (C.108)
2

0

In terms of V an ⃗A Ampère–Maxwell’s equation (C.76) becomes (using also the
identity ∇⃗ × ∇⃗ × ⃗ = ∇⃗ ∇⃗ ⃗ − ∇⃗ ⃗A A A( ) ( )

2 )

μ ϵ μ ϵ μ∇⃗ ⃗ − ∂ ⃗
∂

− ∇⃗ ∇⃗ ⃗ + ∂
∂

= − ⃗A
A
t

A
V
t

J . (C.109)2
0 0

2

2 0 0 0
⎜ ⎟⎛
⎝

⎞
⎠

The task now is to solve equations (C.108) and (C.109).
We have a gauge freedom in choosing ⃗A and V. Let us choose a new vector

potential ⃗′A and a new scalar potential ′V such that

α
β

⃗ ′ = ⃗ + ⃗
′ = +

A A
V V .

(C.110)

Let us require that ⃗ = ∇⃗ × ⃗ = ∇⃗ × ⃗′B A A . Then one must have

α∇⃗ × ⃗ = 0. (C.111)

In other words

α λ⃗ = ∇⃗ . (C.112)

We also require ⃗ = −∇⃗ − ∂ ⃗ ∂ = −∇⃗ ′ − ∂ ⃗′ ∂E V A t V A t/ / . Thus we must have

β α∇⃗ + ∂ ⃗
∂

=
t

0. (C.113)

In other words

β λ∇⃗ + ∂
∂

=
t

0. (C.114)⎜ ⎟⎛
⎝

⎞
⎠

Hence β λ+ ∂ ∂ =t f t/ ( ) for some function f of time. The function f t( ) can be
absorbed in λ without changing the vector α ⃗. In other words we can set =f t( ) 0
without loss of generality. Thus we get

β λ= − ∂
∂t

(C.115)

We get therefore the gauge transformations
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λ
λ

⃗ ′ = ⃗ + ∇⃗

′ = − ∂
∂

A A

V V
t

.
(C.116)

The set of potentials V and ⃗A and the set of potentials ′V and ⃗′A give the same
physical fields ⃗E and ⃗B . In order to simplify equations (C.108) and (C.109) we can
therefore choose the function λ appropriately. This is called a gauge choice.

The Coulomb gauge consists of choosing λ in such a way that the vector potential
⃗A satisfies

∇⃗ ⃗ =A 0. (C.117)

Equation (C.108) becomes

ρ
ϵ

∇⃗ = −V . (C.118)
2

0

This is Poisson’s equation. As will soon be clear, the solution is not causal. This is
the first disadvantage of the Coulomb gauge. The second disadvantage is the fact
that equation (C.109) becomes complicated in this gauge. It reads

μ ϵ μ μ ϵ∇⃗ ⃗ − ∂ ⃗
∂

= − ⃗ + ∇⃗∂
∂

A
A
t

J
V
t

. (C.119)2
0 0

2

2 0 0 0

The Lorentz gauge consists of choosing λ in such a way that the vector potential ⃗A
satisfies

μ ϵ∇⃗ ⃗ = − ∂
∂

A
V
t

. (C.120)0 0

Equations (C.108) and (C.109) become

μ ϵ ρ
ϵ

∇⃗ − ∂
∂

= −
t

V . (C.121)2
0 0

2

2
0

⎛
⎝⎜

⎞
⎠⎟

μ ϵ μ∇⃗ − ∂
∂

⃗ = − ⃗
t

A J . (C.122)2
0 0

2

2 0

⎛
⎝⎜

⎞
⎠⎟

The operator

μ ϵ∇⃗ − ∂
∂t

(C.123)2
0 0

2

2

is the d’Alembertian which in some sense is a generalization of the Laplacian. Thus, in
the Lorentz gaugeV and ⃗A solve the inhomogeneouswave equationwith a source term.

For static fields we get the Poisson’s equations

ρ
ϵ

∇⃗ = −V . (C.124)
2

0
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μ∇⃗ ⃗ = − ⃗A J . (C.125)2
0

The solutions V and ⃗A for charge and current densities ρ and ⃗J which go to zero at
infinity are given by (with ⃗ = ⃗ − ′⃗ = ˆR r r Ru)

∫πϵ
ρ⃗ = ′ ⃗′

V r dV
r

R
( )

1
4

( )
. (C.126)

V0

∫μ
π

⃗ ⃗ = ′
⃗ ⃗′

A r dV
J r

R
( )

4
( )

. (C.127)
V

0

The proof relies on the two identities

πδ∇⃗ = − ˆ ∇⃗ ˆ = ⃗
r

r
r

r
r

r
1

, 4 ( ). (C.128)
2 2

3
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

For non-static fields the situation is more involved. The electromagnetic effect of
the infinitesimal charge and infinitesimal current which exist at time t at the source
point ′⃗r will reach the field point ⃗r only after a time R/c. This means that the scalar
and vector potentials at time t will be affected by the charge and current densities at
the field point ⃗r which existed at an earlier time tr known as the retarded time. The
retarded time is given by

= −t t
R
c

. (C.129)r

The solutions V and ⃗A for charge and current densities ρ ⃗r t( , ) and ⃗ ⃗J r t( , ) which go
to zero at spatial infinity will read

∫πϵ
ρ⃗ = ′ ⃗′

V r t dV
r t
R

( , )
1

4
( , )

. (C.130)
V

r

0

∫μ
π

⃗ ⃗ = ′
⃗ ⃗′

A r t dV
J r t

R
( , )

4
( , )

. (C.131)
V

r0

These are called the retarded potentials. In order to show this we write

∫πϵ
ρ⃗ = ′ ⃗′

V r t dV
r t
R

( , )
1

4
( , )

. (C.132)r
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Then

∫

∫
πϵ

ρ

πϵ
ρ ρ

∇⃗ ⃗ = ′∇⃗ ⃗′

= ′ ∇⃗ · + ∇⃗

V r t dV
r t
R

dV
R R

( , )
1

4
( , )

1
4

1 1
.

(C.133)
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ρ ρ ρ∇⃗ = ˙∇⃗ = − ˙ ˆt
c

R. (C.134)R r

Thus

∫πϵ
ρ ρ∇⃗ ⃗ = ′ − ˙

ˆ
−

ˆ
V r t dV

c
R
R

R
R

( , )
1

4
1

. (C.135)
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Taking the divergence again we get

∫πϵ
ρ ρ

ρ ρ

∇⃗ ⃗ = ′ − ∇⃗ ˙
ˆ

− ˙ · ∇⃗
ˆ

− ∇⃗ ·
ˆ

− · ∇⃗
ˆ

V r t dV
c

R
R c

R
R

R
R

R
R

( , )
1

4
1

.
1

.

(C.136)
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∇⃗
ˆ

=R
R R

1
. (C.137)
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ρ ρ ρ∇⃗ ˙ = ¨∇⃗ = − ¨ ˆt
c

R. (C.138)R r

We get

∫

∫
πϵ

ρ ρ ρ πρδ

πϵ
ρ

ϵ
ρ

ϵ
ρ

∇⃗ ⃗ = ′ ¨ − ˙ + ˙ − ⃗

= ′ ¨ −

= ∂
∂

−

V r t dV
c R c R c R

R

c
dV

R

c
V
t

( , )
1

4
1 1 1

4 ( )

1
4

1

1 1
.

(C.139)
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The proof for the vector potential is identical. Next we need to check that the
retarded potentials satisfy the Lorentz condition. We have

∫μ
π

∇⃗ ⃗ ⃗ = ′∇⃗
⃗ ⃗′

A r t dV
J r t

R
( , )

4
( , )

. (C.140)
V
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We use the identities

∇⃗
⃗

+ ∇⃗′
⃗

= ∇⃗ ⃗ + ∇⃗′ ⃗J
R

J
R R

J
R

J
1

( )
1

( ). (C.141)
⎛
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⎞
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⎛
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⎞
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∇⃗ ⃗ = −
⃗˙ ˆJ

J
c

R( ) . (C.142)
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ρ

∇⃗′ ⃗ =
⃗˙ ˆ + ∇⃗′ ⃗

=
⃗˙ ˆ − ˙

J
J
c

R J

J
c

R

( )

.

(C.143)

Hence

∫

∫

μ
π

ρ

μ
π

ρ

μ ϵ

∇⃗ ⃗ ⃗ = ′ −∇⃗′
⃗ ⃗′ − ˙

= − ′ ˙

= − ∂
∂

A r t dV
J r t

R R

dV
R

V
t
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4
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4
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(C.144)
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