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Chapter 6

Statistical image models and pattern formation

6.1 Introduction
Statistical image models are mathematical models for generating pseudo-random
images with certain prescribed statistical properties. They are used in simulations of
imaging systems and testing image processing algorithms, as well as for the
synthesis of artificial images that imitate natural ones. The exercises in this chapter
demonstrate an algorithmic approach to building statistical image models, accord-
ing to which the models are built by means of certain (specific for each model)
combinations of certain standard elementary operations applied in a certain order
to a starting, or seed, image. Implemented here are the following models listed in
the entrance menu (figure 6.1):

• Point-wise nonlinearity (PWN) model: seed images are subjected, pixel by
pixel, to a point-wise nonlinear transformation specified by its amplitude
transfer function.

• Linear filter (LF) model: seed images are subjected to a linear filtering with a
certain prescribed filter point spread function or frequency response.

• Point-wise nonlinearity and linear filter (PWN&LF) model: assumes point-
wise nonlinear transformation and linear filter in cascade, i.e. seed images are
first subjected to a point-wise nonlinear transformation and then the result is
fed to a linear filtering.

• Linear filter and point-wise nonlinearity (LF&PWN) model: assumes linear
filtering and point-wise nonlinear transformation in cascade in the opposite
order: seed images are first subjected to a linear filtering and then to a point-
wise non-linear transformation.

• Evolutionary models: iterative, i.e. models with a feedback: at first iteration a
seed image is subjected to a certain transformation specific for a particular
model and then at other iterations, this transformation is applied to the image
obtained at the previous iteration.
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6.2 PWN models
PWN models are the simplest ones in the family of the image statistical models and
pattern generators. Using point-wise transformation, one can control probability
histograms of output images, and this is the only image statistical parameter that can
be directly controlled in this model. Three versions of PWNmodels implemented for
exercises are listed in the menu shown in figure 6.2.

6.2.1 Binary spatially inhomogeneous texture with controlled local probabilities
of ‘one’

In this exercise one can generate binary pseudo-random images with probability of
‘one’ proportional, for each pixel, to normalized to the unity gray level of its

Figure 6.2. PWN-models: start menu.

Figure 6.1. Statistical image models and pattern formation: start menu.
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corresponding, i.e. having the same coordinate, pixel of a reference image. The
resulting images are, naturally, spatially inhomogeneous according to the spatial
inhomogeneity of the reference images. As seed images, arrays of uncorrelated
pseudo-random numbers with uniform distribution obtained by means of the
standard MATLAB® generator of ‘random’ numbers are used. The nonlinearity
implemented in the model is a threshold nonlinearity, the threshold being equal,
for each particular pixel, to the normalized gray levels of the corresponding pixel
of the reference image. Reference images are to be chosen by the user from
the image database. An example of a pattern generated by the model is shown in
figure 6.3.

6.2.2 Spatially inhomogeneous texture with controlled variances (‘multiplicative
noise’)

In this version of the PWN model, generated are zero mean pseudo-random images
with normal distribution and standard deviation proportional, for each pixel, to the
normalized gray level of the corresponding pixel of a reference image. This type of
pseudo-random image simulates signal dependent multiplicative noise. As seed
images, pseudo-random numbers with normal distribution taken from the standard
MATLAB® pseudo-random number generator are used. The amplitude transfer
function of the ‘nonlinearity’ is a parabolic transfer function, which spans within
the image dynamic range ([0–255]) with a slope proportional to its argument,
the gray level. As in the previous exercise, reference images are to be chosen by the
user. Figure 6.4 presents an example of an image generated in this way and its
corresponding reference image.

Figure 6.3. PWN model: reference image (left panel) and an example of a binary pseudo-random image with
density of ‘ones’ (shown in white) controlled by the reference image (right panel).
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6.2.3 Spatially inhomogeneous texture with controlled local histograms

This implementation of the model enables generation of pseudo-random images
with local histograms within windows of a given size identical to local histograms
of a reference image in corresponding positions of windows. As seed images, arrays
of uniformly distributed pseudo-random numbers generated by the standard
MATLAB® random number generator are used. The model nonlinearity is the one
that converts uniform distribution of pseudo-random numbers into a given distribu-
tion. It is inverse to the histogram equalization transformation. The reference images
as well as vertical and horizontal dimensions of the window for computing
local histograms are to be chosen by the user. A result of the work of the model is
illustrated in figure 6.5.

6.3 LF models
6.3.1 Introduction

While PWN models control image gray level distribution histograms, linear filter
(LF) models generate images with pre-defined power spectra (or, correspondingly,
autocorrelation functions). It is noteworthy that, by virtue of the central limit
theorem of the probability theory, gray level distributions of images generated by
LF models tend to a normal (Gaussian) distribution.

Exercises in this section demonstrate synthesized images for several types of
image spectrum and a possibility of generating images that imitate certain types
of natural texture. Linear filters in the models are implemented in spectral DFT or
DCT domains: seed arrays of pseudo-random uncorrelated zero mean numbers with

Figure 6.4. PWN model: a reference image (left panel) and an example of a pseudo-random image with pixel
gray level standard deviations proportional to gray levels of corresponding pixels of the reference image (right
panel).
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uniform distribution in the range [−0.5, 0.5]) from the standard MATLAB® random
number generator are multiplied by spectral masks of certain chosen by the user
forms or controlled by a reference image, and the images are obtained by inverse
DFT or DCT transform. Thus, power spectra of generated images are specified by
the spectral masks, while spectra phase components are determined by the pseudo-
random numbers. Types of texture images that can be generated are listed in the
start menu in figure 6.6.

6.3.2 ‘Ring of stars’, circular and ring-shaped spectra, ‘fractal’ textures

‘Ring of stars’ textures are generated in the DFT or in DCT domains using spectral
masks in the form of a ‘ring of stars’ (several spectral components uniformly
arranged over a circumference of a circle (for DFT) or of a pie-sector (for DCT) of
certain radius centered at the DC component). For generating circular and ring-
shaped spectra textures, spectral masks in the form of circles and rings, for DFT, or
pie-sectors and quarters of rings, for DCT, are used. For generating ‘fractal’
textures, one uses spectral masks in the form of the DC component centered
at the spectrum circularly symmetrical surfaces that decay inversely proportionally
to the 0.5th; 1st; 1.5th; and 2nd powers of the distance from the DC component
(‘1/f P’-type spectra).

For generating ‘ring of stars’ textures, the user is prompted to choose DFT or
DCT transform domains for filtering, set the radius of a circle as a fraction of the
image size, and the number of spectral components (‘stars’) uniformly arranged on
the circumference of the circle or, correspondingly, pie-sector. For textures with

Figure 6.5. PWN model: a reference image (right) an example of a pseudo-random image with local histograms
over a certain window identical to local histograms of the reference image in corresponding 7 × 7 pixel window
positions.
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circular or ring-shaped spectra, the user defined parameters are corresponding radii
(figure 6.7).

The program can be run many times producing different realizations of this type
of textures with the same parameters. Examples of the resulting images are presented
in figure 6.8.

If the option ‘fractal’ textures with 1/f-type spectra is chosen, the program
automatically generates all four special cases of fractal textures with 1/∣ f ∣P spectra
for P = 0.5, P = 1, P = 1.5 and P = 2 (figure 6.9).

6.3.3 Imitation of natural textures

A remarkable property of LF models is their capability of imitating many types of
natural texture. This can be done by assigning to arrays of pseudo-random images
the power spectrum of a template texture images to be imitated. To demonstrate this

Figure 6.6. LF models: start menu.

Figure 6.7. LF model, ‘ring of stars’, circular and ring-shaped spectra: menu of parameters.
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capability, two options are offered in the exercise for choosing the template texture:
(i) three types of natural textures, a ‘wood’ texture of wooden furniture, a ‘mohair’
texture of weaved woolen fabric and another texture, ‘textile’, of woven fabric, and
(ii) arbitrary texture image from the image database. The latter option is intended

Figure 6.8. LF models, ‘ring of stars’, circular and ring-shaped spectra. Shown are examples of generated
images (bottom row) along with corresponding frequency responses of linear filters of the models. (Yellow color
in images of spectral masks corresponds to ones; blue color corresponds to zeros in the frequency responses).

Figure 6.9. LF models, ‘fractal’ textures with circular symmetric power spectra that decay inversely propor-
tionally to powers 0.5, 1, 1.5 and 2 of the spatial frequency.
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for demonstration that not all natural texture can be imitated using the LF model.
The program can be run many times to generate different realizations of texture
images of the same type, which, in this case, is defined by the power spectrum of
template images. Examples of generated texture images that imitate natural
prototypes are shown in figure 6.10.

6.3.4 Spatially inhomogeneous textures with controlled local spectra

In the previous exercise, LF models are applied globally, i.e. to spectra of whole
images. Resulting textures are, therefore, spatially homogeneous (in terms of
their local spectra). Local application of LF models enables generating spatially
inhomogeneous textures. This can be done, for instance, using as a control signal, an
auxiliary image, whose local parameters determine parameters of local spectra of
textures to be generated.

This idea is implemented in the exercise in the following way. Two types of
spectral masks for the LF model are pre-defined: circular masks of different radii
and elliptical masks of different orientations. For circular spectral masks, mask
radius is the controlled parameter. For elliptical spectral masks, their angular
orientation is the controlled parameter. In the process of generating texture images,
those parameters are, pixel by pixel, determined by gray levels of pixels of the
reference image chosen by the user. Figure 6.11 illustrates the work of the model.

6.4 PWN&LF and LF&PWN models
PWN&LF and LF&PWN models are examples of two-stage (cascade) models with
point-wise nonlinearity and linear filter applied to input seed images one after
another in different order.

Figure 6.10. LF models: samples of natural textures (upper row) and their computer generated imitations
(lower row).
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A version of the PWN&LF model implemented here imitates ‘randomly’ tossing
an image of a one cent coin onto a plane. To this goal, the model generates in the
first stage an array of pseudo-random binary numbers with a certain, set by the user,
probability of ‘ones’. Then this array is convolved with an image of a cent
coin, which plays here the role of the impulse response of the linear filter. As a
result, images of cent coins are placed in the positions of ones of the binary array at
the linear filter input. The program runs this procedure several times and displays
obtained realizations of images as video frames. The number of runs is a user-
defined parameter as well. Figure 6.12 shows one frame of such a run.

In the LF&WPN-model, linear filters and point-wise nonlinearities act in the
inverse order with respect to the previous case. First, arrays of correlated pseudo-
random numbers are produced from a seed array of uncorrelated pseudo-random
numbers by a linear filter with a preset frequency response, and then the result is
subjected, pixel by pixel, to a certain user-defined nonlinear transformation. The
types of filter masks used here are the same as in the above described exercise with
the LF model. As for the nonlinearity, two options are offered: threshold non-
linearity and sinusoidal one. The threshold nonlinearity replaces positive input
signal values by ‘ones’, and negative values by ‘zeroes’. The sinusoidal nonlinearity
replaces input signal values by a cosine of two π times signal value normalized to the
unity. Figures 6.13 and 6.14 illustrate output displays.

6.5 Evolutionary models
As was mentioned, evolutionary models are iterative models, i.e. models with
feedback. They work with the initial ‘seed’ image in an iterative way, applying, at

Figure 6.11. LF models: spatially inhomogeneous textures (upper left and right panels) with circular (bottom
left) and elliptic (bottom right) local spectra controlled by the reference image (upper middle panel).

Advanced Digital Imaging Laboratory Using MATLAB®

6-9



each iteration step, a certain image transformation specific for the model to the
result obtained at the previous step. A critically essential feature of evolutionary
models is the presence of irreversible non-linearity in the feedback loop. This enables
generating nontrivial patterns in the process of iteration, i.e. of evolution of the

Figure 6.13. LF&PWN model, the threshold nonlinearity. Yellow color in images of spectral masks
corresponds to ones and blue color corresponds to zeroes in the frequency responses.

Figure 6.12. PWN&LF model: images of cent coins placed ‘randomly’ over an empty frame (shown using the
MATLAB® color map ‘copper’).
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patterns. Two specific models are implemented here: a model that generates patchy
patterns and a model that generates maze-like patterns (figure 6.15).

6.5.1 Generating patchy patterns

In this model, images are iteratively subjected to filtering in a running (row-wise and
column-wise) window that, at each position of the window, replaces the gray level of
the window central pixel by the gray level of the mode of the histogram over the
window, i.e. by the gray level, which is the most frequent in the window. This filter
belongs to a family of rank filters that will be studied later in chapters 8 and 9. Being
applied iteratively, it tends to produce piece-wise constant patchy patterns.

For experimentation with this model, the user is first prompted to choose, as a
seed image, either an array of pseudo-random uncorrelated numbers or any natural

Figure 6.14. LF&PWN model, the sinusoidal nonlinearity. Yellow color in images of spectral masks
corresponds to ones and blue color corresponds to zeroes in the filter frequency responses.

Figure 6.15. Evolutionary models: start menu.
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image from the image database and after that to set the filter window horizontal and
vertical dimensions and the number of iterations (figure 6.16).

The program displays the input seed image and, at each iteration, the output
image and plots of the number of image pixels modified at this iteration and of the
number of histogram bins in the output image versus the number of iteration. The
first plot provides an indication of the convergence of the output image to a model
‘fixed point’, i.e. to a stable image, which, once it has appeared, is not modified
anymore in the process of iterations. In this case the number of modified pixels
becomes zero. The second plot shows the number of image histogram non-zero bins
in the iteration process. Decrease of this number evidences the convergence of the
seed image to a patchy piece-wise constant image.

After the chosen number of iterations is executed, the user has an option either to
further continue iterations or to stop iterations and display the pattern of edges of
the produced patchy pattern. The edges are detected by computing pixel wise
differences between output image maxima and minima in a running window of 3 × 3
pixels. An example of the final display is shown in figure 6.17.

6.5.2 Generating maze-like patterns

The exercise in this section implements a stochastic modification of the mathemat-
ical game, the ‘Game of life’, invented by a British mathematician John Conway. In
the standard model ‘Game of life’, a square array of ‘cells’, which may be in one of
two states, one (‘live’) and zero (‘empty’) and forms a binary pattern with pixels
representing the cells, evolves from a certain seed pattern according to the three
simple rules:

1. If a ‘live’ cell has in its closest 3 × 3 pixel spatial neighborhood less than two
or more than three ‘live’ cells, it will ‘die’ at the next evolution step, i.e. one
will be replaced by zero in the corresponding pixel.

2. If an ‘empty’ cell has in its closest 3 × 3 pixel neighborhood exactly three
‘live’ neighbors, this cell will give ‘birth’ at the next evolution step, i.e. zero
will be replaced by one in the corresponding pixel.

3. Otherwise nothing happens.

The ‘births’ and ‘deaths’ events in the standard model happen at each evolution
step synchronously in all cells of the array, where they must happen according to the

Figure 6.16. Evolutionary models: generation patchy patterns parameter menu.
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above rules. In the stochastic modification of the model that is offered for
experimentation here, the ‘birth’ events occur in all cells of the array, where they
must occur according to the above rule, whereas ‘deaths’ occur only in a subset of
the relevant cells. Pixels of this subset are selected, using a pseudo-random number
generator, with a certain probability, which we call the ‘probability of death’ Pdeath.
This is a model parameter that the user has to set along with the initial probability of
‘live’ cells in the binary pseudo-random seed pattern that the program will generate
at its start (figure 6.18).

For the standard, non-stochastic, model Pdeath = 1. The standard ‘Game of life’
model produces, in the course of evolution from an arbitrary seed pattern, three
types of patterns: (i) stable formations that, once appeared, remain unchanged
unless they collide with neighbor formations, which might happen in the course of
evolution; (ii) periodical formations (‘oscillators’), which repeat themselves after a
certain number of evolution steps; obviously, the above-mentioned stable patterns

Figure 6.17. Evolutionary models: iterative local histogram modes over a running window. The graph of the
number of pixels changed from the previous iteration shows that the model reached its fixed point at about the
170th iteration.

Figure 6.18. Evolutionary models, generating maze-like patterns: parameter menus.
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can be regarded as a special case of periodical formations with a period of one step;
(iii) self-replicating ‘moving’ formations, or ‘gilders’, which move across the lattice
and replicate themselves in a shifted position after a certain number of steps; this can
be regarded as a general ‘space–time’ periodicity.

Figure 6.19. Game of Life standard model: four consecutive frames of the evolutional pattern, in which stable,
periodical and moving patterns are present. The latter are marked by the arrow.

Figure 6.20. Evolutionary models: stochastic modification of the ‘Game of Life’. The bottom image, in which
stable cells are shown in blue, and plot evidence that the model reached a fixed point after about 15 000
iterations.
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The program that implements the model displays, at each iteration, i.e. evolution
step, the initial seed pattern, the output pattern and additionally a color coded
output pattern, in which cells that are to ‘die’ on the next evolutionary step are
shown in red, cells that will give ‘birth’ are shown in green, and stable cells are shown
in blue. Displayed is also a plot of the relative number of cells that are to die.
The plot serves as an indicator of convergence of the pattern to a stable fixed point.
An example of four consecutive frames of the evolutional pattern observed for
Pdeath = 1 is shown figure 6.19.

For Pdeath larger than about 0.3, the model produces either isolated stable, or
oscillated or moving formations such as those shown in figure 6.19, or chaotic
patterns that do not stabilize however large the number of evolutionary steps. For
values of Pdeath lower than ∼0.3, patterns of chaotic formations that emerge at first
evolution steps tend, in the course of evolution, to stabilize and to gradually produce
stable homogeneous patterns with a certain degree of order, which look like maze
patterns of alternative straight vertical and horizontal lines that chaotically switch
their direction and/or positioning. These patterns are the model ‘fixed points’. Figure
6.20 illustrates an outcome of one of the runs of the model with Pdeath = 0.2.

Questions for self-testing
1. What is the principle of the algorithmic approach to models for generating

patterns?
2. Which statistical characteristics of images are controlled by PWN and LF

models?
3. How can PWN and LF models be used for imitating different types of

image noises?
4. Do ‘fractal’ textures with 1/f P-type spectra and spatially inhomogeneous

textures generated by LF models resemble any natural textures?
5. Does the appearance of textures generated with the use of LF models

demonstrate association with the shape of filter masks of the models?
6. What kinds of natural texture can be imitated by the PWN and LF models

and their combinations and what cannot?
7. What irreversible nonlinearity is present in the model that generates patchy

patterns?
8. Define, in terms of the algorithmic approach, a model that produces

‘random net’ patterns such as patterns of edges of patchy piece-wise
constant images.

9. Do maze-like patterns generated by the evolutionary ‘Game of life’-based
model resemble some natural patterns?

10. What irreversible nonlinearity is involved in the model that produces maze-
like patterns?

11. Suggest some other multi-level and multi-branch algorithmic models as an
extension of those implemented in the exercises.

Advanced Digital Imaging Laboratory Using MATLAB®

6-15


	Chapter 6 Statistical image models and pattern formation
	6.1 Introduction
	6.2 PWN models
	6.2.1 Binary spatially inhomogeneous texture with controlled local probabilities of ‘one’
	6.2.2 Spatially inhomogeneous texture with controlled variances (‘multiplicative noise’)
	6.2.3 Spatially inhomogeneous texture with controlled local histograms

	6.3 LF models
	6.3.1 Introduction
	6.3.2 ‘Ring of stars’, circular and ring-shaped spectra, ‘fractal’ textures
	6.3.3 Imitation of natural textures
	6.3.4 Spatially inhomogeneous textures with controlled local spectra

	6.4 PWN&LF and LF&PWN models
	6.5 Evolutionary models
	6.5.1 Generating patchy patterns
	6.5.2 Generating maze-like patterns

	 Questions for self-testing


