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A Modern Course in Quantum Field Theory, Volume 1
Fundamentals

Badis Ydri

Chapter 1

Relativistic quantum mechanics

This chapter contains standard preparatory material. We will present an overview of
special relativity [2], relativistic Klein–Gordon and Dirac wave equations and the
convention in this book for Dirac spinors [3], and a self-contained discussion of
representation theory of the rotation and Lorentz groups [1].

1.1 The rotation groups SO(3) and SO(n)
1.1.1 The Lie algebra so(3) and so(n)

The line element dl2 in the physical space R3, which measures the distance between
any two points ⃗x and ⃗ + ⃗x dx , is given by the Euclidean formula

= ⃗ = + + = + +dl dx dx dx dx dx dy dz . (1.1)2 2
1
2

2
2

3
2 2 2 2

This is a particular instance of the scalar product on R3 defined by
⃗ ⃗ = + +xy x y x y x y1 1 2 2 3 3. This scalar product (and as a consequence the line element)

is invariant under the linear transformations

⃗⟶ ⃗′ = ⃗x x Rx (1.2)

provided the matrices R are orthogonal, viz

· = · =R R R R 1 . (1.3)T T
3

We can immediately show that either = +Rdet 1, which corresponds to proper
orthogonal transformations which are precisely the rotations in the physical space
R3, or that = −Rdet 1 which corresponds to improper orthogonal transformations
such as space reflection or parity.

The set of all proper orthogonal transformations form the group of rotations
denoted by SO(3) where ‘S’ stands for ‘special’ meaning those transformations R
with determinant equal to +1. The set of all orthogonal transformations form the
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group O(3). Clearly, the group of rotations SO(3) is a subgroup of the orthogonal
group O(3).

This generalizes to n dimensions (rotations and orthogonal transformations
acting in Rn) to obtain the groupsSO n( ) andO n( ) as the set of linear transformations
which are n × n matrices R satisfying the orthogonality condition

· = · =R R R R 1 . (1.4)T T
n

In general, a group is a set G equipped with an operation * (composition law or
matrix multiplication) which satisfy the following four natural axioms:

• Closure: The composition *g g( )1 2 of any two elements g1 and g2 of G is
another element of G.

• Associativity: We must have =* * * *g g g g g g( ) ( )1 2 3 1 2 3 .
• Identity: There exists an element ∈e G such that = =* *e g g e g.
• Invertibility: There exists for every ∈g G an inverse ∈−g G1 such that

=* −g g e1 .

The group can be infinite (the rotation group SO(3)) or finite (the reflection group).
It can also be continuous (the rotation group SO(3)) or discrete (the reflection
group). It can be abelian when the composition law * is commutative otherwise it is
non-abelian. For example, the groups SO(3) and O(3) are called non-abelian since
their elements do not commute, i.e. the order of composition of two orthogonal
transformations is important and thus we have ′ ≠ ′* *R R R R.

The dimension of a group G is the number of independent parameters required to
define or characterize a general element g in this group. In the case of the rotation
group SO(3) it is obvious that a general rotation (about an arbitrary axis with an
arbitrary angle) is the composition · ·R R R1 2 3 of three rotations R1, R2, R3 about
the axes x1, x2, x3 with angles θ1, θ2, θ3 respectively. Thus, in this case the
independent parameters required to characterize a general element (rotation) in
SO(3) are precisely the angles θ1, θ2, θ3 and the dimension of the group is three, viz

=d 3. (1.5)SO(3)

This result can also be shown by solving equations (1.4). There are n2 variables a
priori in the matrix R which are constrained by the +n n( 1)/2 independent equations
contained in equation (1.4) leaving therefore −n n( 1)/2 independent variables.
Hence, the dimension of the rotation group SO n( ) in n dimensions is given by

= −
d

n n( 1)
2

. (1.6)SO n( )

By substituting n = 3 we obtain =d 3SO(3) .
If the group is also a manifold then it is a Lie group. Indeed, continuous groups of

finite dimension are actually Lie groups. The rotation groups SO n( ) are examples of
Lie groups. They are in fact compact Lie groups. The tangent space at the identity e
of the group G is called the Lie algebra of the group which is a vector space. The Lie
algebra of the Lie group SO n( ) is denoted so n( ).
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In general, the Lie algebra L of a Lie group G is the tangent vector space at the
identity which is a set of elements satisfying the following axioms:

• If ∈X L and ∈Y L then + ∈X Y L.
• If ∈X L then α ∈X L for any complex number α.
• If ∈X L and ∈Y L then ∈X Y L[ , ] and = −X Y Y X[ , ] [ , ].
• If ∈X L, ∈Y L and ∈Z L then + = +X Y Z X Y X Z[ , ] [ , ] [ , ].
• If ∈X L, ∈Y L and ∈Z L then + +X Y Z Y Z X[ , [ , ]] [ , [ , ]] =Z X Y[ , [ , ]] 0.
This is called the Jacobi identity.

The Lie algebra so(3) of the three-dimensional rotation group SO(3) can be
constructed as follows. The R1, R2, R3 rotations and their infinitesimal forms can
be written explicitly as

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

θ θ
θ θ

θ
′
′
′

=
−

⇒ = +

= −
−

x
x
x

x
x
x

R i L

L i

1
1 0 0
0 cos sin
0 sin cos

,

0 0 0
0 0 1
0 1 0

(1.7)

1

2

3

1 1

1 1

1

2

3

1 3 1 1

1

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

θ θ

θ θ
θ

′
′
′

=
−

⇒ = +

= −
−

x
x
x

x
x
x

R i L

L i

1
cos 0 sin

0 1 0
sin 0 cos

,

0 0 1
0 0 0
1 0 0

(1.8)

1

2

3

2 2

2 2

1

2

3

2 3 2 2

2

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

θ θ
θ θ θ

′
′
′

= − ⇒ = +

= − −

x
x
x

x
x
x

R i L

L i

1
cos sin 0
sin cos 0

0 0 1
,

0 1 0
1 0 0

0 0 0
.

(1.9)

1

2

3

3 3

3 3

1

2

3

3 3 3 3

3

The operators L1, L2, L3 are called the generators of the Lie algebra so(3) of the
rotation group. We can easily check that they satisfy the angular momentum algebra

ε
= =
= ⇔ =

L L iL L L iL
L L iL L L i L
[ , ] , [ , ] ,
[ , ] [ , ] .

(1.10)
i j ijk k

1 2 3 3 1 2

2 3 1
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We know from quantum mechanics that the generators Li commute with the
squared angular moment operator ⃗ = + +L L L L

2
1
2

2
2

3
2. We have then

⃗ = ⃗ = + +L L L L L L[ , ] 0, . (1.11)i
2 2

1
2

2
2

3
2

The operators ⃗L
2
and L3 can then be diagonalized simultaneously with eigenvalues

given by

⃗ ∣ 〉 = + ∣ 〉
∣ 〉 = ∣ 〉

L lm l l lm
L lm m lm

( 1)
.

(1.12)
2

3 3

3 3 3 3

The eigenvalues l andm3 take the values l = 1 and = + −m 1, 0, 13 . In other words, ⃗L
is the orbital angular momentum operator.

1.1.2 Representations of SO(3) and so(3)

A representation U of a group G on a vector space V over the field C is a map (a
group homomorphism) from the group G to the general linear group VGL( )
(denoted also as VAut( )) consisting of all bijective linear operators (automorphisms)
acting in V. The group operation, which we will also denote by *, is the functional
composition of linear operations. We write

⟶
⟶

U G V
g U g

: GL( )
( ).

(1.13)

Thus, every element g in G is associated with a linear operatorU g( ) in VGL( ) such
that the composition law is maintained, i.e. if ∈g G1 and ∈g G2 then

=* *U g g U g U g( ) ( ) ( ). (1.14)1 2 1 2

We will also have

= =− −U e U g U g1( ) , ( ) ( ) . (1.15)1 1

The vector space V is called the representation space and its dimension is called the
dimension of the representation U. If V is n-dimensional then =V n CGL( ) GL( , ).
In this case we are dealing with a finite dimensional matrix representation. We may
use the map U or the vector space V to refer to the representation.

A subspace V1 of V is called an invariant subspace with respect to the
representation U if for every v ∈ V1 we have v ∈U g V( ) 1 for every ∈g G. A
representation ⟶g U g( ) is called irreducible if and only if the only invariant
subspace with respect to U is the vector space V itself. Otherwise the representation
is called reducible. For finite groups it can be shown that an arbitrary representation
V will break up into irreducible representations Vi. We write V as a direct sum of the
Vi as follows

= ⊕ = ⊕ ⊕ ⋯V V V V . (1.16)i i 1 2
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This means that the representation operator U g( ), which is usually a matrix, is a
block diagonal matrix where each blockU g( )i corresponds to a vector space Vi.

We are therefore only interested in irreducible representations which are also not
equivalent. Indeed, it is almost obvious that if two representations are related by a
unitary transformation then they are necessarily equivalent.

Furthermore, for Lie groups it can be shown that representations of the Lie
algebra determine the representation of the group uniquely.

A representation T of the Lie algebra L is a map from L to M V( ) which consists
of all linear transformations of a vector space V. Clearly, if =V Rn, then M V( ) is the
set of n × n square matrices and the representation T is a matrix representation.
Again we may use the map T or the vector space V to refer to the representation. We
write

⟶
⟶

T L M V
X T X

: ( )
( ).

(1.17)

Thus, every element X in L is associated with a linear operatorT X( ) in M V( ) such
that if ∈X L and ∈Y L then

α α α+ = + = ∈T X Y T X T Y T X T X C( ) ( ) ( ), ( ) ( ), . (1.18)

More importantly we have

=T X Y T X T Y([ , ]) [ ( ), ( )]. (1.19)

The simplest and most basic irreducible representation is called the fundamental
representation, which for the rotation group SO(3), is a spinor representation. The
adjoint or vector representation is an irreducible representation provided by the
group elements directly.

For the rotation Lie algebra so(3) the adjoint representation (also called the
vector representation) is a three-dimensional irreducible representation given
precisely by the generators L1, L2 and L3. An infinitesimal rotation was found to
be given by

δθ δθ= +R i L1( ) . (1.20)i i3

A finite rotation can then be found by integration to be given by

θ θ=R i L( ) exp( ). (1.21)i i

This adjoint or vector representation is three-dimensional. A general N-dimensional
representation operator of the above infinitesimal rotation should be given by

δθ δθ= +U i J1( ) . (1.22)N i i

Similarly, the general N-dimensional representation of the above finite rotation can
also be found by integration to be given by

θ θ=U i J( ) exp( ). (1.23)i i
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The generators Ji are the N-dimensional representation operators of the Lie algebra
so(3) in the same way that the generators Li are the three-dimensional representation
operators of this Lie algebra. They must therefore be angular momentum operators
satisfying the angular momentum algebra (1.10), viz

ε=J J i J[ , ] . (1.24)i j ijk k

As it turns out, finding all sets J J J{ , , }1 2 3 which solve this condition (1.24) is
equivalent to the problem of finding all irreducible representations of the rotation
group SO(3).

This is in accord with Shur’s lemma which guarantees that a representation U is
irreducible if and only if the only matrices which commute with the representation
operatorsU g( ) for all ∈g G are matrices proportional to the identity matrix. These
matrices are called the Casimir operators (corresponding to conserved quantities).
The number of Casimir operators in a Lie algebra is called the rank of the group and
their eigenvalues characterize the irreducible representations of the Lie algebra.

Hence, by finding the set of all Casimir operators (which by construction
commute among themselves and therefore can be diagonalized simultaneously) we
can obtain irreducible representations by (1) computing their eigenvalues and then
by (2) restricting each time to a given eigenspace with a fixed eigenvalue which by
Shur’s lemma is guaranteed to correspond to an irreducible representation.

From quantum mechanics we know that the angular momentum generators Ji
commute with the squared angular momentum operator ⃗ = + +J J J J

2
1
2

2
2

3
2. This is

precisely the (single) Casimir operator of the rotation group SO(3). We have then

⃗ = ⃗ = + +J J J J J J[ , ] 0, . (1.25)i
2 2

1
2

2
2

3
2

The operators ⃗J
2
and J3 can be then diagonalized simultaneously with eigenvalues

given by

⃗ ∣ 〉 = + ∣
∣ 〉 = ∣ 〉

= − … − + − = …

J jm j j jm
J jm m jm

m j j j j j

( 1)

, 1, , 1, , 0, 1/2, 1, 3/2,

(1.26)

2

3

The spin (integer or half-integer) j characterizes then the irreducible representations
of the Lie algebra so(3) and the rotation group SO(3) which are obviously

+j(2 1)-dimensional (this is the number of independent states ∣ 〉jm for some j since
m varies from −j to +j with step equal 1). Hence, the dimension of these irreducible
representations is = +N j2 1. The representations with integer spin are called tensor
representation (bosons), whereas those with half-integer spin are called spinor
representations (fermions). These are all unitary representations.

The adjoint or vector representation given by the generators Li corresponds
therefore to spin one, i.e. j = 1 and N = 3.

The fundamental representation corresponds to spin one-half, i.e. =j 1/2 and
N = 2, and it is generated by Pauli matrices, viz
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σ=J
2

. (1.27)i
i

A finite rotation about an axis ⃗n with an angle θ is given in the fundamental
representation =j 1/2 by

θ θ σ⃗ = ⃗ ⃗U n i n( , ) exp( /2). (1.28)

This acts on spinor wave functions, or spinors for short, which under a rotation with
a 2π angle acquires an overall minus sign (spin-statistic theorem).

The reducible representations of the rotation group SO(3) are easily obtained by
taking tensor products of the irreducible representations j. The main result is already
known from quantum mechanics and is given by

∑
⊗ = + ⊕ + −

⊕ + − ⊕ ⋯⊕∣ − ∣ =
⊕

j j j j j j

j j j j j

( ) ( 1)

( 2) . (1.29)
1 2 1 2 1 2

1 2 1 2

The Lie algebra o(3) and the orthogonal group O(3) will involve an additional
Casimir operator. Indeed, the generators Li commute also with the reflection
operator, i.e.

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟= =

−
−

−
L R R[ , ] 0,

1 0 0
0 1 0
0 0 1

. (1.30)i 0 0

Similarly, in the N-dimensional representation of the orthogonal Lie algebra o(3)
the generators Ji commute with representation operator U0 of the reflection
operator, i.e.

=J U[ , ] 0. (1.31)i 0

As a consequence, the irreducible representations of o(3) and O(3) are characterized
by the pair l r( , ) where r is the eigenvalue of the reflection operator U0 which can
only take the two values = ±r 1.

1.2 Special relativity
1.2.1 Postulates

Classical mechanics obeys the principle of relativity which states that the laws of
nature take the same form in all inertial frames. An inertial frame is any frame in
which Newton’s first law holds. Therefore, all other frames which move with a
constant velocity with respect to a given inertial frame are also inertial frames.

Any two inertial frames O and ′O can be related by a Galilean transformation
which is of the general form

v
τ′ = +

⃗′ = ⃗ + ⃗ + ⃗
t t

x Rx t d .
(1.32)
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In the above R is a constant orthogonal matrix, ⃗d and v ⃗ are constant vectors and τ is
a constant scalar. Thus the observer ′O sees the coordinates axes of O rotated by R,
moving with a velocity v ⃗, translated by ⃗d and it sees the clock of O running behind
by the amount τ. The set of all transformations of the form (1.32) forms a 10-
parameter group called the Galilean group.

The invariance/covariance of the equations of motion under these transforma-
tions, which is called Galilean invariance/covariance, is the precise statement of the
principle of Galilean relativity.

In contrast to the laws of classical mechanics, the laws of classical electro-
dynamics do not obey the Galilean principle of relativity. Before the advent of the
theory of special relativity the laws of electrodynamics were thought to hold only in
the inertial reference frame which is at rest with respect to an invisible medium filling
all space known as the ether. For example, electromagnetic waves were thought to
propagate through the vacuum at a speed relative to the ether, equal to the speed of
light μ ε= = ×c 1/ 3 100 0

8 m s−1.
The motion of the Earth through the ether creates an ether wind. Thus, only by

measuring the speed of light in the direction of the ether wind can we get the value c,
whereas measuring it in any other direction will give a different result. In other
words we can detect the ether by measuring the speed of light in different directions
which is precisely what Michelson and Morley tried to do in their famous experi-
ments. The outcome of these experiments was always negative in the sense that the
speed of light was found to be exactly the same, equal to c in all directions.

The theory of special relativity was the first to accommodate this empirical
finding by postulating that the speed of light is the same in all inertial reference
frames, i.e. there is no ether. Furthermore, it postulates that classical electro-
dynamics (and physical laws in general) must hold in all inertial reference frames.
This is the principle of relativity, although now its precise statement cannot be given
in terms of the invariance/covariance under Galilean transformations but in terms of
the invariance/covariance under Lorentz transformations which we will discuss
further in the next section.

Einstein’s original motivation behind the principle of relativity comes from the
physics of the electromotive force. The interaction between a conductor and a
magnet in the reference frame where the conductor is moving and the magnet is at
rest is known to result in an motional emf. The charges in the moving conductor will
experience a magnetic force given by the Lorentz force law. As a consequence, a
current will flow in the conductor with an induced motional emf given by the flux
rule E = − Φd dt/ . In the reference frame where the conductor is at rest and the
magnet is moving there is no magnetic force acting on the charges. However, the
moving magnet generates a changing magnetic field which by Faraday’s law induces
an electric field. As a consequence in the rest frame of the conductor the charges
experience an electric force which causes a current to flow with an induced
transformer emf given precisely by the flux rule, viz E = − Φd dt/ .

So, in summary, although the two observers associated with the states of rest of
the conductor and the magnet have different interpretations of the process, their
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predictions are in perfect agreement. This indeed suggests, as pointed out first by
Einstein, that the laws of classical electrodynamics are the same in all inertial
reference frames.

The two fundamental postulates of special relativity are therefore:
• The principle of relativity: The laws of physics take the same form in all
inertial reference frames.

• The constancy of the speed of light: The speed of light in vacuum is the same
in all inertial reference frames.

1.2.2 Relativistic effects

The Gedanken experiments we will discuss here might be called ‘The train-and-
platform thought experiments’.

Relativity of simultaneity
We consider an observer ′O in the middle of a freight car moving at a speed v with
respect to the ground and a second observer O standing on a platform. A light bulb
hanging in the center of the car is switched on just as the two observers pass each
other.

It is clear that with respect to the observer ′O light will reach the front end A and
the back end B of the freight car at the same time. The two events ‘light reaches the
front end’ and ‘light reaches the back end’ are simultaneous.

According to the second postulate light propagates with the same velocity with
respect to the observer O. This observer sees the back end B moving toward the
point at which the flash was given off and the front end Amoving away from it. Thus
light will reach B before it reaches A. In other words with respect to O the event
‘light reaches the back end’ happens before the event ‘light reaches the front end’.

Time dilation
Let us now ask the question: How long does it take a light ray to travel from the bulb
to the floor?

Let us call h the height of the freight car. It is clear that with respect to ′O the time
spent by the light ray between the bulb and the floor is

Δ ′ =t
h
c

. (1.33)

The observer O will measure a time Δt during which the freight car moves a
horizontal distance vΔt. The trajectory of the light ray is not given by the vertical
distance h but by the hypotenuse of the right triangle with h and vdt as the other two
sides. Thus with respect to O the light ray travels a longer distance given by

v+ Δh t2 2 2 and therefore the time spent is

vΔ = + Δ
t

h t
c

. (1.34)
2 2 2
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Solving for Δt we get

γ γΔ = = Δ ′t
h
c

t . (1.35)

The factor γ is known as Lorentz factor and it is given by

v
γ =

−
c

1

1

.
(1.36)2

2

Hence we obtain

vΔ ′ = − Δ ⩽ Δt
c

t t1 . (1.37)
2

2

The time measured on the train is shorter than the time measured on the ground. In
other words moving clocks run slow. This is called time dilation.

Lorentz contraction
We now place a lamp at the back end B of the freight car and a mirror at the front
end A. Then we ask the question: How long does it take a light ray to travel from the
lamp to the mirror and back?

Again with respect to the observer ′O the answer is simple. If Δ ′x is the length of
the freight car measured by ′O then the time spent by the light ray in the round trip
between the lamp and the mirror is

Δ ′ = Δ ′
t

x
c

2 . (1.38)

LetΔx be the length of the freight car measured byO andΔt1 be the time for the light
ray to reach the front end A. Then clearly

vΔ = Δ + Δc t x t . (1.39)1 1

The term vΔt1 is the distance traveled by the train during the time Δt1. Let Δt2 be the
time for the light ray to return to the back end B. Then

vΔ = Δ − Δc t x t . (1.40)2 2

The time spent by the light ray in the round trip between the lamp and the mirror is
therefore

v v
γΔ = Δ + Δ = Δ

−
+ Δ

+
= Δ

t t t
x

c
x

c
x

c
2 . (1.41)1 2

2

The time intervals Δt and Δ ′t are related by time dilation, viz

γΔ = Δ ′t t . (1.42)
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This is equivalent to

γΔ ′ = Δ ⩾ Δx x x. (1.43)

The length measured on the train is longer than the length measured on the ground.
In other words moving objects are shortened. This is called Lorentz contraction.

We point out here that only the length parallel to the direction of motion is
contracted while lengths perpendicular to the direction of the motion remain not
contracted.

1.2.3 Lorentz transformations: boosts

Any physical process consists of a collection of events. Any event takes place at a
given point x y z( , , ) of space at an instant of time t. Lorentz transformations relate
the coordinates x y z t( , , , ) of a given event in an inertial reference frame O to the
coordinates ′ ′ ′ ′x y z t( , , , ) of the same event in another inertial reference frame ′O .

Let x y z t( , , , ) be the coordinates in O of an event E. The projection of E onto the
x-axis is given by the point P which has the coordinates x t( , 0, 0, ). For simplicity
we will assume that the observer ′O moves with respect to the observer O at a
constant speed v along the x-axis. At time t = 0 the two observers O and ′O coincide.
After time t the observer ′O moves a distance vt on the x-axis. Let d be the distance
between ′O and P as measured by O. Then clearly

v= +x d t. (1.44)

Before the theory of special relativity the coordinate ′x of the event E in the reference
frame ′O is taken to be equal to the distance d.We get therefore the transformation laws

v′ = −
′ =
′ =
′ =

x x t
y y
z z
t t.

(1.45)

This is a Galilean transformation. Indeed this is a special case of equation (1.32).
As we have already seen, Einstein’s postulates lead to Lorentz contraction. In

other words the distance between ′O and P measured by the observer ′O , which is
precisely the coordinate ′x , is larger than d. More precisely

γ′ =x d. (1.46)

Hence

vγ′ = −x x t( ). (1.47)

Einstein’s postulates also lead to time dilation and relativity of simultaneity. Thus,
the time of the event E measured by ′O is different from t. Since the observer O
moves with respect to ′O at a speed v in the negative x-direction we must have

vγ= ′ + ′x x t( ). (1.48)
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Thus we get

⎜ ⎟⎛
⎝

⎞
⎠

vγ′ = −t t
c

x . (1.49)
2

In summary we get the transformation laws

⎜ ⎟⎛
⎝

⎞
⎠

v

v

γ

γ

′ = −
′ =
′ =

′ = −

x x t
y y
z z

t t
c

x

( )

.

(1.50)

2

This is a special Lorentz transformation which is a boost along the x-axis.
Let us look at the clock found at the origin of the reference frame ′O . We set

′ =x 0 in the above equations. We then get the time dilation effect, viz

γ
′ =t

t
. (1.51)

At time t = 0 the clocks in ′O read different times depending on their location since

vγ′ = −t
c

x. (1.52)2

Hence, moving clocks cannot be synchronized.
We consider now two events A and B with coordinates x t( , )A A and x t( , )B B in O

and coordinates ′ ′x t( , )A A and ′ ′x t( , )B B in ′O . We can compute

⎜ ⎟⎛
⎝

⎞
⎠

vγΔ ′ = Δ − Δt t
c

x . (1.53)
2

Thus, if the two events are simultaneous with respect to O, i.e. Δ =t 0, they are not
simultaneous with respect to ′O since

vγΔ ′ = − Δt
c

x. (1.54)2

1.2.4 Spacetime

The above Lorentz boost transformation can be rewritten as

γ β
γ β

= −
= −
=
=

′

′

′

′

x x x

x x x

x x
x x

( )

( )

.

(1.55)

0 0 1

1 1 0

2 2

3 3

In the above equation

= = = =x ct x x x y x z, , , (1.56)0 1 2 3
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vβ γ β= = −
c

, 1 . (1.57)2

This can also be rewritten as

∑= Λ
ν=

μ
ν
μ ν′x x (1.58)

0

4

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

γ γβ
γβ γΛ =

−
−

0 0
0 0

0 0 1 0
0 0 0 1

. (1.59)

The matrix Λ is the Lorentz boost transformation matrix. A general Lorentz boost
transformation can be obtained if the relative motion of the two inertial reference
frames O and ′O is along an arbitrary direction in space. The transformation law of
the coordinates μx will still be given by equation (1.58) with a more complicated
matrix Λ. A general Lorentz transformation can be written as a product of a rotation
and a boost along a direction n̂ given by

α α
α α

= − ˆ ⃗
⃗′ = ⃗ + ˆ − ˆ ⃗ −

′x x nx
x x n nx x

cosh sinh
((cosh 1) sinh )

(1.60)
0 0

0

v α⃗ = ˆ
c

ntanh . (1.61)

Indeed, the set of all Lorentz transformations contains rotations as a subset.
The set of coordinates x x x x( , , , )0 1 2 3 which transforms under Lorentz trans-

formations as = Λμ
ν
μ ν′x x will be called a 4-vector in analogy with the set of

coordinates x x x( , , )1 2 3 which is called a vector because it transforms under rotations
as =′x R xa

b
a b. Thus, in general, a 4-vector a is any set of numbers a a a a( , , , )0 1 2 3

which transforms as x x x x( , , , )0 1 2 3 under Lorentz transformations, viz

∑= Λ
ν=

μ
ν
μ ν′a a . (1.62)

0

4

For the particular Lorentz transformation (1.59) we have

γ β
γ β

= −
= −
=
=

′

′

′

′

a a a

a a a

a a
a a

( )

( )

.

(1.63)

0 0 1

1 1 0

2 2

3 3
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The numbers μa are called the contravariant components of the 4-vector a. We
define the covariant components μa by

= = − = − = −a a a a a a a a, , , . (1.64)0
0

1
1

2
2

3
3

By using the Lorentz transformation (1.63) we verify any two 4-vectors a and b the
identity

− − − = − − −′ ′ ′ ′ ′ ′ ′ ′a b a b a b a b a b a b a b a b . (1.65)0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3

In fact we can show that this identity holds for all Lorentz transformations. We
recall that under rotations the scalar product ⃗ ⃗ab of any two vectors ⃗a and ⃗b is
invariant, i.e.

+ + = + +′ ′ ′ ′ ′ ′a b a b a b a b a b a b . (1.66)1 1 2 2 3 3 1 1 2 2 3 3

The four-dimensional scalar product must therefore be defined by the Lorentz
invariant combination − − −a b a b a b a b0 0 1 1 2 2 3 3, namely

∑

= − − −

=

=
μ=

μ
μ

μ
μ

ab a b a b a b a b

a b

a b .

(1.67)
0

3

0 0 1 1 2 2 3 3

In the last equation we have employed the so-called Einstein summation convention,
i.e. a repeated index is summed over.

We define the separation 4-vector Δx between two events A and B occurring at
the points x x x x( , , , )A A A A

0 1 2 3 and x x x x( , , , )B B B B
0 1 2 3 by the components

Δ = −μ μ μx x x . (1.68)A B

The distance squared between the two events A and B, which is called the interval
between A and B, is defined by

Δ = Δ Δ = Δ − Δ ⃗μ
μs x x c t x . (1.69)2 2 2 2

This is a Lorentz invariant quantity. However, it could be positive, negative or zero.
In the case Δ >s 02 the interval is called timelike. There exists an inertial reference

frame in which the two events occur at the same place and are only separated temporally.
In the case Δ <s 02 the interval is called spacelike. There exists an inertial

reference frame in which the two events occur at the same time and are only
separated in space.

In the caseΔ =s 02 the interval is called lightlike. The two events are connected by
a signal traveling at the speed of light.

1.2.5 Metric

The interval ds2 between two infinitesimally close events A and B in spacetime with
position 4-vectors μxA and = +μ μ μx x dxB A is given by

A Modern Course in Quantum Field Theory, Volume 1

1-14



∑= − −

= − − −
= − ⃗

μ=
μ

μds x x x x

dx dx dx dx

c dt dx

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) .

(1.70)0

3

A B A B
2

0 2 1 2 2 2 3 2

2 2 2

We can also write this interval as (using also Einstein’s summation convention)

∑

∑

η η

η η

= =

= =

μ ν

μ ν

=

=

μν
μ ν

μν
μ ν

μν
μ ν

μν
μ ν

ds dx dx dx dx

dx dx dx dx .

(1.71)
, 0

3

, 0

3

2

The 4 × 4 matrix η is called the metric tensor and it is given by

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
η η= = −

−
−

μν
μν

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

. (1.72)

Clearly we can also write

∑ η η= =
μ ν=

μ
ν μ

ν μ
ν μ

νds dx dx dx dx . (1.73)
, 0

3
2

In this case

η δ=μ
ν

μ
ν. (1.74)

The metric η is used to lower and raise Lorentz indices, viz

η=μ μν
νx x . (1.75)

The interval ds2 is invariant under Poincaré transformations which combine trans-
lations a with Lorentz transformations Λ:

⟶ = Λ +μ μ
ν
μ ν μ′x x x a . (1.76)

We compute

η η= =μν
μ ν

μν
μ ν′ ′ds dx dx dx dx . (1.77)2

This leads to the condition

η η η ηΛ Λ = ⇔ Λ Λ =μν ρ
μ

σ
ν

ρσ . (1.78)T
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1.3 Klein–Gordon equation
The non-relativistic energy–momentum relation reads

= ⃗ +E
p
m

V
2

. (1.79)
2

The correspondence principle is

⟶ ℏ ∂
∂

⃗⟶ ℏ ∇⃗E i
t

p
i

, . (1.80)

This yields the Schrödinger equation

⎛
⎝⎜

⎞
⎠⎟ψ ψ− ℏ ∇ + = ℏ∂

∂m
V i

t2
. (1.81)

2
2

We will only consider the free case, i.e. V = 0. We have then

ψ ψ− ℏ ∇ = ℏ∂
∂m

i
t2

. (1.82)
2

2

The energy–momentum 4-vector is given by

⎜ ⎟⎛
⎝

⎞
⎠= = ⃗μp p p p p

E
c

p( , , , ) , . (1.83)0 1 2 3

The relativistic momentum and energy are defined by

⃗ = ⃗

−
=

−
p

mu

u
c

E
mc

u
c

1

,

1

.
(1.84)2

2

2

2

2

The energy–momentum 4-vector satisfies

= − ⃗ =μ
μp p

E
c

p m c . (1.85)
2

2
2 2 2

The relativistic energy–momentum relation is therefore given by

⃗ + =p c m c E . (1.86)2 2 2 4 2

Thus the free Schrödinger equation will be replaced by the relativistic wave equation

ϕ ϕ−ℏ ∇ + = −ℏ ∂
∂

c m c
t

( ) . (1.87)2 2 2 2 4 2
2

2

This can also be rewritten as

⎛
⎝⎜

⎞
⎠⎟ϕ− ∂

∂
+ ∇ −

ℏ
=

c t
m c1

0. (1.88)
2

2

2
2

2 2

2
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This is the Klein–Gordon equation. In contrast with the Schrödinger equation the
Klein–Gordon equation is a second-order differential equation. In relativistic
notation we have

⟶ ℏ ∂
∂

⇔ ⟶ ℏ∂ ∂ = ∂
∂

= ∂
∂

E i
t

p i
x c t

,
1

(1.89)0 0 0 0

⃗⟶ ℏ ∇⃗ ⇔ ⟶ ℏ∂ ∂ = ∂
∂

p
i

p i
x

, . (1.90)i i i i

In other words

⟶ ℏ∂ ∂ = ∂
∂μ μ μ μp i
x

, (1.91)

⎛
⎝⎜

⎞
⎠⎟⟶ − ℏ ∂ ∂ = ℏ − ∂

∂
+ ∇μ

μ
μ

μp p
c t
1

. (1.92)2 2
2

2

2
2

The covariant form of the Klein–Gordon equation is

⎛
⎝⎜

⎞
⎠⎟ϕ∂ ∂ +

ℏ
=μ

μ m c
0. (1.93)

2 2

2

Free solutions are of the form

ϕ ⃗ = = = − ⃗ ⃗μ
μ− ℏt x e px p x Et p x( , ) , . (1.94)i px

Indeed we compute

ϕ ϕ∂ ∂ ⃗ = −
ℏ

− ⃗ ⃗μ
μ t x

c
E p c t x( , )

1
( ) ( , ). (1.95)

2 2
2 2 2

Thus we must have

− ⃗ =E p c m c . (1.96)2 2 2 2 4

In other words

= ± ⃗ +E p c m c . (1.97)2 2 2 2 4

There exists therefore negative-energy solutions. The energy gap is mc2 2. As it stands
the existence of negative-energy solutions means that the spectrum is not bounded
from below and as a consequence an arbitrarily large amount of energy can be
extracted. This is a severe problem for a single-particle wave equation. However,
these negative-energy solutions, as we will see shortly, will be related to antiparticles.
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From the two equations

⎛
⎝⎜

⎞
⎠⎟ϕ ϕ∂ ∂ +

ℏ
=μ

μ*
m c

0, (1.98)
2 2

2

⎛
⎝⎜

⎞
⎠⎟ϕ ϕ∂ ∂ +

ℏ
=μ

μ *
m c

0, (1.99)
2 2

2

we get the continuity equation

∂ =μ
μJ 0, (1.100)

where

ϕ ϕ ϕ ϕ= ℏ ∂ − ∂μ μ μ* *J
i
m2

[ ]. (1.101)

We have included the factor ℏi m/2 in order that the zero component J0 has the
dimension of a probability density. The continuity equation can also be put in the
form

ρ∂
∂

+ ∇⃗ ⃗ =
t

J 0, (1.102)

where

⎡
⎣⎢

⎤
⎦⎥ρ ϕ ϕ ϕ ϕ= = ℏ ∂

∂
− ∂

∂
∗

∗J
c

i
mc t t2

(1.103)0
2

ϕ ϕ ϕ ϕ⃗ = − ℏ ∇⃗ − ∇⃗* *J
i
mc2

[ ]. (1.104)

Clearly the zero component J0 is not positive definite and hence it can be a
probability density. This is due to the fact that the Klein–Gordon equation is
second-order.

The Dirac equation is a relativistic wave equation which is a first-order differ-
ential equation. The corresponding probability density will therefore be positive
definite. However negative-energy solutions will still be present.

1.4 Dirac equation
The Dirac equation is a first-order differential equation of the same form as the
Schrödinger equation, viz

ψ ψℏ∂
∂

=i
t

H . (1.105)
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In order to derive the form of the Hamiltonian H we go back to the relativistic
energy–momentum relation

− =μ
μp p m c 0. (1.106)2 2

The only requirement on H is that it must be linear in spatial derivatives since we
want space and time to be on equal footing. We thus factor out the above equation
as follows

γ β

γ β γ β

− = + −

= − − −
μ

μ μ
μ

ν
ν

μ ν
μ ν

μ μ
μ

p p m c p mc p mc

p p mc p m c

( )( )

( ) .
(1.107)

2 2

2 2

We must therefore have β γ=μ μ, i.e.

γ γ=μ
μ μ ν

μ νp p p p . (1.108)

This is equivalent to

γ γ γ γ

γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ

γ γ γ γ γ γ γ γ

− − − = + + +

+ + + +

+ + + +

+ + + +

p p p p p p p p

p p p p

p p p p

p p p p

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) .

(1.109)

0
2

1
2

2
2

3
2 0 2

0
2 1 2

1
2 2 2

2
2 3 2

3
2

1 2 2 1
1 2

1 3 3 1
1 3

2 3 3 2
2 3

1 0 0 1
1 0

2 0 0 2
2 0

3 0 0 3
3 0

Clearly the objects γ μ cannot be complex numbers since we must have

γ γ γ γ
γ γ γ γ
= = = = −

+ =μ ν ν μ
( ) 1, ( ) ( ) ( ) 1

0.
(1.110)

0 2 1 2 2 2 3 2

These conditions can be rewritten in a compact form as

γ γ γ γ η+ =μ ν ν μ μν2 . (1.111)

This algebra is an example of a Clifford algebra and the solutions are matrices γ μ

which are called Dirac matrices. In four-dimensional Minkowski space the smallest
Dirac matrices must be 4 × 4 matrices. All 4 × 4 representations are unitarily
equivalent. We choose the so-called Weyl or chiral representation given by

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟γ γ σ

σ
= =

−
1

1
0

0
, 0

0
. (1.112)i

i

i
0 2

2

The Pauli matrices are

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠σ σ σ= = − =

−
i

i
0 1
1 0

, 0
0

, 1 0
0 1

. (1.113)1 2 3
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Note that

γ γ γ γ γ γ γ γ= = − ⇔ =μ μ+ + +( ) , ( ) ( ) . (1.114)i i0 0 0 0

The relativistic energy–momentum relation becomes

γ γ− = + − =μ
μ μ

μ
ν

νp p m c p mc p mc( )( ) 0. (1.115)2 2

Thus, either γ + =μ
μp mc 0 or γ − =μ

μp mc 0. The convention is to take

γ − =μ
μp mc 0. (1.116)

By applying the correspondence principle ⟶ ℏ∂μ μp i we obtain the relativistic wave
equation

γ ψℏ ∂ − =μ
μi mc( ) 0. (1.117)

This is the Dirac equation in a covariant form. Let us introduce the Feynman ‘slash’
defined by

γ∂ = ∂μ
μ (1.118)

ψℏ∂ − =i mc( ) 0. (1.119)

Since the γ matrices are 4 × 4 the wave function ψ must be a four-component object
which we call a Dirac spinor. Thus we have

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
ψ

ψ
ψ
ψ
ψ

= . (1.120)

1

2

3

4

The Hermitian conjugate of the Dirac equation (1.131) is

ψ γℏ ∂
←

+ =μ
μ

+ +i mc( ( ) ) 0. (1.121)

In other words

ψ γ γ γℏ ∂
←

+ =μ
μ

+ i mc( ) 0. (1.122)0 0

The Hermitian conjugate of a Dirac spinor is not ψ+ but it is defined by

ψ ψ γ¯ = + . (1.123)0

Thus the Hermitian conjugate of the Dirac equation is

ψ γ¯ ℏ ∂
←

+ =μ
μi mc( ) 0. (1.124)

Equivalently

ψ̄ ℏ ∂
←

+ =i mc( ) 0. (1.125)
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Putting equations (1.119) and (1.125) together we obtain

ψ ψ¯ ℏ ∂
←

+ ℏ∂⃗ =i i( ) 0. (1.126)

We obtain the continuity equation

ψγ ψ∂ = = ¯μ
μ μ μJ J0, . (1.127)

Explicitly we have

ρ∂
∂

+ ∇⃗ ⃗ =
t

J 0 (1.128)

ρ ψγ ψ ψ ψ= = ¯ = +J
c c c

1 1 (1.129)
0

0

ψγψ ψ αψ⃗ = ¯ ⃗ = ⃗+J . (1.130)

The probability density ρ is positive definite as desired.

1.5 Free solutions of the Dirac equation
We seek solutions of the Dirac equation

γ ψℏ ∂ − =μ
μi mc( ) 0. (1.131)

The plane-wave solutions are of the form

ψ = − ℏx a e u p( ) ( ). (1.132)i px

Explicitly

ψ ⃗ = ⃗− ℏ − ⃗ ⃗t x a e u E p( , ) ( , ). (1.133)i Et p x( )

The spinor u p( ) must satisfy

γ − =μ
μp mc u( ) 0. (1.134)

We write

= ( )u
u
u . (1.135)A

B

We compute

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
γ

σ

σ
− =

− − ⃗ ⃗

+ ⃗ ⃗ −
μ

μp mc
mc

E
c

p

E
c

p mc
. (1.136)

A Modern Course in Quantum Field Theory, Volume 1

1-21



We then get

σ
=

− ⃗ ⃗
u

E
c

p

mc
u

(1.137)
A B

σ
=

+ ⃗ ⃗
u

E
c

p

mc
u .

(1.138)
B A

A consistency condition is

σ σ σ
=

− ⃗ ⃗ + ⃗ ⃗
=

− ⃗ ⃗
u

E
c

p

mc

E
c

p

mc
u

E
c

p

m c
u

( )
.

(1.139)
A A A

2

2
2

2 2

Thus one must have

σ− ⃗ ⃗ = ⇔ = ⃗ +E
c

p m c E p c m c( ) . (1.140)
2

2
2 2 2 2 2 2 2 4

Therefore we have a single condition

σ
=

+ ⃗ ⃗
u

E
c

p

mc
u .

(1.141)
B A

There are four possible solutions. They are

⎜ ⎟⎛
⎝

⎞
⎠

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

= ⇔ =
+

+

u u N
E
c

p

mc
p ip

mc

1
0

1
0

(1.142)A
(1) (1)

3

1 2

⎜ ⎟⎛
⎝

⎞
⎠

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

= ⇔ =
−

−

u u N
p ip

mc
E
c

p

mc

0
1

0
1

(1.143)A
(4) (4)

1 2

3
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⎜ ⎟⎛
⎝

⎞
⎠

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

= ⇔ =

−

− +u u N

E
c

p

mc
p ip

mc

1
0

1
0

(1.144)B
(3) (3)

3

1 2

⎜ ⎟⎛
⎝

⎞
⎠

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

= ⇔ =

− −

+u u N

p ip
mc

E
c

p

mc

0
1

0
1

. (1.145)B
(2) (2)

1 2

3

The first and the fourth solutions will be normalized such that

γ¯ = = + =+ + +uu u u u u u u mc2 . (1.146)A B B A
0

We obtain

= =
+

N N
m c

E
c

p
. (1.147)

(1) (2)
2 2

3

Clearly one must have ⩾E 0 otherwise the square root will not be well defined. In
other words u(1) and u(2) correspond to positive-energy solutions associated with
particles. The spinors u p( )i( ) can be rewritten as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

σ ξ

σ ξ
=

¯
μ

μ

μ
μ

u
p

p
. (1.148)i

i

i
( )

The two-dimensional spinors ξi satisfy

ξ ξ δ=+( ) . (1.149)r s rs

The remaining spinors u(3) and u(4) must correspond to negative-energy solutions
which must be reinterpreted as positive-energy antiparticles. Thus we flip the signs of
the energy and the momentum such that the wave function (1.133) becomes

ψ ⃗ = − − ⃗ℏ − ⃗ ⃗t x a e u E p( , ) ( , ). (1.150)i Et p x( )

The solutions u3 and u4 become
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⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟
⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

v

v

⃗ = − − ⃗ =

−
−

+

⃗ = − − ⃗ = − −

−
−

E p u E p N

E
c

p

mc
p ip

mc

E p u E p N
p ip

mc
E
c

p

mc

( , ) ( , )

1
0

( , ) ( , )

0
1

.

(1.151)

(1) (3) (3)

3

1 2

(2) (4) (4)

1 2

3

We impose the normalization condition

vv v v v v v vγ¯ = = + = −+ + + mc2 . (1.152)A B B A
0

We obtain

= =
−

N N
m c

E
c

p
. (1.153)

(3) (4)
2 2

3

The spinors v p( )i( ) can be rewritten as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟v

σ η

σ η
=

− ¯
μ

μ

μ
μ

p

p
. (1.154)i

i

i
( )

Again the two-dimensional spinors ηi satisfy

η η δ=+( ) . (1.155)r s rs

1.6 Lorentz covariance: first look
In this section we will refer to the Klein–Gordon wave function ϕ as a scalar field
and to the Dirac wave function ψ as a Dirac spinor field although we are still
thinking of them as quantum wave functions and not classical fields.

1.6.1 Scalar fields

Let us recall that the set of all Lorentz transformations form a group called the
Lorentz group. An arbitrary Lorentz transformation acts as
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⟶ = Λμ μ μ
ν

ν′x x x . (1.156)

In the inertial reference frame O the Klein–Gordon wave function is ϕ ϕ= x( ). It is a
scalar field. Thus in the transformed reference frame ′O the wave function must be
ϕ ϕ′ = ′ ′x( ) where

ϕ ϕ′ ′ =x x( ) ( ). (1.157)

For a one-component field this is the only possible linear transformation law. The
Klein–Gordon equation in the reference frame ′O if it holds is of the form

⎛
⎝⎜

⎞
⎠⎟ϕ∂′∂ +

ℏ
′ ′ =μ

μ′ m c
x( ) 0. (1.158)

2 2

2

It is not difficult to show that

∂′∂ = ∂ ∂μ
μ

μ
μ′ . (1.159)

The Klein–Gordon equation (1.158) becomes

⎛
⎝⎜

⎞
⎠⎟ϕ∂ ∂ +

ℏ
=μ

μ m c
x( ) 0. (1.160)

2 2

2

1.6.2 Vector fields

Let =μ μV V x( ) be an arbitrary vector field (for example ϕ∂μ and the electromagnetic
vector potential μA ). Under Lorentz transformations it must transform as a 4-vector,
i.e. as in equation (1.156) and hence

′ = Λμ
ν
μ ν′V x V x( ) ( ). (1.161)

This should be contrasted with the transformation law of an ordinary vector field
V x( )i under rotations in three-dimensional space given by

′ =′V x R V x( ) ( ). (1.162)i ij j

The group of rotations in three-dimensional space is a continuous group. The set of
infinitesimal transformations (the transformations near the identity) form a vector
space which we call the Lie algebra of the group. The basis vectors of this vector
space are called the generators of the Lie algebra and they are given by the angular
momentum operators Li which satisfy the commutation relations

ε= ℏL L i L[ , ] . (1.163)i j ijk k

A rotation with an angle θ∣ ∣ about the axis θ̂ is obtained by exponentiation from the
Lie algebra, viz

θ= −R i Lexp( ). (1.164)i i
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The angular momentum operators J i are given by (our convention is ε = +1123 )

ε= − ℏ ∂L i x . (1.165)i ijk j k

This is equivalent to

ε= = − ℏ ∂ − ∂L L i x x( ). (1.166)ij ijk k i j j i

Generalization of this result to four-dimensional Minkowski space yields the six
generators of the Lorentz group given by

= − ℏ ∂ − ∂μν μ ν ν μL i x x( ). (1.167)

We compute the commutation relations

η η η η= ℏ − − +μν ρσ νρ μσ μρ νσ νσ μρ μσ νρL L i L L L L[ , ] ( ). (1.168)

A solution of equation (1.168) is given by the 4 × 4 matrices

δ δ δ δ= ℏ −μν
αβ α

μ
β
ν

β
μ

α
ν( )L i( ) . (1.169)

Equivalently we can write this solution as

η δ δ η= ℏ −μν α
β

μα
β
ν

β
μ να( )L i( ) . (1.170)

This representation is the four-dimensional vector representation of the Lorentz
group which is denoted by (1/2, 1/2). It is an irreducible representation of the
Lorentz group. A scalar field transforms in the trivial representation of the Lorentz
group denoted by (0, 0). It remains to determine the transformation properties of
spinor fields.

1.6.3 Spinor fields

We go back to the Dirac equation in the form

γ ψℏ ∂ − =μ
μi mc( ) 0. (1.171)

This equation is assumed to be covariant under Lorentz transformations and hence
one must have the transformed equation

γ ψℏ ∂′ − ′ =μ
μ′i mc( ) 0. (1.172)

The Dirac γ matrices are assumed to be invariant under Lorentz transformations
and thus

γ γ′ =μ μ. (1.173)

The spinor ψ will be assumed to transform under Lorentz transformations linearly,
namely

ψ ψ ψ⟶ ′ ′ = Λx x S x( ) ( ) ( ) ( ). (1.174)
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Furthermore we have

∂′ = Λ ∂ν
μ

ν μ
−( ) . (1.175)1

Thus, equation (1.172) is of the form

γ ψℏ Λ Λ Λ ∂ − =ν
μ

μ
ν

− − ′i S S mc( ( ) ( ) ( ) ) 0. (1.176)1 1

We can get immediately

γ γΛ Λ Λ =ν
μ

μ ν− − ′S S( ) ( ) ( ) . (1.177)1 1

Equivalently

γ γΛ Λ Λ =ν
μ

μ ν− −S S( ) ( ) ( ) . (1.178)1 1

This is the transformation law of the γ matrices under Lorentz transformations.
Thus the γ matrices are invariant under the simultaneous rotations of the vector and
spinor indices under Lorentz transformations. This is analogous to the fact that
Pauli matrices σ i are invariant under the simultaneous rotations of the vector and
spinor indices under spatial rotations.

The matrix ΛS( ) form a four-dimensional representation of the Lorentz group
which is called the spinor representation. This representation is reducible and it is
denoted by ⊕(1/2, 0) (0, 1/2). It remains to find the matrix ΛS( ). We consider an
infinitesimal Lorentz transformation

ω ωΛ = −
ℏ

Λ = +
ℏαβ

αβ
αβ

αβ−i
L

i
L1

2
, 1

2
. (1.179)1

We can write ΛS( ) as

ω ωΛ = −
ℏ

Γ Λ = +
ℏ

Γαβ
αβ

αβ
αβ−S

i
S

i
( ) 1

2
, ( ) 1

2
. (1.180)1

The infinitesimal form of equation (1.178) is

γ γ− = Γαβ μ
ν μ ν

αβL( ) [ , ]. (1.181)

The fact that the index μ is rotated with αβL means that it is a vector index. The
spinor indices are the matrix components of the γmatrices which are rotated with the
generators Γαβ. A solution is given by

γ γΓ = ℏμν μ νi
4

[ , ]. (1.182)

Explicitly

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

γ γ σ
σ

γ γ
σ σ

σ σ
ε σ

σ

Γ = ℏ = − ℏ
−

Γ = ℏ = − ℏ = ℏ

i i

i i

4
[ , ]

2
0

0

4
[ , ]

4

[ , ] 0

0 [ , ] 2
0

0
.

(1.183)

i i
i

i

ij i j
i j

i j
ijk

k

k

0 0
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Clearly Γij are the generators of rotations. They are the direct sum of two copies of
the generators of rotation in three-dimensional space. Thus, we conclude that Γ i0 are
the generators of boosts.

1.7 Representations of the Lorentz group
1.7.1 The Lorentz group SO(1, 3) and its Lie algebra so(1, 3)

We start by recalling that the spacetime points x, the spacetime metric ημν and the

spacetime interval ds2 are given respectively by

η≡ = ⃗ =μ
μ μν

νx x ct x x x( , ), (1.184)

η = + − − −μν diag( 1, 1, 1, 1) (1.185)

η= = − ⃗μν
μ νds dx dx c dt dx . (1.186)2 2 2 2

First we note that Lorentz transformations act on x in Minkowski spacetime M4 in
the same way that rotations act on ⃗x in Euclidean space R3. Indeed, the interval ds2 is
invariant under the linear Lorentz transformations

⟶ = Λμ μ μ
ν

ν′x x x (1.187)

if and only if the transformations Λ satisfy

η η η ηΛ Λ = ⇔ Λ Λ =μν
μ

ρ
ν

σ ρσ . (1.188)T

This is the analog of the orthogonality condition =R R 1T found in the case of the
rotation group SO(3) in Euclidean space R3. Similarly, equation (1.188) defines the
Lorentz group, which is denoted by SO(1, 3), in Minkowski spacetime M4. The
condition (1.188) leads immediately to the determinant

Λ = ±det 1. (1.189)

Again, this is the analog of = ±Rdet 1 in Euclidean space R3.
The Lorentz group contains (1) rotations, (2) boosts (these are the purely Lorentz

transformations), (3) space reflection P and (4) time reflection T.
Furthermore, we note that by setting ρ σ= = 0 in equation (1.188) we obtain

∑Λ = + Λ ⩾ ⇒ ∣Λ ∣ ⩾( ) 1 ( ) 1 1. (1.190)
i

i0
0

2
0

2 0
0

We can then characterize the various Lorentz transformations as follows:
• The proper orthochronous transformations +

↑L : Λ =det 1, Λ > 00
0 .

• The improper orthochronous transformations −
↑L : Λ = −det 1, Λ > 00

0 . This
involves space reflection P.

• The proper non-orthochronous transformations +
↓L : Λ =det 1, Λ < 00

0 . This
involves time reflection T.
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• The improper non-orthochronous transformations −
↓L : Λ = −det 1, Λ < 00

0 .
This involves time and space reflections T and P.

The set +
↑L of all proper orthochronous transformations is the proper Lorentz group

which is the basic object. Everything else can be derived from +
↑L by the action of P

( −
↑L ), T ( +

↓L ) or P and T ( −
↓L ).

The proper Lorentz group contains three basic rotations in the planes 12, 13 and 23
and three basic boosts (rotations with an imaginary angle) along the axes 1, 2 and 3.

The generators of the infinitesimal rotations (generators of the Lie algebra so(3) of
the rotation group SO(3) in three dimensions) acting in R3 were found to be given by
the orbital angular momentum = −L iAi i given by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟=

−
=

−
= −A A A

0 0 0
0 0 1
0 1 0

,
0 0 1
0 0 0
1 0 0

,
0 1 0
1 0 0

0 0 0
. (1.191)1 2 3

When these generators act in spacetime M4 they are naturally embedded in the 4 × 4
matrices (using the same symbols)

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

=

−

≡ =

−

≡

=
−

≡

A A A A

A A

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

,

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

.

(1.192)

1
23

2
31

3
12

The generators Li were determined to be the orbital angular momentum with
standard commutation relations. Equivalently, the generators Aij satisfy the com-
mutation relations

η η η η= − − +A A A A A A[ , ] . (1.193)ij kl ik jl il jk jk il jl ik

This is a four-dimensional representation of the rotation group since spacetime is
four-dimensional. An infinitesimal rotation is then given by (with ω θ=12 3, ω θ=31 2

and ω θ=23 1)

δω δωΛ = + A( ) 1
1
2

. (1.194)ij
ij

The finite rotation is obtained by exponentiation (the group is obtained from the Lie
algebra by exponentiation), viz

⎛
⎝⎜

⎞
⎠⎟ω ωΛ = A( ) exp

1
2

. (1.195)ij
ij
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This is equivalent to viewing the finite rotation as a succession of infinite number of
identical infinitesimal rotations.

Similarly, we have found that the boost along the axis x1 is given explicitly by

γ β
γ β

= −
= −
=
=

′

′

′

′

x x x

x x x

x x
x x

( )

( )

.

(1.196)

0 0 1

1 1 0

2 2

3 3

The corresponding Lorentz transformation is then given by

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

γ γβ
γβ γΛ =

−
− =

−
−

u u
u u

0 0
0 0

0 0 1 0
0 0 0 1

cosh sinh 0 0
sinh cosh 0 0

0 0 1 0
0 0 0 1

(1.197)

where γ=ucosh . Hence, this boost can be understood as a (non-compact) rotation
in the plane 01 with an imaginary angle iu. The Lie algebra is the tangent vector
space to the group manifold at the identity. Thus, we need to consider an
infinitesimal boost by taking a small velocity v (compared to the speed light c)
which corresponds to a small angle u. We get then the generator

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
=

−
−A

0 1 0 0
1 0 0 0

0 0 0 0
0 0 0 0

. (1.198)10

By the same token the generators corresponding to the boosts along the x2 and x3
are found to be given by

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
=

−

−
=

−

−

A A

0 0 1 0
0 0 0 0
1 0 0 0

0 0 0 0

,

0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

. (1.199)20 30

The boost generators Ai0 are also four-dimensional. In fact Ai0 and Aij (written
collectively as μνA ) provide the four-dimensional representation of the Lie algebra
so(1, 3) of the Lorentz group SO(1, 3). The defining algebra is given by a
straightforward generalization of equation (1.193) which reads

η η η η= − − +μν ρσ μρ νσ μσ νρ νρ μσ νσ μρA A A A A A[ , ] . (1.200)

The most general infinitesimal and finite Lorentz transformations in this represen-
tation will then be given by

⎛
⎝⎜

⎞
⎠⎟δω δω ω ωΛ = + Λ =μν

μν
μν

μνA A( ) 1
1
2

, ( ) exp
1
2

. (1.201)
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The most general representation of the Lorentz Lie algebra so(1, 3) will be given by
some N-dimensional generators μνB satisfying exactly the algebra

η η η η= − − +μν ρσ μρ νσ μσ νρ νρ μσ νσ μρB B B B B B[ , ] . (1.202)

The most general infinitesimal and finite Lorentz transformations in this represen-
tation will be given by

⎛
⎝⎜

⎞
⎠⎟δω ωΛ = + Λ =μν

μν
μν

μνU B U B( ) 1
1
2

, ( ) exp
1
2

. (1.203)

1.7.2 Representations of the Lorentz group

What is the most general solution μνB of equation (1.202)?
As we have seen, from Shur’s lemma, the problem of finding the most general

solution of equation (1.202) is equivalent to the problem of finding the most general
irreducible representation of the Lorentz group SO(1, 3) and this requires us to find
the Casimir operators of the group.

This is easy in this case. We introduce the new generators

= − + = − −X iM N Y iM N
1
2

( ),
1
2

( ). (1.204)i i i i i i

The M ’s and N ’s are defined by

ε= =M B N B
1
2

, . (1.205)i ijk jk i i0

They satisfy

ε ε ε= − = = −M M M N N M M N N[ , ] , [ , ] , [ , ] . (1.206)i j ijk k i j ijk k i j ijk k

We can verify immediately that the commutation relations (1.202) are equivalent to

ε ε= = =X X i X Y Y i Y X Y[ , ] , [ , ] , [ , ] 0. (1.207)i j ijk k i j ijk k i j

Thus, the X ’s and Y ’s generate two commuting copies of the so(3) Lie algebra.
Hence, the Lie algebra so(1, 3) of the Lorentz group is the direct sum of two copies
of the Lie algebras so(3) of the rotation group. We can then write the Casimir
operators of the Lie algebra so(1, 3) of the Lorentz group. They are

⃗ = + + ⃗ = + +X X X X Y Y Y Y, . (1.208)2
1
2

2
2

3
2 2

1
2

2
2

3
2

The irreducible representations of the Lie algebra so(1, 3) are characterized by two
integers j and k which are the spin quantum numbers of the two angular momentum
operators ⃗X and ⃗Y . These representations are + +j k(2 1)(2 1)-dimensional given
explicitly by
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⃗ ∣ 〉∣ 〉 = + ∣ 〉∣ 〉
∣ 〉∣ 〉 = ∣ 〉∣ 〉

⃗ ∣ 〉∣ 〉 = + ∣ 〉∣ 〉
∣ 〉∣ 〉 = ∣ 〉∣ 〉

X jm kn j j jm kn
X jm kn m jm kn

Y jm kn k k jm kn
Y jm kn n jm kn

( 1)

( 1)
.

(1.209)

2

3

2

3

As in the case of the rotation group we have here tensor representations (for integer
values of j + k) and spinor representations for half-integer values of j + k. Under
space or time reflections the representations j k( , ) and k j( , ) get interchanged. Also,
the tensor product of two representations j k( , )1 1 and j k( , )2 2 are given by the
quantum mechanical rule

∑⊗ = ∣ − ∣ ⩽ ⩽ +

× ∣ − ∣ ⩽ ⩽ +
⊕

j k j k j k j j j j j

k k k k k

( , ) ( , ) ( , ), ,

.
(1.210)

1 1 2 2 1 2 1 2

1 2 1 2

Some examples of the irreducible representations j k( , ) were given in the previous
section. The scalar field corresponds to (0, 0) and =μνJ 0. The vector field
corresponds to (1/2, 1/2) and J=μν μνJ . The Dirac spinor field corresponds to the
reducible representation ⊕(1/2, 0) (0, 1/2) and = Γμν μνJ . The Weyl spinor fields
(left-handed or right-handed Dirac fields) correspond to the irreducible representa-
tions (1/2, 0) and (0, 1/2). As a final example we consider the reducible representa-
tion given by the direct sum ⊕(1, 0) (0, 1) which corresponds to an antisymmetric
tensor field such as the electromagnetic field strength μνF (the irreducible components
correspond to the self-dual and anti-self-dual fields).

1.8 Exercises
Exercise 1:

Show explicitly that the scalar product of two 4-vectors in spacetime is invariant under
boosts. Show that the scalar product is then invariant under all Lorentz transformations.

Exercise 2:

• By using Lorentz transformations show that moving clocks cannot be
synchronized and derive an explicit formula for the relativity of simultaneity.

• Show that the proper time of a point particle—the proper time is the time
measured by an inertial observer flying with the particle—is invariant under
Lorentz transformations. We assume that the particle is moving with a
velocity ⃗u with respect to an inertial observer O.

• Define the 4-vector velocity of the particle in spacetime. What is the spatial
component.

• Define the energy–momentum 4-vector in spacetime and deduce the relativ-
istic energy.

• Express the energy in terms of the momentum.
• Define the 4-vector force.
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Exercise 3:

Derive the velocity addition rule in special relativity.

Exercise 4:

• Show that the Weyl representation of Dirac matrices given by

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟γ γ σ

σ
= =

−
1

1
0

0
, 0

0
, (1.211)i

i

i
0 2

2

solves Dirac–Clifford algebra.
• Show that

γ γ γ γ=μ μ+( ) . (1.212)0 0

• Show that the Dirac equation can be put in the form of a Schrödinger
equation

ψ ψℏ ∂
∂

=i
t

H , (1.213)

with some Hamiltonian H.

Exercise 5:

From the invariance of the interval ds2 under Poincaré transformations show that
the condition which must be satisfied by Lorentz transformations is given by

η η= Λ Λ. (1.214)T

Show also that

Λ = Λρ
μ μ

ρ
−( ) (1.215)1

∂′ = Λ ∂ν
μ

ν μ
−( ) (1.216)1

∂′∂ = ∂ ∂μ
μ

μ
μ′ . (1.217)

Exercise 6:

Show that the Klein–Gordon equation is covariant under Lorentz transformations.

Exercise 7:

• Write down the transformation property under ordinary rotations of a vector
in three dimensions. What are the generators J i? What are the dimensions of
the irreducible representations and the corresponding quantum numbers?
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• The generators of rotation can be alternatively given by

ε=J J . (1.218)ij ijk k

Calculate the commutators J J[ , ]ij kl .
• Write down the generators of the Lorentz group μνJ by simply generalizing J ij

and show that

η η η η= ℏ − − +μν ρσ νρ μσ μρ νσ νσ μρ μσ νρJ J i J J J J[ , ] ( ). (1.219)

• Verify that

J δ δ δ δ= ℏ −μν
αβ α

μ
β
ν

β
μ

α
ν( )i( ) , (1.220)

is a solution. This is called the vector representation of the Lorentz group.
• Write down a finite Lorentz transformation matrix in the vector representa-
tion. Write down an infinitesimal rotation in the xy-plane and an infinitesimal
boost along the x-axis.

Exercise 8:

• Introduce σ σ=μ (1, )i and σ σ¯ = −μ (1, )i . Show that

σ σ̄ =μ
μ

μ
μp p m c( )( ) . (1.221)2 2

• Show that the normalization condition ¯ =uu mc2 for u(1) and u(2) yields

= =
+

N N
m c

E
c

p
. (1.222)

(1) (2)
2 2

3

• Show that the normalization condition vv¯ = − mc2 for v = −p u p( ) ( )(1) (3) and
v = −p u p( ) ( )(2) (4) yields

= =
−

N N
m c

E
c

p
. (1.223)

(3) (4)
2 2

3

• Show that we can rewrite the spinors u and v as

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

σ ξ

σ ξ
=

¯
μ

μ

μ
μ

u
p

p
(1.224)i

i

i
( )

A Modern Course in Quantum Field Theory, Volume 1

1-34



⎛
⎝
⎜⎜

⎞
⎠
⎟⎟v

σ η

σ η
=

− ¯
μ

μ

μ
μ

p

p
. (1.225)i

i

i
( )

Determine ξi and ηi.

Exercise 9:

Let u p( )r( ) and v p( )r( ) be the positive-energy and negative-energy solutions of the free
Dirac equation. Show that

v v v vδ δ¯ = ¯ = − ¯ = ¯ =u u mc mc u u2 , 2 , 0, 0 (1.226)r s rs r s rs r s r s( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

v vδ δ= =+ +u u
E
c

E
c

2
,

2
(1.227)r s rs r s rs( ) ( ) ( ) ( )

v v⃗ − ⃗ = − ⃗ ⃗ =+ +u E p E p E p u E p( , ) ( , ) 0, ( , ) ( , ) 0 (1.228)r s r s( ) ( ) ( ) ( )

v v∑ ∑γ γ⃗ ¯ ⃗ = + ⃗ ¯ ⃗ = −
= =

μ
μ

μ
μu E p u E p p mc E p E p p mc( , ) ( , ) , ( , ) ( , ) . (1.229)

s s1

2

1

2
s s s s( ) ( ) ( ) ( )

Exercise 10:

Determine the transformation property of the spinor ψ under Lorentz transforma-
tions in order that the Dirac equation is covariant.

Exercise 11:

Determine the transformation rule under Lorentz transformations of ψ̄ , ψψ¯ , ψγ ψ¯ 5 ,
ψγ ψ¯ μ , ψγ γ ψ¯ μ 5 and ψ ψ¯ Γμν .

Exercise 12:

• Write down the solution of the Clifford algebra in three Euclidean dimen-
sions. Construct a basis for 2 × 2 matrices in terms of Pauli matrices.

• Construct a basis for 4 × 4 matrices in terms of Dirac matrices. Hint: Show
that there are 16 antisymmetric combinations of the Dirac gamma matrices in
1 + 3 dimensions.

Exercise 13:

• We define the gamma five matrix (chirality operator) by

A Modern Course in Quantum Field Theory, Volume 1

1-35



γ γ γ γ γ= i . (1.230)5 0 1 2 3

Show that

γ ε γ γ γ γ= −
! μνρσ

μ ν ρ σi
4

(1.231)5

γ =( ) 1 (1.232)5 2

γ γ=+( ) (1.233)5 5

γ γ =μ{ , } 0 (1.234)5

γ Γ =μν[ , ] 0. (1.235)5

• We write the Dirac spinor as

⎜ ⎟⎛
⎝

⎞
⎠ψ

ψ
ψ= . (1.236)L

R

By working in the Weyl representation show that the Dirac representation is
reducible.

Hint: Compute the eigenvalues of γ5 and show that they do not mix under
Lorentz transformations.

• Rewrite the Dirac equation in terms of ψL and ψR. What is their physical
interpretation?

1.9 Solutions
Exercise 14:

(1) Let us look at the clock found at the origin of the reference frame ′O . We set
then ′ =x 0 in Lorentz transformations. We get the time dilation effect, viz

γ
′ =t

t
. (1.237)

At time t = 0 the clocks in ′O read different times depending on their
location since

vγ′ = −t
c

x. (1.238)2

Hence moving clocks cannot be synchronized.
We consider now two events A and B with coordinates x t( , )A A and

x t( , )B B in O and coordinates ′ ′x t( , )A A and ′ ′x t( , )B B in ′O . We can then
compute
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⎜ ⎟⎛
⎝

⎞
⎠

vγΔ ′ = Δ − Δt t
c

x . (1.239)
2

Thus, if the two events are simultaneous with respect to O, i.e. Δ =t 0 they
are not simultaneous with respect to ′O since

vγΔ ′ = − Δt
c

x. (1.240)2

(2) The trajectory of a particle in spacetime is called a world line. We take two
infinitesimally close points on the world line given by x x x x( , , , )0 1 2 3 and

+ + + +x dx x dx x dx x dx( , , , )0 0 1 1 2 2 3 3 . Clearly =dx u dt1 1 , =dx u dt2 2 and
=dx u dt3 3 where ⃗u is the velocity of the particle measured with respect to

the observer O, viz

⃗ = ⃗
u

dx
dt

. (1.241)

The interval with respect to O is given by

= − + ⃗ = − +ds c dt dx c u dt( ) . (1.242)2 2 2 2 2 2 2

Let ′O be the observer or inertial reference frame moving with respect to O
with the velocity ⃗u . We stress here that ⃗u is thought of as a constant velocity
only during the infinitesimal time interval dt. The interval with respect to ′O
is given by

τ= −ds c d . (1.243)2 2 2

Hence

τ = −d
u
c

dt1 . (1.244)
2

2

The time interval τd measured with respect to ′O , which is the observer
moving with the particle, is the proper time of the particle.

(3) The 4-vector velocity η is naturally defined by the components

η
τ

=μ
μdx

d
. (1.245)

The spatial part of η is precisely the proper velocity η ⃗ defined by

η
τ

⃗ = ⃗ =
−

⃗dx
d u c

u
1

1 /
. (1.246)

2 2

The temporal part is

η
τ

= =
−

dx
d

c

u c1 /
. (1.247)0

0

2 2
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(4) The law of conservation of momentum and the principle of relativity put
together forces us to define the momentum in relativity as mass times the
proper velocity and not the mass time of the ordinary velocity, viz

η
τ

⃗ = ⃗ = ⃗ =
−

⃗p m m
dx
d

m

u c
u

1 /
. (1.248)

2 2

This is the spatial part of the 4-vector momentum

η
τ

= =μ μ
μ

p m m
dx
d

. (1.249)

The temporal part is

η
τ

= = =
−

=p m m
dx
d

mc

u c

E
c1 /

. (1.250)0 0
0

2 2

The relativistic energy is defined by

=
−

E
mc

u c1 /
. (1.251)

2

2 2

The 4-vector μp is called the energy–momentum 4-vector.
(5) We note the identity

= − + ⃗ = −μ
μp p

E
c

p m c . (1.252)
2

2
2 2 2

Thus

= ⃗ +E p c m c . (1.253)2 2 2 4

The rest mass is m and the rest energy is clearly defined by

=E mc . (1.254)0
2

(6) Newton’s first law is automatically satisfied because of the principle of
relativity. The second law takes in the theory of special relativity the usual
form provided we use the relativistic momentum, viz

⃗ = ⃗
F

dp
dt

. (1.255)

Newton’s third law does not in general hold in the theory of special
relativity. We can define a 4-vector proper force which is called the
Minkowski force by the following equation

τ
=μ

μ
K

dp
d

. (1.256)
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The spatial part is

τ
⃗ = ⃗ =

−
⃗K

dp
d u c

F
1

1 /
. (1.257)

2 2

Exercise 15:

We consider a particle in the reference frame O moving a distance dx in the
x-direction during a time interval dt. The velocity with respect to O is

=u
dx
dt

. (1.258)

In the reference frame ′O the particle moves a distance ′dx in a time interval ′dt given
by

vγ′ = −dx dx dt( ) (1.259)

⎜ ⎟⎛
⎝

⎞
⎠

vγ′ = −dt dt
c

dx . (1.260)
2

The velocity with respect to ′O is therefore

v
v

′ = ′
′

= −
−

u
dx
dt

u
u c1 /

. (1.261)
2

In general if ⃗V and ⃗ ′V are the velocities of the particle with respect to O and ′O
respectively and v ⃗ is the velocity of ′O with respect to O. Then

v
v

⃗ ′ =
⃗ − ⃗

− ⃗ ⃗
V

V

V c1 /
. (1.262)

2

Exercise 16:

The Dirac equation can trivially be put in the form

⎜ ⎟⎛
⎝

⎞
⎠

ψ γ γ γ ψℏ∂
∂

= ℏ ∂ +i
t

c
i

mc . (1.263)i
i

0 2 0

The Dirac Hamiltonian is

α β α γ γ β γ= ℏ
⃗∇⃗ + = =H

c
i

mc , , . (1.264)i i2 0 0

This is a Hermitian operator as it should be.
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Exercise 17:

APoincaré transformation combines a translation awith aLorentz transformationΛ:

⟶ = Λ +μ μ
ν
μ ν μ′x x x a . (1.265)

The invariance of the interval ds2 under Poincaré transformations means that

η η= =μν
μ ν

μν
μ ν′ ′ds dx dx dx dx . (1.266)2

This leads to the condition

η η η ηΛ Λ = ⇔ Λ Λ =μν ρ
μ

σ
ν

ρσ . (1.267)T

Explicitly we write this as

η η= Λ Λ
= Λ Λ

ν
μ

ρ
μ

β
ρ β

ν

ρ
μ ρ

ν.
(1.268)

But we also have

δ = Λ Λν
μ μ

ρ
ρ

ν
−( ) . (1.269)1

In other words, we have

Λ = Λρ
μ μ

ρ
−( ) . (1.270)1

Since = Λμ μ
ν

ν− ′x x( )1 we have

∂
∂

= Λ
μ

ν
μ

ν
′

−x

x
( ) . (1.271)1

Hence

∂′ = Λ ∂ν
μ

ν μ
−( ) . (1.272)1

Thus

η
η
η

η

∂′∂ = ∂′∂′

= Λ Λ ∂ ∂
= Λ Λ ∂ ∂
= Λ Λ ∂ ∂
= ∂ ∂

μ
μ μν

μ ν

μν ρ
μ

λ
ν ρ λ

μν
μ

ρ
ν

λ
ρ λ

ρλ
ρ λ

μ
μ

′

− −( ) ( )

( )
.

(1.273)
T

1 1

Exercise 18:

(1) We have

′ =′V x R V x( ) ( ). (1.274)i ij j
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The generators are given by the angular momentum operators J i which
satisfy the commutation relations

ε= ℏJ J i J[ , ] . (1.275)i j ijk k

Thus, a rotation with an angle θ∣ ∣ about the axis θ̂ is obtained by
exponentiation, viz

= θ−R e . (1.276)i Ji i

The matrices R form an n-dimensional representation with = +n j2 1where
j is the spin quantum number. The quantum numbers are therefore given by
j and m.

(2) The angular momentum operators J i are given by

ε= − ℏ ∂J i x . (1.277)i ijk j k

Thus

ε=
= − ℏ ∂ − ∂

J J
i x x( ).

(1.278)
ij ijk k

i j j i

We compute

η η η η= ℏ − − +J J i J J J J[ , ] ( ). (1.279)ij kl jk il ik jl jl ik il jk

(3) Generalization to four-dimensional Minkowski space yields

= − ℏ ∂ − ∂μν μ ν ν μJ i x x( ). (1.280)

Now we compute the commutation relations

η η η η= ℏ − − +μν ρσ νρ μσ μρ νσ νσ μρ μσ νρJ J i J J J J[ , ] ( ). (1.281)

(4) A solution of is given by the 4 × 4 matrices

J δ δ δ δ= ℏ −μν
αβ α

μ
β
ν

β
μ

α
ν( )i( ) . (1.282)

Equivalently

J η δ δ η= ℏ −μν α
β

μα
β
ν

β
μ να( )i( ) . (1.283)

We compute

J J η η δ η η δ η η δ η η δ= ℏ − − +μν α
β

ρσ β
λ

μα ρν
λ
σ μα σν

λ
ρ να ρμ

λ
σ να σμ

λ
ρ( )i( ) ( ) ( ) (1.284)2

J J η η δ η η δ η η δ η η δ= ℏ − − +ρσ α
β

μν β
λ

ρα μσ
λ
ν ρα σν

λ
μ σα ρμ

λ
ν σα νρ

λ
μ( )i( ) ( ) ( ) . (1.285)2
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Hence

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

J J

J J J J

η η δ η δ η η δ η δ

η η δ η δ η η δ η δ

η η η η

= ℏ − − −

− − + −

= ℏ − − +

μν ρσ α
λ

μσ να
λ
ρ ρα

λ
ν νσ μα

λ
ρ ρα

λ
μ

μρ να
λ
σ σα

λ
ν νρ μα

λ
σ σα

λ
μ

μσ νρ α
λ

νσ μρ α
λ

μρ νσ α
λ

νρ μσ α
λ

(
)

i

i

[ , ] ( )

[ ( ) ( ) ( ) ( ) ].

(1.286)

2

(5) A finite Lorentz transformation in the vector representation is

JΛ = ω− ℏ μν
μν

e . (1.287)i
2

ωμν is an antisymmetric tensor. An infinitesimal transformation is given by

JωΛ = −
ℏ μν

μνi
1

2
. (1.288)

A rotation in the xy-plane corresponds to ω ω θ= − = −12 21 while the rest of
the components are zero, viz

⎜ ⎟⎛
⎝

⎞
⎠

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
Jθ θ

θ
Λ = +

ℏ
=

−
α

β

α

β
i

1

1 0 0 0
0 1 0
0 1 0
0 0 0 1

. (1.289)12

A boost in the x-direction corresponds to ω ω β= − = −01 10 while the rest of
the components are zero, viz

⎜ ⎟⎛
⎝

⎞
⎠

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
Jβ

β
βΛ = +

ℏ
=

−
−α

β

α

β
i

1

1 0 0
1 0 0

0 0 1 0
0 0 0 1

. (1.290)01

Exercise 19:

(1) We compute

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
σ σ= − ⃗ ⃗ =

− − −

− + +
μ

μp
E
c

p

E
c

p p ip

p ip
E
c

p

( )

( )
(1.291)

3 1 2

1 2 3

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
σ σ¯ = + ⃗ ⃗ =

+ −

+ −
μ

μp
E
c

p

E
c

p p ip

p ip
E
c

p
. (1.292)

3 1 2

1 2 3
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Thus

σ σ̄ =μ
μ

μ
μp p m c( )( ) . (1.293)2 2

(2) Recall the four possible solutions:

⎜ ⎟⎛
⎝

⎞
⎠

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

= ⇔ =
+

+

u u N
E
c

p

mc
p ip

mc

1
0

1
0

(1.294)A
(1) (1)

3

1 2

⎜ ⎟⎛
⎝

⎞
⎠

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

= ⇔ =
−

−

u u N
p ip

mc
E
c

p

mc

0
1

0
1

(1.295)A
(4) (4)

1 2

3

⎜ ⎟⎛
⎝

⎞
⎠

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

= ⇔ =

−

− +u u N

E
c

p

mc
p ip

mc

1
0

1
0

(1.296)B
(3) (3)

3

1 2

⎜ ⎟⎛
⎝

⎞
⎠

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

= ⇔ =

− −

+u u N

p ip
mc

E
c

p

mc

0
1

0
1

. (1.297)B
(2) (2)

1 2

3

The normalization condition is

γ¯ = = + =+ + +uu u u u u u u mc2 . (1.298)A B B A
0
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We obtain

= =
+

N N
m c

E
c

p
. (1.299)

(1) (2)
2 2

3

(3) Recall that

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

v ⃗ = − − ⃗ =

−
−

+E p u E p N

E
c

p

mc
p ip

mc

( , ) ( , )

1
0

, (1.300)(1) (3) (3)

3

1 2

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

v ⃗ = − − ⃗ = − −

−
−

E p u E p N
p ip

mc
E
c

p

mc

( , ) ( , )

0
1

. (1.301)(2) (4) (4)

1 2

3

The normalization condition in this case is

vv v v v v v vγ¯ = = + = −+ + + mc2 . (1.302)A B B A
0

We obtain now

= =
−

N N
m c

E
c

p
. (1.303)

(3) (4)
2 2

3

(4) Let us define

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ξ ξ= =1

0
, 0

1
. (1.304)0

1
0
2

We have

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

ξ

σ
ξ σ

σ ξ

σ ξ

σ ξ

σ ξ
= + ⃗ ⃗ =

¯
=

¯μ
μ

μ
μ

μ
μ

μ
μ

μ
μ

u N E
c

p

mc

N
p

p

p

p

p

1
(1.305)(1) (1)

0
1

0
1

(1) 0
1

0
1

1

1
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⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

σ
ξ

ξ
σ

σ ξ

σ ξ

σ ξ

σ ξ
=

− ⃗ ⃗
=

¯ ¯
=

¯μ
μ

μ
μ

μ
μ

μ
μ

μ
μ

u N

E
c

p

mc
N

p

p

p

p

p

1
. (1.306)(2) (2) 0

2

0
2

(2) 0
2

0
2

2

2

The spinors ξ1 and ξ2 are defined by

ξ
σ

ξ
σ

ξ= = ¯

+μ
μ

μ
μ

N
p

p
E
c

p

1
(1.307)

1 (1)
0
1

3
0
1

ξ
σ

ξ
σ

ξ=
¯

=
+μ

μ
μ

μ
N

p

p
E
c

p

1
. (1.308)

2 (2)
0
2

3
0
2

They satisfy

ξ ξ δ=+( ) . (1.309)r s rs

Similarly, let us define

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠η η= =1

0
, 0

1
. (1.310)0

1
0
2

Then we have

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟v

σ
η

η
σ

σ η

σ η

σ η

σ η
= −

− ⃗ ⃗
= −

¯ − ¯
=

− ¯μ
μ

μ
μ

μ
μ

μ
μ

μ
μ

N

E
c

p

mc N
p

p

p

p

p

1
(1.311)(1) (3)

0
1

0
1

(3) 0
1

0
1

1

1

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟v

η

σ
η

σ

σ η

σ η

σ η

σ η
=

−
+ ⃗ ⃗ =

− ¯
=

− ¯μ
μ

μ
μ

μ
μ

μ
μ

μ
μ

N E
c

p

mc

N
p

p

p

p

p

1
(1.312)(2) (4)

0
2

0
2

(4) 0
2

0
2

2

2

η
σ

η
σ

η= −
¯

= −
−μ

μ
μ

μ
N

p

p
E
c

p

1
(1.313)

1 (3)
0
1

3
0
1
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η
σ

η
σ

η= = ¯

−μ
μ

μ
μ

N
p

p
E
c

p

1
. (1.314)

2 (4)
0
2

3
0
2

Again they satisfy

η η δ=+( ) . (1.315)r s rs

Exercise 20:

(1) We have

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟v

σ ξ

σ ξ

σ η

σ η
⃗ =

¯
⃗ =

− ¯
μ

μ

μ
μ

μ
μ

μ
μ

u E p
p

p
E p

p

p
( , ) , ( , ) . (1.316)r

r

r
r

r

r
( ) ( )

We compute

γ ξ σ σ ξ ξ ξ δ¯ = = ¯ = =μ
μ

ν
ν+ + +u u u u p p mc mc2 ( )( ) 2 2 (1.317)r s r s r s r s rs( ) ( ) ( ) 0 ( )

v v v vγ η σ σ η η η δ¯ = = − ¯ = − = −μ
μ

ν
ν+ + +p p mc mc2 ( )( ) 2 2 . (1.318)r s r s r s r s rs( ) ( ) ( ) 0 ( )

We have used

σ σ̄ =μ
μ

ν
νp p m c( )( ) (1.319)2 2

ξ ξ δ η η δ= =+ +, . (1.320)r s rs r s rs

We also compute

v vγ ξ σ σ η ξ σ σ η¯ = = − ¯ + ¯ =μ
μ

ν
ν

μ
μ

ν
ν+ + +u u p p p p( )( ) ( )( ) 0. (1.321)r s r s r s r s( ) ( ) ( ) 0 ( )

A similar calculation yields

v vγ¯ = =+u u 0. (1.322)r s r s( ) ( ) ( ) 0 ( )

(2) Next we compute

ξ σ σ ξ ξ ξ δ= + ¯ = =μ
μ

μ
μ+ + +u u p p

E
c

E
c

( )
2 2

(1.323)r s r s r s rs( ) ( )

v v η σ σ η η η δ= + ¯ = =μ
μ

μ
μ+ + +p p

E
c

E
c

( )
2 2

. (1.324)r s r s r s rs( ) ( )

We have used

σ σ σ σ= = −μ μ(1, ), (1, ). (1.325)i i

A Modern Course in Quantum Field Theory, Volume 1

1-46



We also compute

v ξ σ σ σ σ ξ⃗ − ⃗ = ¯ − ¯ =μ
μ

ν
ν

μ
μ

ν
ν+ +( )u E p E p p p p p( , ) ( , ) ( )( ) ( )( ) 0. (1.326)r s r s( ) ( )

Similarly, we compute that

v − ⃗ ⃗ =+ E p u E p( , ) ( , ) 0. (1.327)r s( ) ( )

In the above two equation we have used the fact that

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟v

σ η

σ η
− ⃗ =

¯

−
μ

μ

μ
μ

E p
p

p
( , ) . (1.328)r

r

r
( )

(3) Next we compute

⎜ ⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝

⎞
⎠

∑ ∑

∑

γ

σ ξ ξ σ σ ξ ξ σ

σ ξ ξ σ σ ξ ξ σ

⃗ ¯ ⃗ = ⃗ ⃗

=
¯

¯ ¯ ¯
μ

μ
μ

μ
μ

μ
μ

μ

μ
μ

μ
μ

μ
μ

μ
μ

+

+ +

+ +

u E p u E p u E p u E p

p p p p

p p p p

( , ) ( , ) ( , ) ( , )

0 1
1 0

.

(1.329)

s s

s

s s s s

s s s s

s s s s

( ) ( ) ( ) ( ) 0

We use

∑ ξ ξ =+ 1. (1.330)
s

s s

We obtain

⎛
⎝⎜

⎞
⎠⎟∑ σ

σ γ⃗ ¯ ⃗ = ¯ = +μ
μ

μ
μ

μ
μu E p u E p

mc p
p mc

p mc( , ) ( , ) . (1.331)
s

s s( ) ( )

Similarly we use

∑ η η =+ 1 (1.332)
s

s s

to calculate

⎛
⎝⎜

⎞
⎠⎟v v∑ σ

σ γ⃗ ¯ ⃗ =
−
¯ − = −μ

μ

μ
μ

μ
μE p E p

mc p
p mc

p mc( , ) ( , ) . (1.333)
s

s s( ) ( )

Exercise 21:

Under Lorentz transformations we have the following transformation laws

ψ ψ ψ⟶ ′ ′ = Λx x S x( ) ( ) ( ) ( ) (1.334)
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γ γ γ⟶ ′ =μ μ μ (1.335)

∂ ⟶∂′ = Λ ∂μ ν
μ

ν μ
−( ) . (1.336)1

Thus the Dirac equation γ ψℏ ∂ − =μ
μi mc( ) 0 becomes

γ ψℏ ∂′ − ′ =μ
μ′i mc( ) 0, (1.337)

or equivalently

γ ψℏ Λ Λ Λ ∂ − =ν
μ

μ
ν

− − ′i S S mc( ( ) ( ) ( ) ) 0. (1.338)1 1

We must therefore have

γ γΛ Λ Λ =ν
μ

μ ν− −S S( ) ( ) ( ) , (1.339)1 1

or equivalently

γ γΛ Λ Λ =ν
μ

μ ν− −S S( ) ( ) ( ) . (1.340)1 1

We consider an infinitesimal Lorentz transformation

J Jω ωΛ = −
ℏ

Λ = +
ℏαβ

αβ
αβ

αβ−i i
1

2
, 1

2
. (1.341)1

The corresponding ΛS( ) must also be infinitesimal of the form

ω ωΛ = −
ℏ

Γ Λ = +
ℏ

Γαβ
αβ

αβ
αβ−S

i
S

i
( ) 1

2
, ( ) 1

2
. (1.342)1

By substitution we get

J γ γ− = Γαβ μ
ν μ ν

αβ( ) [ , ]. (1.343)

Explicitly this reads

⎡⎣ ⎤⎦δ γ δ γ γ− ℏ − = Γν
β α

ν
α β

ν
αβ( )i , , (1.344)

or equivalently

γ γ
γ δ γ

γ

γ δ γ δ γ

Γ = ℏ
Γ = − ℏ
Γ =

Γ = − ℏ −( )

i

i

i

[ , ]

[ , ]

[ , ] 0

[ , ] .

(1.345)

i i

j
i

j
i

ij

k
ij

k
j i

k
i j

0
0

0 0

0

A solution is given by

γ γΓ = ℏμν μ νi
4

[ , ]. (1.346)
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Exercise 22:

The Dirac spinor ψ changes under Lorentz transformations as

ψ ψ ψ⟶ ′ ′ = Λx x S x( ) ( ) ( ) ( ) (1.347)

Λ = ω− ℏ Γαβ
αβ

S e( ) . (1.348)i
2

Since γ γ γ γ=μ μ+( ) 0 0 we get γ γΓ = Γμν μν+( ) 0 0. Therefore

γ γΛ = Λ+ −S S( ) ( ) . (1.349)0 1 0

In other words

ψ ψ ψ¯ ⟶ ¯ ′ ′ = ¯ Λ −x x x S( ) ( ) ( ) ( ) . (1.350)1

As a consequence

ψψ ψ ψ ψψ¯ ⟶ ¯ ′ ′ = ¯ (1.351)

ψγ ψ ψ γ ψ ψψ¯ ⟶ ¯ ′ ′ = ¯ (1.352)5 5

ψγ ψ ψ γ ψ ψγ ψ¯ ⟶ ¯ ′ ′ = Λ ¯μ μ μ
ν

ν (1.353)

ψγ γ ψ ψ γ γ ψ ψγ γ ψ¯ ⟶ ¯ ′ ′ = Λ ¯μ μ μ
ν

ν . (1.354)5 5 5

We have used γ Γ =μν[ , ] 05 and γ γ= Λμ μ
ν

ν−S S1 . Finally we compute

ψ ψ ψ ψ ψ ψ

ψ γ γ ψ

ψ ψ

¯ Γ ⟶ ¯ ′Γ ′ = ¯ Γ

= ¯
ℏ

= Λ Λ ¯ Γ

μν μν μν

μ ν

μ
α

ν
β

αβ

−

− −

S S
i

S S S S
4

[ , ]

.

(1.355)

1

1 1

Exercise 23:

(1) The Clifford algebra in three Euclidean dimensions is solved by Pauli
matrices, viz

γ γ δ γ σ= ≡{ , } 2 , . (1.356)i j ij i i

Any 2 × 2 matrix can be expanded in terms of the Pauli matrices and the
identity. In other words

σ= +×M M M1 . (1.357)i i2 2 0

(2) Any 4 × 4 matrix can be expanded in terms of a 16 antisymmetric
combination of the Dirac gamma matrices. The four-dimensional identity
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and the Dirac matrices provide the first five independent 4 × 4 matrices. The
product of two Dirac gamma matrices yield six different matrices which,
because of γ γ η=μ ν μν{ , } 2 , can be encoded in the six matrices Γμν defined by

γ γΓ = ℏμν μ νi
4

[ , ]. (1.358)

There are four independent 4 × 4 matrices formed by the product of three
Dirac gamma matrices. They are

γ γ γ γ γ γ γ γ γ γ γ γ, , , . (1.359)0 1 2 0 1 3 0 2 3 1 2 3

These can be rewritten as

ε γ γμναβ
βi . (1.360)5

The product of four Dirac gamma matrices leads to an extra independent
4 × 4 matrix which is precisely the gamma five matrix. In total there are

+ + + + =1 4 6 4 1 16 antisymmetric combinations of Dirac gamma
matrices. Hence, any 4 × 4 matrix can be expanded as

γ ε γ γ γ= + + Γ + +μ
μ

μν
μν

μνα
μναβ

β×M M M M M i M1 . (1.361)4 4 0
5

5
5

Exercise 24:

(1) We have

γ γ γ γ γ= i . (1.362)5 0 1 2 3

Thus

ε γ γ γ γ ε γ γ γ γ

ε γ γ γ γ

ε γ γ γ γ

γ γ γ γ
γ

−
!

= −
!

= −
!

= −
!

=
=

μνρσ
μ ν ρ σi i

i

i

i

4 4
(4)

4
(4.3)

4
(4.3.2)

.

(1.363)

abc
a b c

ij
i j

0
0

0 3
0 3

0123
0 1 2 3

0 1 2 3

5

We have used

ε ε= − = −1. (1.364)0123
0123
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We also verify

γ γ γ γ γ γ γ γ γ
γ γ γ γ γ γ

γ γ γ γ

= −
=
= −
=

( ) .

.

.
1

(1.365)

5 2 0 1 2 3 0 1 2 3

1 2 3 1 2 3

2 3 2 3

γ γ γ γ γ
γ γ γ γ

γ γ γ γ
γ γ γ γ

γ γ γ γ
γ

= −
=
= −
= −
=
=

+ + + + +i

i

i

i

i

( ) ( ) ( ) ( ) ( )

(1.366)

5 3 2 1 0

3 2 1 0

0 3 2 1

0 1 3 2

0 1 2 3

5

γ γ γ γ γ γ γ γ= = = ={ , } { , } { , } { , } 0. (1.367)5 0 5 1 5 2 5 3

From this last property we conclude directly that

γ Γ =μν[ , ] 0. (1.368)5

(2) Hence the Dirac representation is reducible. To see this more clearly we
work in the Weyl or chiral representation given by

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟γ γ σ

σ
= =

−
1

1
0

0
, 0

0
. (1.369)i

i

i
0 2

2

In this representation we compute

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠γ σ σ σ

σ σ σ
= = −i 0

0
1 0

0 1
. (1.370)5

1 2 3

1 2 3

Hence by writing the Dirac spinor as

⎜ ⎟⎛
⎝

⎞
⎠ψ

ψ
ψ= , (1.371)L

R

we get

⎜ ⎟⎛
⎝

⎞
⎠

γ ψ ψΨ = + =1
2

0 , (1.372)R
R

5

and

⎜ ⎟⎛
⎝

⎞
⎠

γ ψ
ψ

Ψ = − =1
2 0

. (1.373)L
L

5
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In other words

γ γΨ = −Ψ Ψ = Ψ, . (1.374)L L R R
5 5

The spinors ΨL and ΨR do not mix under Lorentz transformations since they
are eigenspinors of γ5 which commutes with Γab. In other words

Ψ ⟶Ψ′ ′ = Λ Ψx x S x( ) ( ) ( ) ( ) (1.375)L L L

Ψ ⟶Ψ′ ′ = Λ Ψx x S x( ) ( ) ( ) ( ). (1.376)R R R

(3) The Dirac equation is

γ ψℏ ∂ − =μ
μi mc( ) 0. (1.377)

In terms of ψL and ψR this becomes

σ ψ ψ σ ψ ψℏ ∂ + ∂ = ℏ ∂ − ∂ =i mc i mc( ) , ( ) . (1.378)i
i R L

i
i L R0 0

For a massless theory we get two fully decoupled equations

σ ψ σ ψℏ ∂ + ∂ = ℏ ∂ − ∂ =i i( ) 0, ( ) 0. (1.379)i
i R

i
i L0 0

These are known as the Weyl equations. They are relevant in describing
neutrinos. It is clear that ψL describes a left-moving particle and ψR describes
a right-moving particle.
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