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Classical Mechanics
Lecture notes

Konstantin K Likharev

Chapter 5

Oscillations

In this course, oscillations and waves are discussed in detail because of their key
importance for fundamental and applied physics. This chapter starts with discussion of
the so-called ‘linear’ (or ‘harmonic’) oscillator whose differential equation of motion is
linear and hence allows the full analytical solution, and then proceeds to ‘nonlinear’
and parametric systems whose dynamics may only be explored by either approximate
analytical or numerical methods.

5.1 Free and forced oscillations
In section 3.2 we briefly discussed oscillations in a very important Hamiltonian
system—a 1D harmonic oscillator described by a simple 1D Lagrangian1

κ≡ ̇ − = ̇ −L T q U q
m

q q( ) ( )
2 2

, (5.1)2 2

whose Lagrange equation of motion2,

κ ω ω κ̈ + = ̈ + = ≡ ⩾mq q q q
m

0, i.e. 0, with 0, (5.2)0
2

0
2

is a linear homogeneous differential equation. Its general solution is given by
Eq. (3.16), which is frequently useful to recast into another, amplitude-phase form:

ω ω ω φ= + = −q t u t v t A t a( ) cos sin cos ( ), (5.3 )0 0 0

1 For simplicity of notation, in this chapter I will drop indices ‘ef’ in the energy components T and U, and
parameters such as m, κ, etc. However, the reader should still remember that T and U do not necessarily
coincide with the actual kinetic and potential energies (even if those energies may be uniquely identified)—see
section 3.1.
2ω0 is usually called the own frequency of the oscillator. In quantum mechanics, the Germanized version of the
same term, eigenfrequency, is more commonly used. In this series I will use either of the terms, depending on
the context.
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where A is the amplitude and φ the phase of the oscillations, which are determined by
the initial conditions. Mathematically, it is frequently easier to work with sinusoidal
functions as complex exponents, by rewriting Eq. (5.3a) in one more form3:

= =ω φ ω− − −q t Ae ae b( ) Re [ ] Re [ ], (5.3 )i t i t( )0 0

where a is the complex amplitude of the oscillations:

φ φ≡ = = = = =φa Ae a A a A u a A v, , Re cos , Im sin . (5.4)i

For an autonomous, Hamiltonian oscillator, Eq. (5.3) gives the full classical
description of its dynamics. However, it is important to understand that this free-
oscillation solution, with a constant amplitude A, is due to the conservation of
energy E = T + U = κA2/2 of the oscillator. If its energy changes by any reason, the
description needs to be generalized.

First of all, if the energy leaks out of the oscillator to its environment (the effect
usually called the energy dissipation), the free oscillation decay with time. The
simplest model of this effect is represented by an additional linear drag (or
‘kinematic friction’) force, proportional to the generalized velocity and directed
opposite to it:

η= − ̇F q, (5.5)v

where constant η is called the drag coefficient4. The inclusion of this force modifies
the equation of motion (5.2) to become

η κ̈ + ̇ + =mq q q a0. (5.6 )

This equation is frequently rewritten in the form

δ ω δ η̈ + ̇ + = ≡q q q
m

b2 0, with
2

, (5.6 )0
2

where parameter δ is called the damping coefficient (or just ‘damping’). Note that
Eq. (5.6) is still a linear homogeneous second-order differential equation, and its
general solution still has the form of the sum (3.13) of two exponents of the type exp
{λt}, with arbitrary pre-exponential coefficients. Plugging such an exponent into
Eq. (5.6), we obtain the following algebraic characteristic equation for λ:

λ δλ ω+ + =2 0. (5.7)2
0
2

3Note that this is the so-called physics convention. Most engineering texts use the opposite sign in the
imaginary exponent, exp{−iωt} → exp{iωt}, with the corresponding sign implications for intermediate
formulas, but (of course) similar final results for real variables.
4Here Eq. (5.5) is treated as a phenomenological model, but in statistical mechanics such a dissipative termmay be
derived as an average force exerted on the oscillator by its environment, at very general assumptions. As will be
discussed in detail later in this series (Part SM chapter 5 andPartQM chapter 7), due to the ts numerous degrees of
freedom of a typical environmental (think about the molecules of air surrounding the usual mechanical
pendulum), its force also has a random component; as a result, the dissipation is fundamentally related to
fluctuations. The latter effects may be neglected (as they are in this course) only if E is much higher than the energy
scale of the random fluctuations—in the thermal equilibrium at temperature T, the larger of kBT and ħω0/2.
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Solving this quadratic equation, we get

λ δ ω ω ω δ= − ± ′ ′ ≡ −± i , where ( ) , (5.8)0 0 0
2 2 1/2

so that for not-very-high damping (δ < ω0)
5 we obtain the following generalization

of Eq. (5.3):

ω ω
ω φ

= +
= ′ + ′
= ′ −

λ λ

δ

δ

+ −
−

−

+ −q t c e c e

u t v t e

A e t

( )

( cos sin )

cos ( ).

(5.9)

t t

t

t

free

0 0 0 0

0 0 0

The result shows that, besides a certain correction to the free-oscillation frequency (which
is very small in the most interesting low damping limit, δ ≪ ω0), the energy dissipation
leads to an exponential decay of oscillation amplitude with time constant τ = 1/δ:

τ
δ η

= ≡ =τ−A A e
m

, where
1 2

. (5.10)t
0

/

A very popular, dimensionless measure of damping is the so-called quality factor Q
(or just the Q-factor) that is defined as ω0/2δ, and may be rewritten in several other
useful forms:

ω
δ

ω
η

κ
η

π τ ω τ≡ = = = =Q
m m

2
( )

2
, (5.11)0 0

1/2
0

T

whereT = 2π/ω0 is the oscillation period in the absence of damping—see Eq. (3.29).
Since the oscillation energy E is proportional to A2, i.e. decays as exp{−2t/τ}, with
the time constant τ/2, the last form of Eq. (5.11) may be used to rewrite the Q-factor
in one more form:

ω ω=
− ̇ ≡Q
E
E

E
( )

, (5.12)0 0
P

where P is the dissipation power. (Two other practical ways to measure Q will be
discussed below.) The range of Q-factors of important oscillators is very broad, all
the way from Q ∼ 10 for a human leg (with relaxed muscles), to Q ∼ 104 for the
quartz crystals used in ‘electronic’ clocks and watches, all the way up to Q ∼ 1012 for
carefully designed microwave cavities with superconducting walls.

In contrast to the decaying free oscillations, the forced oscillations, induced by an
external force F(t), may maintain their amplitude (and hence energy) infinitely, even
at non-zero damping. This process may be described using a still linear but now
inhomogeneous differential equation

η κ̈ + ̇ + =mq q q F t a( ), (5.13 )

5 Systems with very high damping (δ > ω0) can hardly be called oscillators, and although they are used
in engineering and physics experiments (e.g. for the shock, vibration, and sound isolation), for their discussion
I have to refer the interested reader to special literature—see, e.g. [1]. Let me only note that at very
high damping, δ ≫ ω0, the system may be adequately described by just one parameter: the relaxation time
1/λ+ ≈ 2δ/ω0

2 ≡ η/m ≫ ω0.
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or, more conveniently for analysis, the following generalization of Eq. (5.6b):

δ ω̈ + ̇ + = ≡q q q f t f t F t m b2 ( ), where ( ) ( )/ . (5.13 )0
2

For amechanical linear, dissipative 1Doscillator (5.6), under the effect of an additional
external force F(t), Eq. (5.13a) is just an expression of Newton’s second law. However,
according to Eq. (1.41), Eq. (5.13) is valid for any dissipative, linear6 1D system whose
Gibbs potential energy (1.39) has the form UG(q, t) = κq2/2 − F(t)q.

The forced-oscillation solutions may be analyzed by two mathematically equiv-
alent methods whose relative convenience depends on the character of function f(t)

(i) Frequency domain. Let us present function f(t) as a Fourier sum of sinusoidal
harmonics7:

∑=
ω

ω
ω−f t f e( ) . (5.14)

i t

Then, due to the linearity of Eq. (5.13), its general solution may be represented as a
sum of the decaying free oscillations (5.9) with the frequency ω0́, independent of the
function F(t), and forced oscillations due to each of the Fourier components of the
force8:

∑= + =
ω

ω
ω−q t q t q t q t a e( ) ( ) ( ), ( ) . (5.15)

i t
free forced forced

Plugging Eq. (5.15) into Eq. (5.13), and requiring that the factors before each e−iωt in
both parts be equal, we obtain

χ ω=ω ωa f ( ), (5.16)

where the complex function χ(ω), which in our particular case equals

χ ω
ω ω ωδ

=
− − i

( )
1

( ) 2
, (5.17)

0
2 2

is called either the response function or (particularly for non-mechanical oscillators)
the generalized susceptibility. From here, and Eq. (5.4), the amplitude of the
oscillations under the effect of a sinusoidal force is

χ ω χ ω
ω ω ωδ

≡ = ∣ ∣ =
− +

ω ω ω ⎡
⎣⎢

⎤
⎦⎥

A a f ( ) , with ( )
1

( ) (2 )

.
(5.18)

0
2 2 2 2

1/2

6 This is a very unfortunate, but common jargon, meaning ‘the system described by linear equations of motion’.
7Here, in contrast to Eq. (5.3b), we may drop the operator Re, assuming that f−ω = fω*, so that the imaginary
components of the sum compensate each other.
8 In physics, this mathematical property of linear equations is frequently called the linear superposition
principle.
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This formula describes, in particular, an increase of the oscillation amplitude Aω at
ω → ω0—see the left panel in figure 5.1. At the exact resonance,

χ ω
ω δ

=ω ω=( )
1

2
, (5.19)

0
0

so that, according to Eq. (5.11), the ratio of the response magnitudes at ω = ω0 and
ω = 0 (∣χ(ω)∣ω=0 = 1/ω0

2) is exactly equal to the Q-factor of the oscillator. Thus, the
response increase is particularly strong in the low damping limit (δ≪ ω0, i.e.Q≫ 1);
moreover at Q → ∞ and ω → ω0 the response diverges. (This fact is very useful for
the approximate methods to be discussed later in this chapter.) This is of course the
classical description of the famous phenomenon of resonance, so ubiquitous in
physics.

Due to the increase of the resonance peak height, its width is inversely propor-
tional toQ. 9 Quantitatively, in the most interesting low-damping limit, i.e. atQ≫ 1,
the reciprocal Q-factor gives the normalized value of the so-called full-width at half-
maximum (FWHM) of the resonance curve:

ω
ω
Δ =

Q
1

. (5.20)
0

Indeed, this Δω is defined as the difference (ω+−ω−) between the two values of ω at
which the square of the oscillator response function, ∣χ(ω)∣2 (proportional to the
oscillation energy), equals half of its resonance value (5.19). In the low damping
limit, both these points are very close to ω0, so that in the first (linear) approximation
in (ω−ω0) ≪ ω0, we can take (ω0

2−ω2) ≡ −(ω + ω0)(ω−ω0) ≈ (−2ωξ) ≈ (−2ω0ξ),
where

ξ ω ω≡ − (5.21)0

Figure 5.1. Resonance in the linear oscillator, for several values of Q.

9Note that the phase shift φ = arg[χ(ω)] between the oscillations and the external force (see the right panel in
figure 1) makes its steepest change, by π/2, exactly within the same frequency interval Δω.
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is a very convenient parameter called detuning, which will be repeatedly used later in
this chapter. In this approximation, the second of Eqs. (5.18) is reduced to

χ ω
ω δ ξ

=
+

( )
1

4 ( )
. (5.22)2

2 2 2

As a result, the points ω± correspond to ξ2 = δ2, i.e. ω± = ω0 ± δ = ω0(1 ± 1/2Q), so that
Δω ≡ ω+−ω− = ω0/Q, thus proving Eq. (5.20).

(ii) Time domain. Returning to the general problem of linear oscillations, one may
argue that Eqs. (5.9) and (5.15)–(5.17) provide a full solution of the forced
oscillation problem. This is formally correct, but this solution may be very
inconvenient if the external force is far from a sinusoidal function of time, in
particular if it is not periodic at all. In this case, we should first calculate the complex
amplitudes fω participating in the Fourier sum (5.14). In the case of a non-periodic f
(t), this is actually the Fourier integral10,

∫= ω
ω

−∞

+∞
−f t f e dt( ) , (5.23)i t

so that fω should be calculated using the reciprocal Fourier transform,

∫π
= ′ ′ω

ω

−∞

+∞
′f f t e dt

1
2

( ) . (5.24)i t

Now we can use Eq. (5.16) for each Fourier component of the resulting forced
oscillations, and rewrite the last of Eqs. (5.15) as

∫
∫
∫ ∫

∫ ∫

ω

χ ω ω

ω χ ω
π

π
ω χ ω

=

=

= ′ ′

= ′ ′

ω
ω

ω
ω

ω

ω

−∞

+∞
−

−∞

+∞
−

−∞

+∞

−∞

+∞
′−

−∞

+∞

−∞

+∞
′−⎡

⎣⎢
⎤
⎦⎥

q t a e d

f e d

d dt f t e

dt f t d e

( )

( )

( )
1

2
( )

( )
1

2
( ) ,

(5.25)

i t

i t

i t t

i t t

forced

( )

( )

with the response function χ(ω) given, in our case, by Eq. (5.17). Apart from
requiring two integrations, the relation (5.25) is conceptually uncomforting: it seems
to indicate that the oscillator’s coordinate at time t depends not only on the external
force exerted at earlier times tʹ < t, but also at future times. This would contradict
one of the most fundamental principles of physics (and indeed, science as a whole),
the causality: no effect may precede its cause.

10 Let me hope that the reader knows that Eq. (5.23) may be used even for periodic functions; in such a case, fω
is a set of equidistant delta-functions. (A reminder of the basic properties of the δ-function may be found, for
example, in appendix A, section A.14.)
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Fortunately, a straightforward calculation (left for a reader’s exercise) shows that
the response function (5.17) satisfies the following rule11:

∫ χ ω ω τ= <ωτ

−∞

+∞
−e d( ) 0, for 0. (5.26)i

This fact allows the last form of Eq. (5.25) to be rewritten in either of the following
equivalent forms:

∫ ∫ τ τ τ= ′ − ′ ′ = −
−∞

∞
q t f t G t t dt f t G d( ) ( ) ( ) ( ) ( ) , (5.27)

t

forced
0

where G(τ), defined as the Fourier transform of the response function,

∫τ
π

χ ω ω≡ ωτ

−∞

+∞
−G e d( )

1
2

( ) , (5.28)i

is called the (temporal) Green’s function of the system. According to Eq. (5.26),
G(τ) = 0 for all τ < 0.

While the second form of Eq. (5.27) is frequently more convenient for calcu-
lations, its first form is more suitable for understanding the physical sense of the
Green’s function. Indeed, let us consider the particular case, when the force is a
delta-function

δ τ= − ′ ′ < ≡ − ′ >f t t t t t t t( ) ( ), with , i.e. 0, (5.29)

representing an ultimately short pulse at the moment tʹ, with a unit ‘area’ ∫ ′ ′f t dt( ) .
Substituting Eq. (5.29) into Eq. (5.27)12, we obtain

= − ′q t G t t( ) ( ). (5.30)

Thus the Green’s function G(t − tʹ) is just the oscillator’s response to a short pulse of
force, of a unit ‘area’, measured at time t. Hence Eq. (5.27) expresses the linear
superposition principle in the time domain: the full effect of the force f(t) on an
oscillator (actually, any linear system) is a sum of the effects of short pulses of
duration dtʹ and magnitude f(tʹ), each with its own ‘weight’ G(t−tʹ)—see figure 5.2.

This picture may be used for the calculation of the Green’s function for a
particular system. Indeed, Eqs. (5.29)–(5.30) mean that G(τ) is just the solution of the
differential equation of motion of the system, in our case of Eq. (5.13), with the
replacement t → τ and a δ-functional right-hand side:

τ
τ

δ τ
τ

ω τ δ τ+ + =d G
d

dG
d

G
( )

2
( )

( ) ( ). (5.31)
2

2 0
2

11 Eq. (5.26) remains true for any linear physical systems in which f(t) represents a cause, and q(t) its effect.
Following tradition, I discuss the frequency-domain expression of this causality relation (called the Kramers–
Kronig relations) in the Classical Electrodynamics part of this lecture series—see section 7.3.
12 Technically, for this integration, tʹ in Eq. (5.27) should be temporarily replaced with another letter, say tʺ.
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Since Eq. (5.27) describes only the second term in Eq. (5.15), i.e. only the forced
rather than free oscillations, we have to exclude the latter by solving Eq. (5.31) with
zero initial conditions:

τ
− = − =G

dG
d

( 0) ( 0) 0, (5.32)

where t = −0 means the instant immediately preceding t = 0.
This calculation may be simplified even further. Let us integrate both sides of

Eq. (5.31) over an infinitesimal interval including the origin, e.g. [−dτ/2, +dτ/2], and
then follow the limit dτ→ 0. Since the Green’s function has to be continuous because
of its physical sense as the (generalized) coordinate, all terms on the left-hand side
but the first one vanish, while the first term yields dG/dτ∣+0−dG/dτ∣−0. Due to the
second of the conditions (5.32), the last of these two derivatives equals zero, while
the right-hand side of Eq. (5.31) yields 1 upon the integration. Thus, G(τ) may be
calculated for τ > 0 (i.e. for all times when it is different from zero) by solving the
homogeneous version of system’s equation of motion for τ > 0, with the following
special initial conditions:

τ
= =G

dG
d

(0) 0, (0) 1. (5.33)

This approach gives us a convenient way for calculation of Green’s functions of
linear systems. In particular for the oscillator with not-very-low damping (δ > ω0, i.e.
Q > 1/2), imposing the boundary conditions (5.33) on the homogeneous equation’s
solution (5.9), we immediately obtain

τ
ω

ω τ=
′

′δτ−G e( )
1

sin . (5.34)
0

0

(The same result may be obtained directly from Eq. (5.28) with the response function
χ(ω) given by Eq. (5.19). This way is, however, a little bit more cumbersome, and is
left for a reader exercise.)

Relations (5.27) and (5.34) provide a very convenient recipe for solving most
forced oscillation problems. As a very simple example, let us calculate the transient

Figure 5.2. A schematic, finite-interval representation of a force f(t) as a sum of short pulses, and their effects
on the linear system’s response at time t, given by (5.27).
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process in an oscillator under the effect of a constant force being turned on at =t 0,
i.e. proportional to the theta-function of time:

θ= ≡
<
>

⎧⎨⎩f t f t
t

f t
( ) ( )

0, 0,
, 0,

(5.35)0
0

provided that at t < 0 the oscillator was at rest, so that in Eq. (5.15), qfree(t) ≡ 0. Then
the second form of Eq. (5.27), and Eq. (5.34), yield

∫ ∫τ τ τ
ω

ω τ τ= − =
′

′δτ
∞

−q t f t G d f e d( ) ( ) ( )
1

sin . (5.36)
t

0
0

0 0
0

The simplest way to work out such integrals is to represent the sine function under it
as the imaginary part of exp{iω0ʹt}, and merge the two exponents, obtaining

ω δ ω
ω δ

ω
ω=

′ + ′
= − ′ +

′
′δτ ω τ δ− − ′ −

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥q t f

i
e

F
k

e t t( )
1

Im
1

1 cos sin . (5.37)i
t

t
0

0 0 0

0
0

0
0

0

This result, plotted in figure 5.3, is rather natural: it describes nothing more than
the transient from the initial equilibrium position q = 0 to the new equilibrium
position q0 = f0/ω0

2 = F0/κ, accompanied by decaying oscillations. For this particular
simple function f(t), the same result might be also obtained by introducing a new
variable q̃ t( ) ≡ q(t)−q0 and solving the resulting homogeneous equation for q̃ (with
the appropriate initial condition q̃(0) = −q0). However, for more complicated
functions f(t) the Green’s function approach is irreplaceable.

Note that for any particular linear system, its Green’s function should be
calculated only once, and then may be repeatedly used in Eq. (5.27) to calculate
the system response to various external forces—either analytically or numerically.
This property makes the Green’s function approach very popular in many other fields
of physics—with the corresponding generalization or re-definition of the function13.

Figure 5.3. The transient process in a linear oscillator, induced by a step-like force f(t), for the particular case
δ/ω0 = 0.1 (i.e. Q = 5).

13 See, e.g. Part EM section 2.7 and Part QM section 2.2.
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5.2 Weakly nonlinear oscillations
In comparison with systems discussed in the last section, which are described by
linear differential equations with constant coefficients and thus allow a complete
and exact analytical solution, oscillations in nonlinear systems generally present a
complex and, generally, analytically intractable problem. However, much insight
on possible processes14 in such systems may be gained from the discussion of the
important case of weakly nonlinear systems that may be explored analytically. An
example of such a system is given by an anharmonic oscillator—a 1D system
whose higher terms in the potential expansion (3.10) cannot be neglected, but are
small and may be accounted for approximately. If, in addition, damping is low
(or negligible), and the external harmonic force exerted on the system is not too
large (if any), the equation of motion is a slightly modified version of Eq. (5.13):

ω̈ + = ̇ …q q f t q q( , , , ), (5.38)2

where ω ≈ ω0 is the anticipated frequency of oscillations (whose choice is to a
certain extent arbitrary—see below), and the right-hand side f is small (say, scales as
some small dimensionless parameter ε ≪ 1), and may be considered as a
perturbation.

Since at ε = 0, this equation has the sinusoidal solution given by Eq. (5.3), one
might naïvely think that at a non-vanishing but small ε, the approximate solution to
Eq. (5.38) should be sought in the form

ε= + + + ⋯ ∝q t q q q q( ) , where , (5.39)n n(0) (1) (2) ( )

with q(0) = A cos(ω0t−φ) ∝ ε0. This is a good example of an apparently impeccable
mathematical reasoning that would lead to a very inefficient procedure. Indeed, let
us apply it to the problem we already know the exact solution for, namely the free
oscillations in a linear but damped oscillator, for this occasion assuming the
damping to be very low, δ/ω0 ∼ ε ≪ 1. The corresponding equation of motion
(5.6) may be represented in the form (5.38) if we take ω = ω0 and

δ δ ε= − ̇ ∝f q2 , . (5.40)

The naïve approach described above would allow us to find small corrections, of the
order of δ, to the free, non-decaying oscillations A cos(ω0t−φ). However, we already
know from Eq. (5.9) that the main effect of damping is a gradual decrease of the
free-oscillation amplitude to zero, i.e. a very large change of the amplitude, though
at low damping, δ ≪ ω0, this decay takes large time t ∼ τ ≫ 1/ω0. Hence, if we want
our approximate method to be productive (i.e. to work at all time scales, in
particular for forced oscillations with established, constant amplitude and phase),
we need to account for the fact that the small right-hand side of Eq. (5.38) may
eventually lead to essential changes of the oscillation amplitude A (and sometimes,

14 They are frequently called nonlinear oscillations. This is, again, a very unfortunate but generally accepted
slang term for oscillations in systems described by nonlinear equations of motion.
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as we will see below, also of the oscillation phase φ) at large times, because of the
slowly accumulating effects of the small perturbation15.

This goal may be achieved16 by the account of these slow changes already in the
‘0th approximation’, i.e. the basic part of the solution in the expansion (5.39):

ω φ φ ε= − ̇ ̇ → →q A t t t A( )cos[ ( )], with , 0 at 0. (5.41)(0)

(It is evident that the solution (5.9) fits this form.) Let me discuss this approach using
a particular simple but representative example of a dissipative (but high-Q)
pendulum driven by a weak sinusoidal external force with a nearly resonant
frequency:

δ ω ω̈ + ̇ + =q q q f t2 sin cos , (5.42)0
2

0

with |ω − ω0|, δ ≪ ω0, and the force amplitude f0 so small that |q| ≪ 1 at all times.
From what we know about the forced oscillations from section 5.1, it is natural to
identify ω in the left-hand side of Eq. (5.38) with the force frequency. Expanding sinq
into the Taylor series in small q, keeping only the first two terms of this expansion,
and moving all the small terms to the right-hand side, we can rewrite Eq. (5.42) in
the canonical form (5.38)17:

ω δ ξω α ω̈ + = − ̇ + + + ≡ ̇q q q q q f t f t q q2 2 cos ( , , ). (5.43)2 3
0

Hereα=ω0
2/6 in the case of the pendulum (although the calculations belowwill be valid

for any α), and the second term on the right-hand side was obtained using the
approximation already employed in section 5.1: (ω2 − ω0

2)q ≈ 2ω(ω − ω0)q = 2ωξq,
where ξ≡ω−ω0 is thedetuning parameter thatwas alreadyused earlier—seeEq. (5.21).

Now, following the general recipe expressed by Eqs. (5.39) and (5.41), in the first
approximation in f ∝ ε, we may look for the solution to Eq. (5.43) in the form18

ω φ ε= Ψ + Ψ ≡ − ∼q t A q t t q( ) cos ( ), where , . (5.44)(1) (1)

Let us plug this solution into both parts of Eq. (5.43), keeping only the terms of the
first order in ε. Thanks to our (smart:-) choice of ω on the left-hand side of that
equation, the two zero-order terms in that part cancel each other. Moreover, since

15 The same flexible approach is necessary to approximations used in quantum mechanics. The method
discussed here is closer in spirit (but not identical) to the WKB approximation (see, e.g. Part QM section 2.4)
rather to the perturbation theory varieties (Part QM chapter 6).
16 The basic idea of this approach was suggested in 1920 by B van der Pol, and in some textbooks its first
approximation (on which I will focus) is called the van der Pol method. However, in optics and quantum
mechanics, it is commonly called the rotating wave approximation (RWA). In mathematics-oriented texts, this
approach, in particular its extensions to higher approximations, is usually called either the small parameter
method or the asymptotic method. The list of other scientists credited for the development of this method, its
variations and extensions includes, most notably, J H Poincaré, N Krylov, N Bogolyubov, and Yu
Mitroplolsky.
17 This equation is frequently called the Duffing equation (or the equation of the Duffing oscillator), after G
Duffing who was the first to carry out its (rather incomplete) analysis in 1918.
18 For a mathematically rigorous treatment of higher approximations, see, e.g. [2]. A more layman (and
somewhat verbose) discussion of various oscillatory phenomena may be found in the classical text [3].
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each term on the right-hand side of Eq. (5.43) is already of the order of ε, we may
drop q(1) ∝ ε from the substitution into that side at all, because this would give us
only terms O(ε2) or higher. As a result, we get the following approximate equation:

ω δ

ξω α ω

̈ + = ≡ − Ψ

+ Ψ + Ψ +

q q f
d
dt

A

A A f t

2 ( cos )

2 cos ( cos ) cos .
(5.45)

(1) 2 (1) (0)

3
0

According to Eq. (5.41), generally A and φ should be considered as (slow)
functions of time. However, let us leave the analyses of the transient process and
system’s stability until the next section, and use Eq. (5.45) to find stationary
oscillations in the system that are established after an initial transient. For that
limited task, we may take A = const, φ = const, so that q(0) presents sinusoidal
oscillations of frequency ω. Sorting the terms on the right-hand side according to
their time dependence19, we see that it has terms with frequencies ω and 3ω:

ξω α φ

δω φ α

= + + Ψ

+ − Ψ + Ψ

⎛
⎝⎜

⎞
⎠⎟

( )

f A A f

A f A

2
3
4

cos cos

2 sin sin
1
4

cos 3 .

(5.46)

(0) 3
0

0
3

Now comes the main trick of the van der Pol approach: mathematically, Eq. (5.45)
may be viewed as the equation of oscillations in a linear, dissipation-free harmonic
oscillator of frequency ω (not ω0!) under the action of an external force f(t) represented
by the right-hand side of the equation. In our particular case, it has three terms: two
‘quadrature’ components at that very frequency ω, and the third one at frequency 3ω.
As we know from our analysis of this problem in section 5.1, if any of the first two
components is non-vanishing, q(1) grows to infinity—see Eq. (5.19) with δ = 0. At
the same time, by the very structure of the rotating-wave approximation, q(1) has to be
finite—moreover, small! The only way out of this contradiction is to require that the
amplitudes of both quadrature components of f (0) with frequency ω are equal to zero:

ξω α φ δω φ+ + = − =A A f A f2
3
4

cos 0, 2 sin 0. (5.47)3
0 0

These two harmonic balance equations enable us to find both parameters of the
forced oscillations: their amplitude A and phase φ. In particular, the phase may be
readily eliminated from this system (most easily, by expressing sin φ and cos φ from
Eqs. (5.47), and then requiring the sum sin2 φ + cos2 φ to equal 1), and the solution
for the amplitude A recast in the following implicit but convenient form:

ω ξ δ
ξ ξ α

ω
ω ω α

ω
=

+
≡ + = − −

⎛
⎝⎜

⎞
⎠⎟A

f

A
A

A A
4

1
( )

, where ( )
3
8

3
8

. (5.48)2 0
2

2 2 2

2

0

2

19Using the second of Eqs. (5.44), cosωtmay be rewritten as cos(Ψ+ φ) ≡ cosΨ cos φ − sinΨ sin φ. Then using the
identity given, e.g. by Eq. (A.19): cos3 Ψ = (3/4)cos Ψ + (1/4)cos 3Ψ, we obtain Eq. (5.46).
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This expression differs from Eq. (5.22) for the linear resonance in the low-damping
limit only by the replacement of the detuning ξ with its effective amplitude-
dependent value ξ(A)—or, equivalently, the replacement of the frequency ω0 of
the oscillator with its effective, amplitude-dependent value

ω ω α
ω

= −A
A

( )
3
8

. (5.49)0 0

2

The physical meaning of ω0(A) is simple: this is just the frequency of free oscillations
of amplitude A in a similar nonlinear system, but with zero damping20. Indeed, for
δ = 0 and f0 = 0 we could repeat our calculations, assuming that ω is an amplitude-
dependent eigenfrequency ω0(A). Then the second of Eqs. (5.47) is trivially satisfied,
while the second gives Eq. (5.49). Eq. (5.48) enables us to draw the curves of this
nonlinear resonance by just bending the linear resonance plots (figure 5.1) according
to the so-called skeleton curve expressed by Eq. (5.49). Figure 5.4 shows the result of
this procedure. Note that at small amplitude, ω(A)→ ω0, and we return to the usual,
‘linear’ resonance Eq. (5.22).

To bring our solution to its logical completion, we should still find the first
perturbation q(1)(t) from what is left of Eq. (5.45). Since the structure of this equation

Figure 5.4. The nonlinear resonance in the Duffing oscillator, as described by Eq. (5.48), for the particular case
α = ω0

2/6, δ/ω = 0.01 (i.e. Q = 50), and several values of the parameter f0/ω0
2, increased by equal steps from

0.005 to 0.03.

20 This effect of the pendulum’s frequency dependence on its oscillation amplitude was described as early as
1673 by C Huygens, who had earlier invented the pendulum clock, increasing time-keeping accuracy by ∼3
orders of magnitude.
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is similar to Eq. (5.13) with the force of frequency ω3 and zero damping, we may use
Eqs. (5.16) and (5.17) to obtain

ω
α ω φ= − −q t A t( )

1
32

cos 3( ). (5.50)(1)
2

3

Adding this perturbation (note the negative sign!) to the sinusoidal oscillation (5.41),
we see that as the amplitude A of oscillations in a system with α > 0 (e.g. a
pendulum) grows, their waveform becomes a bit more ‘blunt’ near the maximum
deviations from the equilibrium.

The same Eq. (5.50) also allows an estimate of the range of validity of our first
approximation: since it has been based on the assumption |q(1)| ≪ |q(0)| ⩽ A, for this
particular problemwe have to requireαA2/32ω2≪ 1. For a pendulum (with α=ω0

2/6),
this condition becomes A2 ≪ 192. Although numerical coefficients in such strong
inequalities should be taken with a grain of salt, the very large magnitude of this
particular coefficient gives a good hint that the method should give very good results
even for relatively large oscillations with A ∼ 1. In section 5.7 below, we will see that
this is indeed the case.

From the mathematical viewpoint, the next step would be to write the next
approximation as

ε= Ψ + + ∼q t A q t q t q( ) cos ( ) ( ), , (5.51)(1) (2) (2) 2

and plug it into the Duffing equation (5.43), which (thanks to our special choice of
q(0) and q(1)) would retain only ω̈ +q q(2) 2 (2) on its left-hand side. Again, requiring
that amplitudes of two quadrature components of frequency ω on the right-hand
side to be zero, we may obtain the second-order corrections to A and φ. Then we
may use the remaining part of the equation to calculate q(2), and then go after the
third-order terms, etc. However, for most purposes the sum q(0) + q(1), and
sometimes even just the crudest approximation q(0) alone, are completely sufficient.
For example, according to Eq. (5.50), for a simple pendulum (α = ω0

2/6) swinging as
much as between the opposite horizontal positions (A = π/2), the first-order
correction q(1) is of the order of 0.5%. (Soon beyond this value, completely new
dynamic phenomena begin—see section 5.7 below, but they cannot be described by
these successive approximations at all.) For such reasons, higher approximations are
rarely pursued for particular systems.

5.3 Reduced equations
Amuch more important issue is the stability of the solutions described by Eq. (5.48).
Indeed, figure 5.4 shows that within a certain range of parameters, these equations
give three different values for the oscillation amplitude (and phase), and it is
important to understand which of these solutions are stable. Since these solutions are
not the fixed points in the sense discussed in section 3.2 (each point in figure 5.4
represents a nearly sinusoidal oscillation), their stability analysis needs a more
general approach that would be valid for oscillations with amplitude and phase
slowly evolving in time. This approach will also enable the analysis of
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non-stationary (in particular the initial transient) processes, which are of key
importance for some dynamic systems.

First of all, let us formalize the way the harmonic balance equations, such as
Eq. (5.47), are obtained for the general case (5.38)—rather than for the particular
Eq. (5.43) considered in the last section. After plugging in the 0th approximation Eq.
(5.41) into the right-hand side of Eq. (5.38) we have to require the amplitudes of its
both quadrature components of frequency ω to be zero. From the standard Fourier
analysis we know that these requirements may be represented as

Ψ = Ψ =f fsin 0, cos 0, (5.52)(0) (0)

where the top bar means time averaging—in our current case, over the period 2π/ω
of the right-hand side of Eq. (5.52), with the arguments calculated in the 0th
approximation:

ω
ω φ

≡ ̇ ⋯ ≡ Ψ − Ψ …
Ψ = −

f f t q q f t A A
t

( , , , ) ( , cos , sin , ),
with .

(5.53)
(0) (0) (0)

Now, for a transient process the contribution of q(0) on the left-hand side ofEq. (5.38)
is not zero any longer, because both amplitude and phase may be slow functions of
time—see Eq. (5.41). Let us calculate this contribution. The exact result would be

ω ω ω φ

φω φ ω φ ω φ ω φ

̈ + ≡ + −

= ̈ + ̇ − ̇ − − ̇ − ̇ −

⎛
⎝⎜

⎞
⎠⎟q q

d
dt

A t

A A A t A t

cos ( )

( 2 ) cos ( ) 2 ( ) sin ( ).

(5.54)
(0) 2 (0)

2

2
2

2

However, in the first approximation in ε, we may neglect the second derivative of A,
and also the squares and products of the first derivatives of A and φ (which are all of
the second order in ε), so that Eq. (5.54) is reduced to

ω φω ω φ ω ω φ̈ + ≈ ̇ − − ̇ −q q A t A t2 cos( ) 2 sin( ). (5.55)(0) 2 (0)

On the right-hand side of Eq. (5.53), we can neglect the time derivatives of the
amplitude and phase, because this part is already proportional to the small
parameter. Hence, in the first order in ε, Eq. (5.38) becomes

ω φω ω̈ + = ≡ − ̇ Ψ − ̇ Ψq q f f A A(2 cos 2 sin ). (5.56)(1) 2 (1)
ef
(0) (0)

Now, applying Eq. (5.52) to the function fef
(0), and taking into account that the

time averages of sin2 Ψ and cos2 Ψ are both equal to 1/2, while the time average of
the product sinΨ cosΨ vanishes, we get a pair of so-called reduced equations
(alternatively called the ‘RWA equations’ or the ‘van der Pol equations’) for the
time evolution of the amplitude and the phase:

ω
φ

ω
̇ = − Ψ ̇ = ΨA f

A
f a

1
sin ,

1
cos . (5.57 )(0) (0)

Extending the definition Eq. (5.4) of the complex amplitude of oscillations to their
slow evolution in time, a(t) ≡ A(t) exp{iφ(t)}, and differentiating this relation, the
two equations (5.57a) may be also rewritten in the form of either one equation for a:

Classical Mechanics: Lecture notes

5-15



ω ω
̇ = ≡φ ωΨ+a

i
f e

i
f e b, (5.57 )i i t(0) ( ) (0)

or two equations for the real and imaginary parts of a(t) = u(t) + iv(t):

ω
ω

ω
ω̇ = − ̇ =u f t v f t c

1
sin ,

1
cos . (5.57 )(0) (0)

The first-order harmonic balance Eq. (5.52) are evidently just the particular case of
the reduced equations (5.57) for stationary oscillations ( φ̇ = ̇ =A 0)21.

Superficially, the system (5.57a) of two coupled, first-order differential equations
may look more complex than the initial, second-order differential Eq. (5.38), but
actually it is usually much simpler. For example, let us spell them out for the easy
case of free oscillations a linear oscillator with damping. For that, we may reuse the
ready Eq. (5.46) by taking α = f0 = 0, and thus turning Eq. (5.57a) into

ω ω
ξω δω δ̇ = − Ψ ≡ − Ψ + Ψ Ψ ≡ −A f A A A a

1
sin

1
(2 cos 2 sin )sin , (5.58 )(0)

φ
ω ω

ξω δω ξ̇ = Ψ ≡ Ψ + Ψ Ψ ≡
A

f
A

A A b
1

cos
1

(2 cos 2 sin )cos . (5.58 )(0)

The solution of Eq. (5.58a) gives us the same ‘envelope’ law A(t) = A(0)e−δt as the
exact solution (5.10) of the initial differential equation, while the elementary
integration of Eq. (5.58b) yields φ(t) = ξ t + φ(0) = ωt − ω0t + φ(0). This means
that our approximate solution,

ω φ ω φ= − = −δ−q t A t t t A e t( ) ( )cos [ ( )] (0) cos [ (0)], (5.59)t(0)
0

agrees with the exact Eq. (5.9), and misses only the correction (5.8) of the oscillation
frequency. (This correction is of the second order in δ, i.e. of the order of ε2, and
hence beyond the accuracy of our first approximation.) It is remarkable how nicely
the reduced equations recover the proper frequency of free oscillations in this
autonomous system—in which the very notion of ω is ambiguous.

The result is different at forced oscillations. For example, for the (generally
nonlinear) Duffing oscillator described by Eq. (5.43) with f0 ≠ 0, Eqs. (5.57a) yield
the reduced equations

δ
ω

φ φ ξ
ω

φ̇ = − + ̇ = +A A
f

A A A
f

2
sin , ( )

2
cos , (5.60)0 0

which are valid for an arbitrary function ξ(A), provided that the nonlinear detuning
remains much smaller than the oscillation frequency. Here (after a transient), the

21One may ask why we cannot stick to just the one, most compact, complex-amplitude form (5.57b) of the
reduced equations. The main reason is that when the function ̇f q q t( , , ) is nonlinear, we cannot replace its real
arguments, such as q = A cos(ωt − φ), with their complex-function representations such as a exp{−iωt} (as
could be done in the linear problems considered in section 4.1), and we need to use real variables, such as either
{A, φ} or {u, v}, anyway.
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amplitude and phase tend to the stationary states described by Eq. (5.47). This
means that φ becomes a constant, so that q(0) → A cos (ωt − const), i.e. the reduced
equations again automatically recover the correct frequency of the solution, in this
case equal to that of the external force.

Note that each stationary oscillation regime, with a certain amplitude and phase,
corresponds to a fixed point of the reduced equations, so that the stability of those
fixed points determines that of the oscillations. In what follows, we will carry out
such an analysis for several simple systems of key importance for physics and
engineering.

5.4 Self-oscillations and phase locking
The motivation for B van der Pol to develop his method was the analysis of one
more type of oscillatory motion: self-oscillations. Several systems, e.g. electronic
radio-frequency (RF) amplifiers with positive feedback, and optical media with
quantum level population inversion, provide convenient means for the compensa-
tion, and even over-compensation, of the intrinsic energy losses in oscillators.
Phenomenologically, this effect may be described as the change of sign of the
damping coefficient δ from positive to negative. Since for small oscillations the
equation of motion is still linear, we may use Eq. (5.9) to describe its general
solution. This equation shows that at δ < 0, even infinitesimal deviations from
equilibrium (say, due to unavoidable fluctuations) lead to oscillations with exponen-
tially growing amplitude. Of course, in any real system such a growth cannot persist
infinitely, and shall be limited by this or that effect—e.g. in the above examples,
respectively, by amplifier’s saturation and quantum level population’s exhaustion.

In many cases, the amplitude limitation may be described reasonably well by
making the following replacement:

δ δ β̇ → ̇ + ̇q q q2 2 , (5.61)3

with β > 0. Let us analyze the effects of such nonlinear damping, applying the van der
Pol’s approach to the corresponding homogeneous differential equation (which also
carries his name):

δ β ω̈ + ̇ + ̇ + =q q q q2 0. (5.62)3
0
2

Carrying out the dissipative and detuning terms to the right-hand side, and taking
them for f in the canonical Eq. (5.38), we can easily calculate the right-hand sides of
the reduced equations (5.57a), obtaining22

δ δ δ βω̇ = − ≡ +A A A A A a( ) , where ( )
3
8

, (5.63 )2 2

φ ξ̇ =A A b. (5.63 )

22 For that, one needs to use the trigonometric identity sin3 Ψ = (3/4)sin Ψ − (1/4)sin 3Ψ—see, e.g. Eq. (A.19).
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The second of these equations has exactly the same form as Eq. (5.58b) for the
case of decaying oscillations and hence shows that the self-oscillations (if they
happen, i.e. if A ≠ 0) have the own frequency ω0 of the oscillator—see Eq. (5.59).
Equation (5.63a) is more substantive. If the initial damping δ is positive, it has only
the trivial fixed point, A0 = 0 (that describes the oscillator at rest), but if δ is negative,
there is also another fixed point,

δ
βω

δ= <
⎛
⎝⎜

⎞
⎠⎟A

8
3

, for 0, (5.64)1 2

1/2

which describes steady self-oscillations with a non-zero amplitude A1.
Let us apply the general approach discussed in section 3.2, the linearization of

equations of motion, to this reduced equation. For the trivial fixed point A0 = 0, the
linearization of Eq. (5.63a) is reduced to discarding the nonlinear term in the
definition of the amplitude-dependent damping δ(A). The resulting linear equation
evidently shows that the system’s equilibrium point, A = A0 = 0, is stable at δ > 0 and
unstable at δ < 0. (We have already discussed this self-excitation condition above.)
The linearization near the non-trivial fixed point A1 requires a bit more math: in the
first order in ˜ ≡ − →A A A 01 , we obtain

δ βω δ βω

δ δ δ

˜ ̇ ≡ ̇ = − + ˜ − + ˜ ≈ − ˜− ˜

= − + ˜ = ˜

A A A A A A A A A

A A

( )
3
8

( )
3
8

3

( 3 ) 2 ,
(5.65)1

2
1

3 2
1
2

where Eq. (5.64) has been used to eliminate A1. We see that the fixed point A1 (and
hence the whole process) is stable as soon as it exists (δ < 0)—similar to the situation
in our ‘testbed problem’ (figure 2.1), except that in our current, dissipative system,
the stability is ‘actual’ rather than ‘orbital’—see section 5.6 for more.

Now let us consider another important problem: the effect of an external
sinusoidal force on a self-excited oscillator. If the force is sufficiently small, its
effects on the self-excitation condition and the oscillation amplitude are negligible.
However, if the frequency ω of such a weak force is close to the own frequency ω0

of the oscillator, it may lead to a very important effect of phase locking23—also
called the ‘synchronization’, although the latter term also has a much broader
meaning. At this effect, the oscillator’s frequency deviates from ω0, and becomes
exactly equal to the external force’s frequency ω, within a certain range

ω ω−Δ ⩽ − < +Δ. (5.66)0

In order to prove this fact, and also to calculate the phase-locking range width 2Δ,
we may repeat the calculation of the right-hand sides of the reduced equations
(5.57a), adding term f0 cos ωt to the right-hand side of Eq. (5.62)—see Eqs. (5.42)–
(5.43). This addition modifies Eqs. (5.63) as follows24:

23Apparently, the mutual phase-locking of two pendulum clocks was first noticed by the same C Huygens.
24Actually, this result should be evident, even without calculations, from the comparison of Eqs. (5.60) and
(5.63).
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δ
ω

φ̇ = − +A A A
f

a( )
2

sin , (5.67 )0

φ ξ
ω

φ̇ = +A A
f

b
2

cos . (5.67 )0

If the system is self-excited, and the external force is weak, its effect on the oscillation
amplitude is small, and in the first approximation in f0 we can take A to be constant
and equal to the value A1 given by Eq. (5.64). Plugging this approximation into
Eq. (5.67b), we obtain a very simple equation25

φ ξ φ̇ = + Δ cos , (5.68)
where in our current case

ω
Δ ≡

f

A2
. (5.69)0

1

Within the range −∣Δ∣ < ξ < + ∣Δ∣, Eq. (5.68) has two fixed points on each 2π-
segment of the variable φ:

φ ξ π= ± −
Δ

+±
− ⎜ ⎟⎛

⎝
⎞
⎠ ncos 2 . (5.70)1

It is easy to linearize Eq. (5.68) near each point to analyze their stability in our usual
way; however, let me use this case to demonstrate another convenient way to achieve
this in 1D systems, using the so-called phase plane—the plot of the right-hand side of
Eq. (5.68) as a function of φ (see figure 5.5).

Since the positive values of this function correspond to the growth of φ in time,
and vice versa, we may draw the arrows showing the direction of phase evolution.
From these graphics, it is clear that one of these fixed points (for f0 > 0, φ+) is stable,

Figure 5.5. The phase plane of a phase-locked oscillator, for the particular case ξ = Δ/2, f0 > 0.

25 This equation is ubiquitous in phase-locking systems, including even some digital electronic circuits used for
that purpose.
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while its counterpart (in this case, φ−) is unstable. Hence the magnitude of Δ given by
Eq. (5.69) is indeed the phase-locking range (or rather it half) that we wanted to find.
Note that the range is proportional to the amplitude of the phase-locking signal—
perhaps the most important feature of this effect.

In order to complete our simple analysis, based on the assumption of fixed
oscillation amplitude, we need to find the condition of its validity. For that, we may
linearize Eq. (5.67a), for the stationary case, near the value A1, just as we have done
in Eq. (5.65) for the transient process. The stationary result,

δ ω
φ

δ
φ˜ ≡ − = ≈ Δ

± ±A A A
f

A
1

2 2
sin

2
sin , (5.71)1

0
1

shows that our assumption, ∣Ã∣ ≪ A1, and hence the final result (5.69), are valid if
the phase-locking range, 2Δ, is much smaller than 4 ∣δ ∣.

5.5 Parametric excitation
In both problems solved in the last section, the stability analysis was easy because
it could be carried out for just one slow variable, either amplitude or phase. More
generally, such analysis of the reduced equations involves both these variables. The
classical example of such a situation is provided by one important physical
phenomenon—the parametric excitation of oscillations. An elementary example
of such excitation is given by a pendulum with a variable parameter, for example
the suspension length l(t)—see figure 5.6. Experiments (including those with
playground swings) and numerical simulations show that if the length is changed
(modulated) periodically, with a frequency 2ω that is close to 2ω0 and a sufficiently
large swing Δl, the equilibrium position of the pendulum becomes unstable and it
starts swinging with frequency ω equal to exactly half of the modulation frequency
(and hence only approximately equal to the average eigenfrequency ω0 of the
oscillator).

For an elementary analysis of this effect we may consider the simplest case when
the oscillations are small. At the lowest point (θ = 0), where the pendulum moves
with the highest velocity vmax, the string’s tension T is higher than mg by the
centripetal force: Tmax = mg + mvmax

2 /l. In contrast, at the maximum deviation of
the pendulum from the equilibrium, the force is lower than mg, because of

Figure 5.6. Parametric excitation of a pendulum.

Classical Mechanics: Lecture notes

5-20



the suspension line’s tilt: Tmin = mg cos θmax. Using the energy conservation,
E = mvmax

2 /2 = mgl(1 − cos θmax), we may express these values asTmax = mg + 2E/l
andTmin = mg − E/l. Now, if during each oscillation period the string is pulled up
slightly by Δl (with ∣Δl∣ ≪ l ) at each of its two passages through the lowest point,
and is allowed to go down by the same amount at each of two points of the
maximum deviation, the net work of the external force per period is positive:

≈ − Δ ≈ Δ
l

l
l

E2( ) 6 , (5.72)max minW T T

and hence results in an increase of the oscillator’s energy. If the so-called modulation
depth Δl/2l is sufficient, this increase may overcompensate the energy drained out by
damping. Quantitatively, Eq. (5.10) shows that low damping (δ ≪ ω0) leads to the
following energy decrease,

π δ
ω

Δ ≈ −E E4 , (5.73)
0

per oscillation period. Comparing Eqs. (5.72) and (5.73), we see that the net energy
flow into the oscillations is positive,W + ΔE > 0, i.e. oscillation amplitude has to
grow, if26

πδ
ω

πΔ > ≡l
l Q

2
3 3

. (5.74)
0

Since this result is independent of the oscillation energy E, the growth of energy
and amplitude is exponential (until E becomes so large that some of our
assumptions fails), so that Eq. (5.74) is the condition of parametric excitation—
in this simple model.

However, this result does not account for a possible difference between the
oscillation frequency ω and the eigenfrequency ω0, and also does not clarify
whether the best phase shift between the oscillations and parameter modulation,
assumed in the above calculation, may be sustained automatically. In order to
address these issues, we may apply the van der Pol approach to a simple but
reasonable model:

δ ω μ ω̈ + ̇ + + =q q t q2 (1 cos 2 ) 0, (5.75)0
2

describing the parametric excitation in a linear oscillator with a sinusoidal modulation
of the parameter ω0

2(t). Rewriting this equation in the canonical form (5.38),

ω δ ξω μω ω̈ + = ̇ ≡ − ̇ + −q q f t q q q q q t( , , ) 2 2 cos 2 , (5.76)2
0
2

26A modulation of a pendulum’s mass (say, by periodic pumping water in and out of a suspended bottle) gives
a qualitatively similar result. Note, however, that parametric oscillations cannot be excited by modulating any
oscillator’s parameter—for example, oscillator’s damping coefficient (at least if it stays positive at all times),
because it does not change the system’s energy, just the energy drain rate.
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and assuming that the dimensionless ratios δ/ω and ∣ξ∣/ω, and the modulation depth
μ are all much less than 1, we may use the general Eqs. (5.57a) to obtain the
following reduced equations:

δ μω φ

φ ξ μω φ

̇ = − −

̇ = −

A A A

A A A

4
sin 2 ,

4
cos 2 .

(5.77)

These equations evidently have a fixed point, with A0 = 0, but its stability
analysis (though possible) is not absolutely straightforward, because the phase φ
of oscillations is undetermined at that point. In order to avoid this (technical
rather than conceptual) difficulty, we may use, instead of the real amplitude and
phase of oscillations, either their complex amplitude a = A exp{iφ}, or its
Cartesian components u and v—see Eq. (5.4). Indeed, for our function f,
Eq. (5.57b) gives

δ ξ μω̇ = − + − *a i a i a( )
4

, (5.78)

while Eqs. (5.57c) yield

δ ξ μω

δ ξ μω

̇ = − − −

̇ = − + −

u u v v

v v u u

4
,

4
.

(5.79)

We see that in contrast to Eqs. (5.77), in the Cartesian coordinates {u, v} the
trivial fixed point a0 = 0 (i.e. u0 = v0 = 0) is absolutely regular. Moreover, Eqs.
(5.78) and (5.79) are already linear, so they do not require any additional
linearization. Thus we may use the same approach as was already used in
sections 3.2 and 5.1, i.e. look for the solution of Eq. (5.79) in the exponential
form exp{λt}. However, now we are dealing with two variables, and should allow
them to have, for each value of λ, a certain ratio u/v. For that, we may take the
partial solution in the form

= =λ λu c e v c e, , (5.80)u
t

v
t

where constants cu and cv are frequently called the distribution coefficients. Plugging
this solution into Eqs. (5.79), we obtain for them the following system of two linear
algebraic equations:

δ λ ξ μω

ξ μω δ λ

− − + − − =

− + − − =

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

c c

c c

( )
4

0,

4
( ) 0.

(5.81)
u v

u v

The characteristic equation of this system, i.e. the condition of compatibility of
Eqs. (5.81),
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δ λ ξ μω

ξ μω δ λ
λ δλ δ ξ μω− − − −

− − −
≡ + + + − =⎜ ⎟⎛

⎝
⎞
⎠

4

4

2
4

0, (5.82)2 2 2
2

has two roots:

λ δ μω ξ= − ± −± ⎜ ⎟
⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥4

. (5.83)
2

2
1/2

Requiring the fixed point to be unstable, λ >+Re 0, we get the parametric excitation
condition

μω δ ξ> +
4

( ) . (5.84)2 2 1/2

Thus the parametric excitation may indeed happen without any artificial phase
control: the arising oscillations self-adjust their phase to pick up energy from the
external source responsible for the parameter variation.

Our key result (5.84) may be compared with two other calculations. First, in the
case of negligible damping (δ = 0), Eq. (5.84) turns into condition μω/4 > ∣ξ∣. This
result may be compared with the well-developed theory of the so-called Mathieu
equation, whose canonical form is

+ − =d y
dv

a b v y( 2 cos 2 ) 0. (5.85)
2

2

With the substitutions y → q, v → ωt, a → (ω0/ω)
2, b → −μ/2, this equation is just a

particular case of Eq. (5.75) for δ = 0. In terms of Eq. (5.85), the result of our
analysis may be re-written just as b > ∣a − 1 ∣, and is supposed to be valid for b ≪ 1.
This condition is shown in figure 5.7 together with the numerically calculated27

stability boundaries of the Mathieu equation.
One can see that the van der Pol approximation works just fine within its

applicability limit (and a bit beyond :-), although it fails to predict some other
features of the Mathieu equation, such as the existence of higher, more narrow
regions of parametric excitation (at a ≈ n2, i.e. ω0 ≈ ω/n, for all integer n), and some
spill-over of the stability region into the lower half-plane a < 0.28 The reason for these
failures is the fact that, as can be seen in figure 5.7, these phenomena do not appear in
the first approximation in the parameter modulation amplitude μ ∝ ε, that is the
realm of applicability of the reduced equation (5.79).

27 Such calculations may be substantially simplified by the use of the so-called Floquet theorem, which is also
the mathematical basis for the discussion of wave propagation in periodic media—see the next chapter.
28 This region describes, for example, the counter-intuitive stability of an inverted pendulum with the
periodically modulated length, within a limited range of the modulation depth μ.
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In the opposite case of non-zero damping but exact tuning (ξ = 0, ω ≈ ω0),
Eq. (5.84) gives

μ δ
ω

> ≡
Q

4 2
. (5.86)

0

This condition may be compared with Eq. (5.74), taking Δl/l = 2μ. The comparison
shows that while the structure of these conditions is similar, the numerical
coefficients are different by a factor close to 2. The first reason for this difference
is that the instant parameter change at optimal moments of time is more efficient
then the smooth, sinusoidal variation described by Eq. (5.75). Even more signifi-
cantly, the change of the pendulum’s length modulates not only its frequency ω0 ≡
(g/l )1/2 as Eq. (5.75) implies, but also its mechanical impedance Z ≡ (gl)1/2—the
notion to be discussed in detail in the next chapter. (The analysis of the general case
of the simultaneous modulation of ω0 and Z is left for a reader exercise.)

Before moving on, let me summarize the most important differences between the
parametric and forced oscillations:

(i) Parametric oscillations completely disappear outside of their excitation
range, while the forced oscillations have a non-zero amplitude for any
frequency and amplitude of the external force—see Eq. (5.18).

Figure 5.7. Stability boundaries of the Mathieu equation (5.85), as calculated: numerically (curves) and using
the reduced equations (5.79) (dashed straight lines). In the regions numbered by various n, the trivial solution
y = 0 of the equation is unstable, i.e. its general solution y(v) includes an exponentially growing term.
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(ii) Parametric excitation may be described by a linear homogeneous equation—
e.g. Eq. (5.75)—which cannot predict any finite oscillation amplitude within
the excitation range, even at finite damping. In order to describe stationary
parametric oscillations, some nonlinear effect has to be taken into account.
(Again, I am leaving analyses of such effects for a reader exercise.)

One more important feature of the parametric oscillations will be discussed at the
end of the next section.

5.6 Fixed-point classification
The reduced equations (5.79) give us a good pretext for a brief discussion of an
important general topic of dynamics: fixed points of a system described by two time-
independent, first-order differential equations with time-independent coefficients29.
After their linearization near a fixed point, the equations for deviations can always
be expressed in the form similar to Eq. (5.79):

˜ ̇ = ˜ + ˜
˜ ̇ = ˜ + ˜
q M q M q

q M q M q

,

,
(5.87)1 11 1 12 2

2 21 1 22 2

where Mjjʹ (with j, jʹ = 1, 2) are some real scalars, which may be viewed upon as the
elements of a 2 × 2 matrix M. Looking for an exponential solution of the type (5.80),

˜ = ˜ =λ λq c e q c e, , (5.88)t t
1 1 2 2

we obtain a more general system of two linear equations for the distribution
coefficients c1,2:

λ
λ

− + =
+ − =

M c M c
M c M c
( ) 0,

( ) 0.
(5.89)11 1 12 2

21 1 22 2

These equations are consistent if

λ
λ

−
− =M M

M M
0, (5.90)11 12

21 22

giving us a quadratic characteristic equation

λ λ− + + − =M M M M M M( ) ( ) 0. (5.91)2
11 22 11 22 12 21

Its solution30,

29Autonomous systems described by a single, second-order homogeneous differential equation, say
̇ ̈ =F q q q( , , ) 0, also belong to this class, because we may always treat the generalized velocity ̇ ≡q v as a

new variable, and use this definition as one first-order differential equation, and the initial equation, in the
form ̇ =F q v v( , , ) 0, as the second first-order equation.
30 In the terms of linear algebra, λ± are the eigenvalues, and the corresponding sets of the distribution
coefficients [c1, c2]±, the eigenvectors of the matrix M with elements Mjj’.
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λ = + ± − +± M M M M M M
1
2

( )
1
2

[( ) 4 ] , (5.92)11 22 11 22
2

12 21
1/2

shows that the following situations are possible:

A. The expression under the square root, (M11−M22)
2+ 4M12M21, is positive. In this

case, both characteristic exponents λ± are real, and we can distinguish three sub-cases:
(i) Both λ+ and λ− are negative. As Eq. (5.88) shows, in this case the deviations

q̃ tend to zero at t → ∞, i.e. the fixed point is stable. Because of generally
different magnitudes of exponents λ±, the process represented on the phase
plane [ ˜ ˜q q,1 2] (see figure 5.8a, with the solid arrows, for an example) may be

Figure 5.8. Typical trajectories on the phase-plane [ ˜ ˜q q,1 2] near fixed points of different types: (a) node,
(b) saddle, (c) focus, and (d) center. The particular values of the matrix M, used in the first three panels,
correspond to Eq. (5.81) for the parametric excitation, with ξ = δ, and three different values of the parameter
μω/4δ: (a) 1.25, (b) 1.6, and (c) 0.
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seen as consisting of two stages: first, a faster (with the rate ∣λ−∣ > ∣λ+∣)
relaxation to a linear asymptote31, and then a slower decline, with the rate
∣λ+∣, along this line, i.e. at the virtually fixed ratio of the variables. Such a
fixed point is called the stable node.

(ii) Both λ+ and λ− are positive. This case of an unstable node differs from the
previous one only by the direction of motion along the phase-plane
trajectories—see the dashed arrows in figure 5.8a. Here the variable ratio
is also approaching a constant soon, now the one corresponding to λ+ > λ−.

(iii) Finally, in the case of a saddle (λ+ > 0, λ− < 0) the system dynamics is
different (figure 5.8b): after the rate ∣λ−∣ relaxation to the asymptote, the
perturbation starts to grow, with the rate λ+, along one of two opposite
directions. (The direction is determined on which side of another straight
line, called the separatrix, the system has been initially.) So the saddle32 is
an unstable fixed point.

B. The expression under the square root in Eq. (5.92), (M11 − M22)
2 + 4M12M21, is

negative. In this case the square root is imaginary, making the real parts of both
roots equal, Re λ± = (M11 + M22)/2, and their imaginary parts equal but opposite.
As a result, here there can be just two types of fixed points:

(i) Stable focus, at (M11 + M22) < 0. The phase-plane trajectories are spirals
going to the origin (i.e. toward the fixed point)—see figure 5.8c with the
solid arrow.

(ii) Unstable focus, taking place at (M11 + M22) > 0, differs from the stable
focus only by the direction of motion along the phase trajectories—see the
dashed arrow in the same figure 5.8c.

C. Frequently, theborder case,M11+M22=0, corresponding to theorbital (‘indifferent’)
stability already discussed in section 3.2, is also distinguished, and the corresponding
fixed point is referred to as the center—see figure 5.8d. Considering centers as a separate
category makes sense because such fixed points are typical for Hamiltonian systems,
whose first integral of motion may be frequently represented as the distance of the phase
point from a fixed point. For example, introducing new variables ˜ ≡ ˜ ˜ ≡ ˜ ̇q q q mq,1 2 1, we
may rewrite Eq. (3.12) of a harmonic oscillator without dissipation (again, with indices
‘ef’ dropped for brevity), as a system of two first-order differential equations:

κ˜ ̇ = ˜ ˜ ̇ = − ˜q
m

q q q
1

, , (5.93)1 2 2 1

i.e. as a particular case of Eq. (5.87), with M11 = M22 = 0, and M12M21 = −κ/m ≡
−ω0

2 < 0, and hence (M11 −M22)
2 + 4M12M21 = −4ω0

2 < 0, andM11 +M22 = 0. On

31The asymptote direction may be found by plugging the value λ+ back into Eq. (5.89) and finding the
corresponding ratio c1/c2. Note that the separation of the system’s evolution into the two stages is conditional,
being most vivid in the case of a large difference between the exponents λ+ and λ−.
32 The term ‘saddle’ is due to the fact that system’s dynamics in this case is qualitatively similar to those of a
viscous motion in the 2D potential U( ˜ ˜q q,1 2) having the shape of a horse saddle (or a mountain pass).
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the symmetrized phase plane ˜ ˜q q Z[ , / ]1 2 , where the parameter Z ≡ (κm)1/2 ≡mω0 is the
oscillator’s impedance, the sinusoidal oscillations of amplitude A are represented by
a circle of radius A about the center-type fixed point A = 0. In the case when ˜ ≡ ˜q q1 is
the linear coordinate q of an actual mechanical oscillator, so that ˜ ≡ ˜ ̇q mq2 1 is its
linear momentum = ̇p mq, such a circular trajectory corresponds to the conserva-
tion of the oscillator’s energy

κ κ κ≡ + ≡ + ≡ ˜ +
˜

= =
⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥E T U

p
m

q
q

q

Z
A

2 2 2 2
const. (5.94)

2 2

1
2 2

2 2

This is a convenient moment for a brief discussion of the so-called Poincaré (or
‘slow-variable’, or ‘stroboscopic’) plane33. From the point of view of the basic Eq.
(5.41), the sinusoidal oscillations q(t) = A cos(ωt − φ), described by a circular
trajectory on the actual (symmetrized) phase plane, correspond to a fixed point
{A, φ}, which may conveniently be represented by a steady geometric point on a
plane with these polar coordinates—see figure 5.9a. (As follows from Eq. (5.4), the
Cartesian coordinates of the point on that plane are just the variables u ≡ A cos φ
and v ≡ A cos φ used, in particular, in the last section.) The quasi-sinusoidal process
(5.41), with slowly changing A and φ, may be represented by a slow motion of that
point on this Poincaré plane.

Figure 5.9b shows a convenient way to visualize the relation between the actual
phase plane of an oscillator, with the ‘fast’ symmetrized coordinates q and p/Z, and
the Poincaré plane with ‘slow’ coordinates u and v: the latter plane rotates relative to
the former one, about the origin, clockwise, with the angular velocity ω34. Another,
‘stroboscopic’ way to generate the Poincaré plane pattern is to have a fast glance at
the ‘real’ phase-plane just once during the oscillation periodT = 2π/ω.

Figure 5.9. (a) Representation of a sinusoidal oscillation (point) and a slow transient process (line) on the
Poincaré plane and (b) the relation between ‘fast’ phase plane to the ‘slow’ (Poincaré) plane.

33 Named after J H Poincaré (1854–1912), who is credited, among many other achievements, with his
contributions to special relativity (see, e.g. Part EM chapter 9), and the basic idea of unstable trajectories,
responsible for the deterministic chaos—to be discussed in chapter 9 of this volume.
34 This notion of phase-plane rotation is the origin of the term ‘rotating wave approximation’, RTA. (The word
‘wave’ is an artifact of this method’s wide application in classical and quantum optics.)
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In many cases, the representation on the Poincaré plane is more convenient than
that on the ‘real’ phase-plane. In particular, we have already seen that the reduced
equations for such important phenomena as the phase-locking and the parametric
oscillations, whose original differential equations include time explicitly, are time-
independent—see, e.g. Eqs. (5.75) and (5.79) describing the latter effect. This
simplification brings the equations into the category considered in this section,
and enables the classification of their fixed points, which may shed additional light
on their dynamic properties.

In particular, figure 5.10 shows the classification of the fixed points of a
parametric oscillator, which follows from equation (5.83). As the parameter
modulation depth μ is increased, the type of the trivial fixed point A1 = 0 on the
Poincaré plane changes from a stable focus (pertinent to a simple oscillator with
damping) to a stable node and then to a saddle describing the parametric excitation.
In the last case, the two directions of the perturbation growth, so prominently
featured in figure 5.8b, correspond to the two possible values of the oscillation phase
φ, with the phase choice determined by initial conditions.

This double degeneracy of the parametric oscillation’s phase could already be
noticed from Eq. (5.77), because they are evidently invariant with respect to the
replacement φ → φ + π. Moreover, the degeneracy is not an artifact of the reduced
equations, because the initial equation (5.75) is already invariant with respect to the
corresponding replacement q(t) → q(t − π/ω). This invariance means that all other
characteristics (e.g. the amplitude) of the parametric oscillations excited with either of
two phases are absolutely similar. At the dawn of the computer age (in the late 1950s
and early 1960s), there were substantial attempts, particularly in Japan, to use this
property for storage and processing digital information coded in the phase-binary
form. Though these attempts have not survived competition with simpler approaches,
based on voltage-binary coding, some current trends in the development of prospec-
tive reversible and quantum computers may be traced back to this idea.

5.7 Numerical approaches
If the amplitude of oscillations, for whatever reason, becomes so large that the
nonlinear terms in the equation describing the oscillator are comparable to its linear
terms, numerical methods are virtually the only avenue available for their theoretical
study. In Hamiltonian 1D systems, such methods may be applied directly to the

Figure 5.10. The types of the trivial fixed point of a parametric oscillator.
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integral (3.26), but dissipative and/or parametric systems typically lack first integrals
of motion similar to Eq. (3.24), so that the initial differential equation has to be
solved.

Let us discuss the general idea of such methods on the example of what
mathematicians call the Cauchy problem (finding the solution for all moments of
time, starting from the known initial conditions) for first-order differential equation

̇ =q f t q( , ). (5.95)

(The generalization to a system of several such equations is straightforward.)
Breaking the time axis into small, equal steps h (figure 5.11) we can reduce the
equation integration problem to finding the function value at the next time point,
qn+1 ≡ q(tn+1) ≡ q(tn + h) from the previously found value qn = q(tn)—and, if
necessary, the values of q at other previous time steps.

In the simplest approach (called the Euler method), qn+1 is found using the
following formula:

= +
≡
+q q k

k h f t q

,

( , ).
(5.96)n n

n n

1

This approximation is equivalent to the replacement of the genuine function q(t),
on the segment [tn, tn+1], with the two first terms of its Taylor expansion in point tn:

+ ≈ + ̇ ≡ +q t h q t q t h q t hf t q( ) ( ) ( ) ( ) ( , ). (5.97)n n n n n n

This approximation has an error proportional to h2. One could argue that making
the step h sufficiently small, the Euler method’s error might be made arbitrary small,
but even with the number-crunching power of modern computers, the computation
time necessary to reach sufficient accuracy may be too high for large problems35. In
addition, the increase of the number of time steps, which is necessary at →h 0,
increases the total rounding errors, and eventually may cause an increase, rather
than the reduction of the overall error of the computed result.

A more efficient way is to modify Eq. (5.96) to include the terms of the second
order in h. There are several ways to do this, for example using the second-order
Runge–Kutta method:

= +

≡ + + ≡

+

⎛
⎝⎜

⎞
⎠⎟

q q k

k hf t
h

q
k

k hf t q

,

2
,

2
, ( , ).

(5.98)
n n

n n n n

1 2

2
1

1

One can readily check that this method gives the exact result if the function q(t) is a
quadratic polynomial, and hence in the general case its errors are of the order of h3.

35 In addition, the Euler method is not time-reversible—the handicap which may be essential for integration of
Hamiltonian systems described by systems of second-order differential equations. However, this drawback
may be readily overcome by the so-called leapfrogging—the overlap of time steps h for a generalized
coordinate and the corresponding generalized velocity.
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We see that the main idea here is to first break the segment [tn, tn+1] in half (see figure
5.11), then evaluate the right-hand side of the differential equation (5.95) at the point
intermediate (in both t and q) between the points number n and (n + 1), and then use
this information to predict qn+1.

The advantage of the Runge–Kutta approach is that it may be extended to the
fourth order, without an additional breaking of the interval [tn, tn+1]:

= + + + +

≡ + + ≡ + +

≡ + + ≡

+

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

( )

q q k k k k

k hf t h q k k hf t
h

q
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(5.99)
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2
1
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This method reaches much lower error, O(h5), without being not too cumbersome.
These features have made the fourth-order Runge–Kutta the default method in most
numerical libraries. Its extension to higher orders is possible, but requires more
complex formulas, and is justified only for some special cases, e.g. very abrupt
functions q(t)36. The most frequent enhancement of the method is the automatic
adjustment of the step h to reach the specified accuracy, but not make more
calculations than necessary.

Figure 5.12 shows a typical example of an application of that method to the very
simple problem of a damped linear oscillator, for two values of fixed time step h
(expressed in terms of the number N of such steps per oscillation period). The black
lines connect the points obtained by the fourth-order Runge–Kutta method, while
the points connected with the green lines represent the exact analytical solution
(5.22). Few-percent errors start to appear only at as few as ∼10 time steps per period,
so that the method is indeed very efficient.

Let me hope that the discussion in the next section will make the conveniences
and the handicaps of the numerical approach to the solution of problems of
nonlinear dynamics very clear.

Figure 5.11. The basic notions used at numerical integration of ordinary differential equations.

36 The most popular approaches in such cases are the Richardson extrapolation, the Bulirsch–Stoer algorithm,
and a set of prediction–correction techniques, e.g. the Adams–Bashforth–Moulton method—see the literature
recommended in appendix A, section A.16(iii).
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5.8 Higher harmonic and subharmonic oscillations
Figure 5.13 shows the numerically calculated37 transient process and stationary
oscillations in a linear oscillator and in a very representative nonlinear system, the
pendulum described by Eq. (5.42), both with the same resonance frequency ω0 for
small oscillations. Both systems are driven by a sinusoidal external force of the same
amplitude and frequency—in this illustration, equal to the small-oscillation own
frequency ω0 of both systems. The plots show that despite a very substantial
amplitude of the pendulum oscillations (an angle amplitude of about one radian),
their waveform remains almost exactly sinusoidal38. On the other hand, the non-
linearity affects the oscillation amplitude very substantially. These results imply that
the corresponding reduced equation (5.60), which is based on the assumption (5.41),
may work very well far beyond its formal restriction ∣q∣ ≪ 1.

Still, the waveform of oscillations in a nonlinear system always differs from that
of the applied force—in our case, from the sine function of frequency ω. This fact is
frequently formulated as the generation, by the system, of higher harmonics. Indeed,
the Fourier theorem tells us that any non-sinusoidal periodic function of time may
be represented as a sum of its basic harmonic of frequency ω and higher harmonics
with frequencies nω, with integer n > 1.

Note that an effective generation of higher harmonics is only possible with
adequate nonlinearity of the system. For example, consider the nonlinear term αq3

used in the equations explored in sections 5.2 and 5.3. If the waveform q(t) is
approximately sinusoidal, such term will have only the basic (first) and the third
harmonics—see, e.g. Eq. (5.50). As another example, the ‘pendulum nonlinearity’
sinq cannot produce, without a constant component (‘bias’) in q(t), any even
harmonic, including the second one. The most efficient generation of harmonics
may be achieved using systems with the sharpest nonlinearities—e.g. semiconductor

Figure 5.12. Results of the Runge–Kutta solution of Eq. (5.6) (with δ/ω0 = 0.03) for: (a) 30 and (b) 6 points per
oscillation period. The results are shown by points; the black and green lines are only the guides for the eye.

37All numerical results shown in this section have been obtained by the fourth-order Runge–Kutta method
with the automatic step adjustment which guarantees the relative error of the order of 10−4—much smaller
than the pixel size in the plots.
38 In this particular case, the higher harmonic content is about 0.5%, dominated by the third harmonic whose
amplitude and phase are in a very good agreement with Eq. (5.50).
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diodes whose current may follow an exponential dependence on the applied voltage
through several orders of magnitude39.

Another way to increase the contents of an nth higher harmonic in a nonlinear
oscillator is to reduce the excitation frequency ω to ∼ω0/n, so that the oscillator
resonated at the frequency nω ≈ ω0 of the desirable harmonic. For example, figure
5.14a shows the oscillations in a pendulum described by the same Eq. (5.42), but
driven at frequency ω = ω0/3. One can see that the third harmonic amplitude may be
comparable with that of the basic harmonic, in particular if the external frequency is
additionally lowered (figure 5.14b) to accommodate for the deviation of the effective
frequency ω0(A) of own oscillations from its small-oscillation value ω0—see Eq.
(5.49), figure 5.4 and their discussion in section 5.2 above.

However, numerical modeling of nonlinear oscillators, as well as experiments
with their physical implementations, bring more surprises. For example, the bottom
panel of figure 5.15 shows the oscillations in a pendulum under the effect of a strong
sinusoidal force with a frequency ω close to 3ω0. One can see that at some parameter
values and initial conditions, the system’s oscillation spectrum is heavily contributed
(almost dominated) by the third subharmonic, i.e. the Fourier component of
frequency ω/3 ≈ ω0.

This counter-intuitive phenomenon of such subharmonic generation may be
explained as follows. Let us assume that subharmonic oscillations of frequency ω/
3 ≈ ω0 have somehow appeared, and coexist with the forced oscillations of frequency
3ω:

Figure 5.13. The oscillations induced by a similar sinusoidal external force (turned on at t = 0) in two systems
with the same small-oscillation frequency ω0 and low damping: a linear oscillator (two top panels) and a
pendulum (two bottom panels). In all cases, δ/ω0 = 0.03, f0 = 0.1, and ω = ω0.

39 This method is used in practice, for example, for the generation of electromagnetic waves with frequencies in
the terahertz range (1012–1013 Hz), which still lacks efficient electronic self-oscillators.
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ω φ ω φ≈ Ψ + Ψ Ψ ≡ − Ψ ≡ −q t A A t
t

( ) cos cos , where ,
3

. (5.100)sub sub sub sub

Then the leading nonlinear term, αq3, of the Taylor expansion of the pendulum’s
nonlinearity sin q, is proportional to

= Ψ + Ψ
= Ψ + Ψ Ψ

+ Ψ Ψ + Ψ

q A A

A A A

AA A

( cos cos )

cos 3 cos cos

3 cos cos cos .

(5.101)

3
sub sub

3

3 3 2
sub

2
sub

sub
2 2

sub sub
3 3

sub

Figure 5.14. The oscillations induced in a pendulum, with damping δ/ω0 = 0.03, driven by a sinusoidal external
force of amplitude f0 = 0.75, and frequency ω0/3 (top panel) and 0.8ω0/3 (bottom panel).

Figure 5.15. The oscillations sustained in a pendulum with δ/ω0 = 0.03, by a sinusoidal external force of
amplitude f0= 3 and frequency 3ω0× 0.8, at initial conditions q(0)= 0 (the top row) and q(0)= 1 (the bottom row).
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While the first and the last terms of this expression depend only of amplitudes of the
individual components of oscillations, the two middle terms are more interesting
because they produce so-called combinational frequencies of the two components.
For our case, the third term,

Ψ Ψ = Ψ − Ψ + …AA AA3 cos cos
3
4

cos( 2 ) , (5.102)sub
2 2

sub sub
2

sub

is of special importance, because it produces, in addition to other combinational
frequencies, the subharmonic component with the total phase

ω φ φΨ − Ψ = − +t
2

3
2 . (5.103)sub sub

Thus, within a certain range of the mutual phase shift between the Fourier
components, this nonlinear contribution is synchronous with the subharmonic
oscillations, and describes the interaction that can deliver to it the energy from
the external force, so that the oscillations may be sustained. Note, however, that the
amplitude of the term (5.102) describing this energy exchange is proportional to
the square of Asub, and vanishes at the linearization of the equations of motion near
the trivial fixed point. This means that the point is always stable, i.e. the third
subharmonic cannot be self-excited and always needs an initial ‘kick-off’—compare
the two panels of figure 5.15. The same is evidently true for higher subharmonics.

Only the second subharmonic is a special case. Indeed, let us make a calculation
similar to Eq. (5.101), by replacing Eq. (5.100) with

ω φ ω φ≈ Ψ + Ψ Ψ ≡ − Ψ ≡ −q t A A t
t

( ) cos cos , where ,
2

, (5.104)sub sub sub sub

for a nonlinear term proportional to q2:

= Ψ + Ψ = Ψ
+ Ψ Ψ + Ψ

q A A A

AA A

( cos cos ) cos

2 cos cos cos .
(5.105)

2
sub sub

2 2 2

sub sub sub
2 2

sub

Here the combinational-frequency termcapable of supporting the second subharmonic,

ω φ φ
Ψ Ψ = Ψ − Ψ

= − + + …
AA AA

AA t
2 cos cos cos ( )

cos ( ) ,
(5.106)sub sub sub sub

sub sub

is linear in the subharmonic amplitude, i.e. survives the equation linearization near
the trivial fixed point. This mean that the second subharmonic may arise sponta-
neously, from infinitesimal fluctuations.

Moreover, such excitation of the second subharmonic is very similar to the
parametric excitation that was discussed in detail in section 5.5, and this similarity is
not coincidental. Indeed, let us redo the expansion (5.105) at a somewhat different
assumption—that the oscillations are a sum of the forced oscillations at the external
force frequency ω, and an arbitrary but weak perturbation:

ω φ= − + ˜ ˜ ≪q t A t q t q A( ) cos( ) ( ), with . (5.107)
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Then, neglecting the small term proportional to q̃2, we obtain

ω φ ω φ≈ − + ˜ −q A t q t A tcos ( ) 2 ( ) cos( ). (5.108)2 2 2

Besides the inconsequential phase φ, the second term in the last formula is exactly
similar to the term describing the parametric effects in Eq. (5.75). This fact means
that for a weak perturbation, a system with a quadratic nonlinearity in the presence
of a strong ‘pumping’ signal of frequency ω is equivalent to a system with
parameters changing in time with frequency ω. This fact is broadly used for the
parametric excitation at high (e.g. optical) frequencies where the mechanical means
of parameter modulation (see, e.g. figure 5.5) are not practicable. The necessary
quadratic nonlinearity at optical frequencies may be provided by a non-centrosym-
metric nonlinear crystal, e.g. the β-phase barium borate (BaB2O4).

Before finishing this chapter, let me elaborate a bit on a general topic: the relation
between the numerical and analytical approaches to problems of dynamics (and
physics as a whole). We have just seen that sometimes numerical solutions, such as
those shown in figure 5.15b, may give vital clues for previously unanticipated
phenomena such as the excitation of subharmonics. (The phenomenon of determin-
istic chaos, which will be discussed in chapter 9, presents another example of such
‘numerical discoveries’.) One might also argue that in the absence of exact analytical
solutions, numerical simulations may be the main theoretical tool for the study of
such phenomena. These hopes are, however, muted by the general problem that is
frequently called the curse of dimensionality40, in which the last word refers to the
number of input parameters of the problem to be solved41.

Indeed, let us have another look at figure 5.15. We have been lucky to find a new
phenomenon, the third subharmonic generation, for a particular set of parameters—
in this case, five of them: δ/ω0 = 0.03, ω/ω0 = 2.4, f0 = 3, q(0) = 1, and dq/dt (0) = 0.
Could we tell anything about how common this effect is? Are subharmonics with
different n possible in the system? The only way to address these questions
computationally is to carry out similar numerical simulations at many points of
the d-dimensional (in this case, d = 5) space of parameters. Say we have decided that
breaking the reasonable range of each parameter to N = 100 points is sufficient. (For
many problems, even more points are necessary—see, e.g. section 9.1.) Then the
total number of numerical experiments to carry out is Nd = (102)5 = 1010—not a
simple task even for powerful modern computing facilities. (In addition to the pure
number of required CPU cycles, consider the storage and analysis of the results.) For
many important problems of nonlinear dynamics, e.g. turbulence, the parameter
dimensionality d is substantially larger, and the computer resources necessary for
even one numerical experiment are much greater.

40 This term was coined in 1957 by R Bellman in the context of optimal control theory (where the
dimensionality means the number of parameters affecting the system under control), but gradually has spread
throughout quantitative sciences using numerical methods.
41 In Part EM section 1.2, I discuss the curse’s implications for a different case, when both analytical and
numerical solutions to the same problem are possible.
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In the view of the curse of dimensionality, approximate analytical considerations,
such as those outlined above for the subharmonic excitation, are invaluable. More
generally, physics used to stand on two legs, experiment and (analytical) theory. The
enormous progress of computer performance during the last few decades has provided
it with one more point of support (a tail?)—numerical simulation. This does not mean
we can afford to cut and throw away any of the legs we are standing on.

5.9 Problems
Problem 5.1. For a system with the response function given by Eq. (5.17), prove Eq.
(5.26), and use an approach different to the one used in section 5.1 to derive Eq.
(5.34).
Hint: You may like to use the Cauchy integral theorem and the Cauchy integral
formula for analytical functions of complex variables42.

Problem 5.2. A square-wave pulse of force (see the figure below) is exerted on a
linear oscillator with eigenfrequency ω0 (with no damping), initially at rest.
Calculate the law of motion q(t), sketch it, and interpret the result.

Problem 5.3. At t = 0, a sinusoidal external force F(t) = F0 cos ωt, is applied to a
linear oscillator with eigenfrequency ω0 and damping δ, which was at rest at t ⩽ 0.

(i) Derive the general expression for the time evolution of the oscillator’s
coordinate, and interpret the result.

(ii) Spell out the result for the case of resonance (ω = ω0) in a system with low
damping (δ ≪ ω0), and, in particular, explore the limit δ → 0.

Problem 5.4. A pulse of external force F(t), with a finite durationT , is exerted on a
linear oscillator, initially at rest in its equilibrium position. Neglecting dissipation,
calculate the change of oscillator’s energy, using two different methods, and
compare the results.

Problem 5.5. For a system with the following Lagrangian function:
κ ε= ̇ − + ̇L

m
q q q q

2 2 2
,2 2 2 2

calculate the frequency of free oscillations as a function of their amplitudeA, atA→ 0,
using two different approaches.

42 See, e.g. Eq. (A.91).
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Problem 5.6. For a system with the Lagrangian function

κ ε= ̇ − + ̇L
m

q q q
2 2

,2 2 4

with small parameter ε, use the van der Pol method to find the frequency of free
oscillations as a function of their amplitude.

Problem 5.7. On the plane [a1, a2] of two real, time-independent parameters a1 and
a2, find the regions in which the fixed point of the following system of equations,

̇ = −
̇ = −

q a q q
q a q q

( ),
,

1 1 2 1

2 2 1 2

is unstable, and sketch the regions of each fixed-point type—stable and unstable
nodes, focuses, etc.

Problem 5.8. Solve problem 5.3(ii) using the reduced equations, and compare the
result with the exact solution.

Problem 5.9. Use the reduced equations to analyze the forced oscillations in an
oscillator with weak nonlinear damping, described by equation

δ ω β ω̈ + ̇ + + ̇ =q q q q f t2 cos ,0
2 3

0

with ω ≈ ω0; β, δ > 0; and βωA2 ≪ 1. In particular, find the stationary amplitude of
forced oscillations and analyze their stability. Discuss the effect(s) of the nonlinear
term on the resonance.

Problem 5.10. Within the approach discussed in section 5.4, calculate the average
frequency of a self-oscillator outside the range of its phase-locking by an external
sinusoidal force.

Problem 5.11.* Use the reduced equations to analyze stability of the forced
nonlinear oscillations described by the Duffing equation (5.43). Relate the result
to the slope of resonance curves (figure 5.4).

Problem 5.12. Use the van der Pol method to find the condition of parametric
excitation of the oscillator described by the following equation:

δ ω̈ + ̇ + =q q t q2 ( ) 0,0
2
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where ω0
2(t) is the square-wave function shown in the figure to the right, with ω ≈ ω0.

Problem 5.13. Use the van der Pol method to analyze parametric excitation of an
oscillator with a weak nonlinear damping, described by equation

δ β ω μ ω̈ + ̇ + ̇ + + =q q q t q2 (1 cos 2 ) 0,3
0

2

with ω ≈ ω0; β, δ > 0; and μ, βωA2 ≪ 1. In particular, find the amplitude of
stationary oscillations and analyze their stability.

Problem 5.14.* Adding nonlinear term αq3 to the left-hand side of Eq. (5.76),
(i) find the corresponding addition to the reduced equations,
(ii) calculate the stationary amplitude A of the parametric oscillations,
(iii) find the type and stability of each fixed point of the reduced equations, and
(iv) sketch the Poincaré phase-plane of the system in major parameter regions.

Problem 5.15. Use the van der Pol method to find the condition of
parametric excitation of an oscillator with weak modulation of both the effective
massm(t) =m0(1 + μm cos 2ωt) and the spring constant κ(t) = κ0[1 + μκ cos(2ωt − ψ)],
with the same frequency 2ω ≈ 2ω0, at arbitrary modulation depths ratio μm/μk and
phase shift ψ. Interpret the result in terms of modulation of the instantaneous
frequency ω(t) ≡ [κ(t)/m(t)]1/2 and the mechanical impedance Z(t) ≡ [κ(t)m(t)]1/2 of
the oscillator.

Problem 5.16.* Find the condition of parametric excitation of a nonlinear oscillator
described by equation

δ ω γ ω̈ + ̇ + + =q q q q f t2 cos 2 ,0
2 2

0

with sufficiently small δ, γ, f0, and ξ ≡ ω − ω0.
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