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Preface

This book is intended to cover the principles concerning the advantages and
potential pitfalls that occur in proton therapy, especially its radiobiological
modelling applications. For these to be understood, it is essential to present
summaries of radiotherapy, radiobiology, clinical radiobiological modelling for
conventional radiotherapy techniques as well as for protons and other ion beams.
Radiobiological modelling has proved useful in radiotherapy, especially in situations
where departures from protocols occur for a variety of reasons such as unintended
treatment interruptions, errors in treatment delivery, dose rate effect applications,
comparisons of different techniques, dose fractionation schedules, re-treatments and
even in clinical trial design. These techniques, if suitably adapted, are capable of
producing similar insights and practical guidelines in proton and other forms of ion
beam therapy. The optimisation of proton and ion beams is essential since there is
considerable ‘competition’ from the more advanced forms of megavoltage photon-
based radiotherapy, which allows fewer and highly focused treatments to be given as
well as being more economical.

The use of relatively simple mathematics and some very basic worked examples
are included within the text, but have been kept to a minimum, so that all the
relevant disciplines can understand the principles, and then use the historical content
and advice provided to develop the subject further. A basic knowledge of radiation
biology is assumed, and references have been kept to the minimum necessary. The
parameters chosen for exploratory modelling and illustrative purposes may require
modification and further input for more specific clinical applications. Any errors are
the sole responsibility of the author. There is inevitably some degree of repetition
where this is considered essential.

The mainstay approach has been to use the biological effective dose (BED)
concept based on the linear-quadratic (LQ) model of radiation effect. In recent years
it has been possible to assess the BED values of charged particle therapies such as
protons and light ions by incorporation of the maximum and minimum limits of the
relative biological effect (RBE), which accounts for the increasing complexity of
DNA damage and the increasing proportion of non-repairable damage that occurs
when the linear energy transfer (LET) of a radiation is increased. Typically LET
increases within the Bragg peak region for charged particles, with resultant incre-
ments in the RBE, but the RBE reduces with increasing dose and also at very high
LET values, but it is important to realise that different biosystems will have quite
different RBE values. The topic of the RBE remains controversial, although it is
being increasingly understood, and there are several models that attempt to link
LET with the RBE, many of which use formidable mathematics. In contrast, this
book addresses how to achieve this by using relatively simple mathematics. Such a
simpler approach can be understood by physicians, physicists and biologists. More
complex approaches can be limited in their usefulness due to excessive and/or
restrictive assumptions and the limits of what can be known. Simpler models,
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although they always require caveats, are capable of providing useful qualitative and
quantitative understanding of the basic principles that govern clinical outcomes.

This subject is very multidisciplinary, and is based on a triangular arrangement with
physics, medicine and biology forming the apices of an isosceles triangle (figure 1). The
decisive middle ground has to be covered by individuals who have sufficient knowl-
edge and experience of all three disciplines. A basic knowledge of these three subjects
and the inter-disciplinary subject of radiation biology is assumed, along with basic
aspects of particle therapy such as the Bragg peak effect, and the characteristics of the
spread out Bragg peak and how this may be achieved. The author is minded that the
text should be reasonably understood by members of all these disciplines, although
additional reading will be required from review articles and textbooks to supplement
cross-disciplinary understanding. Also, each primary discipline is divided into a
spectrum of further specialisation groups: physicists are split into fundamental particle
physicists, accelerator or detector physicists and their medical physicist colleagues; in
biology there are purely molecular biologists (biochemists) concerned with in vitro
work, biophysicists (physiologists), pharmacologists and zoologists, some concerned
with in vivo animal testing; within the faculties of medicine, the knowledge base is
spread over anatomy, all forms of pathophysiology, oncology, surgery, patient
management as well as a broad interest in epidemiology. Also, many non-biologically
trained physicists have had a very significant influence in advancing radiobiology and,
given the added complexities of charged particle physics, their continued involvement
will be essential to understanding particle therapy and its associated radiobiology.

With all these facets in mind, it is necessary to write sympathetically for the non-
specialist, but furnish sufficient detail regarding many necessary fundamental
aspects across these topics, while providing more detailed information for the
practitioner or researcher in this field. For reasons of space and economy, it has been
necessary to omit the classical graphs and diagrams associated with the basic
sciences, but these can be found in standard textbooks. In most instances, since most
readers of this book will be familiar with them, the brief qualitative descriptions and
definitions provided will act as an aide memoire.

Figure 1. The central multi-disciplinary role, which must include a modelling component.
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The medical decision makers of the future in particle therapy will need broad
scientific backgrounds, excellent clinical and oncological training, and be able to
appreciate the strengths and weaknesses of the available mathematical models that
link the clinical, biological and physical parameters, and which can be used to
protect the patient against over or under-dosage. Modelling is a necessary way of
quantitative communication between the three apices already referred to, in the
important multidisciplinary centre-ground, complementing rational verbal or writ-
ten approaches. In essence, this must be kept sufficiently simple in order for all
disciplines to interact.

Considerable practice is necessary to become familiar and competent in this
subject. The calculations may appear to be deceptively easy, as only knowledge of
some higher school mathematics is necessary, and this can be aided by computer
software systems such as Mathematica, Matlab and Maple. However, some of the
clinically based calculations are quite protracted, with many more pitfalls (due to the
RBE, LET, etc) than for similar calculations in the case of photon-based treatments.

There are many who regard particle therapy as just a seamless extension of
photon-based radiotherapy. This is certainly useful in terms of departmental
organisation within a hospital structure, to ensure good patient access and to
capitalise on site-specialist knowledge of the oncologist in terms of detailed regional
anatomy and indications for therapy. However, owing to the added complexity of
particle therapy, there is an essential need to educate and train all the sub-disciplines
involved in treatment delivery and patient management in order to inform them of
the strengths and weaknesses of particle therapy, and by knowing these to
continually search for better, highly optimised therapy.

Depending on the background of the reader, it is not necessary to read the whole
of the book. Chapter 1 provides the essential physics background mostly for the
benefit of biologists and clinicians, but includes the importance of the choice of the
reference radiation in RBE studies as well as the different ways in which LET is
expressed, and introduces the potentially important parameter of inter-track
distance. In chapter 2, the basis of radiobiological modelling is introduced, with
formulations for conventional megavoltage photon radiotherapy and for particle
therapy, including low and high dose, dose rate variations and the useful BED
concept. Chapters 3 and 4 have been written for persons who have little or no
previous experience of radiotherapy, with discussion of the essential medical aspects
of treatment planning, including the influence of surgery and other factors on tissue
viability. Some of the key historical developments in radiotherapy are covered in
chapter 5, as well as what has been learned from extensive basic and clinical research
using fast neutrons for modern applications with charged particles. Chapter 6
considers dose-fractionation effects in photon and particle therapy, with some
worked examples. The rationale for using a variable as opposed to the conventional
constant RBE in proton therapy is provided in chapter 7. This is followed by the
description of a relatively simple ‘energy efficiency’model for estimation of the RBE
values for any ion beam in chapter 8. More specific applications in proton therapy
are given in chapter 9, with some tables that suggested tentative RBE allocations for
variable values of LET in different classes of tissues and tumours. The correction of
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unintended treatment interruptions for high LET treatments, with worked examples,
is described in chapter 10, which also includes formulations for assessing re-
treatment doses in the central nervous system. Chapter 11 considers the radio-
biological correction of Bragg peak placement errors, resulting in deviations in both
LET and dose. Chapter 12 contains further possible future developments to improve
our overall understanding and especially to obtain more accurate modelling
parameters, as well as methods of assessing the potential impact of concomitant
drug sensitisation with high LET radiations.

It is hoped that this book will not only improve the safety and effectiveness of
particle therapies, but also inspire further research and enquiry.

Practical Radiobiology for Proton Therapy Planning
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Glossary of terms and symbols

α, the radiosensitivity coefficient of the LQ model per unit dose, in units of Gy−1.

αL, refers to α for the low LET condition when high and low LET qualities are being
compared.

αH, refers to α for the high LET condition when high and low LET qualities are
being compared.

αU, the ultimate value of α at the turnover point of the LET–RBE relationship.

Similarly, β is the radiosensitivity coefficient of the LQ model per unit dose squared,
in units of Gy−2.

βL, βH, and βU refer to the same specifications as for α.

α/β, this important ratio, which has units of Gy, determines the dose per fraction
sensitivity in an inverse sense, such that low values (2–3 Gy) show large dose per
fraction sensitivity, but high values denote low dose per fraction sensitivity (those
above 7 Gy).

(α/β)L, refers to the low LET ratio in situations where low and high LET radiation
qualities are being compared.

(α/β)H, refers to the high LET ratio in situations where low and high LET radiation
qualities are being compared.

RBE, defined as the ratio of dose for low LET (the control or reference) radiation
divided by the dose of the high LET test radiation in order to achieve the same
specified bio-effect.

RBEmax, the limiting value of RBE at very low dose (approaching zero dose) for any
specified high LET radiation when compared with a low LET radiation.

RBEmin, the asymptotic limiting value of RBE at very high dose for any specified
high LET radiation when compared with a low LET radiation.

RBEC, an intermediate value of the RBE where the following conditions apply:
Rmax/R

2
min = (α/β)H/(α/β)L.

LET, the linear energy transfer parameter defined as the energy release per unit
length of track in the track plane expressed in units of keV μm−1. Further definitions
are given in chapter 1.

LETU, the value of LET at the turnover point of the LET–RBE relationship.

LETC, the value of LET of the low LET control radiation quality.

LETx, any specified value of LET for the test high LET radiation.

N, the number of dose fractions in a treatment course (or schedule).

d, the dose per fraction in units of Gy, D is the total dose (or n × d).
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E, the negative logarithm of the surviving fraction, often referred to as the log cell
kill, which is proportional to the surviving fraction.

SF, the surviving fraction of cells in an experiment.

g, the ratio of a specified normal tissue dose divided by the tumour dose.

S, a formulation for combining the g factor with the uncertainties of knowledge
regarding the most appropriate RBE value in normal tissues and tumour.

BED, the biological effective dose, in units of Gy, which expresses the dose required
to achieve a specific bio-effect if given in ultra-small dose fractions, and represents a
ceiling of dose that can be used for comparative purposes.

ω, the average cellular doubling time during radiation.

K, the BED equivalent of cellular repopulation expressed as Gy day−1.

TK, the lag time, in days, that may occur before cellular repopulation is manifest.

f, refers to the mean inter-fraction interval (days). For example, if five treatments per
week are given f = 7 days/(5 − 1) = 7/4 = 1.75 days.

Z, the nuclear charge.

z, the tumour dose if the normal tissue dose is specified as d.

μF, the DNA repair rate constant for the fast component of repair.

μS, the DNA repair rate constant for the slow component of repair.

h, the incomplete repair parameter for closely spaced treatments.

Fluence refers to the number of radiation tracks crossing a specified area.

KERMA refers to the kinetic energy released per unit mass (J Kg−1).

Absorbed dose refers to the energy absorbed in a specified mass (J Kg−1).

Radiation quality refers to the LET of a radiation at a specified energy.
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