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Magnetic Excitations and Geometric Confinement
Theory and simulations

Gary Matthew Wysin

Chapter 9

Magnetic vortex core motion
and internal dynamics

In this chapter some dynamic properties of individual vortices in 2D ferromagnets
are presented. Analogous to 1D magnetic solitons, vortices have charges, momen-
tum and mass. In addition, they possess a topological charge or gyrovector G that
strongly governs the motion of the vortex core in response to applied forces. The
Thiele equation, which describes vortex core motion via the gyrovector, is presented
and its extension to include mass is discussed. The connection to Lagrangian
mechanics for the core motion is also considered. Vortices also interact with spin
waves and modify the spin wave spectrum. Oscillation of spin waves on top of a
vortex background is considered its internal dynamics, which includes effects that
can be studied theoretically and with simulations.

9.1 Thiele equations and vortex motion
In a complex system, a vortex is affected by an externally applied magnetic field and
the far spin field of other vortices, as well as damping torques. Thiele [1, 2], and also
Huber [3], developed a kind of collective coordinate equation that describes the
motion of a domain wall or a vortex, treating it as a particle. The Thiele equation of
motion gives the dynamics for the motion of the vortex core, which could have some

time-dependent position tX( ) and a corresponding time-varying velocity = ˙t tV X( ) ( ).
In the development of the dynamic equation by Thiele, it was assumed that the

vortex structure for a moving vortex is the same as that for a static vortex, S r( ),
except for adding a uniform translation, = − tS S r X( ( )). Here r is the location of a
spin being measured (field point), whereas X is the location of the vortex center. If
the position tX( ) of the core translates uniformly, it is described by the equation,

= +t tX V X( ) . (9.1)0

But we have seen earlier that the vortex structure itself is changed in shape by the
motion. In particular, the out-of-plane component develops an asymmetric structure
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linearly proportional to V. Thus, we consider here the modification to the Thiele
equation, when vortex shape variations that are dependent on V are included in the
theory [4]. Then, the spin structure is assumed to have a form that has an explicit
velocity-dependence, for unit spins,

= − t ts s r X V( ( ), ( )). (9.2)

By translating, the spin at a given location is changed. Also, if the vortex changes its
velocity, the vortex changes its structure and a spin at a given location is changed.
This latter effect is represented by a dependence on V, the second parameter in this
collective coordinate spin function. This means that the time derivative of the spin
field is obtained from both a convective derivative term and an acceleration term:

= − · ∂
∂

+ · ∂
∂

= − · ∂
∂

+ · ∂
∂t t t

s X s
r

V s
V

V
s
r

A
s
V

d
d

d
d

d
d

. (9.3)

The last term, proportional to the vortex acceleration = ˙A V, will lead to a vortex
effective mass. The dot products indicate the sum over x-and y-components of both
the coordinate and velocity gradients.

Equation (9.2) represents only the contributions to the spin field due to a particular
vortex under consideration. In a real application, the spin field will be a nonlinear
superposition of parts due to the vortex of interest, and all other contributions from
say, other vortices at far away locations. It can be kept in mind, then, that the total spin
field will not be translating as in (9.2). Indeed, the vortex of interest is influenced by the
spin fields of all other vortices and other independent modes in the system.

9.1.1 Derivation of Thiele’s equation of motion

The Thiele equation is derived from the Landau–Lifshitz equations, including
Gilbert damping, by considering it as an equation with force-like terms (acting on
the vortex). Wysin and Mertens [4] extended it to include acceleration effects, based
on analysis of vortex momentum. First, we consider a derivation based on the Thiele
approach, in which the damping is easily accounted for. The Landau–Lifshitz–
Gilbert (LLG) equation (2.105) for s is

γ α˙ = × − × ˙s s B s s, (9.4)
where

γ δ
δ

= − H
B

S
(9.5)

is the effective field providing the torque (it could depend on s). The LLG equation
can be expressed equivalently as

× = as H 0 (9.6 )net

γ α≡ + × ˙ − ˙ bH B s s s( ) . (9.6 )net

Note that this works because spin length is conserved, which implies · ˙ =s s 0, used
in the vector identity,

× × ˙ = · ˙ − · ˙ = −˙s s s s s s s s s s( ) ( ) ( ) . (9.7)
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Equation (9.6a) proves that the fields Hnet and s are parallel. Any change in s must
be perpendicular to s, i.e. ∇ · =s s( ) 0, where ∇ = ˆ ∂ = ˆ ∂

∂
e e ,

rj j j
j

and the spin

components are contracted by dot (·) here, resulting in a vector. In this section
repeated indices =i j k, , 1, 2, are summed over. Because Hnet is parallel to s, one
has an expression that contains local force-like quantities as a conservation law:

⎡
⎣⎢

⎤
⎦⎥γ α∇− · = − ˆ ∂ · + × ˙ − ˙ =( )s H e s B s s s( ) ( ) 0. (9.8)j jnet

A minus sign is included so that the resulting terms go directly as written into the
Thiele equation being produced. The time derivatives contained here are taken in the
convective form (9.3). It is more convenient to express this time derivative using
index notation,

˙ = − ∂ + ∂̃V As s s, (9.9)k k k k

where ∂̃ ≡ ∂
∂Vj

j
is the velocity gradient and ∂ = ∂

∂rk
k
is a component of the gradient

with respect to the field point r. This now gives

γ α

α

− · ˆ ∂ − · ∂ × ∂ ˆ − ∂ · ∂ ˆ

+ · ∂ × ∂̃ ˆ + ∂ · ∂̃ ˆ =

( ) ( ) ( )

( )

V V

A A

B e s s s s e s s e

s s s e s s e

( )

( ) ( ) 0. (9.10)

j j j k j k j k j k

j k j k j k j k

The terms in the first line give Thiele’s original equation; the second line contains the
modifications caused by velocity-dependent structure changes. This then motivates
the definitions of integrals over a vortex structure, which are collective properties of
a vortex that act to describe the dynamics.

The first term in the first line of (9.10) is related to an effective force F acting on
the vortex. Consider using the definition (9.5) of the effective field γB, and
integrating over 2D space,

⎛
⎝⎜

⎞
⎠⎟

∫ ∫

∫

∫

γ δ
δ

δ
δ

− · ˆ ∂ = ˆ · ∂
∂

= ˆ · − ∂
∂

= − ˆ ∂
∂

= − ∂
∂

( )r
S

r
H

r

v
S

r
v

H
X

v
S X

r
v

v
S

H

B e s e
S

S

e
S

S

e
X

d
1

d

d

d
. (9.11)

j j j
j

j
j

j
j

2 2

cell
2

cell

cell
2

cell

cell

In the second line of (9.11), the gradient ∂ ∂S r/ has been replaced by−∂ ∂S X/ , and the
area per spin, v ,cell has been included into the integrand. The last line of (9.11) is
written as a gradient of the total Hamiltonian,with respect to the vortex core locationX.
That defines the force acting on the vortex,

= −∂
∂
H

F
X

. (9.12)

Therefore this first term in (9.10) is summarized as

∫ γ
σ

σ− · ˆ ∂ = ≡( )r
S

v
B e s Fd

1
, . (9.13)j j

2

cell
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The factor σ is spin density per area and vcell is the area occupied by one spin in the
system. In many papers the factor σ1/ on F is instead expressed equivalently as γ m/ ,0

where γ=m S v/0 cell is the magnetic dipole moment per unit area.
The second term in the first line of (9.10) leads to an anti-symmetric gyrotensor

Gjk and gyrovector = ˆGG ei i derived from it (both taken as dimensionless here):

G ∫≡ · ∂ × ∂( )r as s sd (9.14 )jk j k
2

Gϵ=G b
1
2

. (9.14 )i ijk jk

Because j and k can only take the values 1 or 2, in application for a 2D system the
only non-zero elements of the gyrotensor are G G= − .12 21 Then, the gyrovector only
has an out-of-plane component, = ˆGG e ,3 3 where G=G ,3 12 and it can also be
expressed in a form using the canonical variables (see the derivation of (9.28) below),

∫ ϕ∇ ∇= ˆ = ×G r sG e d . (9.15)z
3 3

2

Some algebra is aided by the result of the following exercise.

Exercise 9.1. From (9.14b) and the identity for the Levi–Civita symbol,

ϵ ϵ δ δ δ δ= − (9.16)ijk ilm jl km jm kl

show the additional relation,

G ϵ= G . (9.17)jk ijk i

With the result (9.17) for G ,jk the corresponding term in (9.10) becomes

G ϵ ϵ− ˆ = − ˆ = + ˆ = ×V G V G Ve e e G V. (9.18)jk j k ijk i j k jik j i k

As the gyrovector G points perpendicular to the plane, this gyrotropic force ×G V
then produces forces on the vortex acting within the 2D plane. It is the most
important physical effect that results from the gyrovector.

The next collective property from the first line of (9.10) is a symmetric dissipation
tensor with components Djk (also dimensionless),

D ∫α≡ − ∂ · ∂( )r s sd ( ). (9.19)jk j k
2

This can define a dyadic object, D D= ˆ ˆe e ,jk j k that operates on V. Then using only
these vortex properties, the original form of the Thiele equation is

D
σ

+ × + · =F G V V
1

0. (9.20)

This equation describes the dynamics of the vortex core motion, assuming the
internal spin structure of a vortex is unaffected by velocity. All terms in the equation
have dimensions of velocity. Note that the gyrovector will vanish for an in-plane
vortex. Then, in the absence of dissipation, this equation is inadequate for the
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dynamics of an in-plane vortex, because it becomes =F 0, which is not necessarily
true if the vortex is exposed to some external field. This is an important reason why
the acceleration terms must be included.

9.1.2 Including vortex mass effects

Now consider the velocity-dependent vortex structure changes. The first term in the
second line of (9.10) motivates definition of an effective mass tensor M M= ˆ ˆe e ,jk j k

with elements

M ∫≡ − · ∂ × ∂̃r s s sd ( ). (9.21)jk j k
2

This definition gives M dimensions of time. A vortex mass tensor m in units of
kilograms would be obtained by including a factor of the spin density,

m Mσ≡ . (9.22)

Also one has another term, a new type of dissipation tensorD D˜ = ˜ ˆ ˆe e ,jk j k with elements

D ∫α˜ ≡ − ∂ · ∂̃( )r s sd ( ). (9.23)jk j k
2

The addition of these leads to a modified Thiele equation, including acceleration
effects,

D M D
σ

+ × + · = · + ˜ ·F G V V A A
1

. (9.24)

While bothM and D̃ appear in the same way in the equation, one expects that the 2 × 2
matrices associatedwith themhave different structures, leading to quite different physical

effects. The effect of D̃ is expected to be small, compared to the damping caused by D.
The factor of σ dividing the force can be moved to the other terms, defining ones

with more natural units. Thus we could write this modified Thiele equation with all
terms having force dimensions as

d m d+ × + · = · + ˜ ·F g V V A A. (9.25)

σ has been used to make the gyrovector, dissipation tensors and mass tensor with
physically reasonable units:

∫σ= = · ∂ × ∂ ˆ( )S
r

v
ag G s s s e

d
(9.26 )

2

cell
1 2 3

d D ∫σ α= = − ∂ · ∂ ˆ ˆ( ) ( )S
r

v
bs s e e

d
(9.26 )j k j k

2

cell

m M ∫σ= = − · ∂ × ∂̃ ˆ ˆS
r

v
cs s s e e

d
( ) (9.26 )j k j k

2

cell

d D ∫σ α˜ = ˜ = − ∂ · ∂̃ ˆ ˆ( )S
r

v
ds s e e

d
( ) . (9.26 )j k j k

2

cell
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Next, it is necessary to discuss the values of these collective properties of a vortex,
contrasting the results for in-plane versus out-of-plane vortices.

9.1.3 Calculation of vortex gyrovector and other properties

The expression in (9.14) is not so convenient for calculation of the gyrovector
components, G G= = −G ,3 12 21 just as (9.21) is not particularly good for calculation
of M .jk It is better to find their expressions in terms of the in-plane and out-of-plane
angles ϕ θ( , ). Letting θ ϕ θ ϕ θ=s (cos cos , cos sin , sin ), one has the components of
a space or velocity gradient, where ∂ represents any of ∂ ∂r/ j or ∂ ∂V/ ,k

θ ϕ

θ ϕ θ θ ϕ ϕ θ ϕ θ θ ϕ ϕ θ θ
θ ϕ θ ϕ θ θ ϕ ϕ θ ϕ

θ θ ϕ

∂ = − ∂ − ∂ − ∂ + ∂ ∂
= − − ∂ + − ∂
= ˆ ∂ + ˆ ∂

s ( sin cos cos sin , sin sin cos cos , cos )
( sin cos , sin sin , cos ) ( sin , cos , 0) cos

cos . (9.27)

The unit vectors θ̂ and ϕ̂ implicitly defined in the second line are oriented in the
directions of increasing θ and ϕ, respectively. Their cross product is ϕ θˆ × ˆ = ˆ =r s.
The relation (9.27) represents how the unit vector s can only change as its tip moves
on the unit sphere. This gradient can be combined with another general gradient
component, ∂′s, leading to

⎡⎣ ⎤⎦θ ϕ θ ϕθ θ ϕ θ θ ϕ

θ ϕ θ θ ϕ
ϕ ϕ

· ∂ × ∂′ = · ˆ ∂ + ˆ ∂ × ˆ ∂′ + ˆ ∂′

= ∂ ∂′ − ∂ ∂′
= ∂ ∂′ − ∂ ∂′

( ) ( )
( )

s s

s s s s( ) cos cos

cos

. (9.28)z z

Choosing ∂ → ∂j and ∂′ → ∂k (two space gradients), expression (9.14) becomes

∫ ϕ ϕ= ∂ ∂ − ∂ ∂( )G r s sd . (9.29)jk j k
z

j
z

k
2

Finally, using this to find =G G3 12 gives the angular formula for the gyrovector (9.15).
For static in-plane vortices with =S 0,z and even for moving ones, with Sz anti-

symmetric about the direction of motion, (9.15) gives G = 0. For out-of-plane
vortices, consider the static profile, and assume that the change in G will be
essentially zero for moving out-of-plane vortices. The in-plane angle ϕ φ( ) changes
by πq2 around the core, and the out-of-plane spin component s r( )z takes the value

= = ±s p(0) 1z at the core and sz = 0 as → ∞r . Then (9.15) becomes

∫ ∫ ∫ ∫φφ ϕ
φ

φ π= ∂
∂

ˆ × ∂
∂

ˆ = ∂
∂

−ˆ = ˆ
π π∞ ∞

r r
r

s
r

r r
q
r

s
r

pqG r z zd d
1

d d ( ) 2 .

(9.30)

z z

0

2

0 0

2

0

This gives π= ±G 2 , which is the solid angle on the unit sphere covered by the vortex
spin distribution. This defines the topological charge π= =Q G pq2 of a vortex.

For components of the mass tensor, choose ∂ → ∂j (space gradient) and ∂′ → ∂̃k

(velocity gradient), which then gives from (9.21) the angular formulation,

M ∫ ϕ ϕ= − ∂ ∂̃ − ∂ ∂̃r s sd ( ). (9.31)jk j k
z

j
z

k
2
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One can see that Mjk is not anti-symmetric. As a result it is not possible to write its
contraction with the acceleration A as a cross product. To estimate M ,jk we can use
the result θ≈s sinz

1 in (8.39) for the leading corrections to the static vortex
structure, due to motion. Also, the in-plane angle does not depend on V, to leading

order, so ϕ∂̃ ≈ 0.k The non-zero velocity gradient is that of sz, which is

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

ϕ
δ

ϕ
δ δ

ϕ∇∂̃ = ∂
∂

− ·
−

= −∂
−

≈ − ∂
( ) ( )

s
V JS q r JS q r JS

V

4 / 4 /

1
4

. (9.32)k
z

k

k
k

2 2 2 2

The last approximation uses the field far from the core. This reduces the mass tensor to

M ∫δ
ϕ ϕ≈ ∂ ∂

JS
r

1
4

d . (9.33)jk j k
2

From (8.8), with φϕ∇ = ˆq r/ , we have

ϕ ϕ φ φ∂ ∂ = −( ) ( )q
r

, sin , cos . (9.34)1 2

Upon integration over the plane, φsin and φcos are orthogonal functions, and
only the diagonal terms of Mjk survive. With lower and upper radial cutoffs r0
and R, they are

⎛
⎝⎜

⎞
⎠⎟M ∫ ∫δ

δ
φ φ π

δ
δ= =

π

JS
r r

q
r

q
JS

R
r4

d sin d
4

ln . (9.35)
R

jk
jk

r
jk

0

2
2

2

2

2

00

This has the same logarithmic dependence on system size as the static in-plane
vortex energy. Although calculated from the in-plane vortex structure, the mass
tensor for out-of-plane vortices should be nearly identical.

The dissipation tensor Djk can be written with the help of (9.27) as

D ∫
∫

θ ϕ θ ϕα θ θ ϕ θ θ ϕ

α θ θ θ ϕ ϕ

= − ˆ ∂ + ˆ ∂ · ˆ ∂ + ˆ ∂

= − ∂ ∂ + ∂ ∂

( ) ( )
( )

r

r

d cos cos

d cos . (9.36)

jk j j k k

j k j k

2

2 2

For an in-plane vortex, the contribution from gradients of θ will be proportional
to V2, so we consider it small. Then the main contribution comes from the gradients
of ϕ, and using θ ≈cos 1,

D ∫α ϕ ϕ απ δ≈ − ∂ ∂ = −r q
R
r

d ln (in-plane vortex). (9.37)jk j k jk
2 2

0

For an in-plane vortex, the damping tensor is directly proportional to the mass
tensor. One can see that the negative sign here is physically reasonable. In the
presence of very strong damping, the vortex motion (with G = 0) will follow

D= ∣ ∣V F/ , which gives a motion of the vortex in the same direction as the force.
For an out-of-plane vortex, both terms in the integrand of (9.36) can contribute.

The part with gradients of θ is larger near the core ( <r rv) where θ approaches π± /2.
Far from the core, at radius >r r ,v the part with gradients of ϕ is larger, where

θ ≈cos 1. We can use the asymptotic forms found for the static out-of-plane vortex
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to obtain an estimate to these two contributions in the separate regions <r rv and
>r r .v For =q 12 and using (8.19a), the core region’s contribution (integral only over
<r rv) is found to be

D απ δ= − A . (9.38)jk jk,core 0
2

Note that there is no lower cutoff r0 present, because the out-of-plane vortex does
not have a singularity at →r 0. For the region exterior to the core (integral only over

>r rv), one obtains
⎧⎨⎩

⎡
⎣⎢

⎤
⎦⎥
⎫⎬⎭D απδ= − + +∞

−R
r

A e Eln
1
4

3
2

(2) (9.39)jk jk, ext
v

2 2
1

where the last part involves the exponential integral with value ≈E (2) 0.0489,1

defined from

∫≡
∞ −

E x t
e
t

( ) d . (9.40)
x

t

1

Note that the logarithmic term does have a dependence on a large radius cutoff R,
but it is scaled by rv rather than r0 as in the in-plane vortex. Then the total damping
constant is the sum of these parts,

⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥
⎫⎬⎭

⎛
⎝⎜

⎞
⎠⎟

D απδ

απδ

= − + + +

≈ − +

∞
−A

R
r

A e E

R
r

ln
1
4

3
2

(2)

ln 1.20 (out-of-plane vortex). (9.41)

jk jk

jk

0
2

v

2 2
1

v

The dominant term here can be the logarithm, unless rv is fairly large. As a result, one
sees that especially as λ approaches closer to 1, causing a larger value of r ,v the tendency
will be for out-of-plane vortices to have weaker damping than in-plane vortices.

Finally we can calculate the additional damping factor D̃, based on transforming
the definition to angular variables,

⎛
⎝⎜

⎞
⎠⎟D ∫ ∫α θ θ θ ϕ ϕ α θ θ˜ = − ∂ ∂̃ + ∂ ∂̃ ≈ − ∂ ∂̃r rd cos d . (9.42)jk j k j k j k

2 2 2

This is reduced to the last form because to leading order in V the in-plane angle does
not change with velocity. Assuming the velocity-dependent changes in θ are small
and given from (9.32), then

θ θ
δ

ϕ∂̃ ≈ ∂̃ ≈ − ∂s
JS

cos
1

4
. (9.43)k k

z
k

Then this damping parameter is determined by the integral

D ∫α
δ

θ θ ϕ˜ = ∂ ∂
JS

r
4

d sec ( )( ). (9.44)jk j k
2 2

However, this integral is identically zero, because θ θ= r( ) while ϕ ϕ φ= ( ). One has
specifically,

θ θ θ φ φ∂ ∂ = ∂
∂( )
r

, (cos , sin ) (9.45)1 2
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and together with relation (9.34), the orthogonality of the sine and cosine functions
integrated over the plane leads to D̃ = 0. Then, for most situations the main
modification of the original Thiele equation is only the mass term. Vortex dynamics
for both in-plane and out-of-plane vortices should be fairly well described by a
modified Thiele equation with mass,

D M
σ

+ × + · = ·F G V V A
1

. (9.46)

Exercise 9.2. From the definition (9.36) of the dissipation tensorD ,jk (a) verify
the results (9.38) and (9.39) for the contributions from interior and exterior
regions of an out-of-plane vortex. (b) Check the total result for the damping
tensor, equation (9.41). Compare the result to that in (9.37) for in-plane
vortices. You may need to assume a cutoff length.

9.2 Relation of vortex momentum to the Thiele equations
The vortex mass and gyrovector can also be related to considerations of vortex
linear momentum. There are various uses of the word ‘momentum’ for slightly
different concepts, including canonical momentum, kinetic momentum and momen-
tum as a generator of translations. For instance, the kinetic momentum = mp v of
an electron in a magnetic field is not the same as the canonical momentum P; these
are different by a term dependent on the vector potential. A similar situation applies
to vortices, which can cause a lot of confusion. Here we consider how to define both
the kinetic and canonical momenta of a vortex, in such a way as to be consistent with
the undamped Thiele equation [5].

A vortex kinetic momentum p (dependent only on vortex velocity and not on
position) can be defined tentatively like that for solitons [6], based on the kinetic
integral in the Lagrangian (see (2.126b) and its application (7.51) for a 1D chain), for
a translating structure,

∫ ϕ= ˙ = ·K
r

v
S V p

d
, (9.47)z

2

cell

where the kinetic momentum is then defined as

∫ ∫ϕ σ ϕ∇ ∇= − = −r
v

S r sp
d

d . (9.48)z z
2

cell

2

This is the 2D generalization of kink momentum, (7.55) for a magnetic chain,
where vcell is the area per spin. One can see that p is zero for a stationary vortex,
where Sz is either zero or circularly symmetric, while ϕ∇ is anti-symmetric
around the vortex center. Motion of the vortex leads to an asymmetric part of Sz,
that combined with ϕ∇ leads to non-zero momentum. The evaluation is left as an
exercise.
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Exercise 9.3. Use the small out-of-plane perturbation (8.39) for moving in-
plane vortices to obtain the estimate of their kinetic momentum,

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

π σ
δ

π
δ

≈ =q
JS

R
r

q
Jv

R
r

p V V
4

ln
4

ln . (9.49)
2

0

2

cell 0

This result for p is the same as m≈p V using a scalar mass m (units of kg) derived
from (9.35),

m m Mδ σ= = . (9.50)jk jk jk

At this basic level the definitions of mass and kinetic momentum, for in-plane vortices,
are consistent. One can also show that the primary contribution to vortex energy due
to non-zero velocity is of the expected form, mV .1

2
2 While these results point to this

momentum being the usual kinetic or mechanical momentum, it is important to
analyze its dynamic properties, with the aim of seeing its connection to the canonical
momentum, P. At the same time, one needs to see how the momentum for out-of-plane
vortices, with non-zero gyrovector, compares with momentum of in-plane vortices.

9.2.1 Poisson bracket of kinetic momentum components

One interesting property of p is the Poisson bracket (PB, recall the definition (2.63))
between its two components, as considered in [5]. For a canonical momentum P, the
two components are expected to be independent and have a zero PB, =P P{ , } 0.x y

For a continuum system, the fundamental PB that replaces ϕ δ=S{ , }i j
z

ij for spins
on discrete sites is

ϕ δ′ = − ′S vr r r r{ ( ), ( )} ( ). (9.51)z
cell

Then using the definition (2.131), we want to check the PB of the xy-components of
the above kinetic momentum by calculating

⎛
⎝⎜

⎞
⎠⎟∫ δ

δϕ
δ
δ

δ
δ

δ
δϕ

= −p p
r

v

p p

S

p

S

p
{ , }

d
. (9.52)x y

x y

z
x
z

y
2

cell

The required functional derivatives of px are found by applying (2.129) for two space
dimensions to the x-component of (9.48), using subscripts on the fields to indicate
partial derivatives,

δ
δϕ

ϕ= ∂ − ∂ ∂ − ∂ ∂ − ∂ = ∂ϕ ϕ ϕ( )( )p
S S a(9.53 )x

x y
z

x x
z

x y

δ
δ

ϕ ϕ= ∂ − ∂ ∂ − ∂ ∂ − ∂ = −∂( )( )p

S
S b. (9.53 )x

z S x S y S
z

x xz
x
z

y
z

With similar results for the derivatives of py, we have the PB,

G∫ ϕ ϕ σ σ= −∂ ∂ + ∂ ∂ = =( )p p
r

v
S S G{ , }

d
. (9.54)x y x

z
y x y

z
2

cell
12 3
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The RHS is identified with σ times the gyrovector by comparing with relation
(9.29). Note that a similar results holds for an electric charge in a magnetic field;
the PB of two kinetic momentum components is proportional to the third
component of the magnetic induction. This behavior is not typical of a canonical
momentum.

One could also obtain this same result by changing to a definition of p based on
discrete differences of spin components on lattice sites, avoiding the functional
derivatives. For instance, for a square lattice with spins at sites labeled by indices
(n, m) for (x, y)-directions respectively, the discrete lattice definitions, using central
differences, are

∑ ∑ϕ ϕ ϕ= − ∂ = − −+ −( )p S S a
1
2

(9.55 )
nm n m,

x n m
z

x n m n m
z

n m n m, , , 1, 1,

∑ ∑ϕ ϕ ϕ= − ∂ = − −+ −( )p S S b
1
2

. (9.55 )
nm n m,

y n m
z

y n m n m
z

n m n m, , , , 1 , 1

Then the needed PB is a sum of terms, using primed indices in the py sum,

∑ ϕ ϕ ϕ ϕ= − −
′ ′

+ − ′ ′ ′ ′+ ′ ′−{ }( ) ( )p p S S{ , }
1
4

, . (9.56)
n m n m, , ,

x y n m
z

n m n m n m
z

n m n m, 1, 1, , , 1 , 1

Using the canonical PBs (2.101), only limited terms are non-zero here, giving

⎡⎣
⎤⎦

∑ ϕ ϕ δ δ δ

ϕ ϕ δ δ δ

= − −

+ − −

′ ′
′ ′+ ′ ′− + ′ − ′ ′

+ − ′ ′ ′ ′+ ′−

( )( )

( ) ( )

p p S

S

{ , }
1
4

. (9.57)

n m n m, , ,
x y n m

z
n m n m n n n n m m

n m n m n m
z

n n m m m m

, , 1 , 1 1, 1, ,

1, 1, , , , 1 , 1

Employing the deltas to eliminate the primed indices leads to

⎡⎣
⎤⎦

∑ ϕ ϕ ϕ ϕ

ϕ ϕ

= − − +

+ − −

+ + + − − + − −

+ − + −

( )

( )( )

p p S

S S

{ , }
1
4

. (9.58)

n m,
x y n m

z
n m n m n m n m

n m n m n m
z

n m
z

, 1, 1 1, 1 1, 1 1, 1

1, 1, , 1 , 1

Finally, shifting n by ±1 on the first line changes nothing, but leads to a result that is
equivalent to the discretized gyrovector density, whose sum gives back the
gyrovector:

⎡⎣
⎤⎦

∑

∑

ϕ ϕ

ϕ ϕ

ϕ ϕ σ

= − − −

+ − −

= −∂ ∂ + ∂ ∂ =

+ − + −

+ − + −

( )( )

( )( )
( )

p p S S

S S

S S G

{ , }
1
4

. (9.59)

n m

n m

,

,

x y n m
z

n m
z

n m n m

n m n m n m
z

n m
z

x n m
z

y n m x n m y n m
z

1, 1, , 1 , 1

1, 1, , 1 , 1

, , , , 3

This is a good check that the PB obtained via functional derivatives is correct.
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9.2.2 The momentum conjugate to X

Suppose there is another momentum P that is conjugate to the vortex position X.
The canonical PBs between these should then be

δ= = ={ } { } { }X P X X P P, , , 0, , 0. (9.60)i j ij i j i j

It is interesting to suppose a transformation from p to P, that will ensure these
canonical PBs and reproduce (9.54):

⎛
⎝⎜

⎞
⎠⎟σ σ σ= − × = + −P G Y P G Xp P G X

1
2

1
2

,
1
2

. (9.61)x y3 3

Then one sees that this produces the PB already obtained above for the kinetic
momentum components,

σ σ

σ σ σ

= + −

= − =

{ }
{ } { }

p p P G Y P G X

G Y P G P X G

{ , }
1
2

,
1
2

1
2

,
1
2

, . (9.62)

x y x y

y x

3 3

3 3 3

The transformation produces the correct PB, while at the same time giving a new
momentum P that is conjugate to vortex core position,

σ= + ×P p G X
1
2

. (9.63)

9.2.3 Momentum as a generator of translations

Next, consider the translational property of p, by evaluating its PB with an arbitrary
function of the spin field, ϕ≡ =f f f Sx S x x x( ) ( ( )) ( ( ), ( )).z Then following the same
rules for PBs, we have the algebra for one component,

⎛
⎝⎜

⎞
⎠⎟∫ δ

δϕ
δ
δ

δ
δ

δ
δϕ

= −{ }p f
r

v

p f
S

p

S
f

x, ( )
d

. (9.64)j
j

z

j

z

2

cell

The function f can be written as a functional by including a delta function:

∫ ϕ δ= −( )f
r

v
f S vx r r r x( )

d
( ), ( ) ( ), (9.65)z

2

cell
cell

which allows calculation of its derivatives (at the location r needed in (9.64)) as

δ
δϕ ϕ

δ δ
δ

δ= ∂
∂

− = ∂
∂

−f f
v

f
S

f
S

vr x r x( ), ( ). (9.66)
z zcell cell

Then we obtain

⎛
⎝⎜

⎞
⎠⎟∫ ϕ

ϕ
δ= ∂

∂
∂
∂

+ ∂
∂

∂
∂

− = ∂
∂{ }p f

r
v

S
r

f
S r

f
v

f
x

x r x, ( )
d

( ) . (9.67)j

z

j
z

j j

2

cell
cell
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If the function depends on a vortex spin field in the form −S x X( ), where X is the
core location, then with ∂ ∂ = −∂ ∂x X/ / ,j j the result is

− = ∂
∂

= − ∂
∂

f
f f

p x X
x X

{ , ( )} . (9.68)

Compare the expansion of −f x X( ) for small displacement X,

− ≈ − · ∂
∂

f f
f

x X x X
X

( ) ( ) . (9.69)

The shift in position X then acts on fp{ , } to produce the change in f due to a small
translation. Therefore, the kinetic momentum p is a generator of space translations
on arbitrary functions of the spin field. Note that it is analogous to the translations
in time that are generated by the Hamiltonian, according to the PB relation,

= −H f
f
t

S{ , ( )}
d
d

. (9.70)

The canonical momentum P found earlier in (9.61), which is conjugate to vortex
location X, has the same translational property, as found for one component:

σ− = + × − = − = − ∂
∂{ }{ } { }P f p f p f

f
X

x X G X x X x X, ( )
1
2

, ( ) , ( ) . (9.71)j j j
j

This is the same as expected from a general chain rule such as (2.66a) for PBs,

δ− = ∂
∂

= − ∂
∂

= − ∂
∂{ } { }P f P X

f
X

f
X

f
X

x X, ( ) , . (9.72)j j k
k

jk
k j

9.2.4 Time derivative of kinetic momentum p

The dynamics of p is important for comparison to the Thiele equation. Thus, we ask

what is ṗ? This can be answered by appealing to PB algebra again1. The time
derivative of a component of p is determined from a PB with the Hamiltonian, which
can be expressed as

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

∫

∫ ∫

δ
δϕ

δ
δ

δ
δ

δ
δϕ

δ
δ

ϕ δ
δϕ

˙ = = −

= ∂
∂

+ ∂
∂

= − ∂
∂

= − ∂
∂

=

{ }p p H
r

v

p H
S

p

S
H

r
v

S
r

H
S r

H
X

r
v

H
X

F

,
d

d d
. (9.73)

j j
j

z

j

z

z

j
z

j j j
j

2

cell

2

cell

2

cell

Our earlier results (9.53a) for the functional derivatives of pj were used, as well as the
ansatz that the spin field is assumed of the form −S r X( ), or = −∂

∂
∂

∂
.

r Xj j
This result

gives a simple principle,

1One can also try to differentiate through the integral of the original definition (9.48). This has technical
difficulties, however, because of the singularity at the vortex core, which can lead to nonsensical or poorly
defined results. This seems to be the difficulty in some earlier works [4, 5].
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˙ =p F. (9.74)

The rate of change of the defined kinetic momentum is the force on the vortex.

The expression for ṗj can be expressed differently, using instead the canonical
equations (2.130) to replace the functional derivatives of H in the integrand:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠⎟∫ ∫δ

δϕ
δ
δ

δ
δ

δ
δϕ

ϕ ϕ˙ = − = ∂ ˙ − −∂ − ˙( ) ( )p
r

v

p H
S

p

S
H r

v
S S

d d
. (9.75)j

j

z

j

z j
z

j

z2

cell

2

cell

Now replacing the spin time derivatives with the convective form (9.9) gives
⎛
⎝⎜

⎞
⎠⎟∫ ∫ϕ ϕ ϕ ϕ˙ = ∂ ∂ − ∂ ∂ − ∂ ∂̃ − ∂ ∂̃( )p V

r
v

S S A
r

v
S S

d d
. (9.76)j k j k

z
j

z
k k j k

z
j

z
k

2

cell

2

cell

This contains the gyrotensor (9.29) and the mass tensor (9.31), and comparing with
(9.18), it is summarized as

Mσ σ˙ = − × + ·p G V A. (9.77)

Although no damping is included, these results reproduce the modified Thiele
equation (9.46), once ṗ is replaced by the force F on the vortex. This derivation based
on the canonical equations of motion and classical PBs is much more direct than our
earlier derivation starting from the LLG equations, although the former allowed the
inclusion of damping directly. A slightly different approach was used in [5], but
required differentiation of the integral definition for p, which is not a well-defined
mathematical operation, because of the singularity at the core. The derivations here
have avoided that procedure. Using the scalar value m Mσ= from a diagonal mass
tensor, the modified Thiele equation is

mσ+ × =F G V A. (9.78)

These last results show that Thiele equation dynamics can be considered from the
point of view of momentum conservation. However, the system contains an
additional momentum term σ ×G X, whose time derivative appears here in the
force equation. This extra momentum depends on the choice of origin, however, a
shift in the origin simply gives an irrelevant constant, whose time derivative is zero.

9.2.5 Comparison of vortex dynamics to electric charge dynamics

The modified Thiele equation in the form (9.78), without damping, can be seen to be
equivalent to the non-relativistic equation of motion for an electric charge ewith velocity
v and acceleration a, affected by combined electric and magnetic forces (Lorentz force):

+ × =e e mE v B a. (9.79)

The equivalence requires F in the Thiele equation to be identified with only the electric
part of the Lorentz force, and the gyrovector must be identified with the negative
magnetic induction, while spin density σ needs to be equivalent to the charge:

σ→ → −e eF E G B, . (9.80)
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This maps vortex dynamics directly onto charge dynamics. We can see that both F
and σ ×G V in the vortex problem should be considered forces in some general
sense, whose net sum gives the vortex acceleration. The contribution to F is only due
to space variations of H, while the gyroforce σ ×G V is analogous to the magnetic
Lorentz force. We can also see how this equivalence relates to canonical momentum.

For vortices, refer again to the connection between kinetic and canonical
momentum found in (9.61). Combining with (9.74) and the modified Thiele equation
as (9.77), leads to three equivalent ways to write the time derivative of kinetic
momentum:

mσ σ˙ = = ˙ − × = − × +p F P G V G V A
1
2

. (9.81)

This is then solved to give two equivalent expressions for Ṗ:

σ˙ = + × aP F G V
1
2

(9.82 )

m σ˙ = − × bP A G V
1
2

. (9.82 )

While Ṗ does not appear in the equations for vortex or charge dynamics, but rather
acts as more of a calculational aid, some insight is obtained by comparing the
relations in the two systems.

It is well known that a Lagrangian for a point charge of mass m in non-relativistic
motion can be written as

= − Φ + ·L m e ev v
1
2

, (9.83)2

where Φ is the scalar potential and is the vector potential. The resulting canonical
momentum is defined by

= ∂
∂

= + = + ×L
m e m eP

v
v v B x

1
2

, (9.84)

where the vector potential x( ) associated with a uniform magnetic induction is

ϵ= × = ˆ B xB x e
1
2

1
2

. (9.85)jkl j k l

The Euler–Lagrange equation of motion for one component is

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟˙ = ∂

∂ ˙
= ∂

∂
= − ∂Φ

∂
+

∂
∂

P
t

L

x

L
x

e
x

ev
x

d
d

. (9.86)i

i i i
j

j

i

The needed gradients of the vector potential are

⎛
⎝⎜

⎞
⎠⎟ϵ ϵ

∂
∂

= ∂
∂

=
A

x x
B x B

1
2

1
2

. (9.87)j

i i
jkl k l jki k
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Then with ϵ ϵ= = ×v B v B v B( ) ,j jki k ijk j k i this leads to the first way to write the
momentum’s time derivative,

˙ = ∂
∂

= − ∂Φ
∂

− ×L
e eP

x x
B v

1
2

. (9.88)

Note that this equivalent to (9.82a), under the mappings in (9.80). The other way to

obtain a result for Ṗ is to time differentiate its expression (9.84) directly2:

˙ = ∂
∂

= + × + ∂
∂t

L
m e e

t
P

v
a B v

d
d

1
2

. (9.89)

Changing σ→ −eB G, and assuming static fields, this is seen to be equivalent to

(9.82b) for the vortex problem. Then equating the two expressions for Ṗ eliminates
that variable, and leads to the Lorentz force equation (9.79).

These results then indicate that the force F in the vortex problem is analogous to
only the electrostatic force for the charge problem. With the mappings in (9.80) the
two systems have essentially equivalent time derivatives of canonical momenta. The
connection between their kinetic momenta, however, is less obvious. For a charge

one can identify a kinetic momentum = mp v, with time derivative ˙ = mp a, however,
that is not an element directly used in the derivations of the Lorentz force law
dynamics. For in-plane vortices that have =G 0, we were able to show that the
kinetic momentum is m≈p V, however, that is not necessarily true for out-of-plane

vortices. We were able to use PBs to obtain ṗ as in (9.77), containing mA as well as

a gyrotropic contribution. This strongly contrasts ˙ = mp a in the charge dynamics
problem and is a significant difference in the dynamics.

9.2.6 Lagrangian mechanics for vortex core motion

The ideas in the last section have mapped vortex motion approximately onto the
motion of a charge in combined electric and magnetic fields. The results can be
collected together by determination of a Lagrangian that will reproduce the
undamped modified Thiele equation (9.78). To achieve this, make the usual
transformation from Hamiltonian to Lagrangian, using the canonical momentum,

= · ˙ −L HP X . (9.90)

Based on time integration of (9.82b), we take the canonical momentum to be defined
up to an arbitrary constant as

m σ= − ×P V G X
1
2

. (9.91)

This is consistent with canonical momentum expression (9.84) for a charge in a field,
changing eB to σ− G. This gives the vortex Lagrangian, with ˙ =X V,

2 For the electrodynamic problem the term ∂
∂t

contributes to ∇= − Φ − ∂
∂

tE x( , ) .
t

The contributions to both
E and B in the Lorentz force law are split between the two ways to write Ṗ. The mapping from the vortex
problem to a charge system only requires a situation with static electric and magnetic fields.
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m σ= − × · −L HV G X V
1
2

( ) . (9.92)2

Note that the second term has the form σ+ · V, with an effective vector potential,

= − ×G X
1
2

. (9.93)

The interaction term can also be written as · = + × ·V G V X( ) ,1
2

which is useful
later for differentiation. To apply L and check that the correct equation of motion
results, it is necessary to assume that the Hamiltonian has a kinetic energy
contribution of mV .1

2
2 This will ensure as well that the canonical momentum is

correctly derived from L by = ∂
∂

P .L
V

In addition,H can have other parts that depend
on vortex position, whose negative gradient leads to the force F. The Euler–
Lagrange equation for one component is

⎛
⎝⎜

⎞
⎠⎟

∂
∂

= ∂
∂

L
X t

L
V

d
d

. (9.94)
j j

This requires the derivatives,

σ∂
∂

= − ∂
∂

+ ×L
X

H
X

aG V
1
2

( ) (9.95 )
j j

j

m mσ σ∂
∂

= − ∂
∂

− × = − ×L
V

V
H
V

V bG X G X2
1
2

( )
1
2

( ) . (9.95 )
j

j
j

j j j

Then it is clear that the Euler–Lagrange equations (9.94) for all components give the
correct equation,

mσ−∂
∂

+ × =H
X

G V A (9.96)

once the negative gradient of H is identified as the force F. Thus the stated
Lagrangian (9.92) is appropriate for analyzing dynamics of vortices, including vortex
mass effects. In the case of in-plane vortices, the gyrovector is not present, and the
mass effects should dominate (for very weak damping). In the case of out-of-plane
vortices, the mass effects could be relatively weak; settingm to zero can give a leading
approximation for out-of-plane vortex dynamics in some potential contained in H.

9.3 Vortex forces and motions
The basic dynamics of vortex core motion has been interesting to study in terms of
comparing numerical simulations to predictions of the modified Thiele equation
(9.46). For quasi-2D ferromagnets, a number of simple situations have been studied,
including individual vortices near a boundary, and pairs of vortices in a larger
system with a far away boundary. Here we give a short summary of some of the
possible motions, and indicate when a non-zero vortex mass reveals its presence.
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The force F acting on a vortex is one of the most relevant factors that determines
the motion. There are three direct ways that forces are produced, including
externally applied fields, the interaction of a vortex with other vortices or anti-
vortices, and the interaction of a vortex with the boundary of the system. Let us
estimate F for the most obvious situations.

9.3.1 Force due to applied field

The first way to generate force is to apply a magnetic induction B ,ext especially,
within the easy place. The interaction of Bext with the spins will cause an induced
magnetization and also an energy gradient. Although the vortex will become slightly
deformed by an applied field, we suppose that deformation is small, which will be
true as long as Bext is much weaker than the nearest neighbor exchange fields. This
means our the calculation will slightly over-estimate the force. The force comes only
from the negative space gradient of the Zeeman energy,

∑ ∑μ γ= − · = − ·U B S B , (9.97)
n n

B n next ext

which is easy to estimate for the vortex as a whole. For stationary in-plane and out-
of-plane vortices, the component Sz is circularly symmetric around the vortex core
position X, while (8.7) describes the in-plane angle.

Uniform applied field

If the whole system is exposed to a spatially uniform field, then only the in-plane
components of Bext can contribute to the force. Suppose the applied field of strength
Bext makes an angle ϕB to the x-axis. For the vortex, expression (8.7) for ϕ r( ) is
extended to a vortex with core position X Y( , ),

⎛
⎝⎜

⎞
⎠⎟ϕ ϕ= −

−
+−q

x X
y Y

r( ) tan . (9.98)1
0

For an in-plane vortex, the Zeeman energy in continuum theory then becomes

⎧⎨⎩
⎫⎬⎭

∫

∫

∫

γ φ ϕ ϕ

γ φ ϕ ϕ φ ϕ ϕ

γ
ρ

ϕ ϕ
ρ

ϕ ϕ

= − + −

= − − − −

= − − − − − −

{ }

( )

( ) ( )

( ) ( )

U SB
r

v
q

SB
r

v
q q

q SB
r

v
x X y Y

d
cos

d
cos( ) cos sin( ) sin

d
cos sin , (9.99)

B B

B B

B B

ext

2

cell
0

ext

2

cell
0 0

ext

2

cell
0 0

where the last line applies only to = ±q 1 and ρ is the radius measured from the
vortex center,

ρ = − + −x X y Y( ) ( ) . (9.100)2 2

Integration over an infinite system leads to constant UB, and no force. However, we
must consider a finite system, wherein an infinitesimal vortex displacement causes
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one set of spins to become more aligned with Bext and another set of spins to become
less aligned with B .ext The spins in the region of the core are the ones most affected.

For the force Fx, the gradient of UB with respect to X requires the following
derivatives,

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ρ ρ ρ ρ

− = − − − = − − −
X

x X y Y
X

y Y x X y Yd
d

( )
,

d
d

3
( )( )

. (9.101)
2

3 3

Then this gives

⎧⎨⎩
⎫⎬⎭∫γ

ρ
ϕ ϕ

ρ
ϕ ϕ= − − − − − − −( ) ( )F q SB

r
v

y Y x X y Yd ( )
cos 3

( )( )
sin .

(9.102)

x B Bext

2

cell

2

3 0 3 0

This is still indeterminant, because the boundary of the system must be specified. Let
us take the simplest case: a circular system of radius R and the vortex at the center of
the system. One can later consider the vortex slightly displaced from the center as a
perturbation. Then, putting = =X Y 0, then ρ = r, one has some simple integra-
tions over the circular system:

∫ ∫ ∫ρ
φ φ π− = =

π
r

y Y
r r

r
Rd

( )
d d

1
sin . (9.103)

R
2

2

3 0

2

0

2

The second term of (9.102) involves a product φ φsin cos which integrates to zero. A
similar calculation applies to finding Fy, then, the resulting force on an in-plane
vortex in a uniform magnetic field is

π σγ ϕ ϕ ϕ ϕ= − − − −( )( ) ( )q R BF cos , sin . (9.104)B Bext 0 0

To interpret this result, recall that ϕ0 is the angle the spins make with the positive
x-axis, along that axis. When ϕ = 0,0 the spin field is of a vortex ( = +q 1) is radially
outward from the core: it has the appearance of the electric field of a positive electric
charge. Then in that case, the force is opposite to the direction of B :ext

π σγ ϕ ϕ π σγ ϕ= − = − =( )q R B q RF Bcos , sin , 0. (9.105)B Bext ext 0

Conversely, the force on an anti-vortex ( = −q 1) will be parallel to Bext if ϕ = 0.0 It
is easy to check that a small displacement along the force direction for these spin
configurations will lead to greater alignment of spins with the field.

A more interesting case is when the spin field has ϕ = °90 ,0 giving the appearance
of a magnetic field around a current-carrying wire. Now, the force becomes

π σγ ϕ ϕ π σγ ϕ= − − = ˆ × = °( )q R B q RF z Bsin , cos , 90 . (9.106)B Bext ext 0

If the vortex were to slide sideways to the field, in the direction of ˆ ×qz B ,ext one can
see that it will cause more spins to align with the field, lowering the Zeeman energy.
Again, the force is oppositely directed on anti-vortices when compared to vortices. In
small magnetic particles this is the more probable vortex structure, because of
demagnetization energy causing the spins to follow close to the direction of a boundary.
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The result (9.104) has been calculated for in-plane vortices only. If this calculation
is repeated for out-of-plane vortices, then near the vortex core, the non-zero Sz

causes the lengths of the in-plane components to be smaller. It is clear that the
contribution to Zeeman energy from the core region is reduced, and hence so is the
force. Without an exact expression for ρS ( )z (measuring from the vortex core
location), only an approximate value for F can be found. The Zeeman energy in
the case of out-of-plane vortices interacting with an in-plane magnetic induction
is now

⎡⎣ ⎤⎦∫γ φ ϕ ϕ= − − + −( )U SB
r

v
s q

d
1 ( ) cos . (9.107)B

z
Bext

2

cell

2 1/2
0

The result of this extra factor is that the core region has a much weaker contribution
to the interaction; the spins are nearly perpendicular to Bext there. This effect can be
incorporated approximately by using the vortex core radius rv in (8.18) as the lower
cutoff of the radial integration. This means that (9.104) can be extended to the case
of out-of-plane vortices, provided that R is replaced by −R r .v For a system large
compared to r ,v the force on out-of-plane vortices will be nearly the same as on in-
plane vortices.

Non-uniform applied field
Another way to exert a force on a vortex is via the out-of-plane spin component, in a
non-uniform out-of-plane applied field B r( ).z

ext This applies only to out-of-plane
vortices. Start from only the z-component’s contribution to Zeeman energy,

∫γ= − ·U q S
r

v
s Br r

d
( ) ( ). (9.108)B

z z
2

cell
ext

The sz spin field is circularly symmetric around the vortex core, so a uniform B z
ext

would not produce any force. Suppose B z
ext is a constant plus a uniform gradient

along the x-direction3,

⎜ ⎟⎛
⎝

⎞
⎠= + ∂

∂
B x y B

B
x

x( , ) . (9.109)z
z

ext 0
0

The zero subscripts refer to the values at the origin. Consider again a circular system,
with its center at the origin. Then the estimate of the force is expressed as
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. (9.110)
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B

z z
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2
0

0

2
0

0

3Maxwell’s equation ∇ · =B 0 would imply also non-zero in-plane components of B .ext We suppose that these
extra components can be ignored to leading order.
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When the vortex is at the center of the system with X = 0 and ρ = r, only the
gradient part is seen to contribute, being dependent on φ=x r cos ,2 2 2

⎜ ⎟

⎜ ⎟ ⎜ ⎟
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⎝
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⎠

∫ ∫

∫ ∫

γσ φ φ φ

πγσ πγσ

= − ∂
∂

∂
∂

= − ∂
∂

∂
∂

= ∂
∂

π
F r r

s
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B
x

r

B
x

r r
s
r

B
x

r r s r

d d cos cos

d 2 d ( ). (9.111)
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z R z z R
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2
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2

0 0

The last step involved integration by parts, assuming that ≈s R( ) 0z on the system
boundary. To evaluate further, it is necessary to have s r( ).z An estimate can be made
based on the approximate solutions (8.19) found earlier, for the two regions <r rv

and >r r ,v which is an exercise.

Exercise 9.4. From the approximate out-of-plane component (8.19), check the
evaluation of the following integrals for force contributions from the core
region and the far field region of an out-of-plane vortex,

⎛
⎝⎜

⎞
⎠⎟∫ ≈ + − ≈( )r r s r p

r
A

A A A pr ad ( ) sin cos 1 0.3943 (9.112 )
0

r
z v

0

2

0 0 0 v
2

v

⎛
⎝⎜

⎞
⎠⎟∫ π≈ + ≈∞

−r r s r pA r pr bd ( ) e
1
2

erfc(1) 0.8664 . (9.112 )
R

r

z
v
2 1

v
2

v

These depend on the core polarization = ±p 1 and the constants A0 and A∞
that define the approximate structure of s r( );z ‘erfc’ is the complementary error
function.

The core contributes about 1/3 and the far region about 2/3 of the total force. Then
combining these contributions, and generalizing to a gradient of Bz in any direction,
the force is found to be

πγσ ∇≈ × pr BF 1.26 2 ( ) . (9.113)z
v
2

0

The 0 subscript means the gradient is measured at the location of the vortex center.
Although this has been calculated for a vortex centered in a circular system, one
could also find the small corrections if the vortex is offset away from the center. Note
the dependence on core polarization p, which shows that the force is in the direction
appropriate to increase the alignment of spins with Bext for = +p 1, or reduce the
amount of anti-alignment for = −p 1. Thus, a small gradient in Bext might be used to
separate vortices of opposite polarizations.

In the case of strong damping, a displacement of the vortex will take place in the
same direction as the calculated force. If the damping is weak, then at least initially,
an out-of-plane vortex will make some gyrotropic motion, typically perpendicular to
the instantaneous force.
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9.3.2 Vortex pair forces

The secondway forces aregenerated is through the interactionsbetweenpairs of vorticesor
anti-vortices. First, consider a pair of in-plane vortices, one of vorticity q1, and phase angle
ϕ01 at the origin, and a second of vorticity q2 and phase angleϕ02 at a position = XX ( , 0)
along the x-axis (chosen as the axis from one vortex to the other). With only in-plane spin
components, the total in-plane angle is a superposition of the two vortices,

⎜ ⎟
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In the Hamiltonian (8.4) the energy density depends only on the square of
ϕ ϕ ϕ∇ ∇ ∇= + ,1 2 which is independent of the phase angles, and determined from

ϕ∇ = ˆ × =
+

−q
r
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x y
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( , ) (9.115 )1 1 2
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2

2 2

Its absolute square has two direct terms (single vortex) and cross terms (the
interaction),

⎡⎣ ⎤⎦
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When integrated over the system, the first two terms are the single vortex energies; only
the last term will be the pair interaction energy that depends on the separation X.
This pair interaction potential Upair is obtained, writing the integration in circular
coordinates,
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Doing the radial integration first, a change of variable to φ= − +u r rX X2 cos ,2 2

with φ= −u r X rd 2( cos )d , transforms the radial integral to logarithmic form,
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Note the similarity to the in-plane single vortex energy (8.15), but with an
extra factor of 2 and the separation X replacing the short radius cutoff r0.
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Then the negative gradient gives the force, which is along the line connecting
the vortices:

π
= −

∂
∂

=F
U

X

JS q q

X

2
. (9.119)x

pair
2

1 2

Not surprisingly, the dependence on X1/ is analogous to the force (per unit length)
between a pair of current-carrying wires, which produce a magnetic field of the
same geometry as the vortex in-plane spin field. Opposite signed vortices produce
attractive forces while like-signed vortices produce repulsive forces.

For out-of-plane vortices, the result must be corrected due to the non-zero value
of S r( ).z These corrections will come mostly from the core region, <r r .v If the core
regions of the pair overlap, then this correction could be significant, yet there is no
simple calculation based on the energy (8.4). Generally speaking, as long as the core
regions do not overlap, expression (9.119) should be a good approximation for the
force between out-of-plane vortices.

Exercise 9.5. Two out-of-plane vortices with opposite polarizations = −p p2 1
are separated by distance X12. Suppose their gyrovectors are anti-parallel; they
have equal vorticities. That arrangement causes them to make a parallel
translational motion, as found from the Thiele equation, see figure 9.8. Discuss
whether it would be possible to use some applied magnetic field arrangement
to stop that motion and freeze the vortices in place. If there is a possible
solution, also analyze whether it would be stable.

9.3.3 Vortex image forces

A third effect that produces a force on a vortex is the interaction with the boundary
of the system. A boundary has a tendency to polarize the spins in such a way that is
equivalent to the field of an image vortex across the boundary, outside the system.
Depending on boundary conditions, it is possible to determine the location and
charge of the image and then determine the force as that for a pair interaction.

Free boundary conditions
The first type of boundary condition is free boundary conditions. This means that the
system is sharply cut off at the boundary, and the spins along the edge are lacking a
nearest neighbor in the direction n̂ pointing outward from the system. In a discrete
lattice system, the equations of motion are of a form,

˙ = ×S S , (9.120)i i i

where i is the effective field due to the sites that are neighbors of site i. Across the
boundary, it is conceptually useful to imagine fictitious spins on the other side, from
which the boundary condition and the image vortex can be analyzed. A missing
neighbor due to a boundary can be set to the value of the spin Si itself, without
changing the dynamics, since × =S S 0.i i This is equivalent to saying that the spin
field within the system will adjust itself quasi-statically so that its gradient
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perpendicular to the boundary becomes zero. This is the concept of minimal changes
in S r( ) as one moves from the real spins within the system to the fictitious ones
outside. So for free boundary conditions, we assume the quasi-static boundary
conditions, where subscript ‘b’ indicates evaluation at the boundary,

∇ˆ · = ∂
∂

=
n

n S
S

( ) 0 (9.121)b
b

In fact, nS( ) is continuous and has a zero slope across a boundary, where n is a
coordinate measured through the boundary. This is equivalent to two equations for
the angular coordinates,

θ ϕ∂
∂

= ∂
∂

=
n n

0, 0. (9.122)
b b

Applied to the component θ=S S sin ,z it means that an out-of-plane vortex with
polarization p has an image vortex across the boundary with the same polarization.

For either an out-of-plane or in-plane vortex, the condition on ϕ determines the
vorticity of the image vortex, as follows. A vortex produces a field ϕ∇ given in (8.8) that
can be derived from a vector potential as ϕ∇ ∇= × , which determines according
to

⎜ ⎟⎛
⎝

⎞
⎠φ φϕ∇ ∇= ˆ = × = ∂

∂
− ∂

∂
ˆq

r z r
. (9.123)r z

Only a z-component of is required, which is solved as

= −q rln . (9.124)z

That is the potential for a vortex at the origin; it is easy to shift this to another center.
Then, assume a vortex q at position X inside the system requires an image ′q outside
the system at position ′X . Their combined vector potential is

= − − − ′ − ′q qr X r Xln ln . (9.125)z

It is helpful to apply this to the case of a straight boundary, and then generalize to
other cases. Suppose there is an infinite straight boundary along the line =x xb

parallel to the y-axis, as in figure 9.1, while the vortex is placed at = =x X y, 0. The
boundary condition at =x xb is obtained by the curl component,

ϕ ∇∂
∂

= × = ∂
∂

=
x y

( ) 0. (9.126)
x

x
z

b

This says that the value of z along the boundary is a constant. Then expressing it in
Cartesian coordinates, we have

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦= − − + + ′ − ′ + ={ }x y q x X y q x X y( , )
1
2

ln ( ) ln ( ) constant.

(9.127)

z b b
2 2

b
2 2

One can verify that (9.126) and this last expression are satisfied, with =x y( , ) 0,z b

only if

′ = − ′ − = −q q X x x Xand . (9.128)b b
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Then, the image vorticity is opposite to that of the original vortex, and the image is
located equidistant from the boundary on the outside of the system. In figure 9.1 the

= +q 1 vortex is depicted with a green dot, while its ′ = −q 1 image is displayed as a
red dot. This result is identical to an electrostatics image for an electric charge near a
grounded infinite plane. If we let the distance from vortex to the boundary be
denoted ≡ ∣ − ∣d x X ,b b then our previous result (9.119) for the interaction of a pair
of vortices separated by d2 b gives an estimate of the force due to the boundary,

π=F
JS q
d

. (9.129)x

2 2

b

A positive value here indicates a force of attraction towards the boundary.
In the case of an arbitrary curved boundary, the condition on the curl of

contains both components relative to the normal to the boundary, n̂, according to

ϕ ϕ∇ ∇ ∇∂
∂

= ˆ · = ˆ · × = ∂ − ∂ = ˆ × =
n

n nn n n( ) ( ) 0. (9.130)x y z y x z z z
b

If n̂ is normal to the boundary, then ∇ˆ ×n is the component of gradient directed
along the boundary. Then for any boundary, this demonstrates that a constant value

Figure 9.1. The effect of free boundary conditions on a vortex (green dot, for = +q 1) within a system, which is
the region left of the dashed line, is as if there are fictitious spins outside the system (gray arrows) whose field is
that of an anti-vortex (red dot, for ′ = −q 1) equidistant from the boundary. This causes the gradient of the spin
field perpendicular to the boundary to be zero there. The vortex is attracted to the boundary.
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of z along the boundary will be required. The image problem then requires making
z constant on the boundary, regardless of its exact shape.
An example of a curved boundary is a vortex q at position = XX ( , 0) within a

circular system of radius R, similar to that in figure 9.2. The image charge ′q is
assumed by symmetry to be at ′ = ′XX ( , 0). In circular coordinates the total vector
potential can be expressed as

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦φ φ= − − + − ′ − ′ + ′q r rX X q r rX Xln 2 cos ln 2 cos . (9.131)z
2 2 2 2

This needs to be independent of angular location φ at the system edge r = R. The
derivative with respect to φ being zero leads to an expected result, ′ = −q q. Thus the
image is of opposite vorticity. Imposing the boundary condition at radius R then
gives the result for the position of the image,

′ =X
R
X

, (9.132)
2

which is similar to that for an electrostatic image outside a grounded cylinder or
even a grounded sphere. Thus we can then find that the image force on a vortex in a
circular system is radially outward, for free boundary conditions, determined by the
vortex–image separation,

π π= =
′ −

=
−

F F
JS q

X X
JS q

R
X

X

2 2
. (9.133)r x

2 2 2 2

2

Figure 9.2. The effect of free boundary conditions on a vortex ( = +q 1, green dot) within a circular system.
One can imagine fictitious spins outside the system whose field is that of an anti-vortex ( ′ = −q 1, red dot) at
radius given by (9.132) outside the boundary. The gradient of the spin field perpendicular to the boundary is
zero at the boundary and the vortex is attracted to the boundary.
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Again, the vortex is attracted towards the boundary, with a spin field such as that in
figure 9.2. Of course, the motion itself need not be towards the boundary, due to
gyrotropic effects. The result is only valid for out-of-plane vortices if the vortex is
not within a vortex core radius (rv) of the system edge. If the vortex is close to the
center of the system ( ≪X R), one sees that the force is linearly proportional to X,
away from the center.

Exercise 9.6. Consider the vector potential due to a vortex and its image given
in (9.131). (a) Show that ′ = −q q is needed to make the potential constant on
the circular boundary at r = R. (b) Show that the image location is related to
the vortex location by ′ =XX R .2

Strong demagnetization or fixed boundary conditions
Another type of boundary condition is that where demagnetization effects are strong
along the boundary. This may not be important for an individual layer of spins, but
could be important as more layers are added to build up a mesoscopic thin film (i.e. a
micromagnetic system). If one supposes that the demagnetization energy should be
reduced to its minimum, this implies that no surface magnetic charges should be
present on the system boundaries. Based on the definition (3.23), for our purpose
here we take an edge magnetic charge density as σ = · ˆS n.S The requirement of
σ = 0S means that the spins need to follow the path of the boundary at an edge,
which can be summarized as

ˆ · =n S 0. (9.134)b

It should be kept in mind that this is a rather strong assumption. It may require a
certain minimum system size in order to be true.

As an example, consider first a linear edge, again at =x xb along a line parallel to
the y-axis, with a charge q vortex at position = XX ( , 0) near this boundary. This is
depicted in figure 9.3. In contrast to free boundary conditions where Az was found to
be constant (and zero) on the boundary, now the x-component of S r( ) is assumed
to be zero. Note that for free boundary conditions only ϕ∇ was determined; an
arbitrary constant angle could be added to that solution to fully determine the spin
field. Here, consider the in-plane spin angle (not ϕ∇ ) as a superposition of the
original vortex field and an image, including a constant:
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(9.135)1 2

1
1
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2
1

The image ′q is assumed to be at ′ = ′XX ( , 0). With ˆ = ˆn x, we want here only the
x-component of S to be forced to be zero at =x x .b It is possible to imagine that
this requires either ′ =q q or ′ = −q q. Further, it simplifies the calculation by already
assuming ϕ = ± π ,

20 which makes the original vortex field point in a circular right- or
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left-hand sense around the core point X. Rotating the original vortex field by ± π ,
2

it becomes

ϕ = −
−

−q
x X

y
tan . (9.136)1

1

Then the total in-plane angle is obtained from the tangent sum formula,
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. (9.137)

1 2

1 2

2

To force the spins to follow this straight boundary parallel to ŷ, one needs
ϕ = °90 along =x x ,b meaning the denominator must vanish. That is seen to be

Figure 9.3. The effect of strong demagnetization boundary conditions (or fixed boundary conditions) on a
vortex (green dot for = +q 1) within a system, which is the region left of the dashed line. One can consider
fictitious spins outside the system (gray arrows) whose field is that of an image vortex (also ′ = +q 1) equidistant
from the boundary. This causes the spin field to follow the boundary, eliminating the pole density there. The
vortex is repelled from the boundary.
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possible only if ′ =q q, in which case the image is found to be equidistant from the
boundary as the original vortex:

= ′ − = −d X x x X . (9.138)b b b

The result is shown in figure 9.3, where both the real vortex and its image are
depicted with green dots, to indicate their positive vorticity. Then, as the image has
the same sign of vorticity as the vortex, the force between them is repulsive, but of the
same magnitude as in expression (9.129). Thus we see the details of the boundary
conditions will have a strong influence on dynamics.

This example can easily be extended to the case of a curved boundary, for a vortex
q at position = XX ( , 0) within a circular system of radius R, similar to that in
figure 9.4. The image ′q is again assumed to be at position ′ = XX ( , 0). Expression
(9.137) still applies in this case, but now the resulting angle ϕ evaluated on the
circular boundary at r = R must follow the boundary direction, which is the angular
coordinate φ shifted by ϕ = ± π ,

20 according to the sense of the spins’ rotation:

ϕ φ π= ±
2

. (9.139)b

This means the tangent needed is
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2
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Figure 9.4. The effect of strong demagnetization boundary conditions on a = +q 1 vortex (green for positive
vorticity) in a circular system. The fictitious spins outside the system (gray arrows) make a field of an image
vortex (also ′ = +q 1) at the radius given by (9.144) outside the boundary. The spin field is forced to follow the
boundary and the vortex is repelled from the boundary.
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Then the boundary condition (9.134) will be satisfied provided at the boundary we have

ϕ = ′ − − − ′
− ′ + ′ −

=
−

q y q x X x X
y x X qq x X

x
y

tan
( )( )

[( ) ( )]
. (9.141)b

2

With φ=x R cos and φ=y R sin , this can be rearranged into

⎡⎣ ⎤⎦φ φ φ+ ′ − + ′ + − ′ + − ′ = ′qq q R q R q q X q X R qXX(1 ) cos sin (1 ) ( 1) cos .

(9.142)

2 2 2 2

The equation needs to be made valid and independent of φ by appropriate choices of ′q
and ′X . The coefficient of φcos must be zero to accomplish this, which is seen to give

= ′ =q q 1. (9.143)

It is an intriguing result, that shows that the boundary condition can be satisfied only
for a vortex excitation, not an anti-vortex. This makes sense, because the anti-vortex
field is not capable of having its spin direction follow a circular boundary. Then with
the image of the same sign, the vortex is repelled from the boundary, just as for a
straight edge. Once the charges are determined, the remaining terms lead to a
familiar result for the image location,

′ =X
R
X

. (9.144)
2

The situation is depicted in figure 9.4, where the combination of the fields of the
original vortex and image vortex do follow the path of the boundary. Note that in
the most general case, this requires a particular choice of the phase angle ϕ0 as well.
Then the force on a vortex ( = +q 1 only) due to its image is in the inward radial
direction and is obtained from (9.119) as

π π= = −
′ −

= −
−

F F
JS

X X
JS

R
X

X

2 2
. (9.145)r x

2 2

2

In the limit of ≪X R, this is a linear restoring force that confines the vortex close to
the center of the circle,

π≈ − ≪F
JS

R
X X R

2
, for . (9.146)r

2

2

This isaresult thatcouldbeofgreatuse inthestudyofvortexmotioninmagneticnanodots.
It is worth noting that the force constant varies as the inverse square of the radius.

Exercise 9.7. (a) Check that the strong demagnetization boundary condition
in the form (9.141) is transformed to (9.142). (b) Show that ′ = = +q q 1 is
required to satisfy the boundary condition at r = R. Then, it is impossible to
satisfy the boundary condition with an anti-vortex. (c) Show that the image
location is related to the vortex location by ′ =XX R ,2 the same as for free
boundary conditions.
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9.4 Some simple examples of vortex dynamics
Here we look at some simple few-vortex situations and consider the dominant
forces and the resulting motions, as described by the modified Thiele equation
(9.46). Out-of-plane vortices are considered, because their dynamics is most
interesting due to the presence of their non-zero gyrovector G. For single vortices,
the simplest situations are when they are interacting with their images caused by a
boundary. The boundary may be straight or curved; in the latter case we assume a
circular shape. For pairs of vortices in a system (two vortices or a vortex and an
anti-vortex), there would be the direct force between the two as the primary
driving force, and the image effects could be secondary, if the vortices are far
from the system boundary. These kinds of motions have been verified in
simulations of vortex pairs in rectangular systems [7] and individual vortices in
circular systems.

9.4.1 An individual vortex near a straight boundary

Suppose a vortex of charge q, polarization p and gyrovector π= ˆ = ˆG pqG z z2
finds itself a distance db from a straight boundary such as that in figure 9.1 or
figure 9.3. In the case of free boundary conditions, the force on the vortex due to
its image is towards the boundary, regardless of the sign of q. In the case of
strong demagnetization (fixed) boundary conditions, the force is away from the
boundary. Strong demagnetization requires the spins to point along the direction
of the boundary, and that is possible only for vortices with = +q 1; it is
impossible to satisfy the requirement of zero pole density on the boundary if

= −q 1.
Suppose n̂ is a normal vector pointing outward from the system (from q towards

its image ′q ). In both the cases of free and fixed boundary conditions, we can write
the force on the vortex, due to its image outside the system in the following form,
based on (9.129),

π ν= − ′ ˆ ′ =JS qq
d

q qF n, , (9.147)
2

b
bc

where the index νbc that determines the image charge depends on boundary
conditions,

⎧⎨⎩ν = −
+

1 free boundaries

1 fixed boundaries.
(9.148)bc

A free (fixed) boundary condition produces an image of the opposite (same)
vorticity, attracting (repelling) the vortex to (from) the boundary4.

4Note that the unit vector n̂ points towards the image vortex. Then, −n̂ points from the image towards q. The
notation R̂ is used later in (9.181), in place of −n̂, for the unit vector pointing towards the charge of interest,
when forces between vortex pairs inside a system are considered.
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Steady-state uniform motion without damping
If there is no damping, a steady-state solution of the Thiele equation at constant
velocity V̄ is then found by applying a cross product with the gyrovector (with
acceleration A = 0),

⎡
⎣⎢

⎤
⎦⎥σ

× + × ¯ =G F G V
1

0, (9.149)

which then leads to the steady-state undamped velocity

σ
ν π

σ π
¯ = × = − ˆ × ˆ

G
JS q

pqd
V

G F
z n

2
. (9.150)

2 bc

2 2

b

For later analysis, it is useful to put this result in the following form:

¯ = − ˆ × ˆC
Gd

V z n, (9.151)
b

where C is a force constant between the vortex q and its image ν′ =q q,bc

πσ= ′ −C qq JS . (9.152)1 2

In terms of this constant, the force on the vortex, per unit spin density, is

σ= = − ˆ− C
d

f F n. (9.153)1

b

This stationary solution, depicted in figure 9.5, represents a uniform translational
motion parallel to the boundary. Its direction is determined by the combination of q,
p and ν .bc The speed will be all the greater for a vortex closer to the boundary.
However, the result will apply only as long as the distance db is greater than the
vortex core radius r .v For given π=G qp2 , the two different types of boundary
conditions give motions in opposite directions. Some interesting examples can be

Figure 9.5. Coordinate system for a vortex q moved by the force of its image ′q outside the system boundary.
The vortex has = +q 1 (shown as green), = +p 1 and π= +G 2 (shown with ⊙), being attracted to the
boundary with a force according to (9.147). For a free boundary (ν = −1bc ), its image is of opposite sign,
′ = −q 1 (shown as red), with ′ = +p 1 and then π′ = −G 2 (shown with ⊗). The steady-state vortex velocity
results from the Thiele equation (9.20) without damping; see also (9.150).
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seen in figure 3 of [7], where the closer a vortex is to a boundary, the faster it moves
as it interacts with its image outside the system.

Steady-state motion with damping
Now, consider the effect of damping, including a damping term D Vjk k in the Thiele
equation. As seen earlier, the damping matrix is diagonal, with negative elements, so
it is helpful to write it asD Dδ≡ − ,jk jk including the minus sign so that the constantD
is positive. A little consideration shows that in fact, the presence of damping already
forces there to be components of V both parallel and perpendicular to the boundary.
A mass term also leads to both velocity components being necessary. Let us consider
the individual effects of damping and mass first separately, then later it is easy to
conclude what their combined effects are.

For a concrete example (such as figure 9.1 rotated 90° clockwise), take the
boundary to be the x-axis, with the vortex in the first quadrant at position

=t X t Y tX( ) ( ( ), ( )) and velocity =t V t V tV( ) ( ( ), ( )).x y The outward normal is then
ˆ = −ˆn y, and the only force component is Fy. Define σ= −f Fy y

1 to simplify the
notation. Then the modified Thiele equation (9.46) in Cartesian components is
written for this example as

D M− − = ˙GV V V a(9.154 )y x x

D M+ − = ˙f GV V V b. (9.154 )y x y y

The scaled force is

σ ν π
σ

= = =−f F q
JS
Y

C
Y

. (9.155)y y
1

bc
2

2

Now the distance to the boundary, Y, is not necessarily constant, due to ≠V 0.y

However, the velocity component Vx parallel to the boundary can be eliminated,
solving (9.154b) as

D M= − + + ˙GV f V V . (9.156)x y y y

This can be substituted into (9.154a) to give a separated equation for the component
of the motion perpendicular to the boundary,

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟D D M M D M= − − ˙ + ˙ − ˙ − ¨G V f V V f V V . (9.157)y y y y y y y

2

Due to the force varying with −Y ,1 an exact solution for arbitraryD andM is difficult.
At this point we consider separately the cases of damping without mass and mass
without damping.

Damping without mass
Suppose the mass is dropped from (9.157), with the damping being the only effect to
modify the gyrovector force. This could be considered the strong damping limit.
Then the equation of motion is:

D D
D

D
+ = ⟹ =

+( )G V f
Y
t

C
G Y

d
d

1
(9.158)y y

2 2
2 2
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or

D
D

∫ ∫′ ′ = ′ Γ Γ ≡
+

Y Y t
C

G
d d

1
2

, where
2

. (9.159)
Y t( )

Y

t

0 2 2
0

Starting at an initial distance from the boundary, Y0, the exact solution is easily
found,

= + Γ( )Y t Y t( ) . (9.160)0
2 1/2

Within the approximations to arrive at this, it shows that the vortex accelerates as it
approaches closer to the boundary, due to the increasing force. At the same time,
(9.154a) for zero mass indicates that the trajectory has a constant slope:

D D= − ⟹ = −
V

V G
Y
X G

d
d

. (9.161)y

x

Then this shows that the vortex path is a straight line, with the constant D− G/ being
the slope relative to the boundary. From this or by integration of (9.154a) the
position along the boundary is

⎡⎣ ⎤⎦D
= − + Γ −( )X t X

G
Y t Y( ) . (9.162)0 0

2 1/2
0

Figure 9.6 shows two examples of these results for free boundary conditions, one for
a vortex with positive G (taking = = +q p 1) and one with negative G (using = +q 1
but = −p 1), with different damping constantsD. Note that the slope D− G/ does not
depend on the type of boundary condition; D is positive while π=G qp2 , positive or
negative, determines the slope. The force constant ν∝C ,bc however, is negative for
free boundary conditions but positive for fixed boundary conditions, see (9.155).
Then with Γ ∝ C, the vortex approaches the boundary for free boundaries (Γ < 0)
but it moves away from the boundary for fixed boundaries (Γ > 0). The translation

Figure 9.6. Examples of vortex motion near a boundary with free boundary conditions (ν = −1bc ), damping
parameter D and no mass, according to the results in (9.160) and (9.162). The vortex on the left has = +q 1
(shown as green), = +p 1 and π= +G 2 (shown with ⊙), being attracted to the boundary and moving at the
descending slope D− = −G/ 0.30. The vortex on the right has = +q 1 (green), = −p 1 and then π= −G 2
(shown with ⊗), but it is also attracted towards the boundary, moving in the reverse direction along the slope

D− = +G/ 0.03.
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parallel to the boundary can be seen to be in the direction of ν− ˆqp x,bc as found
without damping. For the examples in figure 9.6, both vortices are attracted to the
boundary but move in opposite senses along the boundary because they have
opposite signs of G.

Mass without damping
At this point suppose the mass is included, but not the damping. Later the correction
D > 0 causes can be addressed. The force varies with position and hence with time,
and we make an approximation,

˙ = = − ˙ ≈ −f
f

Y
Y
t

C
Y

Y
C
Y

V
d

d
d
d

, (9.163)y
y

y2
0
2

where =Y Y (0)0 is the initial separation from the boundary. The vortex is assumed
to be far enough from the boundary that this approximation of a nearly constant
force makes sense. Then from (9.157), the transverse velocity component approx-
imately satisfies a harmonic oscillator equation,

⎛
⎝⎜

⎞
⎠⎟M M

¨ ≈ − +V
G C

Y
V . (9.164)y y

2

2
0
2

Assuming some initial velocity away from the boundary, V (0),y a solution with a
convenient phase is

ω=V t V t a( ) (0)cos (9.165 )y y c

∫ ω ω= ′ ′ = + =Y t t V t Y Y t Y V b( ) d ( ) sin , (0)/ , (9.165 )
t

y y
0

0 1 c 1 c

where the undamped cyclotron frequency is

M M
ω = +G C

Y
. (9.166)c

2

2
0
2

The corresponding motion parallel to the boundary is then found from (9.156),

⎛
⎝⎜

⎞
⎠⎟M

Mω ω= − + ˙ ≈ − −−V t G f V
C

GY
V

G
t( ) (0) sin . (9.167)x y y y

1

0

c
c

This is summarized as

Mω ω= ¯ − ¯ = − ( )V t V V
G

t V C GY a( ) (0) sin , / (9.168 )x x y x
c

c 0

M∫ ω= ′ ′ = + ¯ + =X t t V t X V t X t X V G b( ) d ( ) cos , (0) / . (9.168 )
t

x x y
0

0 1 c 1

Note that V̄x is the velocity V̄ of uniform motion found in (9.151). This is a rather
interesting solution, because it shows that the vortex core makes a small-amplitude
cycloidal motion on top of the uniform motion parallel to the boundary.
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The cyclotron frequency becomes Mω → G /c if the vortex is far from the boundary;
otherwise, Mω < G / .c Then, the amplitude Y1 of the transverse oscillations is larger
than the amplitude X1 of the longitudinal oscillations, producing an elliptical
oscillatory motion as the vortex translates parallel to the boundary. An example
of the motion is shown in figure 9.7, for a vortex on a square lattice at an initial
distance of =Y a40 from the boundary. The mass has been assumed to be the value
M π= JS16 / , which is typical for small systems [8] with <R a20 . For this distance,
the drift velocity is found to be ¯ =V JSa0.125 ,x and the cycloidal frequency is
ω = JS0.10825 ,c whereas the limiting value of the frequency for a vortex very far
from the boundary is Mω → =G JS/ 0.125 .c Figure 9.7 is made for cycloidal
oscillations in the counterclockwise sense, as would be the case for a vortex with

π= +G 2 and free boundary conditions. An amplitude =Y a0.51 was assumed; the
amplitude of the cycloidal motion is not determined by this calculation. In a sense, it
is a free parameter that represents something very similar to the amplitude of a
classical spin wave mode.

Weak damping for a vortex with mass
Now consider if a weak damping D ≪ G is included together with the mass. First,
we can see a simple mechanical law results from the modified Thiele equation,
multiplying (9.154a) by Vx and (9.154b) by Vy, and adding, to give,

D
M

M= − = +( )
t

f V V V
d
d

KE
2

KE, KE
1
2

. (9.169)y y x y
2 2

Figure 9.7. The type of undamped cycloidal oscillations expected for a vortex at distance =y a40 from a system
boundary while interacting with its image across the boundary. The plot is made by assuming a typical vortex
mass M π= JS16 / , gyrovector π=G 2 , square lattice spin density σ = S a/ 2 and force constant of magnitude

π∣ ∣ =C JSa ,2 which gives the drift speed from ¯ = −V C GY/( )x 0 and cycloidal frequency from (9.166).
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This indicates that a usual vortex kinetic energy associated with the mass changes in
time either due to the damping, or due to the work done by the force. Without
damping, we had Vy = 0 and there was no work, and the kinetic energy was
constant. With damping, there could even be positive work, as in the case of a vortex
moving towards its image across the boundary with free boundary conditions. The
competition between the damping and the work will determine whether V2 is
increasing or decreasing.

Going back to (9.157), and again assuming that the vortex is far from the
boundary (Y ≈ Y0 plus oscillations), the first term on the RHS can be approximated
(for weak damping),

D
D≈f

C
Y

. (9.170)y
0

The equation now is arranged as
⎛
⎝⎜

⎞
⎠⎟D

M D
DM M+ + = − ˙ − ¨G

C
Y

V
C

Y
V V2 . (9.171)y y y

2 2

0
2

0

2

Then one sees a quasi-steady-state solution with ˙ ≈V 0y would be present with a slow
drift velocity towards (away from) the boundary for free (fixed) boundary
conditions,

D

D M
¯ =

+ +
V

C Y
G C Y

/
/

. (9.172)y
0

2 2
0
2

This drift can be taken out of = ¯ + ˜V t V V t( ) ( )y y y to obtain an equation for the

oscillatory part, Ṽ t( ),y

⎛
⎝⎜

⎞
⎠⎟M DM D

M˜̈ + ˜̇ + + + ˜ =V V G
C

Y
V2 0. (9.173)y y y

2 2 2

0
2

Then assuming a usual exponential type of solution, ω˜ ∝ −V texp( i ),y leads to an
equation for the complex frequency,

M DM D
Mω ω− − + + + =G

C
Y

2 i 0. (9.174)2 2 2 2

0
2

Using the definition (9.166) of the undamped frequency, this is

D
M

D
M

ω ω ω+ − − =2
i 0. (9.175)2

c
2

2

2

We obtain two solutions from the quadratic formula,

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

D
M

D
M

D
M

D
M

ω ω ω= − ± + + = − ±1
2

2i 2i
4

i
. (9.176)

2

c
2

2

2 c
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Then this will lead to decaying sine and cosine solutions, whose amplitudes diminish
with γ− texp( ),D where the decay constant is D Mγ = / .D We can see that the overall
core motion will be described by

ω≈ ¯ + ˜ γ−V t V V t( ) (0)e cos . (9.177)y y y
t

cD

From this, one can go back and also find the motion Vx(t) from (9.156). It exhibits a
slight reduction in the uniform velocity parallel to the boundary and a damping of
the oscillatory motion. For free boundary conditions, the vortex will indeed tend to
move slowly towards its image of opposite vorticity on the other side of the
boundary, as the damping takes out energy from the system. This causes the vortex
to leave the system, eventually. For fixed or strong demagnetization boundary
conditions, the tendency will be instead to move away from the boundary, but again
in a process that lowers the energy, this time moving away from its image of the
same vorticity. In that case, the damping effect will push the vortex back into the
system and tend to stabilize it.

9.4.2 A pair of vortices in a large system

Consider a pair of vortices with charges q p,1 1 and q p,2 2 far from any boundaries in a
large system, so that the forces due to images can be neglected, to leading order. The
vortex locations are denoted as X1 and X .2 They attract or repel each other with a
Coulomb-like force given in (9.119). This situation was considered in [9] without
damping. Here we show the main results, which are rather simple.

At first we seek uniform or stationary solutions, where the vortices move at
constant speeds. Later we allow for possible small perturbations about these states.
Looking at the Thiele equation for just one vortex affected by constant force, we
know the steady-state velocity in (9.150) is in the direction of ×G F. The vortices
exert equal and opposite forces on each other. Then the vortex velocities are in
opposite directions if their gyrovectors are parallel, and conversely, the velocities are
parallel (and equal) if the gyrovectors are anti-parallel. Figure 9.8 shows the result of

Figure 9.8. Examples of vortex pairs with anti-parallel gyrovectors performing linear translational motion.
The gyrovector component out of the page is indicated by ⊙ for π= +G 2 and by ⊗ for π= −G 2 . The VV pair
on the left has equal vorticities = = +q q 11 2 (green) but opposite polarizations. The VA pair on the right has
opposite vortices (red for = −q 1) but equal polarizations. The translational velocity of a vortex is in the
direction of ×G F, according to (9.150).
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applying this rule to a vortex–vortex (VV) pair and a vortex–anti-vortex (VA) pair
with opposite gyrovectors: the pair will translate together in a straight line. Figure 9.9
shows the result of this rule for a VV pair and a VA pair with parallel gyrovectors: the
pair will orbit one about the other in uniform circular motion. This analysis leads to
the conclusion that the motion has only these two possibilities:

= − ⟹q p q p aGAnti-parallel : parallel translational motion (9.178 )1 1 2 2

= ⟹q p q p bGParallel : circular orbital motion. (9.178 )1 1 2 2

To make this result quantitative, we can calculate the speed in each case. It is
convenient to let the separation of the pair be a parameter R2 ,0 and suppose that a
unit vector R̂12 points from vortex 2 towards vortex 1.

For anti-parallel gyrovectors, the parallel translation of the two vortices takes
place at the steady-state velocity ¯ = =V V V1 2 with

σ

π

σ π
¯ = × = ˆ × ˆ = ˆ × ˆ( )( ) ( )

G

JS q q R

p q
C

G R
V

G F
z R z R

2 / 2

2
. (9.179)1 1

1
2

2
1 2 0

1 1
12

1 0
12

This uses the generalized definition of the force constant in (9.152),

πσ= −C q q JS (9.180)1 2
1 2

and the force is defined by

= ˆC
R

F R . (9.181)1
0

12

Compare with (9.147) for the force between a charge and its image outside the
system, which points in the opposite direction. Of course, larger separation results
in slower motion. Changing from a VV pair to a VA pair makes no difference
once the polarizations are reversed to keep the gyrovectors anti-parallel, see
figure 9.8.

Figure 9.9. Examples of vortex pairs with parallel gyrovectors performing orbital motion. The gyrovector
component π=G qp2 out of the page is indicated by ⊙ for π= +G 2 and by ⊗ for π= −G 2 . The VV pair on
the left has equal vorticities = = +q q 11 2 (green) and equal polarizations ( = = +p p 11 2 ). The VA pair on the
right has opposite vorticities (red for = −q 1) and opposite polarizations. Each vortex moves instantaneously
in the direction of ×G F, according to (9.150).
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When the gyrovectors are parallel, the resulting circular motion at some assumed
steady-state frequency ω makes it necessary to include the acceleration term. The
Thiele equation is applied just to vortex 1, while vortex 2 makes the same motion but
half a period out-of-phase. We can write the acceleration as ω= −A X ,1

2
1 assuming

X1 is relative to the center of the motion, and the velocity as ω= ˆ ×V z X ,1 1 in

Mσ + × =− F G V A . (9.182)1
1 1 1 1

With ω× = − GG V X ,1 1 1 1 this gives for the radial component,

Mω ω− = −C
R

G R R . (9.183)
0

1 0
2

0

Note that in the limit of zero mass, the solution (of the original Thiele equation)
must be

Mω ω= = = C
G R

( 0) . (9.184)0
1 0

2

The general quadratic equation with mass (9.183) can be rearranged as

M M
ω ω− + =G C

R
0, (9.185)2 1

0
2

whose general solution is

⎛
⎝⎜

⎞
⎠⎟M M M

ω = − −G G C
R2 2

. (9.186)1 1
2

0
2

The negative root was selected to give the result (9.184) in the limit M → 0. This
looks singular as far as the dependence on small M. Using the identity,

− − + − =a a b a a b b( )( ) ,2 2 another way to write it is

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟Mω

σ πσ
= + −

−
JS
R

q p
q

q
JS

R
( ) 1 1 . (9.187)

2

0
2 2 1

2

1

2

0
2

1

Although small mass M ≪JS 1 is probably not very likely [8], we can consider
finding the small M limit (also because the ratio of M R/ 0

2 is what is more relevant).
An expansion leads to a result with a linear dependence on mass,

⎛
⎝⎜

⎞
⎠⎟

M Mω ω
πσ πσ

≈ + ≪
q

q
JS

R
JS

R
1

4
,

4
1. (9.188)0

2

1

2

0
2

2

0
2

These are curious results, showing that a pair with equal vorticities (VV or AA) will
have a faster steady-state rotation than a pair with opposite signs (VA). In order to have
parallel gyrovectors, a VV or AA pair must have equal polarizations =p p .1 2 For a VA
pair, the polarizations would have to be in opposite directions. Then the VV or AA pair
has a particularly different out-of-plane spin structure than a VA pair, which will be
responsible for the change in the rotational frequency. Earlier we assumed a mass
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M π= JS16 / , for a system around =R a20 ,0 which comes from studies of single vortex
oscillations in circular systems [8]. For these parameters, the expansion parameter is

M

πσ
π

π
≈

·
=JS

R
S

S4
16

4 20
1

100
. (9.189)

2

0
2 2

Therefore the mass effect on rotation rate can be expected to be rather small.

Exercise 9.8. (a) Verify that (9.183) results by application of the modified Thiele
equation to a pair of vortices with parallel gyrovectors. (b) Show that the orbital
frequency is given by general solution (9.186). (c) Make an appropriate
expansion for small mass M ≪JS 1 and confirm the result (9.188), which shows
that the relative vorticity of the pair q q/2 1 affects the steady-state rate of rotation.

Cycloidal oscillations of a pair
Now consider fluctuations on the stationary solutions just found. Suppose there is an
additional small-amplitude displacement superimposed. This extra displacement is
taken to be in opposite directions for each vortex of the pair. To make this clear,
define the half-separation vector R12 and the center vector Xc of the vortices as

= −( ) aR X X
1
2

(9.190 )12 1 2

= +( ) bX X X
1
2

. (9.190 )c 1 2

Then tR ( )12 measures the vortex positions relative to the center of the pair, i.e.

= +t t t aX X R( ) ( ) ( ) (9.191 )1 c 12

= −t t t bX X R( ) ( ) ( ). (9.191 )2 c 12

The center position translates uniformly at velocity V̄ for anti-parallel gyrovectors,
see (9.179), or it is fixed in location for parallel gyrovectors. Either way, it does not
contribute an acceleration. The half-separation can be assumed to be that from the
stationary solution, tR ( ),0 combined with small oscillations tr( ), writing,

= +t t tR R r( ) ( ) ( ). (9.192)12 0

For anti-parallel gyrovectors, the stationary solution of parallel translation has
= + ¯t tX c V( ) ,c 0 and constant separation R2 .0 Supposing that the translation is along

the x-axis, ¯ = V̄V ( , 0),x one could take the vortex locations described by = YR (0, )0 0

and fluctuations =t X t Y tr( ) ( ( ), ( )). The velocity of vortex 1 is then

= ¯ + ˙ ˙V X YV ( , ),x1 and for vortex 2 the velocity is = ¯ − ˙ − ˙V X YV ( , ).x2 To leading
order in the small fluctuations, this physical situation is the same as that already
considered in section 9.4.1, for a vortex interacting with its image, moving along a
boundary parallel to the x-axis. When the vortex moves to slightly larger Y, its image
moves farther away in the opposite direction. The corresponding small displacements
in X do not affect the force, and play a limited role. Therefore we already have solved
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for the frequency of the oscillations, in (9.166). Using the force constant in (9.180),
the small-amplitude cycloidal oscillations have the undamped frequency,

M M M

M
ω

πσ
= + = +

( )
G C

y
G q q JS

R
1

2
. (9.193)c

2

2
0
2

1 2
2

0
2

Note that this depends on R2 ,0 the average separation of the pair, and the relative
signs of the vorticities q q .1 2 A VV or AA pair will have a higher frequency than a VA
pair. The resulting trajectories for this parallel translation in the x-direction are still
given by (9.165) and (9.168).

For parallel gyrovectors, the stationary solution of rotational motion is described
with a fixed center =X c,c and a constant separation distance R2 .0 Of course, the
half-separation vector itself is rotating at the steady-state frequency ω in (9.187),

with ω˙ = ˆ ×R z R .0 0 Therefore suppose this part of the motion has components,

ω ω= R t t aR (cos , sin ) (9.194 )0 0

ω ω ω˙ = −R t t bR ( sin , cos ). (9.194 )0 0

The components of the modified Thiele equation (for vortex 1) are

M− = ˙f G V V a(9.195 )x y x1

M+ = ˙f G V V b, (9.195 )y x y1

where the scaled force, using C of (9.180), is

σ= =− C
R

f F R . (9.196)1

12
2 12

It is assumed that tR ( )0 keeps a fixed length, whereas tr( ) must make an elliptical
cycloidal motion to solve the equations. It is somewhat tedious but with appropriate
expansions and keeping the leading linear terms in tr( ) and its time derivatives, one
can find the small-amplitude oscillations at a frequency ωc about the uniform
rotational motion at frequency ω. The resulting cyclotron frequency for those
oscillations is similar to that for the case of parallel translation, becoming

M

M
ω

πσ
= −G q q JS

R
1

2
. (9.197)c

1 2
2

0
2

Compare (9.193) for the case of anti-parallel gyrovectors, which has the opposite sign in
the radical and an extra factor of 2 dividing the mass. Of course, these mass effects can
be expected to be rather small; the dominant contribution to this cyclotron oscillation
frequency is MG / . These types of oscillations can be reproduced in simulations of vortex
pairs, especially for parallel gyrovectors, such as seen in the work of Mertens et al [9].
Further discussion of a more elaborate collective coordinate theory for describing the
motion of vortex pairs can be found in Völkel et al [7]. In this collective coordinate
theory, the ideas on vortex mass presented here have been extended to a more general
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theory where a mass tensor is developed that is a multi-vortex object, rather than the
mass discussed here, which has been a single vortex property.

9.4.3 An individual vortex in a circular system

A situation of great interest is a single vortex within a circular system of radius R,
especially because this can be the ground state in the case where demagnetization effects
are included. At this point, we do not explicitly include demagnetization, but instead,
consider how a vortex moves in a circular quasi-2D magnet with either free (ν = −1bc )
or fixed (ν = +1bc ) boundary conditions. Recall that the latter type, which forces the
spins to point along the edge of the circle on the boundary, is the limit of strong
demagnetization. It also can be satisfied only if the vortex has a positive charge = +q 1.

Suppose a vortex q is inside the circle, at time-varying position tX( ) measured
from the center of the circle. For either type of boundary condition, there is an image
vortex ν′ =q qbc outside the system at a radius ′ =X R X/ .2 The vortex will move in a
circle of radius X, under the force caused by its image. From the earlier result
(9.133), the radial component of force scaled by σ is

π σ= − ′
−

= −
−

f qq
JS

R X X
CX

R X
2 /

/
2

. (9.198)r

2

2 2 2

This is equivalent to using the force definition (9.147) with ˆ = ˆn r, with the definition
of C in (9.152). If the vortex is very close to the center of the circle, with ≪X R, the
force will be linear in X. For free (fixed) boundary conditions the force points
outward (inward), with <C 0 ( >C 0). The direction of the force is opposite to that
when we considered a pair of vortices rotating about each other, because the image
charge is outside the system, on the same radius as the charge q itself. Either
boundary condition will have a stationary solution that is an orbital motion around
the center of the circle, although the outward force might be expected to lead to an
unstable orbit.

Let the stationary solutions have a constant speed with velocity given by

ω= ˆ ×V z X (9.199)

similar to the pair of vortices with parallel gyrovectors orbiting about each other.
The modified Thiele equation (9.46) requires ω× = − GG V X. Then the modified
Thiele equation without damping is

Mω ω−
−

− = −C
R X

GX X X
2

. (9.200)
2 2

2

The sign on C is opposite to that in (9.183) for the rotating vortex pair, again
because now q interacts with its image which is outside the system. For a chosen
orbital radius X the frequency is determined, similar to the result (9.187) for a
rotating vortex pair,

Mω ω ω= + −
−( )G a2 1 1 4 / (9.201 )0 0

1

ω = −
−
C G

R X
b

2 /
. (9.201 )0 2 2
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The frequency ω0 is the result at zero mass. The root from the quadratic formula was
chosen to give the correct result at zero mass. The force constant ν∝ ′ =C qq qbc

2 is
negative for free boundary conditions (ν = −1bc ). This then leads to a positive value
of ω0 when π= +G 2 , corresponding to a counterclockwise vortex motion. The
outward force on the vortex is balanced by ×G V and Mω− r̂2 both pointing inward.
For the other case of fixed boundary conditions (ν = +1bc ), the constant C is positive
and ω < 00 for π= +G 2 , and the vortex rotates in the clockwise sense. This is
sketched in figure 9.10. Now the force and Mω− r̂2 are both inward but ×G V is
outward. The velocity is in the same sense as the cross product ×G F, see figure 9.10.

If the mass is small relative to ωG / ,0 an expansion then gives the approximate
result,

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

M M Mω ω ω ω
πσ πσ

≈ + = − ′
− −

≪
( ) ( )G

q
q

JS

R X

JS

R X
1 1

2
,

2
1. (9.202)0

0
0

2

2 2

2

2 2

The last form is written to compare with (9.188) obtained for a rotating pair of
vortices. The main difference is the opposite sign on the mass term, due to the
location of the image. The other important difference is the dependence on radial
location of the vortex, which must subtract from the size of the circle. However, in
the limit →X 0, this gyrotropic frequency reaches a finite limit inversely propor-
tional to the squared radius of the circle. Thus these results are important for the
development of magnetic oscillators based on this gyrotropic mode of oscillation.

A real system will have some small damping. As seen earlier in the case of a
vortex near a straight boundary, the damping will tend to cause the vortex to drift
towards the boundary for free boundary conditions. In that case, the vortex is
unstable in the system, and after some number of revolutions, it will leave the
system, as it moves to lower energy (being attracted to its image). Therefore, the case
of an outward force on the vortex is certainly unstable. On the other hand, for fixed

Figure 9.10. Circular path of a vortex with = +q 1, π= +G 2 (indicated by ⊙) moving in a circular orbit of
radius X in a circular system of radius R. Assuming fixed boundary conditions (ν = +1bc ), the image vortex
produces a force towards the center. The sense of the velocity is in the direction of ×G F. The gyrotropic
orbital frequency ω = V X/ is given in (9.201), using a positive force constant C, leading to clockwise rotation
(ω < 0). The rotation would be reversed for free boundary conditions or by reversing the sign of G.
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boundary conditions (strong demagnetization), damping will cause the vortex to
move away from the boundary, towards the center of the system. The system will be
stable. This is the situation needed for the design of a stable oscillator.

9.5 Vortex–spin wave interactions and normal modes
Up to this point a magnetic vortex has been treated almost as if it has a fixed
structure, for a given magnetic anisotropy described by parameter λ. The only
variations considered in the structure were those due to a change in velocity, which
led to the idea of a vortex mass. In this section we consider more general natural
oscillatory changes in vortex structure associated with the fact that it has a certain
flexibility, just as a guitar string or the membrane of a drum. If the spin field of a
vortex is slightly perturbed, say, by thermal fluctuations, it has natural modes of
oscillation about the original structure. These oscillations make up what might be
called the vortex internal dynamics. These normal modes of a vortex also character-
ize the interaction of the vortex with the spin waves of the system.

The mode spectrum was first calculated numerically for small ferromagnetic (FM)
systems in [10] and extended to the case of antiferromagnetic systems in [11] and [12].
Some of the modes of oscillation appear as a result of imparting motion to the vortex;
these are called translational modes. They tend to have a fairly low frequency,
perhaps inversely proportional to the system size, basically because the energy
associated with a shift of vortex position is close to zero. Then, other instability modes
are possible that become strong when the anisotropy parameter λ is close to the
critical value λc for crossover from stable in-plane vortices to stable out-of-plane
vortices. This type of mode has a wave function concentrated near the vortex core
region, where the out-of-plane fluctuations become strong. Finally there are many
other modes that correspond in general to a continuum of spin waves scattered from
the vortex. Far from the vortex, they may be nearly the same as found without a
vortex; the core region of the vortex changes the spectrum. As in quantum scattering
problems, one can analyze the modes in terms of radial and azimuthal dependencies
and quantum numbers. The FM system has also been analyzed with the presence of
an applied field perpendicular to the easy plane, in the so-called cone state [13].

Here the calculational procedure will be described for FM systems, and then some
results described for the FM easy-plane model without applied fields. The easy-plane
model is studied on a square lattice, for the discrete Hamiltonian,

∑ ∑ λ= − + +
=

+ + +( )H J S S S S S S . (9.203)
j

z
x y z

n 1

x y z
n n a n n a n n aj j j

The spectrum of modes will be computed for small systems by numerical diagonal-
ization of a linearized perturbation problem. Results will be analyzed for the system
with and without a vortex, for a full range of the anisotropy parameter λ. The
calculations are performed on a circular system of radius R, with the sites on a
square lattice grid, for a static vortex. Fixed or vortex-Dirichlet boundary conditions
(as in strong demagnetization) are assumed, which makes the vortex have its
minimum energy when centered in the circular system.
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9.5.1 The initial discrete lattice vortex solution

To initiate the perturbation calculations, first a static in-plane or out-of-plane vortex
solution on the lattice is required. It may be close to the approximate analytic
solutions already described, such as (8.7) for the in-plane angle, and (8.19) for the
out-of-plane component if λ λ> .c As mentioned earlier, these become modified
slightly on a grid, and we need to use the grid solution, which will be a local
minimum energy configuration. The discrete structure can be calculated by the spin
alignment technique, see for examples the curves found in figure 8.1. Even for an
in-plane vortex, the in-plane angles in the discrete vortex change in the core region,
when compared to the continuum arctangent solution of (8.7). The discrete structure
can be found just as well for triangular and hexagonal lattices just as for a square
lattice, without extra complications.

The static state achieved is described by the set of planar spherical in-plane and
out-of-plane angles ϕ θ( , ),n n

0 0 or the corresponding spins = S S SS ( , , ).x y z
n n n n
0 0 0 0

To simplify some notation, it is helpful in the perturbation analysis to define some
variables that appear repeatedly,

θ θ= =m psin , cos . (9.204)n n n n
0 0 0 0

Profiles of mn
0 as obtained by spin alignment relaxation were given in figure 8.1. The

factors pn
0 represent the projection of the spins onto the xy-plane. In the core region

where mn
0 is large, the deviation of pn

0 below unity becomes important.

9.5.2 Perturbations of a static vortex

The oscillations about the static vortex solution are found from perturbation
analysis, just as spin waves were analyzed in chapter 6. There are two main
differences here. First, the unperturbed state is not uniform, so we need to define
different local axes at each site. Second, we consider a finite system, so that
translational symmetry is not present. The modes will not be simply distinguished
by wave vectors.

To deal with the non-uniform unperturbed state, we use the static directions Sn
0 as

the local quantization axes z̃ for each site. The spins make small fluctuations about
those directions. Therefore only the spin components perpendicular to each Sn

0 will
be involved in the oscillations. It is those spin components for which the equations of
motion will be linearized. As in [10], one can make a transformation to new site-

dependent coordinate axes ˜ ˜ ˜x y z, , , where z̃ is along S ,n
0 x̃ is in the original xy-plane

and perpendicular to z̃, and then ˜ = ˜ × ˜y z x is the third member of the mutually
orthogonal triplet. These local axes are given in terms of the global ˆ ˆ ˆx y z, , basis as
(see figure 9.11)

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

ϕ ϕ

ϕ ϕ

ϕ ϕ

˜

˜

˜

=

−

− −
ˆ
ˆ

ˆ

m m p

p p m

x

y

z

x
y

z

sin cos 0

cos sin

cos sin

. (9.205)
n n

n n n n n

n n n n n

0 0

0 0 0 0 0

0 0 0 0 0
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With + =p m( ) ( ) 1,n n
0 2 0 2 the matrix here is of orthogonal form and the transpose is

its inverse. The local spin components are obtained by = · ˜∼
S S x,n

x
n and so on, which

shows that the spins are transformed the same way,
⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

ϕ ϕ

ϕ ϕ

ϕ ϕ

=

−

− −
∼

∼

∼
S

S

S

m m p

p p m

S

S

S

sin cos 0

cos sin

cos sin

. (9.206)
n

n

n

x

y

z

x

y

z

n n

n n n n n

n n n n n

n

n

n

0 0

0 0 0 0 0

0 0 0 0 0

The dynamic equations of motion without damping are ˙ = ×S S .n n n These can be
written out in the local coordinates, which are transformed into the global coordinates
as needed, by the previous equation. The time derivatives should be linearized in

∼∼ ∼
S S S, , .n n n

x y z The derivation of the equations of motion is a simple but tedious exercise.

Exercise 9.9. Starting from the equations of motion from Hamiltonian
(9.203), transform them to the local rotated coordinates (9.206). Show that
after linearization in all spin components, the components along the quantiza-
tion axes are nearly conserved quantities,

∼
S ,n

z while the transverse components
form a set of linear differential equations,

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

∑ ϕ ϕ ϕ ϕ λ

ϕ ϕ λ

˙ = − + − +

− − +

= +

∼ ∼ ∼

∼

{
}

( ) ( )

( )

S JS m S p p m m S

m m p p S a

sin cos

cos (9.207 )

n
m n a

m n

m

x
x y

y

n n m n m n m n m

n m n m n m

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

Figure 9.11. Sketch of the relation between the original global xyz-coordinate axes and the local
˜ ˜ ˜xyz -coordinate axes for a particular spin site, as defined in (9.205). The z̃-axis is taken along the direction
ϕ θ( , )n n

0 0 of the unperturbed spin at the site. Then x̃ is perpendicular to z̃ and in the xy-plane, while ˜ = ˜ × ˜y z x
to make the third member of the right-handed triplet.
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⎡⎣ ⎤⎦∑ ϕ ϕ ϕ ϕ λ

ϕ ϕ

˙ = − − − +

+ −
= +

∼

∼

∼
∼{

}

( ) ( )

( )

S JS m S p p m m S

S b

sin cos

cos . (9.207 )

n
m n a

m n

m

y
y x

x

m n m n m n m n m

n m

0 0 0 0 0 0 0 0 0

0 0

These equations (9.207) can be solved by assuming oscillatory time-dependence,
after which they become an eigenvalue problem. Wysin and Völkel [10] analyzed
and solved the problem in the language of quantum eigenmodes, by supposing there
are linear combinations of the local spin coordinates that form creation and
annihilation operators. While that is not essential it makes a closer connection to
the problem as studied in quantum terminology. The creation operator for a mode
labeled by some index k is

∑= +† ∼ ∼( )B w S w S , (9.208)
n

n nk k
x

k
y

n n,
(1)

,
(2)

where pairsw w,k kn n,
(1)

,
(2) are complex numbers that give amplitudes of the oscillations at

each site, and now
∼

Sn
x and

∼
Sn

y are treated as operators. There is a corresponding
annihilation operator, which is just the conjugate,

∑= +* *∼ ∼( )B w S w S . (9.209)
n

n nk k
x

k
y

n n,
(1)

,
(2)

For the creation operator, a time-dependence of the form ω texp(i )k is assumed, so
that its time derivative is

ω˙ =† †B Bi . (9.210)k k k

The annihilation operator has the negative of this frequency, ω− .k With this time-
dependence, the linearized equations (9.207) become an eigenvalue problem of
similar structure involving the amplitudes,

⎡⎣ ⎤⎦

∑ω ϕ ϕ ϕ ϕ

ϕ ϕ λ

= − − + −

− − +

= +

}
{ ( ) ( )

( )

w JS m w w

p p m m w
a

i sin cos

cos
(9.211 )m n a

k k k k

k

n m n m m n m m

n m n m n m n

,
(1) 0 0 0

,
(1) 0 0

,
(2)

0 0 0 0 0 0
,

(2)

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

∑ω ϕ ϕ ϕ ϕ λ

ϕ ϕ λ

= − − − − +

+ − +

= +
{

}

( ) ( )

( )

w JS m w m m p p w

p p m m w b

i sin cos

cos . (9.211 )

m n a
k k k k

k

n n n m m n m n m n m m

n m n m n m n

,
(2) 0 0 0

,
(2) 0 0 0 0 0 0

,
(1)

0 0 0 0 0 0
,

(1)

This sets up the eigenvalue problem. The matrix on the RHS has all real elements,
but it is not Hermitian. The problem, however, has real eigenfrequencies ω ,k hence
the matrix on the RHS is expected to have pure imaginary eigenvalues. The system
can be solved by a routine such as RG (real general matrix) from the EISPACK
eigensystem subroutine package, although the system size that can be solved will be
rather limited (say, a maximum ∼R a20 on a laptop, due to memory restrictions). In

Magnetic Excitations and Geometric Confinement

9-48



other work by Ivanov et al [14] one can find a better way to describe the matrix and
use its symmetries to solve it on larger systems up to ∼R a100 . Also, that work
showed that the eigenvalues are indeed pure imaginary and hence give real
eigenfrequencies. However, such large systems may lead to numerical instabilities
and even if the memory issue is resolved the required CPU time may be prohibitive.
Whatever numerical diagonalization is used, double precision is necessary for
stability. The full set of w w,k kn n,

(1)
,

(2) over the lattice then is the eigenvector associated
with a mode of frequency ω .k While diagonalization could give a large number of
modes, in usual practice we are interested more so in those of the lowest frequencies.

Once a mode has been determined, normalization for quantum creation/annihi-
lation operators requires a unit commutator, δ=′

†
′B B[ , ] .k k k k, Based on a canonical

commutator,

⎡⎣ ⎤⎦ δ δ= ℏ → ℏ
∼∼ ∼

S S S S, i i , (9.212)n m n
x y z

n m n m, ,

this results in the normalization condition,

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦∑ δ= ℏ + =′
† *

′ ′
* *

′( ) ( )B B S w w w w, i i . (9.213)
n

k k k k k k k kn n n n,
(1)

,
(2)

,
(1)

,
(2)

,

Although for classical modes the normalization is somewhat arbitrary, for the
quantum system a correct normalization is needed if one wants to use these results to
give the spin fluctuations in thermal equilibrium. Once the modes are known and
correctly normalized, the original spin operators in the local coordinates can be
recovered. Inverting (9.208) and (9.209), they are

∑= − * †∼ ( )S S w B w B ai (9.214 )
k

n
x

k k k kn n,
(2)

,
(2)

∑= − − * †∼ ( )S S w B w B bi . (9.214 )
k

n
y

k k k kn n,
(1)

,
(1)

These can be used to analyze the spin fluctuations caused by a given pure mode or in
a combination of the modes.

The original unperturbed vortex state can be denoted ∣ 〉0 , being like the ground
state of the spin wave modes being found here. A state with a single mode excited is
created by its creation operator, acting on the ground state,

= †k B 0 . (9.215)k

With these being normalized operators with unit commutator (9.212), the excited
states are also unit normalized:

= =†k k B B0 0 1. (9.216)k k

Using as reference the vortex ground state, there is also the relation for the expectation
value of the number operator, ≡ †N B B ,k k k 〈 ∣ ∣ 〉 =†B B0 0 0,k k because ∣ 〉0 has no
excitations present. However, if the state of the system is a mixed state, corresponding
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to thermal equilibrium, then it is important to realize that some population of the
modes will be present. In thermal equilibrium, the expectation value of the number
operator leads to the well-known Bose–Einstein occupation number, and we write

β ω
= =

ℏ −
†N B B

1
exp( ) 1

. (9.217)k k k
k

Generally, we can discuss the spin fluctuations in a state of thermal equilibrium, but
then isolate each contribution of each particular mode k.

The spin fluctuations take place transverse to the z̃-directions at each site, but
average out to zero so that 〈 〉 = 〈 〉 =

∼ ∼
S S 0n n

x y in any state. The expectation value of
the longitudinal component, however, can be estimated using the Holstein–
Primakoff transformation [15], which is used to ensure a conserved total spin length
when fluctuations are present,

= − − +
∼ ∼ ∼∼ ∼( )( )S S

S
S S S S

1
2

i i . (9.218)n n n n n
z x y x y

The last term involves the product of the spin lowering and raising operators, −Sn and
+S .n After expressing this in terms of Bk and †Bk by (9.209) and (9.208), a short

exercise leads to the result

⎡⎣ ⎤⎦∑= − + + −† †∼
S S S w w B B w w B B

1
2

i i . (9.219)
k

n
z

k k k k k k k kn n n n,
(1)

,
(2) 2

,
(1)

,
(2) 2

To arrive at this result, one uses the fact that 〈 〉 = 〈 〉 =†B B 0k k as well as

〈 〉 = 〈 〉 =′
†

′
†B B B B 0.k k k k This shows that the spin length along z̃ is slightly reduced

by the fluctuations.
Eventually the squared fluctuations away from the mean, in the original global

coordinates xyz, are desired. They can be partitioned into in-plane and out-of-plane
types, from the definitions,

δ = − + −( ) ( ) ( )S S S S S a(9.220 )x x y y
n n n n n
in 2 2 2

δ = −( )( )S S S b. (9.220 )z z
n n n
out 2 2

By using the inverse of the coordinate transformation in (9.206), these can be
expressed using the local coordinates,

δ θ= +∼ ∼( )S S S asin (9.221 )n n
x y

n n
in 2 2 2 2 0

δ θ= ∼( )S S bcos . (9.221 )n
y

n n
out 2 2 2 0

This is reasonable; the ỹ-axis makes an angle θn
0 to the ẑ-axis, and all the out-of-

plane motions take place in
∼

S .n
y The x̃-axis lies in the original xy-plane, and so

∼
Sn

x

contributes only to in-plane fluctuations. There is also a contribution to in-plane
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fluctuations from the component of
∼

Sn
y projected onto the xy-plane. Now, the

expectations contained here can be found from using (9.214) to express all parts in
terms of the creation/annihilation operators,

∑= ℏ +†∼
S S w B B a( ) 2 1 (9.222 )

k
n
x

k k kn
2 2

,
(2) 2

∑= ℏ +†∼
S S w B B b( ) 2 1 . (9.222 )

k
n
y

k k kn
2 2

,
(1) 2

Consistent with (9.214), these show how the w(1) amplitudes give a sense of the
∼

Sn
y

variations and the w(2) amplitudes relate to the
∼

Sn
x variations. Then, the expressions

of (9.221) become

∑δ θ= ℏ + +†( )( )S S w w B B a( ) sin 2 1 (9.223 )
k

k k k kn n n n
in 2 2

,
(2) 2

,
(1) 2 2 0

∑δ θ= ℏ +†( )S S w B B b( ) cos 2 1 . (9.223 )
k

k k kn n n
out 2 2

,
(1) 2 2 0

Each mode contributes a separate term on a chosen spin site. Because this has been
obtained through a semiclassical approach, the last ‘1’ after the number operator

†B Bk k actually is the zero-point term, present even when the mode is not excited. It
might be ignored for the analysis of the classical system.

9.5.3 Examples of the spin wave mode spectrum on a vortex

An example of these exact diagonalization calculations is to use a circular system of
radius =R a15 , discretized on a square lattice, see figure 9.12 for the frequency
spectrum. This results in a system with N = 716 sites, which means that with two
variables at each site, the exact diagonalization involves a real matrix of size 1432 ×
1432, with 1432 eigenstates. One must also save the 1432 complex eigenvectors, all
with 1432 elements. This size is easily solved for a selected value of λ on a laptop
computer, and it is not too difficult to go to larger sizes. Of course, we are mostly
interested in some subset, usually only the lowest few dozen modes. To obtain a
complete understanding of the properties or symmetries of the modes, one should
calculate the spectrum at a sequence of anisotropies λ. Then with the repetition of
the calculations over a range of λ the total CPU time can grow to become less
convenient.

When the calculations are performed for two closely spaced values of λ, it is
important to be able to identify the eigenmodes at the first value of λ with the same
modes (of the same symmetry) at the next value of λ. This process can be achieved by
calculating the overlaps of the two sets of eigenvectors with each other, and looking
for the values closest to unity. For fixed λ, modes at distinct eigenfrequencies are
orthogonal. The normalization integral or overlap is the sum that one finds in
(9.213) for the expression of the commutator, ′

†B B[ , ].k k When modes at two different
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λ are compared, their overlaps do not need to be very close to unity, so it is
important to avoid changing λ by a step that is too large. This technical detail can be
difficult to apply because some modes are degenerate and become split in frequency
and, as well, some modes cross over other modes.

The changing spectrum of frequencies with λ for the =R a15 system with a vortex
is shown in figure 9.12. Mostly the anisotropy constant was incremented by

λΔ = 0.05, except for values near the critical value around λ ≈ 0.7,c where smaller
increments were used. Only the lowest 20 modes have been kept here. When more
modes are tracked with changing λ, it becomes more difficult to unambiguously
identify them as λ changes. There are doubly degenerate modes that have been
marked with diamond symbols in figure 9.12; solid curves without symbols are non-
degenerate modes.

The eigenvectors or wave functions of some of the modes are presented in figures
9.13 through 9.24, using red line arrows (such as —>) to represent the complex
amplitudes wk n,

(1) and blue hollow head arrows (such as —▹) to represent the

complex amplitudes w .k n,
(2) The horizontal (vertical) components of the arrows are

the real (imaginary) parts. For the simplest case of an in-plane unperturbed vortex,
recall thatwk n,

(1) gives out-of-plane oscillations andwk n,
(2) gives in-plane oscillations. If the

unperturbed vortex is of out-of-plane type, however, then out-of-plane oscillations are

Figure 9.12. Spectrum of normal modes on a static vortex at the center of a circular square lattice system of
radius =R a15 (with 716 sites, fixed boundary conditions), obtained by exact diagonalization of the equations
(9.211a). Modes marked with diamonds are doubly degenerate. All of those appear for λ λ< .c A near
degeneracy (split slightly by the lattice) is also marked. The lowest mode for λ λ< c is associated with the
instability of in-plane vortices (VIM), seen by the downward cusp at λ λ= ≈ 0.7.c The lowest doubly
degenerate mode contains the translational modes (TM), which split for λ λ> .c
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determined only by w ,k n,
(1) but in-plane oscillations are determined by both wk n,

(1) and

w ,k n,
(2) depending on θn

0 at the site, see (9.223).
The lowest mode frequency for λ λ< c has a strong downward cusp at λ λ= ,c

which is associated with the instability of in-plane vortices found earlier. It is marked
as VIM for vortex instability mode. The cusp does not go exactly to zero frequency
here only because the calculations were not performed at the exact λc for the given
system size. The presence of this soft mode in the spectrum is a significant
confirmation of the vortex instability calculations. Its eigenfunction is shown for
λ = 0.40, 0.705, 0.90 in figures 9.13, 9.17 and 9.21, respectively. Note that the mode
is circularly symmetric and very strongly dominated by out-of-plane fluctuations,
especially at λ λ= ≈0.705 ,c as expected from vortex stability analysis. Interestingly,
there are a number of higher modes that also have downward cusps at the same λ,
but it is not likely that these would go to zero frequency at the exact value of λ .c An
example is ‘mode 6’ (the sixth lowest mode at λ = 0), whose eigenvectors are shown
at the same values of λ in figures 9.16, 9.20 and 9.24. Mode 6 is also circularly
symmetric, but reverses sign at a particular radius: it has a circular nodal line. This is
very similar to higher states in any quantum system, such as hydrogen atom wave
functions. At λ λ= ≈0.705 ,c mode 6 reaches its minimum frequency and has a
strong central amplitude in w ,k n,

(1) see figure 9.20.
The lowest of the doubly degenerate modes contains the pair of translational modes,

marked as TM in the spectrum, figure 9.12. For λ λ< ,c the wave functions of these

Figure 9.13. Eigenvector of the lowest mode for a vortex in the =R a15 system, at λ = 0.40. The red line
arrows (—>) represent the amplitude and phase of the complex values wk n,

(1) (mostly out-of-plane oscillations).
Blue hollow arrows (—▹) represent wk n,

(2) in the same scale (in-plane oscillations). This is the mode labeled as
VIM in figure 9.12. It has rotational symmetry and is predominantly of in-plane fluctuations at this value of λ.
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translational modes have structures comparable to the moving vortex solution (8.40)
found earlier, see figures 9.14 and 9.15. Double degeneracy of the TM modes makes
sense as there are two independent directions of motion possible. The degeneracy is
split once λ λ> ,c with one mode of the doublet moving to very low frequency as
λ → 1. The eigenfunctions are shown just above the critical anisotropy in figures 9.18
and 9.19. Now they have a dependence on the azimuthal angle φ of the forms φ+exp( i )
for the TM mode with higher frequency, and φ−exp( i ) for the TM mode of lower
frequency. These two functions were mixed in the eigenvectors for λ λ< .c The splitting
becomes much stronger at λ = 0.90, see the eigenvectors in figures 9.22 and 9.23. The
lower of the two modes moves to a very low frequency, and its eigenvector is strongly
concentrated in the vortex core.

The other doubly degenerate modes for λ λ< c also split once the anisotropy
constant surpasses λ .c This effect is reasonable, because the combination of a
vorticity = +q 1 and a polarization = +p 1, giving non-zero G, breaks the rotational
symmetry of the spin structure. To state this in other words, translational modes
could also be combined into circular motions of two opposite senses. Once there is a
non-zero gyrovector present, the two rotational senses of motions have different
energies or frequencies. The Thiele equation shows that non-zero G gives motion in a
well-defined direction in response to a force. If ≠G 0, functions of the form φmexp(i )
with integer quantum numbers = ± ± …m 0, 1, 2, become the good eigenstates.
They were degenerate and therefore mixed when G = 0 for in-plane vortices.

The presence of these features such as the vortex instability mode and mode 6,
together with the translational modes, can be considered the internal dynamics of

Figure 9.14. Eigenvector of one of the translational modes (TM in figure 9.12) for a vortex in the =R a15 system,
at λ = 0.40, with notation as in figure 9.13. It would be a linear combination of functions φexp(i ) and φ−exp( i ).
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Figure 9.15. Eigenvector of the second of the translational modes (TM) for a vortex in the =R a15 system, at
λ = 0.40, with notation as in figure 9.13. It is degenerate with mode 2 shown in figure 9.14, but as a different
linear combination of functions φexp(i ) and φ−exp( i ).

Figure 9.16. Eigenvector of mode 6 for a vortex in the =R a15 system, at λ = 0.40, with notation as in figure
9.13. It is the second of the modes in the spectrum of figure 9.12 that exhibits a downward cusp at λ .c It has
rotational symmetry but a circular node where the sign reverses.
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Figure 9.17. Eigenvector of the lowest mode for a vortex in the =R a15 system, at λ λ= ≈0.705 c with
notation as in figure 9.13. This is the VIM in figure 9.12. Here it is predominantly of out-of-plane fluctuations
concentrated in the vortex core.

Figure 9.18. Eigenvector of one of the translational modes (TM in figure 9.12) for a vortex in the =R a15
system, at λ = 0.705, with notation as in figure 9.13. The mode’s amplitude varies as φexp(i ). It is named mode

+T later in figure 9.28.
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Figure 9.19. Eigenvector of the second translational mode (TM) for a vortex in the =R a15 system, at
λ = 0.705, with notation as in figure 9.13. The degeneracy with mode 2 has been split, see figure 9.18. The
mode’s amplitude varies as φ−exp( i ). It is named mode −T later in figure 9.28.

Figure 9.20. Eigenvector of mode 6 for a vortex in the =R a15 system, at λ = 0.705, with notation as in figure
9.13. In the spectrum of figure 9.12, it is the second downward cusp at λ .c
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the vortex. These features show how a vortex should not be considered an object
with a fixed structure as it is moving.

For comparison, the spectrum for the same system but without a vortex present is
shown in figure 9.25. In this case, the unperturbed state is the state of ferromagnetically

Figure 9.21. The VIM eigenvector for a vortex in the =R a15 system, at λ = 0.90, with notation as in figure 9.13.

Figure 9.22. Eigenvector of the higher translational mode (TM in figure 9.12 or +T in figure 9.28) for a vortex
in the =R a15 system, at λ = 0.90, with notation as in figure 9.13. The mode’s amplitude varies as φexp(i ).
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Figure 9.23. Eigenvector of the lower translational mode (TM if figure 9.12 or −T in figure 9.28) for a vortex in
the =R a15 system, at λ = 0.90, with notation as in figure 9.13. The mode’s amplitude varies as φ−exp( i ).
Compare to figure 9.22, which has the opposite azimuthal symmetry and is more spread out.

Figure 9.24. Eigenvector of mode 6 for a vortex in the =R a15 system, at λ = 0.90, with notation as in figure
9.13. The sign reversal through the circular node is more obvious.
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aligned spins, with free boundary conditions then being necessary. While there are still
certain doubly degenerate modes among the predominantly non-degenerate ones, the
spectrum is rather uniform and featureless. Nothing in particular happens around λ ,c

because there is no vortex present. There is, however, an extra mode at zero frequency.
This is due to the freedom of rotating all spins together around the z-axis, without any
energy cost. It is a direct consequence of the free boundary conditions.

A further comparison can be made by looking at the spectrum with a vortex
present, but with free boundary conditions, see figure 9.26, again for the vortex in a
square lattice system of radius =R a15 . If damping were present, the vortex would
probably be unstable, and its dynamics would cause it to move towards the
boundary. The diagonalization calculations, however, do not include damping,
and only give a measure of the small-amplitude harmonic oscillations that can
appear. Even so, the spectrum changes slightly from that for fixed boundary
conditions. First, the zero frequency mode now appears, because the free boundary
condition allows all spins to rotate together around the z-axis, with no energy cost,
even when a (centered) vortex is present. Second, the translational mode frequencies
acquire a small imaginary part, on the order of − JS10 ,6 due to round-off errors, that
would correspond to the same effect expected if damping were present. This shows
that the instability of the vortex remaining at the system center actually does appear
in the calculation. Third, the vortex instability mode that would go to ω = 0 at λc

Figure 9.25. Spectrum of normal modes in a square lattice system of radius =R a15 (716 sites) without a
vortex, obtained by exact diagonalization of the equations (9.211a). The unperturbed state is that of aligned
spins in the xy-plane, free boundary conditions must be used here. Modes marked with diamonds are doubly
degenerate. The zero mode with ω = 0 appears due to the freedom to rotate all spins together at no energy cost.
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now is not present, however, there are other higher modes with a strong downward
cusp at λc (shown as dashed curves). The free boundary condition is softer than a
fixed boundary, and that is responsible for this change.

It is very clear that the presence or absence of a vortex, together with the type of
boundary conditions, has a substantial effect on the spin wave spectrum.

9.6 Vortex mass obtained from vortex normal modes
The normal mode spectrum can be connected to calculations of the vortex mass [8],
for an isolated vortex in a small circular system such as that just considered above.
The idea is that the translational modes are directly related to the vortex motion and,
hence, their eigenfrequencies are connected to the frequencies one finds for
gyrotropic motion of the vortex in the circular system. The mass can be estimated
by making the results of the modified Thiele equation consistent with the eigen-
frequencies found from the perturbation analysis.

We have already considered the motion of a vortex in a circular system, from the
point of view of the modified Thiele equation (9.46). The force was assumed to be
the force due to an image vortex. For a system discretized on a lattice, the force may

Figure 9.26. Spectrum of normal modes on a vortex in a square lattice system of radius =R a15 (716 sites, free
boundary conditions), obtained by exact diagonalization of the equations (9.211a). Modes marked with
diamonds are doubly degenerate. Modes shown as dashed are similar to the VIM but do not go to zero
frequency at λ .c The zero mode with ω = 0 appears due to the freedom to rotate all spins together at no energy
cost. Note how all modes tend to have lower frequencies than for fixed boundary conditions, figure 9.12. The
translational modes and others degenerate for λ λ< c become split for λ λ> ,c due to non-zero G.
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be somewhat different from the analytic expressions already found. For the moment,
assume that with fixed boundary conditions, the force is a radial restoring force with
some force constant k ,F

= −kF X, (9.224)F

where tX( ) is the instantaneous vortex location, measured from the center of the
circular system. With an assumed rotational motion ω= ˆ ×V z X and then

ω¨ = −X X,2 the equation of motion is just like (9.200) found earlier,

Mω ω− − = −k GX X X. (9.225)F
2

The two frequencies that result for orbital motion are written here as

M
M Mω = ± + > >± ( )G G k k

1
2

4 , for 0, 0. (9.226)2
F F

At this point we allow both possible solutions, which are assumed to be mapped to
the two possible translational modes. For an out-of-plane vortex, these connect to
different rates and senses of rotation around the system center. One can see that with
M > 0 and >k 0,F one obtains ω >+ 0 (counterclockwise motion) but ω <− 0
(clockwise motion), regardless of the sign of G. If instead an in-plane vortex is
considered, with G = 0, the solutions are those for simple harmonic motion,

Mω = ± =± k G/ , for 0. (9.227)F

This can also be interpreted as saying that circular motions in opposite senses will
have the same frequencies. The results so far have required a mass. If the mass were
not present, the Thiele equation then gives only one frequency,

Mω = − =k G/ , for 0. (9.228)0 F

If bothM = 0 and G = 0, as would be the case for massless in-plane vortices, there is
no solution. Thus, we suppose that a mass is always present, in order to have
consistency between the Thiele dynamics and the spin wave spectrum.

From the quadratic equation that leads to ω±, one has a relation for the product
of the two frequencies, that can be solved for an estimate of the mass,

M
Mω ω

ω ω
= − ⟹ = −+ −

+ −

k k
. (9.229)F F

Therefore, this can be used to estimate M if the force constant is already known,
assuming that the frequencies are taken to be the translational mode frequencies
from the perturbation analysis.

We can estimate the force constant essentially by a variation of the spin alignment
iteration approach, but enforcing a constraint on the vortex position. The total
quasi-static energy of the vortex might be expected to be of a quadratic potential
form,
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≈U k XX( )
1
2

. (9.230)F
2

To impose a desired position, the in-plane angles ϕi for four sites in the core of the
vortex can be fixed to have the values given by (8.7), for a desired location, not
exactly at the system center. The spin configuration can be relaxed by the spin
alignment technique, resulting in a calculation ofU X( ) for that position. This can be
repeated for different small displacements (fractions of a lattice constant) away from
the system center. As a result, one finds an approximate quadratic dependence on
the displacement from the center, and the force constant kF is easily determined. This
is performed for the same boundary conditions (fixed) as those applied to obtain the
normal modes. Results for kF are shown in figure 9.27, which are rather surprising.
For λ λ< ,c the force constant is very close to constant, independent of the system
size. This is in contrast to what we could expect from the continuum expression
(9.198) based on the forces due to vorticity between the vortex and its image.
Expression (9.198) would predict that ∝ −k RF

2 as →X 0. But that is not what is
found for the system on a square lattice. This may be because there are discrete
pinning forces, especially in the core region, that dominate the force. As λ → 1 for
out-of-plane vortices, the force constant shown in figure 9.27 decreases considerably,
and is all the smaller for larger R, but not as an inverse square law.

Figure 9.27. The effective vortex force constant kF as estimated from (9.230) and energy calculated from the
spin alignment relaxation scheme, for indicated system radii. The inset gives an indication of the dependence
on system radius for out-of-plane vortices.
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The translational mode frequencies for the =R a15 system are shown again in
figure 9.28, together with the vortex instability mode as a reference. The lower of the
translational modes, labeled as −T , goes to very low frequency as λ approaches unity.
That is the mode whose frequency becomes ω = −k G/0 F in the limit of zero mass; it
is the more ‘natural’ motion for a vortex in a confined circular system. Examples of
its wave function were given in figures 9.19 and 9.23. The higher mode +T has wave
functions such as those in figures 9.22 and 9.18. Based on the result (9.229) above,
the translational mode frequencies are identified as ω+ and ω−, and used to estimate
the mass, whose result is shown in figure 9.29 for various system sizes, all with fixed
boundary conditions. Note thatM has been calculated in units of −JS( ) ;1 the physical
mass would be m Mσ= , which has units of −Ja( ) ,2 1 which can be expressed in
kilograms. The mass has a considerable variation with λ, especially a large peak
around λ .c Also,M increases with system radius, but not according to the logarithmic
form in (9.35). It is difficult to reconcile this calculation of M on the discrete lattice
system with that continuum theory expression. One can suspect that there are
intense discreteness effects that could be responsible for the considerable differences.
The continuum expression employed an artificial cutoff in the core region, but that is
probably the region with the most important dynamics, which has somehow been
over-approximated in the continuum limit.

Figure 9.28. Three of the lowest modes in an FM square lattice system of radius =R a15 with a vortex with
fixed boundary conditions, obtained by exact diagonalization of equations (9.211a). The VIM is responsible
for the transformation of an in-plane vortex into out-of-plane form at λ ≈ 0.70.c The translational modes
T+ and T− are degenerate for in-plane vortices but become distinctly split in out-of-plane vortices, due to the
non-zero gyrovector that plays such an important role in the dynamics.
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