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Appendix A

Exercises'

Exercise 1: We consider the two Euclidean integrals

1
I(m?) = -
"= ) Gy i
4
oty = [ A% ] 1

Qo) k*+ m? (p — k)* + m*

e Determine in each case the divergent behavior of the integral.

e Use dimensional regularization to compute the above integrals. Determine in
each case the divergent part of the integral. In the case of J(p?, m?) assume
for simplicity zero external momentum p = 0.

Exercise 2: The two integrals in exercise 1 can also be regularized using a cut-off A.
First we perform Laplace transform as follows

[
k2 + m? 0

e Do the integral over k in I(m?) and J(p?>, m?). In the case of J(p?, m?) assume
for simplicity zero external momentum p = 0.

! These exercises were given as QFT examinations.
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e The remaining integral over « is regularized by replacing the lower bound
a =0 by a = 1/A. Perform the integral over a explicitly. Determine the
divergent part in each case.

Hint: Use the exponential-integral function

et —1

—-X t X
Ei(—x):/ %dt=C+lnx+f dr*——.
-0 0

Exercise 3: Let z; be a set of complex numbers, §; be a set of anticommuting
Grassmann numbers and let M be a hermitian matrix. Perform the following

integrals
‘/ H dZi+dZ ie—MjZf+Zf—Zf+J} itz
i

/ I I do;* de e~ Mt 0= =0
i

Exercise 4: Let S(r, #) be an action dependent on two degrees of freedom r and 6
which is invariant under two-dimensional rotations, i.e. ¥ = (r, ). We propose to
gauge fix the following two-dimensional path integral

W= [emnr
We will impose the gauge condition

g(r, ) =0.

o Show that

‘ og(r, )
00

f dps(2(r, 6 + ¢)) = 1.

g=0

e Use the above identity to gauge fix the path integral W.
Exercise 5: The gauge fixed path integral of quantum electrodynamics is given by

211 = [T Pyexp (—i / d%% - % [atEpe i [ d‘ch,,A”].
u

e Derive the equations of motion.
e Compute Z[J] in a closed form.
e Derive the photon propagator.
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Exercise 6: We consider phi-four interaction in four dimensions. The action is
given by

1= [ a| om0 - v - 4|

e Write down Feynman rules in momentum space.

e Use Feynman rules to derive the 2-point proper vertex I'*(p) up to the 1-loop
order. Draw the corresponding Feynman diagrams.

e Use Feynman rules to derive the 4-point proper vertex I'*(p,, p,, p;, p;) up to
the 1-loop order. Draw the corresponding Feynman diagrams.

e By assuming that the momentum loop integrals are regularized perform
1-loop renormalization of the theory. Impose the two conditions

I2(0) = mz, T40,0,0,0) = Ag.

Determine the bare coupling constants 7 and A in terms of the renormalized
coupling constants m3 and z.

e Determine I'(p) and I'*(p,, p,, p;, p,) in terms of the renormalized coupling
constants.

Exercise 7:
e Write down an expression of the free scalar field in terms of creation and
annihilation.
e Compute the 2-point function

Dr(x1 — %) = (0| Td(x1)d(x)|0).

e Compute in terms of Dy the 4-point function

D(x1, %, x5, X3) = (O] TH(x1)p(20)P(x3)h(x4)[0).

e Without calculation what is the value of the 3-point function
(017¢(x1)¢(x)d(x3)[0). Explain.

Exercise 8: The electromagnetic field is a vector in four-dimensional Minkowski
spacetime denoted by

A = (A°, 4).

A% is the electric potential and A4 is the magnetic vector potential. The Dirac
Lagrangian density with non-zero external electromagnetic field is given

L =y(iy'o, — my — egyyA".

Derive the Euler—Lagrange equation of motion.
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Exercise 9: Compute the integral over p:
fd3ﬁ /dpo S(p> — m?).
What do you conclude for the action of Lorentz transformations on
ap
2E,

Exercise 10: The Yukawa Lagrangian density describes the interaction between
spinorial and scalar fields. It is given by

£ = plir'd, = miy + (00 - 4°) - ghiy.

Derive the Euler-Lagrange equation of motion.

Exercise 11: Show that the Feynman propagator in one dimension is given by
dE i e_iE(t_[') _ e—l’Ep|f—['|

Gzt —1t) = — E—
At =1) 2n E*> - Ej + i€ 2E;

Exercise 12:
e What is the condition satisfied by the Dirac matrices in order for the Dirac
equation to be covariant.
e Write down the spin representation of the infinitesimal Lorentz
transformations

A=1- %eﬂyﬁf‘”.

Exercise 13:
e Show that gamma matrices in two dimensions are given by

0 _ -1 1_(0 i
Y _(i 0)’ y_(i 0)‘

e Write down the general solution of Dirac equation in two dimensions in the
massless limit.

Exercise 14:
e Write down the vacuum stability condition.
e Write down Gell-Mann-Low formulas.

A4



A Modern Course in Quantum Field Theory, Volume 1

e Write down the scattering S-matrix.

e Write down the Lehmannn-Symanzik—Zimmermann (LSZ) reduction for-
mula which expresses the transition probability amplitude between 1-particle
states in terms of the 2-point function.

e Write down the Lehmannn-Symanzik—Zimmermann (LSZ) reduction for-
mula which expresses the transition probability amplitude between 2-particle
states in terms of the 4-point function.

e Write down Wick’s theorem. Apply for 2, 4 and 6 fields.

Exercise 15: We consider phi-cube theory in four dimensions where the interaction
is given by the Lagrangian density

— A 3
ﬁinl = _ad) .

e Compute the 0-point function up to the second order of perturbation theory
and express the result in terms of Feynman diagrams.

e Compute the 1-point function up to the second order of perturbation theory
and express the result in terms of Feynman diagrams.

e Compute the 2-point function up to the second order of perturbation theory
and express the result in terms of Feynman diagrams.

e Compute the connected 2-point function up to the second order of perturba-
tion theory and express the result in terms of Feynman diagrams.

Exercise 16: We consider phi-four theory in four dimensions where the interaction is
given by the Lagrangian density

_ Aoy
ﬁint——zfﬁ-

Compute the 4-point function up to the first order of perturbation theory and
express the result in terms of Feynman diagrams.

Exercise 17: Show that

p b = d4p i —ip(x=y)
OO0 = [ e,
We give
A 3 ' .
P(x) = d’p #(&(p’)e—zp/\' + a\(p’)+esz)_

(2z)* J2E(p)
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Exercise 18: Show that the scalar field operator 43,(x) and the conjugate momentum
field operator 7;(x) (operators in the interaction picture) are free field operators.

Exercise 19: Calculate the 2-point function (0| 7(¢(x;)¢(x))|0) in ¢-four theory up
to the second order in perturbation theory using the Gell-Mann Low formula and
Wick’s theorem. Express each order in perturbation theory in terms of Feynman
diagrams.

Exercise 20: We consider a single forced harmonic oscillator given by the equation
of motion

07 + EHO(1) = J(1).

e Show that the S-matrix defined by the matrix elements S,,, = (m out|n in) is
unitary.
e Determine S from solving the equation

A A A i .
S70inS = Aoy = Gin + EJ(E)'

DE

e Compute the probability |(n out|0 in)]>.
e Determine the evolution operator in the interaction picture Q(¢) from solving
the Schrédinger equation

i0.Q(1) = Vi(NQ1), Vi(t) = ~J()0,(1).
e Deduce from (4) the S-matrix and compare with the result of (2).

Exercise 21: The probability amplitudes for a Dirac particle (antiparticle) to
propagate from the spacetime point y (x) to the spacetime x (y) are

San(x = y) = (Or,(x),(»)]0).

Spa(y = x) = (Ol (» W, (x)]0).

e Compute S and S in terms of the Klein-Gordon propagator D(x — y)
given by

d3p 1
(Qrhy 2EG)

D(x —y) = P,
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e Show that the retarded Green’s function of the Dirac equation is given by
(SR)ap(x = ¥) = (O (x), ¥,(»)}0).

o Verify that Sy satisfies the Dirac equation

. x h
(lh}/”a;‘ - mc)ca(SR)ab(x - y) = 1254()6 - y)écb'

e Derive an expression of the Feynman propagator in terms of the Dirac fields
y and y and then write down its Fourier expansion.

Exercise 22:

e Compute the electron 2-point function in configuration space up to 1-loop
using the Gell-Mann Low formula and Wick’s theorem. Write down the
corresponding Feynman diagrams.

e Compute the electron 2-point function in momentum space up to 1-loop
using Feynman rules.

e Use dimensional regularization to evaluate the electron self-energy. Add a
small photon mass to regularize the IR behavior. What is the UV behavior of
the electron self-energy.

e Determine the physical mass of the electron at 1-loop.

e Determine the wave-function renormalization Z, and the counter term
5, =1— Z, up to 1-loop.

Exercise 23:

e Write down all Feynman diagrams up to 1-loop which contribute to the
probability amplitude of the process e~(p) + p~ (k) — e~ (p') + u~ (k).

e Write down using Feynman rules the tree-level probability amplitude of the
process e~(p) + u~(k) — e=(p’) + u~(k’). Write down the probability ampli-
tude of this process at 1-loop due to the electron vertex correction.

e Use Feynman parameters to express the product of propagators as a single
propagator raised to some power of the form

1
[L> — A + ie]*

Determine the shifted momentum L, the effective mass A and the power gq.
Add a small photon mass >
o Verify the relations
(- pr*=2p" —y"r - p)
r(r - p)=2p" = (r- p)r*
G-y -p)=2p"@-p)=2r'p-p + 20" - p) = - pIY*(r - p).
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e We work in d dimensions. Use Lorentz invariance, the properties of the
gamma matrices in d dimensions and the results of question (4) to show that
we can replace

yheiy U+ my) -yt iy - L+ m)y, —y*A+ (p+p)'B+(p—p)C.

Determine the coefficients 4, B and C.
e Use Gordon’s identity to show that the vertex function I'(p’, p) is of the form

-
ic'q,

“(p', p) = y*F(q*) + Ex(q?).

e

Determine the form factors F; and F,.
Compute the integrals

dily L} dLy 1
@0 (Lz+a) 7/ @O (L2 +A)

Calculate the form factor F(¢?) explicitly in dimensional regularization.
Determine the UV behavior.

Compute the renormalization constant Z; or equivalently the counter term
6= 7, — 1 at 1-loop.

Prove the Ward identity &, = §,.

Exercise 24:
e Write down using Feynman rules the photon self-energy iI15"(¢) at one-loop.
e Use dimensional regularization to show that

5"(q) = Th(¢*)(¢*n™ — q"q"). (A.1)

Determine ITy(¢%). What is the UV behavior.
e Compute at one-loop the counter term 63 = Zz — 1.

e Compute at one-loop the effective charge . How does the effective charge
behave at high energies.

Exercise 25: Compute the unpolarized differential cross section of the process
e +et —> pu~+ut in the center of mass system.
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Appendix B

Classical mechanics

B.1 D’Alembert principle

We consider a system of many particles and let 7 and m; be the radius vector and the
mass, respectively, of the ith particle. Newton’s second law of motion for the ith
particle reads

©) - dp.
=F +ZB[=E' (B.1)
J

The external force acting on the ith particle is F whereas F is the internal force on
the ith particle due to the jth particle (£, = 0 and F = j,»). The momentum vector

of the ith particle is j, = m;7; = =my_ % Thus we have
— 7 +Z :m,dr’. (B.2)
By summing over all particles we get
Xh=XA"=m Sa LS (.3

The total mass M is M = } . m; and the average radius vector RisR = 2 il M.
This is the radius vector of the center of mass of the system. Thus the internal forces
if they obey Newton’s third law of motion will have no effect on the motion of the
center of mass.

doi:10.1088/2053-2563/ab0547ch10 B-1 © IOP Publishing Ltd 2019


https://doi.org/10.1088/2053-2563/ab0547ch10

A Modern Course in Quantum Field Theory, Volume 1

The goal of mechanics is to solve the set of second-order differential equations

(B.2) for 7 given the forces E(e) and 17“], This task is, in general, very difficult and it is
made even more complicated by the possible presence of constraints which limit the
motion of the system. As an example, we take the class of systems known as rigid
bodies in which the motion of the particles is constrained in such a way that the
distances between the particles are kept fixed and do not change in time. It is clear
that constraints correspond to forces which cannot be specified directly but are only
known via their effect on the motion of the system. We will only consider holonomic
constraints which can be expressed by equations of the form

SR, BB, 1) =0. (B.4)

The constraints which cannot be expressed in this way are called non-holonomic. In
the example of rigid bodies, the constraints are holonomic since they can be
expressed as

(7 —F) —¢;=0. (B.5)

The presence of constraints means that not all the vectors 7 are independent, i.e. not
all the differential equations (B.2) are independent. We assume that the system
contains N particles and that we have k& holonomic constraints. Then there must
exist 3N — k independent degrees of freedom ¢; which are called generalized
coordinates. We can therefore express the vectors 7 as functions of the independent
generalized coordinates ¢; as

’_’i = '_’i(ql’ Qs oo s GIN_jes l)
: (B.6)

7:N = VN(qp qz» cees q3N_/¢3 l)

Let us compute the work done by the forces F“,-(e) and 17,, in moving the system from
an initial configuration 1 to a final configuration 2. We have

2 2 2
- =(e) -
W, = E f Eds;, = E / F, ds; + E / Fds;.
We have on one hand

Wi = f]Fd§ Z/ m P
—Z/ ( ) (B.8)

= T2 -
The total kinetic energy is defined by

1
T= Z Emiv?. (B.9)
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We assume that the external forces E(e) are conservative, i.e. they are derived from
potentials V; such that

JoA. 374 (B.10)

Then we compute

Z/ Es, :-2/ V,V,ds,_—ZVll (B.11)

We also assume that the internal forces F are derived from potentials V;; such that
Fy ==YV (B.12)

Since we must have F; = —F;; we must take V; as a function of the distance |7} — 7

only, i.e. V; = V;;. We can also check that the force F;, lies along the line joining the
particles 7 and j.
We define the difference vector by 7 =7#—-7. We have then

Y/ V; = —ﬁj V= ?,, V,, We then compute

l’]
=‘52f1 ¥ Vi(ds, — d5)
l’j

. s (B.13)
== Z f1 Y, Ve
Z Vili.
25
Thus the work done is found to be given by
Wo=-V+ N (B.14)

The total potential is given by

V= 2V+ Ly (B.15)

I#/

From theresultsWj, = T, — T, and Wi, = — V5 + V] we conclude that the total energy
T + Vis conserved. The term — Z Vi in Vis called the internal potential energy of

the system.
For rigid bodies the internal energy is constant since the distances |7} — 7| are
fixed. Indeed, in rigid bodies the vectors d7; can only be perpendicular to 7; and

therefore perpendicular to Fjj and as a consequence the internal forces do no work
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and the internal energy remains constant. In this case the forces F are precisely the
forces of constraints, i.e. the forces of constraint do no work.

We consider infinitesimal virtual displacements 57 which are consistent with the
forces of constraints imposed on the system at time ¢. A virtual displacement 67 is to
be compared with a real displacement 47 which occurs during a time interval dt.
Thus during a real displacement the forces and constraints imposed on the system
may change. To be more precise, an actual displacement is given in general by the
equation

ar, 3IN-k o7
dr. = dt Y. —dg. (B.16)

o1 9%

A virtual displacement is given on the other hand by an equation of the form
3IN-k o7
5= ), —-dq;. (B.17)

=1 dg;

The effective force on each particle is zero, i.e. F; o = F — % = 0. The virtual work

of this effective force in the displacement &7 is therefore trivially zero. Summed over
all particles we get

o dpl :
Z( - Z) =0. (B.18)

We decompose the force  into the applied force F;(a) and the force of constraint f ,
viz F = F;(a) + f . Thus we have

Z(ﬁ‘”) ‘; )5 + Z f o7 =0, (B.19)

1
We restrict ourselves to those systems for which the net virtual work of the forces of
constraints is zero. In fact, virtual displacements which are consistent with the
constraints imposed on the system are precisely those displacements which are
perpendicular to the forces of constraints in such a way that the net virtual work of
the forces of constraints is zero. We get then

ON dp.
F, LlsE = 0. B.20
Z( " ) (B.20)

i

This is the principle of virtual work of D’Alembert. The forces of constraints, which
as we have said are generally unknown but only their effect on the motion is known,
do not appear explicitly in D’Alembert principle which is our goal. Their only effect
in the equation is to make the virtual displacements 67 not all independent.
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B.2 Lagrange’s equations

We compute

ZF 6 _ZF” ar,

(B.21)
= Z Q/‘S‘Ir
J
The Q; are the components of the generalized force. They are defined by
~(a) OF;
Q=) F — (B.22)
i 9;

Let us note that since the generalized coordinates ¢; need not have the dimensions of
length the components Q; of the generalized force need not have the dimensions of
force.

We also compute

dl dlal
Z p5 _Zm’d};ar

5| i) aia ()],
& i\ de o, )~ ardi) og ) [ (B.23)
d (q o7 ] _ 0%,
= Zm[ —| 00— | — 9 (Sq]
ij _dt 0q/ ()qj
By using the result 2 = % we obtain
dqj 0q]

dp. 7. 5.
z ﬁgﬁ = Z m; i[a%] - 51‘% 8q;
dt ¥ dt 04; q;

R e

The total kinetic term is 7' = Zémmf. Hence D’Alembert’s principle becomes

~@  dp _ _d E oT
Z(F,- — )5 Z[Q] dt[ ] ” ]5q]—0 (B.25)

i ]

(B.24)

Since the generalized coordinates ¢; for holonomic constraints can be chosen such
that they are all independent we get the equations of motion
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d|oT oT
-0+ —|—|-=—~=0. (B.26)
Todi\og ) o,
Above j=1, ..., n where n = 3N — k is the number of independent generalized
coordinates. For conservative forces we have F}(a) =-VV,ie.
714
Q=-— B.27
J aq] ( )
Hence we get the equations of motion
dfoL| oL =0. (B.28)
di\ 9q; oq;

These are Lagrange’s equations of motion where the Lagrangian L is defined by
L=T-V. (B.29)

B.3 Hamilton’s principle: the principle of least action

In the previous section we have derived Lagrange’s equations from considerations
involving virtual displacements around the instantaneous state of the system using
the differential principle of D’Alembert. In this section we will rederive Lagrange’s
equations from considerations involving virtual variations of the entire motion
between times #; and #, around the actual entire motion between ¢; and ¢, using the
integral principle of Hamilton.

The instantaneous state or configuration of the system at time ¢ is described by the
n generalized coordinates ¢, ¢y, ..., ¢, This is a point in the n-dimensional
configuration space with axes given by the generalized coordinates ¢;. As time
evolves the system changes and the point (¢, ¢,, ... , ¢,) moves in configuration
space, tracing out a curve called the path of motion of the system.

Hamilton’s principle is less general than D’Alembert’s principle in that it
describes only systems in which all forces (except the forces of constraints) are
derived from generalized scalar potentials U. The generalized potentials are velocity-
dependent potentials which may also depend on time, i.e. U= Ul(q, ¢, t). The
generalized forces are obtained from U as

oUu d|oU
P ) B.30
9 ag; dt[aqj] ( )

Such systems are called monogenic where Lagrange’s equations of motion will still
hold with Lagrangians given by L = T — U. The systems become conservative if the
potentials depend only on coordinates. We define the action between times ¢, and ¢,
by the line integral
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5]
Slq] = Ldt, L=T-V. (B.31)
i
The Lagrangian is a function of the generalized coordinates and velocities ¢; and ¢,
and of time ¢,1.e. L = L(q,, ¢, --- » 4y 41> s --- » §,» 1) The action ['is a functional.
Hamilton’s principle can be stated as follows. The line integral I has a stationary
value, i.e. it is an extremum for the actual path of the motion. Therefore, any first-
order variation of the actual path results in a second-order change in [ so that all
neighboring paths which differ from the actual path by infinitesimal displacements
have the same action. This is a variational problem for the action functional which is
based on one single function which is the Lagrangian. Clearly / is invariant to the
system of generalized coordinates used to express L and as a consequence the
equations of motion, which will be derived from I, will be covariant. We write
Hamilton’s principle as follows

)

S &
_S = / L > 5ttt 5 'a ',..., 7[dt B 2
54 (9] 5q, 4 o (91 4 4, 4> 9 Gy 1) (B.32)

For systems with holonomic constraints it can be shown that Hamilton’s principle is
a necessary and sufficient condition for Lagrange’s equations. Thus we can take
Hamilton’s principle as the basic postulate of mechanics rather than Newton’s laws
when all forces (except the forces of constraints) are derived from potentials which
can depend on the coordinates, velocities and time.

Let us denote the solutions of the extremum problem by ¢z, 0). We write any
other path around the correct path ¢z, 0) as ¢(z, a) = ¢(¢, 0) + an,(t) where the #,
are arbitrary functions of ¢ which must vanish at the end points #; and #, and are
continuous through the second derivative and « is an infinitesimal parameter which
labels the set of neighboring paths which have the same action as the correct path.
For this parametric family of curves the action becomes an ordinary function of a
given by

15}
S(a) = f Lg(t, a), 41, a), t)dr. (B.33)
4]
We define the virtual displacements &g, by
ag.
5q, = (ﬁ)|a=0da = nda. (B.34)
Jda
Similarly the infinitesimal variation of / is defined by
58S = (d—S)|a=oda. (B.35)
da

We compute
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¢ aq; aq;
a5 _ (oo Lo,
do n \0g, da  0q; oo

2 g 0q;
Lo oo ),
n \dq, oo 0g; Ot o

f oq, 0
(o ot doa),
n \0g;, da  0dq; dt da

_Jﬂ%%_igxﬁﬁ+%%h
~Ju\og oa  di\ ag, ) oa 9, oa ) °
1

The last term vanishes since all varied paths pass through the points (4, )(#, 0)) and
(62, y(t2, 0)). Thus we get

5S = ft [6_611 - E(@q{ ]}5 dr. (B.37)

Hamilton’s principle reads

(B.36)

5S _(dS
a0 = 0. B.38
Ta ( T )I 0= (B.38)

This leads to the equations of motion

153
f oL _ dfoL N, 4 =o. (B.39)
n |\ og.  dt\ 9g;

This should hold for any set of functions #,. Thus by the fundamental lemma of the
calculus of variations we must have

oL _ i(%] =0. (B.40)
oq,  dt\ og;

Formally we write Hamilton’s principle as

58 _ oL d(aL) (B41)

5q,  og,  dr\og

These are Lagrange’s equations.

B.4 The Hamilton equations of motion

Again we will assume that the constraints are holonomic and the forces are
monogenic, i.e. they are derived from generalized scalar potentials as in equation
(B.30). For a system with n degrees of freedom we have n Lagrange’s equations of
motion. Since Lagrange’s equations are second-order differential equations the
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motion of the system can be completely determined only after we also supply 2n
initial conditions. As an example of initial conditions we can provide the n ¢;s and
the n ¢’s at an initial time #,.

In the Hamiltonian formulation we want to describe the motion of the system in
terms of first-order differential equations. Since the number of initial conditions
must remain 2z the number of first-order differential equation which are needed to
describe the system must be equal 2#, i.e. we must have 2n independent variables. It
is only natural to choose the first half of the 2n independent variables to be the n
generalized coordinates ¢;. The second half will be chosen to be the n generalized
momenta p; defined by

_ 0L(g 4> 1)
=

1

(B.42)

The pairs (¢, p;) are known as canonical variables. The generalized momenta p; are
also known as canonical or conjugate momenta.

In the Hamiltonian formulation the state or configuration of the system is
described by the point (¢, ¢,, ... , ¢, P;» P>» --- » p,) In the 2n-dimensional space
known as the phase space of the system with axes given by the generalized
coordinates and momenta ¢; and p,. The 2n first-order differential equations will
describe how the point (¢,, ¢,, ... , 4,, P;» P> --. » p,) moves inside the phase space as
the configuration of the system evolves in time.

The transition from the Lagrangian formulation to the Hamiltonian formulation
corresponds to the change of variables (¢, ¢;, ) — (g., p., t) which is an example of
a Legendre transformation. Instead of the Lagrangian which is a function of ¢, ¢,
and ¢, viz L = L(g;, ¢,, t) we will work in the Hamiltonian formulation with the
Hamiltonian H which is a function of ¢;, p; and ¢ defined by

H(g, p. 1) = Y. 4p; — L(g;» 45 1)- (B.43)

We compute on one hand

H . oH ., oH
di = Pag + Ly + 2. (B.44)
dq ap; ot

i i

On the other hand we compute

oL oL oL
dH = adp + pda — “=dg — “Zdg — 2= ar
Gy + iy = G ddy = S =
oL oL
—adp — Lag - B.45
G = 5= (B.435)

oL
qt pl pl ql a[

By comparison we get the canonical equations of motion of Hamilton
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_oH _ _oH b e
ql._api, pl._aqi. (B.46)
We also get
oL _oH. B4
ot ot

For a large class of systems and sets of generalized coordinates the Lagrangian can
be decomposed as L(q,, ¢;, t) = Lo(q;, t) + Li(q;, ¢, t) + La(q;, ¢;, t) where L is a
homogeneous function of degree 2 in ¢,, whereas L, is a homogeneous function of
degree 1 in ¢.. In this case we compute

oL, . oL
4P, = G— + §—= = Ly + 2L,. (B.48)

0q; oqg;
Hence
H = L2 - Lo. (B49)

If the transformation equations which define the generalized coordinates do not depend

. Ce L - o .
on time explicitly, i.e. 7 = 7(q, ¢,, ... , q,) then 7, = Zf'i-q/ and as a consequence
i

T = T, where T is a function of ¢; and ¢, which is quadratic in the ¢;’s. In general, the
kinetic term will be of the form T" = Ti(q;, ¢;, t) + Ti(q;, ¢, t) + To(g;, t). Further, if the
potential does not depend on the generalized velocities ¢; then L, = T, L; = 0 and
Ly = —V. Hence we get

H=T+ V. (B.50)

This is the total energy of the system. It is not difficult to show using Hamilton’s
equations that 0171[1 = % Thus if V' does not depend on time explicitly then L will not
depend on time explicitly and as a consequence H will be conserved.

B.5 Canonical transformations

A change of coordinates in configuration space is given by . — Q, = Q.(q,, t). This
is known as a point transformation. A change of coordinates in phase space is given
by ¢, — O, = 0(q;, p;, t) and p, — P = P(q;, p;, t). The g;’s and p;’s are assumed
to solve Hamilton’s equations of motion, i.e.

_oH . _oH

=~ h = —— B.51
4; o, P; o4, ( )
These equations can be derived from the modified Hamilton’s principle
15}
5 [ (d - H.p.0)=0. (B.52)
1
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The transformation g, — O, = Q(q;, p;, 1), p; — F; = B(g;, p;, ) is known as a
canonical transformation if the new Q;s and P,’s are canonical variables. This
means that there must exist a function K(Q, P, t) such that

0, = %’ —h= %
00,

oF
Clearly these equations can also be derived from a modified Hamilton’s principle
given by

(B.53)

5 f, " (RO, - K(Q. P, 1)) = 0. (B.54)
Thus one must have
5/: (.4, — H(g, p, 1)) = 5/: (PO, — K(Q, P, 1)) = 0. (B.55)
Or equivalently
dF

)“(pzqz - H(q9 D, Z)) = PIQI - K(Q, P’ t) + (B56)

dt
The transformations of canonical coordinates for which 1 # 1 are called extended
canonical transformations. The transformations for which A = 1 are called canonical
transformations. Thus canonical transformations are such that

pd, - H.p. 0= RO, ~ K. P. 0 + . (B.57)
The canonical transformations which do not depend on time explicitly, viz
0; = 0(q;, p;) and F, = F(qg;, p;) are called restricted canonical transformations.

By a scale transformation such as Q,— Q/=uQ,, B — F =vP we
obtain u(PQ, — K) = P,-’Q'l./ — K', i.e. K' = uvK. Thus, any extended canonical
transformation ¢, — Q/, p — F with 1#1, ie. Apq — H(g, p, 1)) =
P/Q'i’ -K'(Q, P, + % can be composed of the canonical transformation
¢. — Q;, p. — B, given by equation (B.57) followed by a scale transformation
0, — 0/ =uQ,;, b — P/ = vP with yv = ) and F' = wF.

The function F'is a function of the phase space coordinates ¢;, Q,, p; and P; and
time with continuous second derivatives. By using O, = Q(qg;, p;, t) and
F = F(q;, p;, 1) and their inverses we can express F in terms partly of half of the
old set of canonical variables and partly of half of the new set of canonical variables.
Assuming that this can be done, the function F will act precisely as the generating
function of the canonical transformation. We consider in some detail the following
two general types of generating functions

F = F(q, 0, 1). (B.58)
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F=F2(q9 Pa Z)_ QlE

In the first case we compute

. . oF, 0F . OF .
G —H=PR0,— K+ — +—¢ +—0,
Pi4; 0 o o g+ 0, 0,

1

Since ¢g; and Q; are separately independent we must have

_0h p__9hH
p[ an > 1 an
K=H+ %
ot
In the second case we compute
. ; oF, oF,, oF .
g —H=-QP—-K+—+—¢ +—F.
it 2 ot g, % oP

Again since ¢; and P; are separately independent we must have

_oF

_ OB
pi_ aqia

0 =57

k=n+2
ot

There are two more general types of generating functions given by

F= F})(pp Ql‘ﬂ t) + qlpl

B.6 Poisson brackets

(B.59)

(B.60)

(B.61)

(B.62)

(B.63)

(B.64)

(B.65)

(B.66)

(B.67)

For restricted canonical transformations the generating function does not depend on
time explicitly and as a consequence K = H. Let 5 be the 2n-dimensional column
vector constructed out of ¢; and p; and & be the 2n-dimensional column vector
constructed out of Q; and P;. The equations of restricted canonical transformations
0; = 0(g;, p)) and P = F(g;, p;) can be rewritten as ¢ = &(7). The Hamilton’s

equations of motion in the # variables read

The 21 x 2n matrix J is given explicitly by

B-12
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0o 1,
J= (_ 1, 0)' (B.69)
Similarly, the Hamilton’s equations of motion in the £ variables read
o0H
E=J—. (B.70)
74
We define the matrix M by
9
My =22
= o, (B.71)
We have
&= M,
oH
= MyJj—
oy,
oH (B.72)
= MyJy My——
o
= (MIM
9
We must then have
MIMT = J. (B.73)

This is the symplectic condition. The matrix M is a symplectic matrix. The
symplectic condition is a necessary and sufficient condition for all canonical
transformations, even those which depend explicitly on time. Further, the symplectic
condition implies the existence of a generating function. The symplectic or the
generator formalisms can be used to show that the set of all canonical trans-
formations form a group.

Let us introduce infinitesimal canonical transformations. First we note that
F, = ¢,P, generates the canonical transformation which acts as the identity. Indeed,
this transformation gives Q, = ¢, P = p, and K = H. An infinitesimal canonical
transformation corresponds to

B =gk + ¢G(g;, P, 1). (B.74)

We compute P, =p, — ¢ 5 0,=q + e— =gq + 67 In other words, we can think

of G as a function of ¢ and p (instead of q and P) and time. The function G is called
the generating function of the infinitesimal canonical transformation. We write

G G -
op, =P —p = —€o 6 =0, — ¢ = €5, ina compact form as

B-13
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0G
on = eJ—. (B.75)
on
We also introduce the notion of Poisson brackets. The Poisson bracket of any two
functions u and v with respect to the canonical variables ¢; and p; is defined by

=\ 0q. dp. op. 9q.
' f’ P (B.76)
=(a_u] ;%
on on
We compute
du , dv
[ua v]ﬂ = _Jl]a_
i Ol
_ Ou Sk ; 08 0v
0&;. o, " on; 08, (B.77)
= 2 mn 2
oy 9
= [u, 0]5.

In other words, the Poisson brackets are canonical invariant. This is the single most
important property of Poisson brackets. We also write down the fundamental
Poisson brackets

[n. nly = J. (B.78)
In components we have
[qj’ qj]n = 0: [p,-, p]]n = 0, [Cli, Pj]q = 61/ (B79)

Let u be some function of the canonical variables g;, p; and time, i.e. u = u(g,, p;, ).
The total time derivative of u is given by

(du 0H  ou aH) L ou (B.80)
i

oq, op,  op, 9q, ) or

0q; op, op; 9q,

This is the equation of motion of the function . Hamilton’s equation (B.68) can be
obtained as a special case. Indeed, if we choose u = g, p, then ¢, = [q, H],,

B-14



A Modern Course in Quantum Field Theory, Volume 1

b, =Ip,, H],- In symplectic notation these equations can be rewritten as
n=In H],=J % which is Hamilton’s equation of motion (B.68).

The infinitesimal canonical transformation (B.75) can also be expressed in terms
of Poisson brackets. By choosing u =# and v = G in equation (B.76) we get

[n, Gl, =J %. The infinitesimal canonical transformation (B.75) can then be put in
the form

on = eln, Gl (B.81)

Let us choose e =dt and G = H then 6y = 5dt = dy. In other words, the
Hamiltonian is the generator of the evolution of the system in time. As a second
example let us choose ¢ =dx and G = p; then &g, = dx[g;, p;], = 6ydx and
dp; = dx[p,, pj], =0 and as a consequence translation in the jth direction is
generated by the momentum p;.

Finally, we note that canonical transformations can be understood either
passively or actively. In the passive view of a canonical transformation we change
from the phase space n with coordinates ¢; and p; to the phase space & with
coordinates Q; and P;. Thus the system at some time ¢ which is described by the
configuration 4 = (g, p;) can also be described by the transformed configuration
A’ = (Q,, P). In other words, any function u of the system variables should have the
same value in the two phase spaces, i.e. u(4) = u(A’) although the functional
dependence of u on ¢; and p; is in general different from its functional dependence on
Q; and P;.

In the active interpretation of a canonical transformation the coordinates Q; and
P; should be thought of as the coordinates of a point B in the same phase space as the
point 4. Thus the canonical transformation moves the system point from 4 = (g, p;)
to B = (Q,, P) in the sense that it re-expresses the configuration B in terms of the
configuration 4 and vice versa. Hence, under this view the value of a function u of
the system variables will change when we go from A4 to B although in this case the
functional dependence is the same. The change du in the value of the function when
we go from A4 to B is

ou=u(B) — u(A)
=u(n + on) — u(n)

on (B.82)

For the Hamiltonian the situation is more involved. Even under the passive view of a

canonical transformation the Hamiltonian will change from H(A4) to K(A’) as we go
from A to A’ where K = H + % =H+ e%. In this case 0H will be given by the
difference in the value of the Hamiltonian under the two interpretations, viz
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oH = (H(B) — H(A4)) - (K(4") — H(4))

= H(B) — K(4")
99
=H(B) — H(A") 661
=H(B) - H(A) - e% (B.83)
0G
=¢[H, G], — GE
dG
=—ec—.
dt

The crucial conclusion is that if G is a constant of the motion then G will generate an
infinitesimal canonical transformation which does not change the value of the
Hamiltonian, i.e. it leaves the Hamiltonian invariant.

B.7 Hamilton—Jacobi equation

We consider a canonical transformation from (g, p;) to (Q,, F;) where Q; and P; are
constant in time, i.e. Q; = # and P, = a;. This can be achieved by requiring that the
transformed Hamiltonian K(Q, P, t) vanishes identically. Since K(Q, P, t) =

H(g,p, t)+ % we must then have

oF
ot
We take F = F(g;, P, t). Since p, = % we can write the above action as
Hq]’ qZ""’Q,p %7 @7"'5@7[ E:O (B85)
9, 94 9, ot

This is the Hamilton—Jacobi equation. It is a partial differential equation in the n + 1
variables ¢, ..., ¢, and ¢ for the generating function F,. We denote the solution by
E=S=S(, ..., q, o, ..., &, a,;1, t) and call it Hamilton’s principal function.
The n + 1 numbers ¢, are the constants of integration. Clearly if S is a solution then
S + a is also a solution. In other words, one of the constants of integration is
irrelevant since it appears only additively and thus will drop from the partial
derivatives. Further, we are at liberty to choose the new n momenta P; which are
constants such that B, = a;. A complete solution of the above first-order partial
differential equation is therefore given by

E=S=S8(,....q, R, ..., B, 1). (B.86)
F 0F) 0S(q,a,t) . . C e
rom p, = 25 = at time £y we can fix a; in terms of the initial values of ¢;
1 1
and p,, whereas from Q, = I = Beay B at time ¢ = £, we can determine f; in

oP; daj
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terms of a; and the initial values of ¢;. We can then invert = f. to provide the

0S(q,a,t)
daj

¢; in terms of a;, f; and time, viz g, = g(a, f, t). Then by substituting ¢, = g(a, p, 1)

0S(q, a, 1)
9q;
Therefore, we conclude that finding Hamilton’s principal function S = S(g, a, 1)

through solving the Hamilton—Jacobi equation is equivalent to finding a solution to

the original Hamilton’s equations of motion. We also compute

inp = we can find the p; in terms of «;, f; and time, viz p. = p(a, , ?).

ds oS . oS
@~ og
% (B.87)
=pq—H
=L.
In other words, S is essentially the action, viz
S = f Ldt + constant. (B.88)

If the Hamiltonian does not depend on time explicitly then the Hamilton—Jacobi
equation will read

Hlgq, 95 + 95 = 0. (B.89)
oq; ot
We can then separate time by writing
S(g;, ai, 1) = W(g;, ;) — ait. (B.90)
The Hamilton—Jacobi equation reduces to
H(ql., %] = q. (B.91)
dq;

The function W is known as Hamilton’s characteristic function. It generates a
canonical transformation in which all new coordinates are cyclic, i.e. they do not
appear in the transformed Hamiltonian. Indeed, let us consider the canonical
transformation (¢, p.) — (Q,, P,) where the new momenta P; are constants of the
motion a; and with a generating function W (g,, P,) which does not depend explicitly

on time and hence K(Q;, F,) = H(q;, p;)- Let H(g,, p;) be equal to the constant of the

- oW W _ oW
motion ;. As before we must have p, = o and Q, = 5 = o and thus the
i j aj

requirement H (g, p.) = o is identical to equation (B.91). Let us note that under
this canonical transformation we have K(Q,;, P,) = P, i.e. the transformed
Hamiltonian is independent of the new coordinates Q; so that they are all cyclic.
Further, we can derive from Hamilton’s equations that Q, = ¢ + , and Q, = f; for
i # 1, i.e. all new coordinates with the exception of Q; are constants of the motion.
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Appendix C

Classical electrodynamics

C.1 Coulomb’s and Gauss’s laws

Electrostatics is the theory of stationary charges. Coulomb’s law, together with the
superposition principle, are the two main foundations of electrostatics.

Coulomb’s law states that the force F on a test charge Q placed at a point P due
to a stationary single point charge ¢ a distance R away is proportional to the product
of the charges ¢Q and inversely proportional to the square of the separation distance
R®. Tt is given by

F=_ 99, (C.1)

u.
471'60 R2

The force points along the line from the source charge ¢ to the test charge Q. Let ¥
and 7, be the position vectors of Q and g, respectively, then

R=7 -7 =Ra (C.2)

The force is attractive if the two charges have opposite signs and it is repulsive if the
two charges have the same sign. The permittivity of the vacuum ¢, is given by

€= 8.85x 10712 C2 N~ m~2. (C.3)

In the case of N point charges ¢, ¢,, ... , gy the total force F on Qis obtained using
the superposition principle. It is given by
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47T€0 i=1 R,' '
= QE.

The vector E is the electric field of the source charges. It depends on the position
vector 7 of the field point P and not on the test charge Q. It is given by

(C.5)

For a continuous charge distribution the sum will be replaced by an integral, viz

By = f dq, (C.6)

= u.
471'6() R2

In this formula R is the vector from the infinitesimal source charge dg to the the field
point P, ie. R=7 — lyy=7 — 7' = Rii. For a continuous charge distribution
contained inside a volume V with a charge density p the above equation can be
put in the form

By = / dV’%ﬁ. (C.7)

drey Jv
Next we compute the divergence VE of E where

9
v = 4 k= (C.8)

First, we extend the integral in equation (C.7) to all space since the charge density p
vanishes outside the volume J anyway. We have

. 1 p(F')
B =— [avPa C.9
( ) 47176() R2 ( )
We then compute
VE®F) = L Tav (VW(ﬁ) (C.10)
" dre p R?) '
In spherical coordinates we have
- 1o 1 o, . 1 oo
Vo = ——(r2,) — 2 (sinfoy) + ———2. (C.11)
2 or r sin 6 00 rsin @ d¢p

We consider the vector
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=" (C.12)
12
We get immediately that
V3 =0, for any 7 # 0. (C.13)
The divergence theorem states
/ AVVE = 515 X . ds. (C.14)
v s

The closed surface S is the boundary of the volume V. We apply this theorem to the
vector X = 7 with S being the surface of a sphere with radius r. We get

dev%=51§Sa.Js

1 .
=0 - 12 sin 0dOdgp
ST

=4r.

(C.15)

The vector V3 /4x vanishes for all 7 # 0 and its integral over any volume containing
the origin is 1. This is precisely the behavior of the Dirac delta function, viz

Vo = 4r83(F). (C.16)
Hence
VE(F) = — f AV’ p(7')4r5(R)
4re
| (C.17)
=—p(P).
€o

This is Gauss’s law in differential form. We apply now the divergence theorem to the
electric field E. We obtain

= fV dVLp(?’) (C.18)

This is Gauss’s law in integral form. The integral 5£s E - ds is the flux of the electric
field through the surface S.
Next we compute the curl of £. We have

V x E(F) = 4L dV'p(F )V x (%) (C.19)

TTE()
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In spherical coordinates we have

- .0 N
Vxo=— 0[%@111 0uy) - ?]ﬁ + 1[ ! ; ‘;U’ - (:"’b)]e
F sin b r|siné op r (C.20)
+ 1 a(rv) 0o, b
rl or 00
We can immediately conclude that
Vx =0 (C.21)
r
Hence
V x E(F) = 0. (C.22)
Stokes’ theorem states
/JS-?x)?:gb?.Jl. (C.23)
s 1

The closed line / is the boundary of the surface S. If we apply this theorem to the
electric field E we get

gglﬁdfl:/;cfS-?xE (C.24)
=0

C.2 Lorentz, Biot—Savart’s and Ampére’s laws

Magnetostatics is the theory of steady currents. The Lorentz force law and the Bito-
Savart’s law together with the superposition principle are three main foundations of
magnetostatics.

A current at a given point in a one-dimensional wire is the charge per unit time
which passes that point, viz

dg dl

I=—=)—=lv. (C.25)
dt dt
A steady current is a current which is the same all along the wire, viz
ol
— =0. C.26
y (C.26)

By charge conservation the charge per unit time leaving a segment / is equal to the
decrease per unit time of the charge inside /. In other words

dQleaving - _ innside
dt

dt
d
=—— [ il (C.27)
dr /1

- /I g—':dl.

C-4



A Modern Course in Quantum Field Theory, Volume 1

The charge dQ,,,, is the charge which leaves the segment / from both endpoints in
a time interval dr. Let [ = [a, b]. We write dQ,iny = A0 puing — AQitaying Where
alQlf;lving is the charge which exits through the endpoint b and —lel‘e’aving is the charge
which exits through the endpoint a. Clearly we have

d .
Qleavmg — / ﬂdl (C28)
dt 1 ol
Hence we get the one-dimensional continuity equation
oaq _ —ﬂ. (C.29)
ol ot
Thus, for a steady current we must have
04
— =0. C.30
Y (C.30)

Thus, for a steady current the charge cannot accumulate at, or dissipate from, any
point on the wire. In other words given a segment / the charge leaving / is equal to
the charge entering /.

Now we generalize to three dimensions. We assume that the flow of charge is
distributed throughout a three-dimensional region. Thus

_4q _ dv

aar
Let dS, be the cross-section of an infinitesimal tube which runs parallel to the flow of
charge and dI be the current in this tube. Then dI = pdS dl/dt where dl is length of
the infinitesimal tube. The quantity pdS,dl is the charge which passes in a time
interval dt across any given section of the tube. Thus d//dt is precisely the speed of the
charge. The volume current density is defined by

dl
J=— = C.32
ds, po (C.32)

In other words J is the current per unit area perpendicular to the flow. Clearly the
volume current density is a vector

I (C.31)

F=_ (C.33)

dsi

The total current crossing a surface S is
I= f . ds (C.34)

s
Thus the total charge per unit time leaving a volume V' is
AQycayin > 2 ==
Qeving _ 51§J . dS = / Vidv. (C.35)
dt s v

The conservation of electric charge gives
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dQleaving —_ innside

dt dt
d
- _/ pdV (C.36)
dt Jy
_— f Pay.
v ot
We get therefore the continuity equation
9j=-2 (C.37)
ot

For a steady current the charge cannot accumulate at, or dissipate from, any point.
This means that given a volume J the charge leaving V is equal to the charge
entering V. Hence we must have

Py (C.38)
ot

Thus, for a steady current the volume current density is constant throughout the
current distribution in the sense that

VJ =o0. (C.39)

The magnetic field due to a steady current 7 at a point P with position vector 7 is
given by the Biot-Savart law:

5ot f JE) X ., (C.40)
4 R?

The integration is over the region in which the volume current density J does not
vanish. As before, R =7 — 7’ = Rii where 7’ is the position vector of the infin-
itesimal current J(7¥')da;. The permeability of the vacuum g, is given by

po =4z x 107N/ A2, (C.41)

The magnetic force exerted by this magnetic field B on another volume current
density J; is given by Lorentz force law:

F= quo(ao x B)
= f po(@o x B)dV (C42)
- f (o x B)dv.

The integration is now over the region in which the volume current density J, does
not vanish. For a single point charge ¢, with velocity 7, the Lorentz force law reads
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F = qy(B x B). (C.43)
Next we compute the curl of the magnetic field B. We have
€x§=@/§x JE) Xy, (C.44)
4z R?
Using the identities
Vx(AdxB)=(BV)A - (AV)B + A(V.B) — B(V.A4). (C.45)
V(fA)=fVA4 + AVf. (C.46)

We get (using also the fact that J(7') does not depend on 7 and V'J (7') = 0)

o 7Gx el +fe A
V(T)=—(J-V) +J(V-F)

R2

X —
R3

X 7o gny =Y
i+ -V) S j
z—z

= k + J(4n5%(R)) (C.47)

:vpx‘x)ﬁ+vpy‘yy
R R

+vaQZ

=(J V)

+(J-V)

)1% + J(476%(R))
The first three terms give boundary integrals which are zero. The last term gives
VxB=uld. (C.48)
This is the differential form of Ampére’s law. Using Stokes’ theorem we have
Slglﬁ'c71=fsﬁxﬁ-d§
=, / 7. ds (C49)
= ﬂoleni.

The current I, is the total current passing through the surface S, i.e. the total
current enclosed by the loop / which is the boundary of the surface S. This is the
integral form of Ampeére’s law.

Similarly we compute the divergence of the magnetic field B. We have

== Hy - f(?”) X 1 ,
VB =—" [ V|————|dV". C.50
Az / ( R? ] ( )
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Now we use the identity

V(A x B) = B(V x A) — A(V x B). (C.51)
We get that
_(J(F) x4
V(%] = 0. (C.52)
Hence
VB =0. (C.53)

C.3 Electromagnetic induction and Faraday’s laws
Electromotive force

In a closed circuit, because of resistivity (electrical friction), there must be some force
which we call electromotive force or emf to maintain a steady current. An ideal
source of emf will provide a constant voltage between two terminals. An example of
a source of emf is a battery.

We consider an electric circuit consisting of a battery connected to a resistor. Let
a and b be the negative and positive terminals, respectively, of the battery. The
current / generated outside the battery will flow from the positive terminal b to the
negative terminal a opposite the direction of flow of electrons. Equivalently we can
pretend that actually positive charges move in the direction of the current from b to a.

The chemical force per unit charge F, generated within the battery is directed from
negative to positive terminals and it is only confined to the battery. From Ohm’s
law J = oE where o is the conductivity we see that a current density is non-zero
outside the battery only if an electrostatic field E exists. Therefore, there must exist
outside the battery an electrostatic field £ which helps to maintain the flow of the
charges. The electric potential is defined for an electrostatic field such as E by

E=-Vr. (C.54)

The potential difference between the terminals a and b is
b o, b
V+—V_:—/ Edl:f Syl = ¢. (C.55)

Thus, when a positive charge passes from the negative terminal a to the positive
terminal b within the battery its potential will increase by the amount £. By
conservation of energy the chemical energy in the battery will decrease by the
amount £. The work done per unit charge by the battery is therefore equal to &, viz

b - =
s= [ Fdl. (C.56)

a

-

This means in particular that within the battery F, = —E.
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This can also be seen as follows. The chemical force F, inside the battery will cause
charges to be displaced which in turn will create an electrostatic field £E. Thus by
Ohm’s law the current within the battery is J = o(E + F) or equivalently
E + F. = pJ where p = 1/c is the resistivity of the battery. For an ideal battery
p =0 and hence E + F, = 0.

The quantity £ is called the electromotive force or emf which can also be rewritten

as
&= §£ £dl. (C.57)

We think of F as an electric field but it is not electrostatic since its curl is non-zero.
In summary, the battery or any other source of emf will establish and maintain a
constant voltage difference equal to the emf £ between two terminals.

Motional emf

The generator is another source of emf in a circuit. The emf in this case is known as a
motional emf since it arises from the motion of the circuit in a magnetic field. Let us
consider a rectangular loop in the xy plane placed in a uniform magnetic field B
which is pointing along the positive z direction. The circuit consists only of a resistor.
The segment cbad where y =y, =) X, —X=Xx;—x.=h and
% =Y, =) —) =s is in the region where B # 0. Clearly, if we decrease s by
pulling the entire loop with a velocity v along the positive y direction the magnetic
flux through the rectangular loop will change and as a consequence an electric
current will be induced in the loop. Indeed, the magnetic force per unit charge in the
segments ba, ad and cb given by ﬁmag =% x B = vBi will drive a current in the
segment bha and not in the segments ad and ch.

The motional emf £ is the constant voltage difference V,, — V. In other words, as
a positive charge moves from b to « its potential will increase by the amount £. Thus
by conservation of energy £ must be equal to the work of the mechanical force F;u“
which is pulling with a velocity v, i.e.

€= fb Fodl. (C.58)

The existence of a current means that positive charges will have, in addition to the
velocity ¥, another velocity # which is always in the direction of the current. The

total magnetic force is therefore ﬁmag = (3 + i) X B. In the segment ba the magnetic
force ﬁmag will have a horizontal component given by —uBj. The mechanical force
which is pulling with a velocity v is therefore equal to F:’,uu = uBj. Let 0 be the angle
which the velocity w = ¢ + i makes with the x-axis, i.e. w cos @ = u and w sin 0 = v.
The actual displacement of the charges in the segment bha will be in the direction of
w. The integration path for the calculation of the work of F}uu is this displacement
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which makes an angle 0 with the x-axis and which is of length 4/ cosd. Thus the
work of F_;ull is

h
cos @

“@ o = b2
€= /;, Foud! = (uB)—— cos (5 - 9) — vBh. (C.59)

It is not difficult to check that
£ = 315 o
= /b Fnagd! (C.60)
= f vBdx

= vBh.

The motional emf £ is not the work of ﬁmag since magnetic forces never do work.
Indeed, the integration in the last equation above is done around the loop at a given
instant of time.

Now we relate the motional emf with the flux of the magnetic field. The flux ® of
the magnetic field B through the loop is given by

®= / BdS = / Bdxdy = Bhs. (C.61)
As we decrease s the flux decreases so d ®/dt must be negative. By using the fact that
v = —ds/dt since ds/dt is negative we obtain the result
a® = —Bhv. (C.62)
dt

In other words

g=_4® (C.63)
dt
This is the flux rule which applies quite generally to non-rectangular loops moving in
arbitrary directions in non-uniform magnetic fields.

Transformer emf

Another source of emf is the transformer. The emf in this case may be called
transformer emf. Let us consider the previous setup, only now the rectangular loop is
kept stationary. Next we either move the electromagnet which created the magnetic
field B = Bk with a velocity v along the negative y direction or we vary the current in
the coil of the electromagnet so that the strength of the magnetic field B changes. In
both cases a current will flow in the loop.

In these cases the loop is stationary and therefore the force responsible for the
flow of the current is not magnetic since stationary charges cannot experience a
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magnetic force. Faraday concluded that there must exist an electric field E in the
loop which causes the current to flow. This electric field, which was induced by
changing the magnetic field, is not electrostatic. The work done by the induced
electric field E around the loop is the transformer emf &, i.e.

£= yf Edl. (C.64)
Empirically we find that £ is again given by the flux rule, viz
g=_4® (C.65)
dt
In other words
fia=-[2as (C.66)

This is Faraday’s law in integral form. Using Stokes’ theorem we obtain Faraday’s
law in differential form, viz

VxE=-2 (C.67)
ot
C.4 Maxwell’s equations
In summary, we have obtained the following laws:
VE=2. (C.68)
€0
VB =0. (C.69)
VxE=-2 (C.70)
ot
VxB=upld. (C.71)

However, we know that for any vector X the identity V(V x X) = 0 must hold. This
identity holds for X = E. Indeed we have

= 2 = =, aﬁ 0 =3 =
VIVXE)y==-V]|—]|=—-—(V-B)=0. C.72
( ) (az) az( ) (C.72)
But for X = B we have
V(V x B) = V(uyJ) = u,VJ. (C.73)
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This is zero only for steady currents, i.e. when V.J = 0. Therefore, either the identity
V(V x X) = 0 is not true, which is simply impossible, or Ampere’s law (C.71) is
wrong for non-steady currents.

For non-steady currents we must use the continuity equation

VJ = —‘;—’t’ = —%(eﬁﬁ) = —?(eog} (C.74)
In other words
?[uof + WO%] =0. (C.75)
Therefore, Ampére’s law must be modified such that
VxB= ﬂof + yoe()%. (C.76)

Now clearly V(V x B) = 0. The quantity J, = ¢,0E/or is called the displacement

current and it is generally very small compared to J.

In analogy with Faraday’s law (C.70) which states that a changing magnetic field
induces an electric field the Ampére—-Maxwell’s law (C.76) states that a changing
electric field induces a magnetic field. Maxwell’s equations consist of Gauss’s law
(C.68), Faraday’s law (C.70), Ampére-Maxwell’s law (C.76) and equation (C.69).
Together with the Lorentz force law they summarize classical electrodynamics. The
continuity equation can be derived by applying the divergence to Ampére—
Maxwell’s law (C.76).

C.5 Electromagnetic energy and Poynting’s theorem
The work done by the Lorentz force on a charge dg is
AW =F - dl
=dg(E + 9 x B) - Bdt
= pdVEGdt
= EJdVidt.

(C.77)

The work per unit time done on all charges inside a volume V is
W _ [ Ejav. (C.78)
dt v

By using Ampéere-Maxwell’s and Faraday’s laws we compute
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EJ =BT x B) - e)F°E
M ot
| N - 1 - o = 0 1 =2
=—B(VXE)— —V(E X B) — —(—eOE ) C.79
Ho Ho or\2 ( )
— - L9Ex B) - L LteB + L5
Ho or\ 2 2u,
Hence, by using the divergence theorem we get
AW _ AU _ 515 S .du. (C.80)
dt dt 4
The total energy stored in the electromagnetic field is U,,,, and it is given by
I = 1 =
U = / —eEr + —B*|av. (C.81)
r\2 2u,
The vector S is called the Poynting vector and it is defined by
-1 - -
S =—(E X B). (C.82)
Ky

This is the energy per unit time per unit area transported by the field. Thus the
Poynting vector expresses the flow of energy. The work done on the charges
increases their mechanical energy Upech, i.€.

aw - M (C.83)
dt dt
Thus we get Poynting’s equation
A U + U + 95 S.d4=o0. (C.84)
dt A

The rate of change of the total energy (mechanical energy of the charges +
electromagnetic energy stored in the field) within a volume V is equal to the energy
per unit time transported by the field across the surface 4 which encloses the volume
V. This is Poynting’s theorem which expresses conservation of energy. Let u.,,, be the
energy density of the electromagnetic field and u,., be the energy density of the
charges. In other words

. Y SR 85

Y =0y T 2% T, (€85
AdUpech

mech = - . C.86

Umech P ( )
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Poynting’s equation becomes

0 .
—(Uem + Umeen) + VS = 0.
m( h)

C.6 Electromagnetic waves

Maxwell’s equations in a vacuum read

VE =0
VB =0
?xﬁ:—ﬁ.

ot
?xﬁzyooﬁ.

We compute

Vx(VxE)=VVE)-VE=-VE.
Vx(VxB)=V(VB)-VE=-VE.
On the other hand
- = = = 0§ (3 = = azE
VX(VXE)=VX|—]|=—-——(V X B)=—u,e
( ) (az) 61‘( ) Ho€0 5

=2 0% )z
(V - /«t0€0¥)3 =0.

These are three-dimensional wave equations since they are of the form

) 1 0%
Vi—-—=—1|f=0.
( v? 612)f
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Thus, there exist electromagnetic waves in the vacuum propagating with a speed
equal to

U= =3x108msL (C.99)

N
This is precisely the speed of light.
An interesting set of solutions to the wave equations (C.96) and (C.97) is given by
the set of monochromatic plane waves. A monochromatic plane wave with a
frequency w and propagating in the direction k is given by

E(F, t) = E@ ™= B(7, 1) = Byeltr-on, (C.100)
These fields satisfy equations (C.96) and (C.97) provided
k= % (C.101)

The Maxwell’s equations VE = VB = 0 lead to the constraints
KE =kB = 0. (C.102)

The electric and magnetic fields are perpendicular to the directions of the
propagation of the waves. We say that the electromagnetic wave is transverse.
The electric and magnetic fields are themselves perpendicular to each other. Indeed

we derive from the Maxwell’s equation V x E = —dB/dr the constraint
By = 1ix E,. (C.103)
c

C.7 Potential and fields

Given any vector X we have the identity V(V x X ) = 0. Therefore, Maxwell’s
equation VB = 0 means that we can write B as

B=VxA. (C.104)

The vector A4 is called the vector potential. Putting this equation in Faraday’s law
yields

VxE= —%(6 x A). (C.105)
This can be put into the form
V x (E + %] =0. (C.106)

Given any function V' we have the identity V x (V) = 0. Hence we can parameter-
ize the electric field as
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E=-Vv-—. (C.107)

The function V is called the scalar potential. With the introduction of ¥ and 4 we
have solved Maxwell’s equations (C.69), (C.70). In terms of ¥ and 4 Gauss’s
equation (C.68) becomes

-2 i

Vr+ 294=-2. (C.108)

ot €0

In terms of ¥ an 4 Ampére-Maxwell’s equation (C.76) becomes (using also the
identity V x (V x 4) = V(VA) — V' A4)
-

04 >fo - oV
V4 - /106()6—1‘2 - V(VA + /106‘()5) = —,LtOJ. (C109)

The task now is to solve equations (C.108) and (C.109).
We have a gauge freedom in choosing 4 and V. Let us choose a new vector
potential 4’ and a new scalar potential ’’ such that

A'=A+a (C.110)
V=V + B

Let us require that B =V x 4 = V x A’. Then one must have

Vxa=0. (C.111)
In other words
a=Vai. (C.112)
We also require £ = —VV — 9A4/ot = =V V' — 0A'/ot. Thus we must have
- od
Vp+ —=0. C.113
p py ( )
In other words
?(ﬁ + Z—j) =0. (C.114)

Hence g + 0iAlot = f(¢) for some function f of time. The function f(¢) can be
absorbed in A without changing the vector &. In other words we can set f(¢) =0
without loss of generality. Thus we get

p=-= (C.115)

We get therefore the gauge transformations
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A'=4+ Vi
C.116
yi—y -2 (C.116)
ot

The set of potentials ¥ and 4 and the set of potentials '’ and A’ give the same
physical fields £ and B. In order to simplify equations (C.108) and (C.109) we can
therefore choose the function A appropriately. This is called a gauge choice.

The Coulomb gauge consists of choosing 4 in such a way that the vector potential
A satisfies

VA4 =0. (C.117)
Equation (C.108) becomes

Vr=-2 (C.118)
€0
This is Poisson’s equation. As will soon be clear, the solution is not causal. This is
the first disadvantage of the Coulomb gauge. The second disadvantage is the fact
that equation (C.109) becomes complicated in this gauge. It reads
0’4 = oV
VA = poeo—5 = —poJ + poeoV—-. (C.119)
Ho€o o1 Ho Ho€o o

The Lorentz gauge consists of choosing 4 in such a way that the vector potential 4
satisfies

VA = —pyeo—. C.120
Ho€o o1 ( )
Equations (C.108) and (C.109) become
=2 0> p
VT — — |V =- C.121
( #oeoatz ) e ( )
v’ LAl C.122
i /"o%ﬁ = THe/ (C.122)
The operator
=2 0?
AV ,Lto(:'()ﬁ (C123)

is the d’Alembertian which in some sense is a generalization of the Laplacian. Thus, in
the Lorentz gauge V and A4 solve the inhomogeneous wave equation with a source term.
For static fields we get the Poisson’s equations

Vr=-2 (C.124)
€0
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VA =—pJ. (C.125)

The solutions V" and A for charge and current densities p and J which go to zero at
infinity are given by (with R =7 — ¥’ = Ril)

- 1 p(r")
ViF)=—— [ dV'——-. C.126
® 4re -/V R ( )
e Ho )
A7y = 2o [ qv ) (C.127)
@) 4r »/V R
The proof relies on the two identities
?(l) ==, ?(iz) = 4n53(7). (C.128)
r r r

For non-static fields the situation is more involved. The electromagnetic effect of
the infinitesimal charge and infinitesimal current which exist at time ¢ at the source
point 7’ will reach the field point 7 only after a time R/c. This means that the scalar
and vector potentials at time ¢ will be affected by the charge and current densities at
the field point 7 which existed at an earlier time ¢, known as the retarded time. The
retarded time is given by

t,=1t-— 5 (C.129)
C
The solutions ¥ and A4 for charge and current densities p(7, 1) and J(F, 1) which go
to zero at spatial infinity will read

V1) = — JA ay 2t (C.130)
drey J v R
AF, 1) = @f ay L0t (C.131)
4z Jv R
These are called the retarded potentials. In order to show this we write
V1) = —— de/M. (C.132)
477.'€0 R
Then
TV, )= — /dvﬁp(r—’t")
471'60 R
] i i (C.133)
= av’ 6 - — + 6 —1I
471'60 / |: P R P (R)]
We use
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Vp = pVet, = LR (C.134)
c
Thus
- 1 1. R R
W n=—— [ar|-=po -z C.135
.1 4re l <R pR2] ( )
Taking the divergence again we get
_ 1 - R 1_ (R
VY, 1) = /dV’ L PP ] s
" 1) 4reg [ c P R cp (R)
. A (C.136)
- R = R
We use
VI=|=—. C.137
(5)-% 137
Vp = jVet, = —LR. (C.138)
¢
We get
o 1 1lp 1p 1p »]
VV (7, t)= de’—————+———4 53 (R
¢ 0 47eg [czR cR* R 7P (R)
1 i1
= dv'= — — C.139
4eyc? f R €0p ( )
_lovr 1
c? ot? €()p.

The proof for the vector potential is identical. Next we need to check that the
retarded potentials satisfy the Lorentz condition. We have

VAF, 1) =10 f a2t (C.140)
dg Jy R
We use the identities

V(). (C.141)

V) =-LR (C.142)
C
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V'(J)= ié +V'J
< (C.143)
_Tr_p
C
Hence
VAF =22 [ av gl P
g Jv R R
—_Fo [ gy P (C.144)
Az Jv R
e
BT

C-20



