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Modeling and Analysis of Eclipsing Binary Stars
The theory and design principles of PHOEBE

Andrej Prša

Chapter 4

Radiation: The Basics

The computation of fluxes from an extended object has quite a few twists and turns that
can trip even a seasoned researcher, so we provide here a step-by-step discussion for the
Sun–Earth system in two atmosphere approximations: blackbody and Castelli &
Kurucz (2004) model atmosphere. Before we dive into the examples themselves, we
need to define several radiative quantities that frame the problemwe are trying to solve.

4.1 Intensity
When we measure “light” from a resolved source, we typically measure the amount
of energy dEλ per unit time dt per unit wavelength dλ in a beam dΩ that is radiated
from the direction-projected unit area θdA cos (see Figure 4.1):

θ λ
=

Ωλ
λI

dE
dt dA d dcos

. (4.1)

This equation defines intensity, our first radiative quantity. In physics this quantity is
more frequently called spectral radiance. It is worth taking a moment to reflect on the
subscript λ in Iλ. This quantitymeasures the fraction of the overall energy output per unit
time that is radiated from the unit area dA in a certain direction, at a certain wavelength
interval; thus, it is a distribution itself. It tells us how much energy the photons that hit
our detector in a certain instant of time will carry with them. This energy can change at
the very next instant of time, but we concern ourselves only with the energy carried
during the time interval [t, t + dt]. This leaves the distribution of energy across
wavelengths as the primary variable, hence the subscript λ. What we really mean,
thus, is λ≡λI dI d/ , i.e., a distribution of intensities per wavelength interval. If the
radiator is a blackbody, this distribution would be prescribed by a Planck function λB :

λ
λ

=
−

λB
hc

hc
kT

2 1

exp 1
,

(4.2)
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where h is the Planck constant, c is the speed of light, k is the Boltzmann constant,
and T is the effective temperature of the radiator. Thus, λB is the intensity that
corresponds to a blackbody radiator with an effective temperature T. We could also
use a sophisticated model that takes into account energy transfer through the outer
layers of the star, shuffles photon numbers according to atomic transitions that cause
spectral lines, and takes into account opacity variations along photon paths to
predict intensity. Such models abound, and one of the well-established, freely
accessible codes is that of Kurucz (2013). While the model atmosphere is substan-
tially more complex compared to the Planck function, it still gives us the same
quantity of interest: λI .

Before we move on, let us consider the units of intensity. It is easiest to do so by
inspecting Equation (4.1) directly: we get J s−1 −m 2 m−1 (do not let steradians fool
you; they are not units), which yields watts per meter cubed. This is yet another
reminder that we are implicitly referring to a distribution across λ.

4.2 Flux
It is time to introduce our second radiative quantity: flux. By definition, the flux
through the radiative element dA is a net sum of all energy per unit time emitted
through that element in all directions and projected along the normal of the unit area:

∫ ∫ ∫θ θ ϕ θ θ= Ω ≡λ

π

λ

π π

λF I d I d dcos cos sin , (4.3)
0

2

0

2

0

2

where ϕ and θ are longitudinal and latitudinal components of the solid angle with
respect to the normal (i.e., θ = 0 corresponds to the direction along the normal, and
ϕ circumscribes the rings around the normal). In physics this quantity is more
frequently called spectral flux density. To evaluate this integral, we need to ask
ourselves whether λI depends on ϕ and/or θ. Strictly speaking, the intensity of real
radiators likely does depend on both, but in an idealized case we may be able to get
away with less stringent assumptions. In particular, it is reasonable to assume that
the amount of energy irradiated along the same angle to the surface element normal
is essentially the same, so λI will not depend strongly on ϕ. On the other hand, we do
expect that intensity will depend on the angle to the surface element normal itself,

Figure 4.1. Definition of intensity: the amount of energy λdE per unit time dt per unit wavelength λ in a beam
Ωd that is radiated from the direction-projected unit area θdA cos .
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even if we do not know yet how exactly. So for the cylindrically isotropic case,
Equation (4.3) can be simplified into:

∫π θ θ θ θ=λ

π

λF I d2 ( )cos sin . (4.4)
0

2

To figure out what drives the dependence of intensity on θ, consider layers upon
layers in a stellar atmosphere, stacked like onion shells. Depending on the angle with
respect to the surface element normal, the path traversed by a photon trying to
escape will be different. The photon’s best chance to escape will be along the normal,
while any attempts perpendicular to the normal will be much more difficult. Hence,
we expect more photons to be emitted along the normal than at an angle. It sounds
like this dependence of λI on θ should depend on θcos since it is θcos that drives the
length of the path taken by the photon through the outermost layer on its path to
freedom, but let us be more general than that. First off, let us introduce μ θ= cos to
save us from excessive writing, and then let us formulate a function

μ μ= λ λI I( ) ( )/ , normL , where λI , norm refers to the intensity along the normal, i.e.,
μ = 1. If at this point you are tempted to nod and say “ah yes, the limb darkening
function,” hold that thought: we have not talked about any distribution of unit areas
over the surface of the star; we limit our discussion only to the amount of light
coming out of a single surface element dA. Equation (4.4) can now be rewritten as:

∫ ∫π μ μ μ π μ μ μ= − =λ λ λF I d I d2 ( ) ( ) 2 ( ) . (4.5)
1

0

, norm
0

1

L

Here we used a little algebraic trick θ θ θ μ= − ≡ −d d dsin (cos ) and took λI , norm in
front of the integral since it does not depend on μ. The negative sign is absorbed by
exchanging the integral boundaries. The flux can thus be thought of as normal

emergent intensity scaled by ∫π μ μ μd2 ( )
0

1
L . Remember, though, that this has little

to do with the flux that we detect as observers elsewhere; this is flux emanating from
the unit area on the radiating body.

A closer look at Equation (4.5) can reveal a potential point of confusion: the units
of flux appear to be the same as the units of intensity, namely, watts per meter cubed,
whereas one might expect the units to be watts per meter squared. Do not let the
established sloppiness in referring to flux density as “flux” confuse you: by λF we
mean the distribution of flux across wavelengths, which is sometimes referred to as
monochromatic flux. The actual flux is obtained by integrating over wavelength, and
that will sort out the apparent units conundrum.

Now let us step away from the radiating body and place an observer at some
arbitrary point at a distance D from the radiating unit area. The amount of energy
radiated toward the observer is given by Equation (4.1):

θ θ λ= Ωλ λdE I dt dA d d( ) cos . (4.6)

By the same equation, the amount of energy intercepted at the observer’s point by a
projected unit area ′dA is:

θ θ λ′ = ′ ′ ′ ′ Ω′λ λdE I dt dA d d( ) cos . (4.7)
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Note that Ωd and Ω′d are directed in the opposite sense: Ωd is a cone from the
radiator to the observer, while Ω′d is a cone from the observer to the radiator (see
Figure 4.2). If there is no attenuating matter between the emitting and intercepting
unit areas, there is nothing to take away the energy, so it must be conserved:

′=λ λdE dE . At the same time, the solid angle differential Ωd depends on the distance
and the projected intercepting area, while the solid angle differential Ω′d depends on
the distance and the projected emitting area (as depicted in Figure 4.2):

θ θΩ =
′

≡ ′ ′ Ω′ = ≡⊥ ⊥d
dA
D

dA
D

d
dA
D

dA
D

cos
,

cos
. (4.8)

2 2 2 2

Plugging these two expressions into Equations (4.6)–(4.7) immediately leads to
two important conclusions: first, ′θ θ= ′λ λI I( ) ( ), i.e., the intensity of the beam is
conserved and it does not depend on the distance, and second, θ θ= ′ ′( ) ( )L L , i.e.,
now it is appropriate to recognize that θ( )L is indeed the limb-darkening function.
This realization also allows us to compute the flux originating at the emitting unit
area dA and flowing into the intercepting unit area dA′ at the observer’s location (see
Figure 4.3):

θ θ θ θ θ= ′ ′ ′ Ω′ ≡ ′
λ λ λdF I d I

D
dA( )cos ( )

cos cos
. (4.9)

2

If the intercepting unit area is perpendicular to the beam (i.e., a detector pointing
toward the light source), θ′ =cos 1.

Suppose we now put a filter on the detector at the observer’s location. This filter
transmits only a part of the overall radiation and blocks the rest. Let its trans-
mittance be described by a passband function λ( )P . This reduces the amount of
monochromatic flux on the detector to:

λ θ θ θ= ′
λ λdF I

D
dA( ) ( )

cos cos
, (4.10)

2
P

which we can interpret as λ( )P being a “sifting” function that determines how much
of the intercepted flux on the λ λ λ+ d[ , ] interval actually reaches the detector. Any

Figure 4.2. Different orientations of Ωd and Ω′d explain why Ωd is proportional to θ′ ′A cos and Ω′d is
proportional to θA cos , i.e., Equation (4.8).
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real optics/detector system will cause further loss of radiation because of the
inevitable efficiency limitations, and we can formally bundle all such effects into

λ( )P .
There is another consideration worth mentioning at this point: not all detectors

are created equal in terms of what they measure. We are usually slack and say that
the detector measures “light,” but by that we mean either energy, which we have
discussed so far, or photon counts. Depending on the quantity measured, detectors
are either bolometric (measuring energy) or photoelectric (counting photons).
Bolometric detectors have no notion of the number of photons detected, only their
net energy; conversely, photoelectric detectors have no notion of energy, only the net
number of photons. An example of a bolometric detector is a photoelectric
photomultiplier. An example of a photoelectric detector is a charge coupled device
(CCD). Because of this distinction, our equation for flux needs to be suitably
adapted for the photon-counting instruments. The energy carried by a single photon
on the wavelength interval λ λ λ+ d[ , ] is given by λhc/ , so the net energy at that
wavelength interval is λ=λ λdE dN hc/ , where λdN is the number1 of photons with
wavelengths between λ and λ λ+ d . Thus, if intensity is defined in terms of λdN
instead of λdE , as appropriate for the photon-counting detectors, the expression for
the passband flux becomes:

λ λ θ θ θ= ′
λ λdF

hc
I

D
dA

1
( ) ( )

cos cos
. (4.11)pc

2
P

Here we used superscript “pc” to denote a photon-counting flux. Our realization
from before that θ θ≡ ′ ′( ) ( )L L also allows us to express the monochromatic flux
from the radiating unit area in the following form:

λ μ μμ

λ λ μ μμ

= ′

= ′

λ λ

λ λ

dF I
D

dA

dF
hc

I
D

dA

( ) ( ) ,

1
( ) ( ) ,

(4.12)
, norm 2

pc
, norm 2

P L

P L

Figure 4.3. Amount of flux λdF intercepted at the observer’s location.

1 In our established practice of “slack” terminology, λdN is actually the distribution of the number photons per
wavelength interval, indicated by the λ subscript.
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where, as stated before, μ θ′ ≡ ′ =cos 1 in most2 practical purposes.
Equations (4.12) set the stage for integration over the visible area of an extended

body and over all wavelengths into the actual observed flux in absolute units (watts
per meter squared). In the discussion that follows, we will derive expressions for
bolometric detectors, but the results will be easily generalized to photon-counting
devices as well.

In general, an extended body can have a complex shape, and parts of it may
eclipse other parts; to describe this, let us introduce a visibility function r( )V , where r
gives the location on the radiating body surface, as:

=r r
( )

1 if dA( ) is visible,
0 otherwise.

(4.13)
⎧⎨⎩V

The integral over the visible area can then still be performed over the entire surface
∂V of the radiating body with volume V,

∫μ λ μ μ= ′
λ λ

∂
rF

D
I dA( ) ( ) ( ) , (4.14)

V2 , normP V L

and the integral over all wavelengths (remember, λ≡λF dF d/ ) then yields the total
flux:

∫ ∫μ λ μ μ λ= ′
λ

∞

∂
rF

D
I dAd( ) ( ) ( ) . (4.15)

V2 0
, normP V L

4.3 Luminosity
The final radiative quantity of interest to the current discussion is luminosity. By
definition, luminosity is given by the net flux over all wavelengths over the radiating
surface area:

∫ ∫ λ=
λ

λ
∂ =

∞
L F d dA. (4.16)

V 0

The units of luminosity are watts, implying that, indeed, luminosity is equivalent to
what we would call power in physics. Note that luminosity is a property of the
radiating body that is entirely independent of the position (or even the existence) of
the observer: it measures the net energy output, and it will not change if it is near or
far, or if something blocks it or reflects its light. It is an intrinsic property of the
radiating body. Yet it still makes sense to ask what would be the luminosity of a
radiating body in a given passband. It is crucially important not to think of this as a
luminosity that somehow depends on the observational setup; instead, the question
is how much power is in the spectral range defined by the λ( )P function. We call this
passband luminosity and express it as:

∫ ∫ ∫π λ μ μ μ λ= λ
∂

∞
L I d d dA2 ( ) ( ) . (4.17)

V
pb

0
, norm

0

1⎛
⎝⎜

⎞
⎠⎟P L

2One notable exception is the treatment of reflection.
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There are two important points to make here. First, bolometric luminosity can be
considered a passband luminosity where the “passband” is simply λ =( ) 1P for all λ.
Thus, we can use Lpb for any luminosity, including bolometric, without any loss of
generality. Second, it might seem surprising that luminosity depends on the limb-
darkening function μ( );L in this case, μ( )L refers not to limb darkening but to the
variation of intensity from the radiating unit area with direction μ; the equivalence
with limb darkening stems from the conservation of intensity stemming from
Equation (4.8). As we need to consider all radiated light, we certainly expect the
dependence on μ( )L or, more precisely, its integral over all μ.

4.4 Limb Darkening
So far we have made a few ad hoc references to the limb-darkening function μ( )L
without formally introducing the processes that shape its dependence on μ. As
mentioned before, emergent intensity μλI ( ) depends on the conditions in the stellar
atmosphere. As light propagates outward, a fraction of it is absorbed by way of
bound–bound transitions, bound–free absorption (photoionization), free–free
absorption, and electron scattering. This extinction can be described by:

κ ρ= −λ λ λdI I dl, (4.18)

where κλ is the absorption coefficient (or opacity), ρ is the local gas density, and dl is
the path differential. The absorption coefficient κλ is generally a function of the
wavelength, composition, density, and temperature of the gas:
κ κ ρ=λ λ T([M/H], , )eff .

At the same time, some of the light is added to intensity by way of scattering,
bound–bound emission, and recombination:

ρ=λ λdI j dl, (4.19)

where jλ is the emission coefficient of the gas that generally depends on the same
conditions as κλ. Note one important distinction, though: the contribution of
emission to the emergent intensity is independent of the intensity Iλ itself. The
reason is that this extra emission comes from the surrounding gas and thus has
nothing to do with intensity itself.

The net change in emergent intensity is the sum of both emission and absorption:

ρ κ ρ= −λ λ λ λdI j dl I dl. (4.20)

The ratio of the rates at which the competing processes of emission and absorption
occur determines how rapidly the intensity changes as it propagates layer after layer
through the atmosphere. Dividing Equation (4.20) by κ ρ− λ dl( ) yields:

κ ρ κ
− = − ≡ −

λ

λ
λ

λ

λ
λ λ

dI
dl

I
j

I
1

, (4.21)S

where κ=λ λ λj /S is called the source function and the equation in this form is called
the equation of radiative transfer. The term κ ρλ1/ has a special significance: it
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determines a typical attenuation length3 and is called the mean free path. We can
now define optical depth as τ κ ρ= −λ λd dl , where the negative sign implies that we
measure it from the top of the stellar atmosphere inward. Based on the optical depth
of the material, we can define its optical thickness: for τ ≫λ 1 the gas is said to be
optically thick, while for τ ≪λ 1 it is said to be optically thin. Using optical depth,
Equation (4.21) can be written as:

τ
= −λ

λ
λ λ

dI
d

I . (4.22)S

This is a nonhomogeneous differential equation of the first order. If the depend-
ence of the source function λS on the optical depth τλ were known, Equation (4.22)
could be solved to find emergent intensity as a function of μ. This is what model
atmospheres do: they predict, using complex machinery, λS throughout the stellar
photosphere. Simplified approximations for λS exist that allow analytical treatment,
but at this point we will forgo the mathematical rigor in deriving the explicit
relationship between the emergent intensity and an assumed modeling function for

λS because it is lengthy and not really all that important for the discussion; instead,
let us qualitatively review the main points of the process and refer those interested in
full derivation to Gray (2008).

First, it is not immediately evident where μ enters Equation (4.22). Recall that
τ κ ρ= −λ λd dl , i.e., the optical depth refers to opacity along the path dl, whatever the
direction of dlmay be. If we were to write λdI dl/ in polar coordinates, for example, it
would be:

θ
θ= ∂

∂
+ ∂

∂
λ λ λdI

dl
I
r

dr
dl

I d
dl

. (4.23)

In cases where the thickness of the visible atmosphere is small compared to the size
of the radiator, we can neglect the second term on the right (i.e., we assume the
plane-parallel approximation). At the same time, dr/dl is a projection of the path
onto the radius vector, which is precisely μ—i.e., the dependence we were looking for
—rendering the transfer equation to:

μ
τ

= −λ

λ μ
λ λ

dI
d

I , (4.24)
,

S

where we denote with τλ μ, the optical depth along the line of sight determined by μ.
Next, we need to ask ourselves how “deep” into the star we can see. The optical

depth at the top of the atmosphere is 0, and it increases gradually toward the center
of the star. The photosphere is a part of the overall stellar atmosphere from where
the light we see originates; hence, it determines the effective temperature and the
size of the star. This depth generally delimits the outer region of the star where

3This can be seen easily from the solution of Equation (4.18), κ ρ= −λ λ λI I Lexp( ), 0 .
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photons scatter on average less than once on their way out. Even though formally
we need to integrate τλ all the way to infinity, the exponentially growing optical
depth ascertains rapid convergence of the integral in Equation (4.24). This is why
the Sun does not appear “fuzzy”—the photosphere is quite thin compared to the
star itself. Eddington has shown that, under the assumption of a gray atmosphere
(i.e., κλ and λj do not depend on λ), the photosphere base is at an optical depth of
2/3. The actual depth will depend on the wavelength, of course—that is why we can
“x-ray” the Sun. We generally consider that, in the optical, the photosphere is
essentially opaque at τ ∼λ 1.

To compute emergent intensity in a given direction, we then need to integrate
Equation (4.24) from the top of the photosphere to the depth at which opacity
makes the interior opaque. This will be the same optical depth but a different
physical depth depending on the angle to the surface normal we look at (see Figure
4.4). If we are looking at the center, the optical depth path is antiparallel to the
radius and we will see the deepest, hottest, brightest layers. If we are looking
toward the limb, the optical depth path is nearly perpendicular and we will see the
shallowest, coolest, dimmest layers. In effect, we will see surface brightness
variation because λS is different for each photosphere layer. It is this surface
brightness variation that we see as limb darkening. We parameterize it by
describing μλ λI I( )/ , norm as a function of μ. There are several models commonly
used today; they are summarized in Table 4.1.

Note that the plane-parallel approximation embedded in Castelli & Kurucz
(2004) model atmospheres breaks down for giant and supergiant stars. The effects of
surface curvature are pronounced, and advanced treatment of atmospheres is
necessary. There are several models that take curvature into account, for example,
Phoenix/NextGen (Hauschildt et al. 1999) and SAtlas (Lester & Neilson 2008).
NextGen models have been successfully integrated into the binary star modeling
code ELC (Orosz & Hauschildt 2000). The curvature significantly affects the limb
darkening, and the coefficients interpolated from the Castelli & Kurucz (2004) tables
will likely be inadequate for giants and supergiants. Tables computed from spherical
models, i.e., by Claret & Bloemen (2011), Neilson & Lester (2013), and similar
works, should be considered instead.

4.5 Computational Efficiency
We now digress for a moment to address an important computational aspect of
Equations (4.15) and (4.17). Recall that λ λλI( ) ( ), normP corresponds to the passband-
attenuated monochromatic intensity in the direction along the normal of the
radiating unit area; if we integrate this expression over all wavelengths, we will
get a normal emergent passband intensity:

∫ ∫λ λ λ λ λ λ= ≡λ
λ

λ

λ

∞
I I d I d( ) ( ) ( ) ( ) , (4.25)pb, norm

0
, norm , norm

lower

upper

P P
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where λlower and λupper are the limiting wavelengths of λ( )P , i.e., the wavelengths
below which and above which λ =( ) 0P , respectively. It proves computationally
more practical to work with the mean normal passband intensity, computed as:

∫
∫ ∫
λ λ λ

λ λ λ λ
〈 〉 = ≡λ

λ

λ λ

I
I d

P d

I

P d

( ) ( )

( ) ( )
. (4.26)pb, norm

, norm
pb, norm

P

Figure 4.4. Limb-darkening effect. A common way to analytically quantify the optical depth of the visible
photospheric surface is to adopt a model of a plane-parallel atmosphere. When the atmosphere is assumed to be
gray (i.e., κλ is independent of λ), the reference surface by Eddington’s approximation corresponds to the layer at
optical depth τ =λ 2/3. This is a limited approximation because all sources of opacity except for Thompson
scattering are wavelength dependent, but in general the reference layer will be at the optical depth of ∼1.

Table 4.1. Table of Commonly Used Limb-darkening Models

Model Functional Form References

Linear μ μ= − −λx( ) 1 (1 )L 1

Logarithmic μ μ μ μ= − − −λ λx y( ) 1 (1 ) log( )L 2

Square root μ μ μ= − − − −λ λx y( ) 1 (1 ) (1 )L 3

Quadratic μ μ μ= − − − −λ λx y( ) 1 (1 ) (1 )2L 4

Exponential μ μ μ= − − − −λ λ
−x y( ) 1 (1 ) (1 exp ) 1L 5

Power μ μ μ μ μ= − − − − − − − −λ λ λ λa a a a( ) 1 (1 ) (1 ) (1 ) (1 ), 1
1/2

, 2 , 3
3/2

, 4
2L 6

Interpolated μ μ= T g( ) interp ( ; , log , [M/H])effL 7

References. (1) Schwarzschild 1906; (2) Klinglesmith & Sobieski 1970; (3) Diaz-Cordoves & Gimenez 1992; (4)
Kopal 1950; (5) Claret & Hauschildt 2003; (6) Claret 2000; (7) Prša et al. 2016b.
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Plugging this into Equation (4.15) yields the passband flux,

∫ ∫μ λ λ μ μ= ′ 〈 〉
λ ∂

rF
D

d I dA( ) ( ) ( ) , (4.27)
V

pb 2 pb, norm⎜ ⎟⎛
⎝

⎞
⎠P V L

and an equivalent expression for the photon-counting devices,

∫ ∫μ λ λ λ μ μ= ′ 〈 〉
λ ∂

rF
D hc

d I dA
1

( ) ( ) ( ) . (4.28)
V

pb
pc

2 pb, norm
pc⎛

⎝⎜
⎞
⎠⎟P V L

The reason why Equations (4.27)–(4.28) are more practical than Equation (4.15) is
that the mean normal passband intensities 〈 〉Ipb, norm and 〈 〉Ipb, norm

pc can be computed

ahead of time from model atmospheres, and ∫ λ λ
λ

d( )P and ∫ λ λ λ
λ

−hc d( ) ( )1 P depend
only on the transmission functions, so they can be computed in advance as well.

We can do the same for the luminosity computation:

∫ ∫ ∫λ λ π μ μ μ= 〈 〉
∞

∂
L d I d dA( ) 2 ( ) , (4.29)

V
pb

0
pb, norm

0

1
⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟P L

or, for the photon-counting detectors,

∫ ∫ ∫λ λ λ π μ μ μ= 〈 〉
∞

∂
L

hc
d I d dA

1
( ) 2 ( ) . (4.30)

V
pb
pc

0
pb, norm
pc

0

1⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟P L

In conclusion, the radiation in absolute units can thus be described by two pairs of
equations, summarized in Table 4.2.

Turning to limb darkening, it is impractical to include the computation of limb-
darkening coefficients in light-curve generators on the fly because of the complexity
and numerical time cost of stellar atmosphere models. We instead resort to
precomputed lookup tables. These are generated by synthesizing μλI ( ) in absolute
units from model atmospheres across the valid ranges of Teff , glog , [M/H], and
possibly other relevant atmospheric parameters and computing μλ λI I( )/ , norm for each
set of parameters. We then fit any of the laws in Table 4.1 to these data to obtain the
best-fit coefficients. Figure 4.5 depicts an example of a Sun-like limb darkening
(filled circles), with fits for several limb-darkening models overplotted. It is clear that
one- and even two-parameter models are not adequate for high-precision modeling.

Table 4.2. Equations That Govern the Computation of Flux from and Luminosity of a Radiating Body

Parameter Equations

Passband flux ∫ ∫λ λ μ μ= 〈 〉
λ ∂

μ ′F d I dAr( ( ) ) ( ) ( )
Vpb 2 pb, norm

D
P V L

∫ ∫λ λ λ μ μ= 〈 〉
λ ∂

μ ′F d I dAr( ( ) ) ( ) ( )
Vpb

pc
2 pb, norm

pc

D hc
1 P V L

Passband luminosity ∫ ∫ ∫λ λ π μ μ μ= 〈 〉
∞

∂
L d I d dA( ( ) ) 2 ( ( ) )

Vpb 0 pb, norm 0

1P L

∫ ∫ ∫λ λ λ π μ μ μ= 〈 〉
∞

∂
L d I d dA( ( ) ) 2 ( ( ) )

Vpb
pc

0 pb, norm
pc

0

1

hc
1 P L

Note. Terms in angle brackets and in parentheses can be computed ahead of time to make the computation
efficient.
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Further cuts in the parameter space spun by limb-darkening coefficients based on
physical considerations can be made efficiently (Kipping 2013; Espinoza & Jordán
2016), but ultimately the accuracy of limb-darkening treatment will be limited either
by the quality of the model fit or by the systematics in model atmospheres.

4.6 Relative Units
Our discussion so far has pertained to intensities, fluxes, and luminosities expressed
in absolute physical units. However, in many use cases in astronomy this is not
warranted or even possible, i.e., when we only have differential photometry, or we
do not know the distance to the object, or we do not know the object’s effective
temperature accurately, or any combination of these and other limitations. The
ongoing Gaia mission (Brown et al. 2016) holds the promise to change that by
providing us with microarcsecond parallaxes, but until then, a common case calls for
relative instead of absolute units.

What do the relative units entail? By relative we mean to say that whatever units
are implied by the passband luminosity, those units are carried over to other
radiative quantities. These can still be physical, of course, but more often they are
referential, i.e., they yield a flux that allows direct comparison with observations that
can be scaled4 more or less arbitrarily. By assigning a certain passband luminosity,

Figure 4.5. Variation of emergent passband intensity (with respect to normal emergent passband intensity)
with emergent angle μ θ≡ cos . The inset shows a zoomed-in region at low μ. Filled circles are integrated
intensities based on Castelli & Kurucz (2004) model atmospheres, and lines correspond to the fitted limb-
darkening models using least squares. Systematics that arises from using these low-parametric models can be
significant.

4A common practice is to flux-normalize the data at some reference time stamp and use that as a point of
reference that determines passband luminosity.
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we are essentially imposing a scaling ξ = L L/pb
rel

pb
abs that satisfies the following

relationship:

∫ ∫ ∫

∫ ∫ ∫

λ λ π μ μ μ

ξ ξ λ λ π μ μ μ

= 〈 〉

= 〈 〉

∞

∂

∞

∂

L d I d dA

L d I d dA

( ) 2 ( )

( ) 2 ( ) ,

(4.31)
V

V

pb
rel

0
pb, norm
rel

0

1

pb
abs

0
pb, norm
abs

0

1

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

P L

P L

from which it follows directly that ξ = 〈 〉 〈 〉I I/pb, norm
rel

pb, norm
abs . Thus, all equations in

Table 4.2 retain their form; they are only multiplied by ξ to transform to the relative
units suitably.

When we want to use photon counts to correctly weigh the data gathered by a
photon-counting device but want to express the values in energy units, it helps to
realize that:

= = ⇒ =L F A L F A
L

L

F

F
, . (4.32)pb pb pb

pc
pb
pc pb

pc

pb

pb
pc

pb

This holds true for both absolute and relative units because the scaling factor ξ is
canceled out. Thus, if ξ is the correct scaling factor for energy-weighted intensities,
the same factor will scale the photon-weighted intensities as well.

4.7 Blackbody Radiation
The fundamental assumption of blackbody radiation is local thermodynamic
equilibrium (LTE) of the radiator itself: whatever net energy flows into any part
of the radiator, the same net energy leaves that part of the radiator, implying that the
radiation within any unit volume of a blackbody radiator is isotropic. It is not just
cylindrically isotropic, as was the case in Equation (4.4); it is truly isotropic, in all
directions. For a blackbody radiator that means that whatever energy flows from the
interior to the surface will be emitted to the exterior, none will be reflected back, and
the amount of energy emitted will depend only on the effective temperature. Just
how that energy will be radiated out is governed by the fact that the radiation inside
is isotropic, implying that the radiation outward must also be isotropic. This has a
fundamental implication: from whichever direction we look at a unit area of a
blackbody radiator, we will see the same intensity. In other words, μλI ( ) is equal to

λI , norm for all μ, implying μ ≡( ) 1L :

∫π μ μ π π= = ≡λ λ λ λF I d I B2 , (4.33), norm
0

1

, norm

where λB( ) is the Planck function given by Equation (4.2). This is known as
Lambert’s cosine law, where the “cosine” part refers to the term μ θ≡ cos inside the
integral. Integrating Equation (4.33) over all wavelengths then yields total flux:

∫π λ π σ
π

σ= = ≡λ

∞
F B d T T . (4.34)

0

4 4
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Here σ π= k h c2 /155 4 3 2 is the Stefan–Boltzmann constant, and Equation (4.34) is
known as Stefan’s law.

The source function (Equation (4.22)) of a blackbody radiator is also of notable
interest: it is equal to the Planck function Bλ, given by Equation (4.2). This is because
pure emission and pure absorption of a blackbody are exactly balanced. As Iλ is
constant, =λdI dl/ 0 and = =λ λ λI BS . This is important for stellar atmospheres, since
the blackbody assumption of LTE immediately implies that the source function

=λ λS B .
To get blackbody flux in terms of photon counts instead, we do the same as

before: we replace λdE with λdN in the expression for intensity, from which it
immediately follows that λ=λ λI I hc/pc and, from Equation (4.34),

∫π λ λ π ζ= =λ

∞
F

hc
B d c

k
hc

T4 (3) , (4.35)pc

0

3
3

⎛
⎝⎜

⎞
⎠⎟

where ζ = ⋯(3) 1.2020569 is the Riemann zeta function. Combining Equations
(4.34) and (4.35) allows us to express F pc with F as:

π ζ
σ

=

= × − − −

F c
k
hc

F

F

4
(3)

(4.137774 10 s m W ) .

(4.36)
pc

3

3 4
3 4

20 1 1 2 3 4 3 4

⎛
⎝⎜

⎞
⎠⎟

Analogously, the relationship between the luminosity in photon counts per
second and luminosity in watts can be derived by observing that =L L F F/ /pc pc ,
from which it immediately follows that:

π ζ
σ

=L c
k
hc

A L4
(3)

, (4.37)pc
3

3 4
1 4 3 4

⎛
⎝⎜

⎞
⎠⎟

where A is the surface area of the radiating body.
There is another subtlety with blackbody radiators that we need to take into

account: we need to ensure consistency across luminosity and flux in the presence of
limb darkening. This is tricky because, according to Lambert’s law (Equation
(4.33)), a blackbody disk would appear uniformly bright, i.e., there would be no
inherent limb darkening. Stars, of course, are limb darkened, so any μ ≠( ) 1L
applied to blackbody fluxes will cause the luminosity to change. This is a problem
because λI , norm depends solely on the temperature (Equation (4.2)), and when
integrated over the surface area of a star, it yields luminosity (Equation (4.16))
that is independent of any limb darkening:

∫ ∫ ∫λ σ σ= = =λ
∂

∞

∂
L F d dA T dA T A. (4.38)

V V0

4 4

When we apply the limb-darkening correction, we reduce the flux that corresponds
to the effective temperature, thus causing a discrepancy between the actual effective
temperature and the “apparent” effective temperature. Say, for example, that

μ =( ) 0.5L for all μ: that would reduce λF by a factor of 2 across the board, implying
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that the “apparent” effective temperature is a factor of 21/4 smaller than the actual
effective temperature—hence the discrepancy. To ensure consistency between
luminosity and flux, it is λI , norm in Equation (4.5) that needs to increase by the
amount that limb darkening decreases the flux. In other words, Equation (4.5) for
blackbody radiators becomes:

∫
∫π

μ μ μ
μ μ μ=λ

λF
I

d
d2

( )
( ) , (4.39), bb

, norm

0

1
0

1

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟L
L

where the quantity in parentheses is our effective monochromatic blackbody
intensity, which is larger than the Planckian intensity by the overall amount reduced
by limb darkening. When integrated over the surface, this will yield the luminosity
that corresponds to the actual effective temperature, not to the “apparent” effective
temperature.

4.8 Putting It All Together
Equipped with the framework developed so far, we can now dive into our example:
the Sun–Earth system within the blackbody approximation and with model
atmospheres. The reader is strongly encouraged to take this opportunity and
work through the examples with a calculator in hand.

We start by assigning the following numerical values to the Sun (Prša et al.
2016a):

and the following numerical values to the orbit:

Let us first compute analytical reference values for a spherical Sun that we will use
as gauges for the numerical computation. The bolometric flux at Earth is:

π π
= = × =⊙ −F

a4
3.828 10 W

4 (149, 597, 870, 700 m)
1361.166 Wm . (4.40)bol

N

2

26

2
2L

Luminosity: = ≡ ×⊙ ⊙L 1 3.828 10 WN 26L
Radius: = ≡ ×⊙ ⊙R 1 6.957 10 mN 8R
Effective temperature: = ≡ ×⊙ ⊙T 1 5.772 10 KN 3T
Synchronicity parameter: =⊙F 14.61

Mass ratio: = = ×⊙
−q / 3.003489 10E

N N 6GM GM
Semimajor axis: =a 149, 597, 870, 700m
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Using Equations (4.36) and (4.37), we can readily obtain bolometric radiative
quantities in photon counts:

= ×
= ×

− −

−

F

L

6.323 10 photons m s ,

1.778 10 photons s .
(4.41)bol

pc 21 2 1

bol
pc 45 1

Now let us investigate how close we can get to the bolometric values by using a
quasi-bolometric box passband:

λ λ μ= ⩽ ⩽
( )

1 for 90 nm 4 m
0 otherwise.

(4.42)
⎧⎨⎩P

This wavelength region is chosen because the list of spectral lines is most complete in
this region, which will allow us to make a one-to-one comparison with model
atmospheres later on. Thanks to our spherical Sun approximation, the equations in
Table 4.2 are significantly simplified:

λ π
λπ π

= Δ 〈 〉 =
= Δ 〈 〉 = ×

⊙
−

⊙

F I D

L I

1347.879 Wm ,

4 3.791 10 W.
(4.43)

pb pb, norm
N2 2 2

pb pb, norm
N2 26

R
R

Here we used ∫ λ λ〈 〉 = Δ = ×
μ

λI B d / 5.074 10pb, norm 90 nm

4 m
12 W m−3. The percent differ-

ence between this quasi-bolometric passband and true bolometric values is ∼1%.
Now let us do the same for the photon-counting devices. The equations in Table

4.2 simplify to:

π

π π

= 〈 〉 = ×

= 〈 〉 = ×
⊙

− −

⊙
−

F I D

L I

5.911 10 photons s m ,

4 1.662 10 photons s ,
(4.44)

pb
pc

int
pc

pb, norm
pc N2 2 21 1 2

pb
pc

int
pc

pb, norm
pc N2 45 1

P R
P R

where ∫ λ λ λ= = ×
λ

d hc( ) / 4.025 10int
pc 13P P m J–1 and 〈 〉 = ×I 2.161 10pb, norm

pc 12

photons s–1 m–3. The percent difference now is a whopping 7%. This is not
surprising, though: the larger discrepancy comes from weighting the intensity
integral by λ, so any photons redward of the μ4 m cutoff are additionally
weighted. In other words, the flux in energy units diminishes as λ4 at long
wavelengths (the so-called Rayleigh–Jeans regime), but only as λ3 in photon
counts. If we extended the red cutoff to μ8 m, the percent difference in photon
counts would dip below 1%.

Now let us “turn on” limb darkening. We will model μI ( ) with a logarithmic
limb-darkening law (see Table 4.1):

μ μ μ μ= − − −λ λ
I
I

x y
( )

1 (1 ) ln , (4.45)
0

where λx and λy are passband-dependent limb-darkening coefficients. Their values
depend on atmospheric parameters (effective temperature, surface gravity, heavy
metal abundance, etc). For the Sun, the values are:

= =λ λx y0.6923 and 0.1628. (4.46)
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These were obtained by fitting μ( )L to μλ λI I( )/ , norm values derived from Castelli &
Kurucz (2004) model atmospheres within PHOEBE. For illustration purposes, let us
use Equation (4.39) without correcting the Planckian intensity to demonstrate why
this is a problem.

With limb darkening in effect, the μ( )L integral is no longer unity; logarithmic
μ( )L is easily integrable:

∫ ∫μ μ μ μ μ μ μ= − − − = − +λ λ λ λd x y x y( ) [1 (1 ) ln ] 1
1
3

2
9

. (4.47)
0

1

0

1

L

For the values given in Equation (4.46), this expression evaluates to = 0.8054intL .
Using energy-weighted equations in Table 4.2 yields:

∫

∫

λ π

λ μ μ

= Δ 〈 〉 = ×

= Δ 〈 〉 =

π

π
−

L I dA

F
D

I dA

2 3.053 10 W,

( ) 1085.323 Wm .

(4.48)

R

R

pb
0

4

pb, norm int
26

pb 2 0

2

pb, norm
2

2

2

L

L

These values should raise a red flag: the intensities 〈 〉Ipb, norm and limb-darkening
coefficients were computed for =T 5772eff K, but the flux we obtain corresponds to
5468 K. The difference corresponds precisely to intL (its 1/4 power, to be exact) in
Equation (4.39). Thus, if we replace λI , norm with λI /, norm intL , we reproduce the
expected values:

∫

∫

λ π

λ μ μ

= Δ 〈 〉 = ×

= Δ 〈 〉
=

π

π
−

L I dA

F
D

I
dA

2 3.791 10 W,

( ) 1347.539 Wm .
(4.49)

R

R

pb
0

4

pb, norm
26

pb 2 0

2
pb, norm

int

2

2

2

L
L

The same procedure applies to the photon-weighted values, yielding:

= ×

= ×

− −

−

F

L

5.909 10 photons s m ,

1.662 10 photons s .
(4.50)

pb
pc 21 1 2

pb
pc 45 1

Switching now to model atmospheres, there is one important caveat to be aware of:
μI already “contains” the information about limb darkening by way of the numeri-
cally estimated source function λS . Thus, if limb darkening is turned off, we expect
that both the luminosity and flux are overestimated. This does not technically make
the solution inconsistent: if there were no limb darkening, those would be true
luminosity and flux values; the culprit for an apparently inconsistent result is the
unphysical assumption that we make by switching off limb darkening.

Beyond that consideration, all other principles used in blackbody computation
remain the same. That is why we summarize the numerical values in Table 4.3 and end
the discussion by stressing yet again that, although relatively straightforward, the
computation of radiative properties is wrought with intricacies that are further
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complicated by the presence of another body in a system—a topic of the following
section.
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