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Magnetic Excitations and Geometric Confinement
Theory and simulations

Gary Matthew Wysin

Chapter 8

Vortices in layered or 2D ferromagnets

Many magnetic crystals have an anisotropic structure that is layered and, hence,
the magnetic interactions have a 2D anisotropy. Then, the dynamics is close to
that of independent planes of magnetic ions, i.e. 2D magnets. Depending on the
details of the magnetic interactions, different types of topological excitations are
possible, known both as solitons and vortices. In this chapter the structure of
the two types of vortices in ferromagnets is presented. The unbinding of vortices
in particle–anti-particle pairs produces the Berezinskii–Kosterlitz–Thouless
(BKT) topological phase transition. The transition can be studied using
Monte Carlo (MC) and spin dynamics (SD) simulations. An ideal gas of
vortices is discussed as a model for their contribution to the thermodynamics.
Some simulations of the dynamic correlations in the ferromagnetic (FM) XY
model are presented to show the changes in dynamic correlations with temper-
ature and wave vector.

8.1 A 2D ferromagnet with easy-plane exchange anisotropy
In this chapter we consider a model of three-component spins occupying the
sites of some 2D lattice, with a FM nearest neighbor interaction. The model
applies to materials such as K2CuF4 [1, 2], where the magnetic ions occupy
well-defined layers in a crystal, separated by larger spacing than the intra-layer
nearest neighbor distance. Then, the spin interactions are quasi-2D; for the
most part we ignore the inter-layer couplings. It can be kept in mind that
although the inter-layer couplings are small, at low enough temperature they
can be considered important, where they lead to 3D ordering. The model is
considered above any 3D ordering temperature. Much of the analysis can be
performed assuming a square lattice; the analysis and certain results have some
dependencies on the particular lattice, however, the basic physics effects are
the same.
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A model Hamiltonian is assumed with XXZ symmetry as in (1.45), and
defining the in-plane exchange constant as =J J ,x and the out-of-plane exchange
constant as

λ λ= ⩽ <J J , 0 1, (8.1)z x

the Hamiltonian, with only nearest neighbor interactions, is taken as

∑ λ= − + + −( )H J S S S S S S S . (8.2)
i j( , )

i
x

j
x

i
y

j
y

i
z

j
z 2

The sum is over nearest neighbor pairs of sites i j( , ), which could occupy a square,
triangular, hexagonal, or other 2D lattice. The last factor of S2 forces the ground
state energy to be zero. The usual XY model is the limit λ = 0. At λ → 1 the
interaction becomes isotropic; this isotropic Heisenberg limit is outside the
discussion in this chapter. It is important for the considerations here to include
at least an infinitesimal XY or easy-plane anisotropy. By including the anisotropy
parameter λ, the properties of vortices and the BKT vortex-unbinding transition
can be found to change with anisotropy strength. Besides, the exchange inter-
actions in real quasi-2D materials may be very close to isotropic, with only weak
easy-plane character (λ ≈ 0.99 for K2CuF4 [1, 2]). This model does not include the
plane rotor (PR) model (two-component spins). By using three-component spins,
the model has true SD without the need for introducing an inertia as in the rotor
model. In this chapter only FM coupling is assumed, and the demagnetization
field is neglected.

The Hamiltonian (8.2) has already been discussed concerning MC simulations
(equation (4.137)) and the discrete SD equations of motion, for the in-plane angle ϕi
and out-of-plane spin component S ,i

z were found in (5.23) and (5.24). Using
θ=S S sini

z
i in planar spherical coordinates, the dynamics can alternatively be set

in terms of the out-of-plane angles θ .i This Hamiltonian is a combination of an
isotropic part (− ·JS Si j pair interactions) and an anisotropy term,

∑δ δ λ= + ≡ −H J S S , where 1 . (8.3)
i j( , )

i
z

j
z

ani

For much of the analysis, a continuum description is useful. The continuum
isotropic Hamiltonian has been developed in chapter 2, see in particular (2.57) for
an isotropic chain, (2.28) for a square lattice and (2.33) for arbitrary lattices. We
suppose that the original discrete system is defined on a square lattice. Letting

→S S r( )i
z z and → +S S r a( ),j

z z
j it is straightforward to expand this anisotropic part

and arrive at the total continuum limit Hamiltonian that was derived from
interactions on a square lattice (four nearest neighbors = ± ˆ ± ˆa aa x y,j ):

∫ δ θ θ θ ϕ δ θ∇ ∇= − ∣ ∣ + ∣ ∣ +{ }( )H JS r
1
2

d 1 cos cos 4 sin . (8.4)2 2 2 2 2 2 2

In this chapter lengths such as r are assumed to be in units of the lattice
constant a.
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Exercise 8.1. Verify that Hamiltonian (8.4) results from taking a continuum
limit of (8.2) on a square lattice. The isotropic part is the 1D to 2D
generalization of (2.57), which should be included with the anisotropic part
from (8.3).

A Hamiltonian similar to (8.4) was developed and the equations of motion
analyzed by Hikami and Tsuneto [1], but with half the strength on the term δ θ4 sin .2

Either by the techniques of chapter 2 or by the continuum limits of (5.23) and (5.24),
one arrives at the dynamical equations (see also the work of Gouvêa et al [3] and
Wysin et al [4]),

⎡
⎣⎢

⎤
⎦⎥ϕ θ δ δ θ ϕ θ δ θ θ∇ ∇˙ = − ∣ ∣ + ∣ ∣ − − ∇− ( )JS a( ) cos 2

1
2

( ) sin 2 1 cos (8.5 )1 2 2 2 2

θ θ ϕ θ θ ϕ∇ ∇˙ = ∇ − ·−JS b( ) cos 2 sin . (8.5 )1 2

Exercise 8.2. Verify that the dynamical equations (8.5) result from the
continuum Hamiltonian (8.4), for instance, by using functional derivatives
(2.129) as described in chapter 2, and then finding the dynamics from (2.103).

Takeno and Homma [5] also arrived at equivalent dynamic equations, using
different notation, but mainly analyzed them for a 1D model. Nikiforov and
Sonin [6] considered a similar Hamiltonian but with the anisotropy inserted in a
local interaction form, δ+J S( ) .i

z 2 This does not make a strong difference in the
vortex structures that result or the basic physics, beyond some rescaling of
parameters. The first step in the subsequent analysis will be to describe the kinds
of vortex solutions, both static and dynamic, that are possible from these
equations.

After describing the basic vortex structures (the spin waves present were
described in chapter 6), the role played by vortices in the BKT topological
transition will be described. Dynamics of vortices can be seen in the dynamic
correlations above the BKT transition temperature, although this response is mixed
in with a similar response due to spin waves. There is also considerable interest in
the particular interaction between an individual vortex and the surrounding bath of
spin waves.

8.2 In-plane and out-of-plane vortices
One can seek the static vortex solutions of (8.5), putting ϕ θ˙ = ˙ = 0. Then (8.5b) has
solutions of a form where ϕ ϕ φ= ( ) depends only on azimuthal position coordinate
φ and θ θ= r( ) depends only on radial position coordinate r, both measured relative
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to an arbitrary center, which is taken as the origin for now. This means ϕ θ∇ ∇· = 0,
and then (8.5b) becomes a 2D Laplace equation for the in-plane angle:

ϕ∇ = 0. (8.6)2

Using either circular coordinates φr( , ) or Cartesian coordinates x y( , ), the in-plane
angle for a vortex solution is

⎜ ⎟⎛
⎝

⎞
⎠ϕ φ ϕ ϕ= + = +−q q

y
x

tan . (8.7)0
1

0

= ± ± …q 1, 2, is the vorticity charge or vorticity for short, and ϕ0 is a constant of
integration or phase angle that gives the direction of the spin field on the positive
x-axis. For example, with ϕ π= /2,0 the spins point in the counterclockwise sense
(for = +q 1) as one moves along a path around the origin. The solutions are called
vortices ( = + + …q 1, 2, ) or anti-vortices ( = − − …q 1, 2, ) according to the sign of q.
A vortex solution has a gradient given by

φ φϕ ϕ
φ

∇ = ∂
∂

ˆ = ˆ
r

q
r

1
, (8.8)

where the azimuthal unit vector is

φ φ φ φ φˆ = ˆ × ˆ = − ˆ + ˆ = −z r x ysin cos ( sin , cos ). (8.9)

At the origin there is a singularity; it might be referred to as the vortex core. The field
ϕ∇ is analogous to the magnetic induction around an infinitely thin current-carrying

wire1. There is a corresponding Ampere’s law for the total vorticity charge enclosed
within a path surrounding the vortex core:

∮ ϕ π∇ · =ℓ qd 2 . (8.10)

Although the in-plane angle for an individual vortex satisfies a 2D Laplace equation,
the gradient can be rotated 90° to the radial direction by forming the object

ϕ∇ × ˆ = ˆq rz r( / ) . This is like the 2D electric field of a line of charge. This implies a
2D Poisson equation for that situation, corresponding to Gauss’s Law,

ϕ π δ∇ ∇· × ˆ = qz r( ) 2 ( ). (8.11)

Also with the identity,

ϕ ϕ∇ ∇ ∇ ∇· × ˆ = ˆ · ×z z( ) ( ) (8.12)

(or via Stokes’ theorem), one can see that an Ampere’s law equation holds,

ϕ π δ∇ ∇× = ˆq r z2 ( ) . (8.13)

Although evaluated here for an individual vortex, one can see by superposition that
(8.10) applies to any number of enclosed vortices, if q on the right-hand side is the

1A real current-carrying wire has no true singularity in its field because the current must be spread out over
some cross-section. In the same way, there is no true singularity in the spin field of the original model on a
lattice. The singularity appeared only as a result of the continuum limit from a discrete system.
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algebraic sum of their vorticity charges. If the path of integration encloses a vortex
and the opposite signed anti-vortex, this integral will be zero. This already shows
that the vorticity charge follows a topological conservation law. Vortices can only be
created into a system if the total vorticity generated through any process does not
change. Every vortex created (in a closed system) must be balanced by a
corresponding anti-vortex. In an open system, vortices or anti-vortices can enter
or leave at the edges, and total vorticity charge is not conserved.

8.2.1 In-plane vortices

The vortex type is determined by the structure of the out-of-plane angle. Equation
(8.5a) in the static limit has been found both from analytics [1, 5] and numerics [3, 4]
to have two types of solutions. The first is the planar vortex or in-plane vortex
solution, where all spins remain in the xy-plane:

θ = 0. (8.14)ip

In this case, the only contribution to the energy is from that associated with ϕ∇∣ ∣ ,2

∫ ∫ ∫ϕ φ π∇= ∣ ∣ = =
π

E JS r JS r r
q
r

JS q
R
r

1
2

d
1
2

d d ln . (8.15)
R

r
ip

2 2 2 2

0

2 2

2
2 2

00

To make the result finite, a short-distance cutoff r0, of the order of a lattice spacing,
is applied. In addition, the large radius integration is cutoff at some upper limit R,
which is of the order of the system size. The individual, perfect vortex, therefore,
would have a weakly divergent energy in an infinite system. Estimates of the single
in-plane vortex energy on a square lattice ([7], figure 6) in circular systems of varying
radius R, give the same mathematical form as (8.15), but with π replaced by π̃ = 3.06
and the cutoff distance =r a0.24 ,0 where a is the lattice spacing. In practice, the
more important energetic result would be the total energy of a vortex–anti-vortex
(VA) pair. It is an interesting exercise to show that the energy of a VA pair,
separated by some distance R, takes a similar form2, see the derivation of (9.118).

8.2.2 Out-of-plane vortices

There is a second type of vortex solution, the out-of-plane vortex, with non-zero θ
that is maximum at the vortex core position, and decays away exponentially far
away. Consider (8.5a) at small radius, where by symmetry only one of the values
θ π≈ p /2 is assumed, with = ±p 1 being the core polarization. Expanding as
θ π ϵ≈ +p /2 , with ϵ ≪ 1, and keeping the leading terms in ϵ, one obtains

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟δ ϵ ϵ ϵ− − − + =q

r r r r
4

d
d

1 d
d

0. (8.16)
2

2

2

2

Terms that were cubic in ϵ have been dropped. This allows for a power law solution
of the form ϵ = r .n For small enough r, the term involving δ4 can be ignored relative

2Refer to a pair of long straight wires separated by distance R and carrying electric currents in opposite
directions. The energy stored in their magnetic field is also finite and depends on Rln .
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to the others, which leads to the power being = ∣ ∣n q . For large r, the asymptotics
requires θ → 0 and the solution needs to obey the leading terms,

⎛
⎝⎜

⎞
⎠⎟δ θ δ θ θ· − − + =

r r r
4 (1 )

d
d

1 d
d

0. (8.17)
2

2

This has an exponential behavior with the exponent determined by the ratio
δ δ−4 /(1 ). This gives the length scale of the far field, r ,v which is known as the
vortex core radius,

δ
δ

λ
λ

≡ − =
−

r
1
2

1 1
2 1

. (8.18)v

Then, Gouvêa et al [3] determined the asymptotic form for the out-of-plane structure
in an out-of-plane vortex, in which we include the core polarization = ±p 1 and the
possibility of ∣ ∣ ⩾q 1,

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥θ π≈ − →

∣ ∣

p A
r
r

r a
2

, 0 (8.19 )
q

oop 0
v

θ ≈ → ∞∞
−pA

r
r

r be , . (8.19 )r r
oop

v v

Parameters π=A 3 /100 and π=∞A e/5 are constants that are determined by
matching these two solutions at the radius =r r .v This is an approximate analysis,
as there is no analytic solution known for all r. For the compound K2CuF4 with
λ ≈ 0.99, the core radius is ≈r 5,v in lattice constants. That means the discreteness
effects of the underlying lattice may not be too strong, and the continuum
description should be acceptable. Note, however, there is not a corresponding
length scale for the in-plane vortex solution.

The energy of the out-of-plane vortex can be evaluated approximately from this
asymptotic solution. In [3] it is estimated that the out-of-plane vortex energy Eoop is
greater than Eip when λ ≪ 0.8; conversely, Eoop is lower than Eip for values of λ
closer to 1. This is an indication of their ranges of stability, which is discussed below
in section 8.3.

8.2.3 Discrete lattice vortex solutions

Static in-plane or out-of-plane vortex solutions on a lattice can be found numeri-
cally. They may be close to the approximate analytic solutions already described,
such as (8.7) for the in-plane angle, and (8.19) for the out-of-plane component if
λ λ> .c These become modified slightly on a grid. To obtain the correct solution on a
grid, start by setting the in-plane angles ϕn according to (8.7), for the vortex centered
in the system. For instance, if an in-plane vortex is assumed, one can show from the
equations of motion such as (2.103) that the static in-plane angles must satisfy

∑ ϕ ϕ− =( )sin 0. (8.20)
j( )

i j
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This must hold at all sites i, summing over the nearest neighbors j, indicated by j( ).
Most sites have z nearest neighbors, where z is the coordination number of the
lattice. The sites at the boundary of the system have a few fewer neighbors.
The equation is analogous to ϕ∇ = 02 for the continuum problem. In the core
region, the discrete and continuum problems give slight differences in the structure.

The discrete structure can be calculated numerically by the spin alignment
technique described earlier in section 3.5.1. To do so, one uses the effective field

i that acts on the spin at site i, as defined in (5.3). Referring also to (5.4), the static
vortex structure is obtained when each spin is parallel to its field ,i leading to

⎡
⎣⎢

⎤
⎦⎥

α˙ = × − × =( )
S

S S S 0. (8.21)i i i i i

The spin alignment algorithm iteratively sets each unit spin to be in the direction of
its current ,i starting from some initial state. To be completely general, it is best to
initiate the system also with some small out-of-plane spin components, breaking the
planar symmetry numerically. This allows for the generation of an organized out-of-
plane structure for the cases where that is the most stable vortex. Conversely, if the
in-plane vortex is the more stable one, any initial out-of-plane structure will decay
away under the iteration. The process is repeated until the structural changes are less
than some desired precision. The stopping criterion could be based on the overall
changes in spin components, or on the changes in the total energy, or both, see
section 3.5.1. Indeed, any method that relaxes into the locally lowest energy
configuration is acceptable.

Profiles of S r( )z as obtained by spin alignment relaxation are given in figure 8.1
for some different values of λ λ> ,c on a circular system of radius =R a15 using a
square lattice grid (lattice constant a). A strong demagnetization boundary con-
dition was used in the spin alignment relaxation, setting the spins on the circular
edge of the system to remain in the xy-plane and follow the circular boundary. The
approximate solution (8.19a) for <r rv is shown as solid curves; the corresponding
solution (8.19b) for >r rv is indicated with dotted curves. Note that the point =r rv
always gives the value θ π= /5 for the analytic solution, marked with an arrow on
the plot. The comparison to the approximate analytic solution (8.19) is reasonable
but not particularly good, probably because of the linearization used to arrive at that
solution. In addition, the asymptotic solutions do not take into account some
rearrangement of the in-plane angles in the core region on the discrete lattice.

8.3 Vortex instability
One can note that for λ = 0 (the XY limit), the vortex core radius for an out-of-plane
vortex becomes =r 0.v This would imply that there is no far field asymptotic region.
The validity of the continuum limit to obtain that solution also might be question-
able. One can note that λ = 0.80 gives =r 1,v and λ = 2/3 gives =r 1/ 2 .v One
might expect that a vortex core radius near these values would be the limit where the
continuum description must be strongly corrected by lattice discreteness effects. In
fact, these effects cause an instability of both vortex types.
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8.3.1 Numerical simulations for stability

The vortex stability can be tested by numerical simulations for the vortices on a
lattice. The approach was carried out by Wysin et al [3, 4], integrating the discrete
equations of motion (5.4) written in terms of Cartesian coordinates, including
Landau–Lifshitz–Gilbert damping and using unit length spins s ,i

α˙ = × − × × as s s s( ) (8.22 )i i i i i i

∑ λ= −∂
∂

= ˆ + ˆ + ˆ( )H
JS s s s b

S
x y z . (8.22 )

i j( , )

i
i

j
x

j
y

j
z

The sum for i contains only the nearest neighbor sites j. A damping parameter
α = 0.1 can be used to allow the system to seek energetically stable configurations.
The equations can be integrated forward in time by any good method, such as
fourth-order Runge–Kutta (RK4), provided one checks energy conservation for
α = 0. RK4 with a time step of Δ =t 0.04 in units of −JS( ) 1 works fairly well. A
system on a square lattice as small as 40 × 40, with open boundaries, is sufficient to
test vortex stability.

Figure 8.1. Out-of-plane vortex structure as seen in the out-of-plane spin component Sz as a function of radius
from the vortex center, for indicated anisotropy constants λ λ> .c Symbols were obtained by the spin
alignment numerical relaxation calculations for a circular system of radius =R a15 , discretized on a square
lattice. The solid curves are asymptotic expression (8.19a) for <r r ;v dotted curves are asymptotic expression
(8.19b) for >r r .v The curves connect at =r r ,v indicated with the arrow. Note how the results for λ = 0.99
have been limited by the Dirichlet ( =S R( ) 0z ) strong demagnetization boundary condition that was applied.
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For these simulations, the initial condition for the in-plane angle is the planar
vortex structure, equation (8.7). For the initial out-of-plane component s ,i

z one can
check whether the system prefers the in-plane of out-of-plane structure by starting
from some non-zero values. The obvious choices are 1) set all si

z to the same initial
small constant ≪z 10 and 2) set the initial si

z to a narrow distribution of random
values with zero mean, which adds some small non-zero fluctuations, breaking the
symmetry. In the first choice, if the out-of-plane vortex is more stable, the system
will grow the sz profile until it becomes an out-of-plane vortex profile with core
polarization p the same sign as z0. In the second choice, if the out-of-plane vortex is
more stable, it could emerge with either sign of polarization. For both methods, if
the planar vortex is more stable, it will emerge. The process can be carried out for a
sequence of values of λ, thus mapping out the stability region of both vortex types.
One can also make simulations with an approximate out-of-plane vortex initial
condition, based on the asymptotic solution (8.19). Usually the vortex stability can
be decided already by observing the simulation out to an integration time of

= −t JS100( ) .1

The results of this type of study are simple, although they can depend on the final
time of the integration. For λ < ±0.72 0.01, the vortex structure evolves towards
the planar configuration, with ≈s 0i

z for all sites, and especially for those at the
vortex core. On the other hand, for λ > ±0.72 0.01, a non-zero si

z profile emerges,
with its maximum at the vortex core, and decaying away as a function of the radius,
similar to the asymptotic form found above. This is the stable out-of-plane vortex.
This shows that there is a critical anisotropy constant λ ≈ ±0.72 0.01c at which the
stability of each vortex type is destroyed, and the other type becomes the stable
structure. There is an uncertainty of the order of ±0.01 for a fairly simple reason:
when λ λ≈ ,c the time scales of the evolution become longer. Only with fairly
extended integrations in this region is it possible to accurately decide which type is
more stable.

These vortex stability simulations can also be done on triangular (z = 6 nearest
neighbors) and hexagonal (z = 3 nearest neighbors). One finds λ ≈ 0.62c for the
triangular lattice and λ ≈ 0.86c for the hexagonal lattice. This suggests that a greater
coordination number (more interactions) leads to greater stability of the planar
vortex. This can be tested by some analysis of the spin energetics in the vortex core,
described next.

8.3.2 Discrete energetics of vortex core stability

An analytic stability analysis of the vortex solutions is difficult to do in the
continuum limit, because of the singularity at the vortex core. The continuum
evaluation of vortex energy is not well defined and requires a cutoff. However, the
energy should have a very specific value on the original lattice being considered. This
leads one to consider an analysis of the vortex structure and energy in the core
region, on the lattice as carried out in [8].

The approach is the following. Consider a vortex centered in one cell on a square
lattice, see 8.2 for the notation. The in-plane spin structure is taken to follow (8.7),
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with the vortex at the origin, and with q = 1 and ϕ = 0.0 The out-of-plane spin
components si

z are set to discrete values m m m, , ,1 2 3 etc, symmetrically around the
vortex center, according to increasing radius of the sites from the vortex center. All
sites at the same radius are assigned the same value of m. Assuming this circularly
symmetric arrangement, one can evaluate the Hamiltonian and write out the vortex
energy-dependence on =m j, 1, 2, 3 ...,j where j labels the radii rj. A minimization
of the total energy so obtained on the original lattice can reveal the energetic
stability limits.

This procedure can be carried out first letting only the sites nearest to the core
have non-zero out-of-plane component m1, and all others mj = 0. The four spins
nearest the central core occupy at radius =r 1/21 and have in-plane angles

° ° ° °45 , 135 , 225 , 315 , and their in-plane components are reduced by the factor
θ = − mcos (1 )1

2 1/2 due to their out-of-plane tilting. The differences of their in-plane
angles are ± °90 , so those four exchange bonds contribute an amount λ−JS m4 (1 )2

1
2

to the energy (above the ground state). There are also eight bonds connecting
outward to the next eight sites at radius = + =r (3/2) (1/2) 5/2 ,2

2 2 and their
in-plane spin angles are − −tan (1/3), tan (3),1 1 etc. Then the interactions of the four
central sites with the next eight always involve the same absolute difference in
in-plane angle, whose cosine is

Figure 8.2. Notation for the spins sites with different out-of-plane spin components sz around a q = 1 vortex
centered at point v. There are four sites (blue squares) at radius =r 1/21 with =s m ,z

1 eight sites (green
triangles) at radius =r 5/22 with =s mz

2 and four sites (black dots) at radius =r 9/23 with =s m .z
3 In the

outer surroundings sz = 0 is assumed (gray dots). The in-plane spin directions follow (8.7) with ϕ = 0.0
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ϕ ϕ− = · =
· + ·

·
=( )

rr
r r

cos

1
2

3
2

1
2

1
2

1

2

5

2

2

5
. (8.23)1 2

1 2

1 2

There are a total of eight bonds connecting r1-sites to r2-sites, with their exchange
energy being − −JS m8 (1 1 ).2

5
2

1
2 The total energy in the first 12 bonds in the

core region is then

⎛
⎝⎜

⎞
⎠⎟λ= − + − −E JS m m4

4

5
1 3 . (8.24)core

2
1
2

1
2

The energies in bonds farther out from the core are ignored. One can see that
for small m1, there are two competing terms, and an expansion to quadratic order
gives

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥λ≈ − + − −E JS m4

4

5

2

5
3 . (8.25)core

2
1
2

An in-plane vortex has all mj = 0. This shows that the energy of an in-plane vortex
will be reduced with non-zero m1, provided that λ > .2

5
Therefore, the in-plane

vortex will become unstable towards formation of an out-of-plane vortex at a critical
anisotropy parameter λ = ≈ 0.894,2

5c in this initial approximation.

The energy Ecore in (8.24) can be analyzed more generally for arbitrary <m 11 by
finding the extrema, according to

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥λ∂

∂
= − −

−
=E

m
JS m

m
8

2

5

1

1
0. (8.26)core

1

2
1

1
2

This has two solutions. The in-plane solution with =m 01 exists for any λ, and has
energy in these 12 bonds,

λ λ= − =( )E JS4 3 2 ,
2

5
. (8.27)ip

2
c c

The out-of-plane solution exists only for λ λ> ,c with the out-of-plane component
given by

λ λ= −m 1 ( ) . (8.28)1 c
2

This is zero at λ λ= c and then grows for λ λ> .c The out-of-plane vortex energy in
this approximation is

λ λ λ λ λ= − − >( )E JS4 3 , only for . (8.29)oop
2

c
2

c
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When the out-of-plane vortex is possible, Eoop is less than E .ip Although both vortex
types are possible for λ λ> ,c this explains why any small fluctuation will cause the
in-plane structure to deform into an out-of-plane structure when λ λ> .c This simple
analysis shows that the energetics of the core region on a discrete lattice is
responsible for the crossover from in-plane vortices for λ λ< c to out-of-plane
vortices for λ λ> .c

The calculation can be made more precise by considering sets of spins with non-
zerom at larger radii. In addition to including four sites at radius r1/ 21 with ≠m 0,1

the additional eight sites at radius =r 5/22 with ≠m 02 are included. These latter
sites interact with another four sites (with =m 03 ) at a third radius =r 9/2 .3

Including the total of 32 bonds among these 16 sites, the next approximation for the
core exchange energy is

⎡
⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

λ= − + + − −

+ + − + − −

( )

( )

E JS m m m m

m m

4
4

5
1 1

4

5
1

4

13
1

4
5

1 8 . (8.30)

core
2

1
2

2
2

1
2

2
2

2
2

2
2

The first term is the coupling of sz-components; the remaining terms are the in-plane
components. The variations with respect to m1 or m2 both are zero for an allowed
solution:

λ∂
∂

= − + +
−

− =E
m

m m
m

m
m a8 ( )

16

5 1
1 0 (8.31 )core

1
1 2

1

1
2 2

2

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥λ∂

∂
= − + +

−
− + +

+ =

E
m

m m
m

m
m

m b

8 ( )
16

5 1
1 1

4

13

32
5

0. (8.31 )

core

2
1 2

2

2
2 1

2

2

It may not be easy to solve this nonlinear equation for m m, ,1 2 but that is not necessary
for determining the critical anisotropy. One only needs to assume that = =m m 01 2 for
the in-plane vortex, and the value of λ at which they begin to take non-zero values is λ .c

This means an expansion of these equations for small values ≪ ≪m m1, 1,1 2 is all
that is needed. That gives a pair of homogeneous linearized equations,

λ λ+ − − =A m m a( ) 0 (8.32 )1 2

λ λ− + − =m B m b( ) 0 (8.32 )1 2

⎛
⎝⎜

⎞
⎠⎟= = + +A B c

2

5
,

4

5
1

1

5

2

13
. (8.32 )
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A non-trivial solution (the out-of-plane vortex) begins to appear only if the
determinant D of the coefficients is zero:

λ λ λ= − − − =D A B( )( ) 0. (8.33)c c c
2

This gives the critical anisotropy parameter,

λ =
+

≈AB
A B

0.716. (8.34)c

This is a considerable improvement over the initial approximation, and much closer
to the value λ ≈ 0.72c found in numerical simulations. Note that the strength of the
easy-plane critical anisotropy is

δ λ= − ≈1 0.284. (8.35)c c

This procedure of discrete core analysis can be taken successively to larger core
regions. By using three sets of sites with non-zero mj, the critical parameter moves
down to λ ≈ 0.7044,c somewhat smaller than the initial simulations on small
systems. When simulations are performed for 50 × 50 or larger, one finds that
indeed λc is actually slightly less than this value. Zaspel and Godinez [19] found a
procedure to calculate the discrete vortex energy, successively summing over larger
and larger core regions. A similar procedure can be applied to the calculation of the
critical anisotropy, allowing for an extrapolation to the infinite sized limit [10],
where δ → 0.29659051c (λ = 0.70340949c ). This result means than in any square-
lattice materials where λ λ< ,c the static vortex structure is essentially planar, with
no large out-of-plane component. This discrete analysis also is able to give the
relative sizes of the mj; it produces the profile of the out-of-plane vortex, at its
stability limit. That is actually a dynamic mode of oscillation associated with the
crossover between the two vortex types.

This same discrete core analysis can be extended to other lattices. For the triangular
lattice (six nearest neighbors) one obtains δ → 0.38714359c (λ = 0.61285641c ), and
for the hexagonal lattice (three nearest neighbors) one has δ → 0.16704412c
(λ = 0.83295588c ). The greater concentration of sites in the triangular lattice makes
the system more continuous, leading to a wider range of stability for the out-of-plane
vortices. The opposite is true for the hexagonal lattice, which more greatly favors the
in-plane vortices.

Overall, the results show that the vortex instability is a discrete lattice effect,
something that cannot be described in the continuum limit. This is quite different
from the instability found for kinks in a 1D easy-plane ferromagnet, using the
continuum limit.
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Exercise 8.3. Consider a vortex centered in a cell of a hexagonal lattice,
surrounded by six nearest sites at distance =r 11 with =s m ,z

1 and another six
second nearest sites at distance =r 22 with =s m .z

2 Assume the in-plane
structure given in (8.7), with a q = 1 vortex at the origin and ϕ = 0.0 (a) Show
that the core energy in the 24 bonds among these sites is

⎡
⎣⎢

⎤
⎦⎥

λ= − + + −

+ − − + − −

( ) ( )

( )

E JS m m m m

m m m

6
1
2

1

1 1
5

7
1 4 (8.36)

core
2

1
2

1 2 1
2

1
2

2
2

2
2

(b) Defining a constant ≡ +A 1 5/ 7 ,h show that the determinant of the
resulting linearized stability system goes to zero at a critical anisotropy
parameter given by

λ = − + + ≈A A A( 2) 0.869. (8.37)c h h h

Simulations find a vortex instability near λ ≈ 0.86, see further discussion of
vortex stability issues in [8–10].

8.4 Moving in-plane and out-of-plane vortices
Vortex motion couples the in-plane angle with the out-of-plane spin components,
because ϕi and Si

z are canonically conjugate coordinates. This means that even an
in-plane vortex will develop non-zero out-of-plane spin components if it is moving at
some velocity. Here we take a brief look at how vortex motion modifies the
structures, and allows one to define vortex momentum and an effective mass. Taken
together, these properties describe a magnetic vortex as a particle-like object, with an
interesting dynamical equation of motion for its center.

The leading correction to vortex structure, due to motion at velocity v, can be
obtained from the dynamics equations (8.5) by assuming a traveling solution of the
form − tS r v( ), implying that the time derivative is replaced by ∇− ·v . At the same
time, one can assume small perturbations ϕ1 and m1 on top of the static vortex
solutions ϕ0 and θ=m sin0 0 corresponding to the unperturbed vortex. The velocity v
is also considered a small parameter of the same order as ϕ1 and m1. This is simple
for the case of in-plane vortices, where initially θ= =m 0.0 0 The dynamic equations
linearized in the perturbations are now

⎡⎣ ⎤⎦ϕ δ ϕ θ δ θ∇ ∇− · ≈ − − − ∇( )JS av 4 sin (1 ) (8.38 )0 0
2

1
2

1

θ ϕ∇− · ≈ ∇JS bv . (8.38 )1
2

1

Away from the vortex center, we used ϕ∇ = 02
0 from (8.11). It is difficult to obtain

an exact solution even for this linearized system. That may not be too surprising,
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considering that we know the continuum limit does not describe the vortex core
correctly, which is exactly the region where all the interesting action is. Assuming δ
might be close to unity, the first equation gives a result that has a singular point at

δ= ∣ ∣r q /2 ,

θ
ϕ

δ ϕ

∇
∇

≈
− ·

− ∣ ∣( )JS

v
sin

4
. (8.39)1

0

0
2

Using (8.8), and φ̂ = ˆ × ˆz r, this can be expressed as

θ
δ

≈ × · ˆ
−( )

q

JS r q

v r z
sin

( )

4
. (8.40)1

2 2

This has been mostly applied to the simplest cases, = ±q 1. Note that coordinate r is
measured from the instantaneous location of the vortex core. Along a line through
the vortex core and parallel to v, one has θ = 0.1 Crossing this line, the sign of θ1

reverses. This field then depends on the sine of the angle between v and r. As a vortex
moves through a square lattice, however, one can expect that the precise description
of the vortex core is not contained in this solution. There will be strong discreteness
effects if the core moves too close to a lattice site, violating the assumptions made to
obtain the continuum limit.

By (8.38b), the perturbation ϕ1 in the in-plane field is determined by θ ,1 but one
can see that the particular solution for ϕ1 will be of the order of v ,2 hence, it is
considered negligible to leading order.

For out-of-plane vortices, a similar perturbation analysis for a moving vortex can
be performed [3]. However, the corrections θ1 and ϕ1 due to motion are both small
compared to the original unperturbed angles. A very slight deviation in the out-
of-plane structure similar to that for in-plane vortices appears, and in addition, the
in-plane structure obtains a slight asymmetry on the line parallel to the velocity. The
asymmetry that appears due to motion can be readily demonstrated by performing
numerical simulations of a pair of vortices, for both in-plane and out-of-plane vortex
types [4]. The radial dependence, however, may not follow expression (8.40) very
closely in the core region: there is no sign change of θ1 near δ= ∣ ∣r q /2 .

8.5 The vortex unbinding transition
Models with XY or easy-plane symmetry have always attracted much attention
because of the presence of vortices and the existence of a special kind of phase
transition, known as the BKT topological phase transition [11–13], associated with
the thermal generation of vortices in VA pairs. Pair creation is also called vortex
unbinding, imagining that before a pair is created, the vortex and anti-vortex are
somehow coupled tightly together (this should not be taken literally, because they do
not exist until they are created). Here we take a short look at some aspects of this
transition, as obtained from combinations of MC and SD simulations.

According to the Ampere’s law (8.10) for the gradient of the in-plane spin angle,
the total vorticity within a boundary is quantized. If no vortices cross the boundary,
the total vorticity is conserved, which implies that vortex charges can be created only
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in VA pairs ( = +q 1 created along with = −q 1). The pair interaction energy is
shown later in (9.118) to depend on the separation of the vortex from the anti-vortex.
This energy is in addition to self-energies for both the vortex and the anti-vortex, as
given in (8.15). Although there is an energy cost for creation of a pair, it also
increases the entropy of the system, which increases the likelihood of pair formation
as the temperature is raised. We can obtain a very approximate estimate of the
temperature at which VA pair formation becomes favorable, by asking what
temperature is needed to make the change in free energy become negative.

A vortex could be created somewhere in a circular system of radius R, and its
corresponding anti-vortex at another arbitrary location, separated by distance X12.
The two self-energies combined are approximately (at λ = 0, for in-plane vortices)

π+ = ×E E JS
R
r

2 ln , (8.41)1 2
2

0

where the short cutoff is on the order of a/4 in terms of the lattice spacing a (derived
for square lattice). The pair interaction energy is

π π= = −U JS q q
R

X
JS

R
X

2 ln 2 ln , (8.42)pair
2

1 2
12

2

12

where the two vortices are of opposite sign. This is an attractive interaction that
competes with the self-energies. The total energy change for creation of a pair is
estimated as the sum,

πΔ = + + =E E E U JS
X
r

2 ln . (8.43)1 2 pair
2 12

0

If the vortex and anti-vortex become free from each other, one can let →X R,12 as
the typical maximum separation. On the other side is the question of the entropy
available for the pair creation, which is estimated very roughly by supposing that
both the vortex and anti-vortex can be created almost anywhere in the system.
Allowing the precision of a location to be on the order of r ,0

2 the entropy change in
the creation process is about

⎛
⎝⎜

⎞
⎠⎟Δ ≈ × =S k

R
r

R
r

k
R
r

ln 4 ln . (8.44)B

2

0
2

2

0
2 B

0

Both the vortex and the anti-vortex contribute a factor within the logarithm. Then
the change in Helmholtz free energy for a fixed temperature is estimated as

πΔ = Δ − Δ ≈ −F E T S JS
R
r

k T
R
r

2 ln 4 ln . (8.45)2

0
B

0

The typical pair separation has been set to ΔR F. becomes negative at an estimate of
the BKT unbinding temperature,

π≈k T JS
2

. (8.46)B c
2

The particular number obtained here is not very precise, in fact, the number 0.699
replaces π /2 for the XY model (λ = 0). But the analysis shows that the entropy

Magnetic Excitations and Geometric Confinement

8-16



available to vortex pairs is sufficient to overcome their energy cost, and once the
temperature is high enough, thermally generated vortices and anti-vortices are a
certainty. To obtain better estimates of Tc requires other theory or we can defer
to MC simulations, which have the ability to find Tc as a function of anisotropy
parameter λ and other factors.

8.6 Monte Carlo simulations of the Berezinskii–Kosterlitz–Thouless
transition

A hybrid cluster MC method described in section 4.5.4 can be used to produce
some thermal averages for the 2D XY model. Here we show some typical results
that exhibit the main features of the BKT transition; this is a wide field of study
and many other results can be found in the literature. Recall that the hybrid
scheme described earlier involves a combination of single-spin Metropolis steps
and over-relaxation steps that modify all spin components, and Wolff cluster steps
acting only on the in-plane spin components. One MC step is the combination of
an effective pass through the lattice by each of these methods. We show data using
four to ten bins of 30 000 to 50 000 MCS for a total of 200 000 to 300 000 MCS.
One can take averages over more bins and more MCS but for many quantities this
is already sufficient to see the major trends. In addition, it is important to use a
range of temperatures and system sizes; the variation with system size helps to
determine Tc precisely according to finite size scaling methods. The calculations
have been performed on L × L square lattice systems with periodic boundary
conditions.

First consider the XY model (λ = 0). The internal energy per spin
( = = 〈 〉e E N H N/ / ) in figure 8.3 starts near zero at low temperature and has a
slow rise with increasing T, but exhibits nothing dramatic. The specific heat per spin
(c = C/N) also shown in figure 8.3 does show a strong peak whose position moves to
lower temperature with increasing system size. However, c must tend to →c 1 at

→T 0 (classical low-T limit for two degrees of freedom) and it also necessarily must
tend to zero at very high T, because a spin system has a maximum energy state,
unlike a usual mechanical system with a quadratic kinetic energy. For the largest
systems the peak is near ≈k T JS/ 0.73.B

2

The in-plane magnetic moment (mxy, see figure 4.15) does make a dramatic drop to
values close to zero, around the same region as the peak in specific heat. This quantity
acts as an order parameter because it better indicates the geometrical structure in the
average spin configuration. At low temperatures, neighboring spins are strongly
correlated over a larger length scale known as the correlation length; the whole set
of spins tend to move around together if the correlation length is of the order of the
system size. Because we can only simulate a finite size, that limits the maximum
correlation length and the drop of mxy towards zero atTc is rounded. In principle, mxy

would be zero for >T Tc in an infinite sized system, but finite size effects prevent that.
The vortex unbinding can be seen by measuring the number density of vortices

plus anti-vortices as a function of temperature. Vorticity can be found using a
discrete version of Ampere’s law (8.10) around each square cell or plaquette of the
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lattice. Each plaquette contains four spins and four bonds between neighboring spin
pairs. Going in the counterclockwise sequence around a plaquette, one needs to form
the sum of changes in in-plane spin angles, from which the vorticity within that path
is found by

∑
π

ϕ= Δq
1

2
. (8.47)

edge bonds
bond

The symbol ϕΔ bond indicates the difference of two spin angles in a bond. ϕ ϕ−+ ,i i1
taken in the counterclockwise sense and shifted into the branch π ϕ− ⩽ Δ/2 bond

π⩽ + /2. This way, each plaquette has only the possible values = ±q 0, 1. We should
also like to mention that theoretically there is also the possibility of vortices with
larger integral values, such as = ±q 2. They can appear especially if there are
vacancies or non-magnetic impurities in the lattice. A sum around the outside of a
block of four neighboring plaquettes can be used to locate these higher vorticity
charges. Then once all vortices of different charges are located, an averaged vortex
number density ρ can be defined by dividing the total absolute charges by the
number of sites,

∑ρ = ∣ ∣
N

q
1

, (8.48)
k

k

where k here labels the charges found. Note that if there are charges larger then ±1
present they contribute with a weight proportional to the size of the charges. It is

Figure 8.3. Energy and heat capacity per spin versus temperature in L × L XY models from the hybrid cluster
MC simulations.
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possible to sketch a state where every plaquette has a unit charge, but alternating in
signs. Then the maximum possible value is ρ = 1, however, that is an improbable
higher energy state that will contribute little in thermal averages.

The resulting vortex number density ρ T( ) are shown in figure 8.4. The density is
nearly zero for temperatures <k T JS/ 0.5,B

2 and starts to make a stronger rise
around < <k T JS0.6 / 0.8.B

2 There is very weak dependence on system size, with
the initial rise in ρ occurring at slightly lower T for larger L. Ironically, the vortex
density does not give a precise way to determine the critical temperature.

8.6.1 Estimations of the critical temperature—Binder’s cumulant

A quantity that can sometimes indicate the precise location ofTc is Binder’s fourth-
order cumulant, denoted UL. It is a quantity that indicates the shape of the
probability distribution of the system magnetic moment, = ∑M S .n n Suppose a
component Mx is being measured at high temperature. Because M is very random
and typically of a small value, due to cancellations among the spins, one component
Mx will tend to have a Gaussian distribution around a zero mean. On the other
hand, at very low temperature, the whole system is in a highly correlated state, with
all spins nearly parallel in the xy-plane (for models of easy-plane symmetry). The
vector M will tend to be distributed mostly near a circle in the xy-plane of radius
near NS. The corresponding distribution of a component Mx will not be Gaussian,
but instead, have a minimum at Mx = 0 between two peaks at positive and negative
values.

Figure 8.4. Number density of vortices (both charge signs) per unit cell versus temperature in L × L XY
models from the hybrid cluster MC simulations.
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The moments of the spin distribution indicate its shape. Suppose one component
Mx has a normalized Gaussian probability distribution for high temperature,

⎧⎨⎩
⎫⎬⎭πσ σ

= −p M
M

( )
1

2
exp

2
. (8.49)x

x

x

x
2

2

2

The second- and fourth-order moments of this distribution are found by

∫ σ= =
−∞

+∞
M x p M M ad ( ) (8.50 )x x x x

2 2 2

∫ σ= =
−∞

+∞
M x p M M bd ( ) 3 . (8.50 )x x x x

4 4 4

Then for high temperature one has 〈 〉 = 〈 〉M M3 .x x
4 2 2 On the other hand, at very low

temperature, with all spins nearly aligned, one expects 〈 〉 = 〈 〉M M .x x
4 2 2 For a single

variable such as this, Binder’s fourth-order cumulant is then defined by

= −U
M

M
1

3
(8.51)L

x

x

4

2 2

which takes the limiting values ≈U 2/3L at low temperature and ≈U 0L at high
temperature, regardless of system size. Also at =T Tc the spin distribution becomes
independent of L and UL is expected to have a universal value independent of L.
Usually UL is measured in a set of MC simulations with the curves for UL(T)
at different L plotted together, and their common crossing point gives an estimate
of T .c

For the 2D XYmodel, the definition needs to be generalized to use both the x and
y in-plane spin components. Each one will be Gaussian distributed with the same
variance σ σ=x y for high temperature. Then a sum +M Mx y

2 2 has the following
leading order moments,

σ σ σ+ = + = + =M M M M a2 (8.52 )x y x y x y x
2 2 2 2 2 2 2

σ σ σ σ σ+ = + + = + + =( )M M M M M M b2 3 2 3 8 . (8.52 )x y x x y y x x y y x
2 2 2 4 2 2 4 4 2 2 4 4

This shows that 〈 + 〉 = 〈 + 〉M M M M( ) 2x y x y
2 2 2 2 2 2 at high temperature, so it inspires

the definition of the appropriate function for planar symmetry,

= −
+

+

( )
U

M M

M M
1

2
. (8.53)L

x y

x y

2 2 2

2 2 2

One sees that ≈U 1/2L at low temperature and ≈U 0L at high temperature, for any L.
It is expected to have a universal value at Tc independent of L, as mentioned for the
single component UL, which is used to estimate T .c
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A typical plot ofUL using definition (8.53) for different sizes is shown in figure 8.5.
Although there is a crossing point, it is hard to locate unless the statistical noise in the
data is very well under control. It does give an estimate of Tc for λ = 0 in the range

< <k T JS0.70 / 0.71.B c
2 For the XY model the crossing appears too close to where

≈U 1/2,L however, which means it is not the best way to find T .c

Exercise 8.4. Check that the distribution p M( )x in (8.49) is correctly normal-
ized, so that ∫ =

−∞

+∞
x p Md ( ) 1.x Then verify the second- and fourth-order

moments of the distribution in (8.50).

Exercise 8.5. Consider an isotropic Heisenberg model, with total magnetic
moment = M M MM ( , , ).x y z Show that an appropriate definition of the fourth-
order cumulant that will distinguish the shape of the low and high temperature
distributions of M is

= − 〈 〉
〈 〉

U
M
M

1
3
5

. (8.54)L

4

2 2

What are the limiting values at low and high temperatures?

Figure 8.5. Binder’s fourth-order cumulant as defined in (8.53) versus temperature in L × L XY models from
the hybrid cluster MC simulations. The inset shows where the curves cross, which gives an estimate of the BKT
transition temperature ≈ −k T JS/ 0.70 0.71.B c

2
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8.6.2 Estimations of the critical temperature—scaling of susceptibility

Binder’s fourth-order cumulant can give an estimate ofTc for some models but it can
require extensive calculations to obtain even two digit accuracy. A better approach
has been to use the finite size scaling (FSS) of in-plane magnetic susceptibility χ ,xx
such as that applied by Cuccoli et al [14] for λ = 0. In this theory, the in-plane
susceptibility for temperatures near and below Tc is expected to follow a power law
scaling with system size, according to the form

χ ∝ η−L , (8.55)xx
2

where η T( ) is the exponent for the in-plane spin–spin correlations below T .c The
exponent determines the large-distance form of decay of static spin–spin correla-
tions. The static correlation function isC r( ),xx as defined in (4.118). According to the
BKT theory the spin–spin correlations are expected to be of power law form below
Tc but change to a faster exponential form aboveT .c To see this change in behavior,
the correlation function has been plotted on a log-log scale in figure 8.6 for equally
spaced temperatures from =k T JS/ 0.1B

2 to =k T JS/ 1.5,B
2 for a 128 × 128 system.

The expected behavior of the correlations is

Figure 8.6. From hybrid cluster MC for 128 × 128 (data points), the static in-plane spin correlation function
versus radius, for a sequence of evenly spaced temperatures =k T JS/ 0.1, 0.2 ,... 1.5B

2 (lowest T at top). Black
lines are fits to power law decays ∝ η−C rxx using the data at ⩽r 32, which works well only for <T Tc where

≈k T JS/ 0.70.B c
2 A fit is also shown for the data at =k T JS/ 0.80,B

2 which is poor because above Tc the
correlations decay with an exponential form, see (8.56). Dotted lines on the higher temperature curves are
guides for the eye, not fits.
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⎧⎨⎩ ξ
=

<
− >

η−

−C r
C r T T

C r r T T
( )

exp( ) .
(8.56)xx 0 c

1
1 2

c

whereC C,0 1 are fitting constants and ξ is a correlation length in the state with unbound
vortices, that also may depend on temperature. In figure 8.6 only fits to the power law
form have been made, mostly for ⩽T T ,c but also for one temperature aboveT .c Only
the data for ⩽r 32 were used in the fits, because on a finite system, the correlation
function is defined only to a maximum radius L/2, and we want to avoid the end
region where finite size effects change the power law decay (C r( )xx must be
symmetrical around =r L/2 in a finite system). The power law fits are very good
for <T T .c For <T Tc the fits can be used to estimate η T( ), if desired, but a form that
takes into account the limited system size is better. However, it is seen strikingly that
the power law form does not work at all above the critical temperature.

Recalling the relation (4.120), it is then feasible that the exponent η appearing in
the low temperature decay of C r( )xx should affect the scaling properties of χxx with
system size. It is possible to take our MC results and fit χxx to the form (8.55) and
extract η T( ) from the slope of χln( )xx versus L, for each temperature simulated.
However, the BKT theory determines that η = 1/4 at the critical point, regardless of
the system size. Then, the FSS method to find Tc is to plot χ η−L/xx

2 versus
temperature, for different system sizes. The resulting curves tend to cross at the
universal point η =T( ) 1/4,c and even in XY systems with vacancies this crossing is a
very sharp point. This type of plot is shown in figure 8.7. In order to display the
details better, the error bars are not shown; the crossing is close to the point

≈k T JS/ 0.700,B c
2 which is very good precision considering that the temperature

increments of the MC simulation here were Δ =k T JS/ 0.01B
2 in these units. Then,

for temperatures belowT ,c the power law correlations of spin components, which are
limited by the system size L, give one of the best ways to determine the transition
temperature of the infinite sized system, T .c

8.6.3 A measure of spin twist resistance—the helicity modulus

An easy-plane system also has another type of susceptibility, known as the helicity
modulus per spin, ϒ T( ), that measures how the system reacts to imposing a slight
spin twist Δ across the system along one coordinate. The helicity modulus maps over
into superfluid density ρs according to ρϒ = ℏ m( / ) ,2

s when the XY model is used to
describe such a system with macroscopic quantum phase effects.

The spin twist would be an imposed angular displacement of the in-plane angle
from one side of the system to the opposite side. It can be thought of as a generalized
applied field, similar to a magnetic field. If the spins in the system are strongly
correlated, as at low temperature, there will a strong resistance to a twist, and ϒ is
large. If the spins are more disordered and moving mostly independently, as at high
temperature, there will be little resistance and ϒ will be small. It can be expected that
ϒ T( ) will diminish with temperature mostly in the region where vortices are being
thermally produced, because the creation of VA pairs leads to weaker correlations
for spins on opposite sides of the pairs.
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The definition of helicity modulus can be based on the free energy F, and finding
the system’s susceptibility to spin twists,

ϒ ≡ ∂
∂ΔN

F1
. (8.57)

2

2

Compare the definition of magnetic susceptibility, equation (4.59). This definition is
used in the limit of infinitesimal twist Δ. From the definition of free energy (4.34), the
required derivative gives for any spin Hamiltonian,

⎜ ⎟
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⎛
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⎤
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⎬
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βϒ = ∂
∂Δ

− ∂
∂Δ

− ∂
∂ΔN

H H H1
, (8.58)

2

2

2 2

where β = −k T( ) .B
1 A simple model that imposes a twist on bonds in the x̂-direction

is to modify the in-plane interactions in the spin Hamiltonian (8.2) into a form such
as

θ θ ϕ ϕ

θ θ ϕ ϕ

+ = −

⟶ − − Δ

( )
( )

( )J S S S S JS

JS

sin sin cos

sin sin cos . (8.59)
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2

Figure 8.7. From hybrid cluster MC for the 2D XY model at different sizes L × L, an in-plane susceptibility
component (see the definition in (4.110)) scaled by η−L ,2 under the assumption that η =T( ) 1/4.c The inset
shows where the curves cross, which gives an estimate of the BKT transition temperature ≈k T JS/ 0.70.B c

2

The error bars are suppressed to bring out the crossing point.
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The extra Δ inside the cosine then shifts the minimum angular displacement in the
bond to Δ. In theory, it should only be included for bonds in one space direction.
One then finds the following derivatives,

∑∂
∂Δ

= ˆ · ˆ −( )( )H
J S S S S ae x (8.60 )

i j( , )

ij i
x

j
y

i
y

j
x

∑∂
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= +( )H
J S S S S b

1
2

, (8.60 )
i j( , )
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x

j
x

i
y

j
y

2

2

where êij is a unit vector in the direction from i to j, that selects only the bonds along

one direction. Although ∂
∂Δ
H may have a small average value, its fluctuations

contribute to ϒ. The second partial derivative of H is seen to be half of the in-plane
exchange energy. Once Δ → 0 is assumed, the direction of the bonds does not
matter. Then these expressions can be implemented for MC calculations with
symmetrization:

∑∂
∂Δ

= −( )H
J S S S S

1
2

. (8.61)
i j( , )

i
x

j
y

i
y

j
x

This averages over all nearest neighbor bonds. Note that each term is proportional
to a triple cross product, ˆ · ×z S S( ).i j

Exercise 8.6. Suppose a system has a spin twist field Δ that shifts the in-plane
angles between neighboring spins along one direction, in a form such as that in
(8.59), i.e. ϕ ϕ ϕ ϕ− → − − Δ.i j i j From the definition (4.34) of free energy F,
verify that (8.58) for ϒ results.

According to the renormalization group theory of Kosterlitz and Thouless [13], in
an infinite system the helicity modulus jumps downward from a finite value π k T(2/ ) B c

at the critical temperature to zero for higher temperatures. This is similar in behavior
to the average magnetic moment. Because the value at Tc is then known (but only
for → ∞L ), this gives a way to estimate T ,c by plotting ϒ T( ) and marking its
intersection with the straight line,

π
ϒ = k T

2
. (8.62)B

Examples of the application of this approach are given in figure 8.8(a) for the XY
model and in figure 8.9(a) for the PR model. For the initial calculations of ϒ T( ),
averages are from ×3.2 105 to ×1.28 106 MCS, with shorter runs on the larger
systems for practical reasons. The curves of ϒ T( ) become steeper in the critical
region as L increases. The intersection of the data with the straight line of (8.62)
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Figure 8.8. XY model (λ = 0) hybrid cluster MC results. (a) Helicity modulus ϒ T( ) as calculated using (8.58)
on indicated L × L systems. The intersection of the dashed line (8.62) with the data gives an overestimate of the
critical temperature, ≈k T JS/ 0.705.B c

2 (b) FSS analysis of the same data by fitting to expression (8.63) for
<T Tc to obtain c T( )0 and to expression (8.65) to obtain A T( ), leading to ≈k T JS/ 0.692B c

2 for the infinite
system.
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moves towards lower estimates of Tc for larger L. This method then always
overestimates T ,c even at the largest possible L that can be simulated. At L = 96,
it gives ≈k T JS/ 0.705B c

2 for the XY model and ≈k T JS/ 0.912B c
2 for the PR model.

More data at L= 160 for the PR model change the estimate slightly, to
≈k T JS/ 0.910.B c

2

A finite size scaling analysis [15] can be used to improve the estimates. That
theory shows that for temperatures below T ,c the helicity scales with system size
according to [16]

⎡⎣ ⎤⎦πϒ = +
k T

c c L L
2

1 coth 2 ln( ) , (8.63)
B

0 0 1

where c0 and L1 are fitting constants. This expression is valid only for <T T ,c and
once the critical temperature is reached, the fitting constant c0 goes to zero. The fits
to MC with this expression also become very poor or nearly impossible once T
passes above T .c The fits are made versus different system sizes L, for a set of
temperatures in the critical region. Note also that once c T( )0 has been determined,
then the estimate for the helicity modulus in the limit → ∞L is obtained as

⎧
⎨⎪
⎩⎪

πϒ =
+ <

⩾
∞ T

k T c T T T

T T

( )
2

[1 ( )]

0 .

(8.64)
B 0 c

c

The helicity modulus jumps suddenly to zero at the transition.
Another scaling expression that has been widely applied for planar spin models is

⎡
⎣⎢

⎤
⎦⎥

πϒ = +
k T

A T
L L2

( ) 1
1

2 ln( )
, (8.65)

B 0

where both A(T) and L0 are fitting parameters. The expression is known to be exact
at =T T ,c where =A T( ) 1c also gives a method to obtain good estimates of the
critical temperature. The expression does not fit very well for temperatures away
from T ,c thus the appearance of a tight fit is a good indication of being close to T .c

Note that for the FSS approach to work well may require substantial computational
effort, in order to have data with low enough statistical noise.

Examples of applying these scaling methods are shown in figure 8.8(b) for the XY
model and figure 8.9(b) for the PR model. For the XY model, the same initial data
used for systems with =L 16, 32, 64, 96 and ×3.2 105 to ×1.28 106 MCS were used
to perform the scaling analysis. One finds that c L( )0 can be fit quite well
by expression (8.63), giving >c 0,0 until T reaches 0.70, at which point a nonlinear
least squares scheme (one found in the ‘fit’ command of gnuplot) is unable to come
to convergence. The point where →c 00 should be T ,c but it is not exactly located.
The fitting on A(L) works both above and below T ,c and gives a value A = 1 at a
temperature slightly higher than =k T JS/ 0.69.B

2 Thus, the two fittings bracket the
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Figure 8.9. PR model (two-component spins) hybrid cluster MC results. (a) Helicity modulus ϒ T( ) as
calculated using (8.58) on indicated L × L systems. The intersection of the dashed line (8.62) with the data gives
an overestimate of the critical temperature, ≈k T JS/ 0.912.B c

2 (b) FSS analysis of more extensive data at
=L 20, 32, 48, 64, 96, fitting to expression (8.63) for <T Tc to obtain c T( )0 and to expression (8.65) to

obtain A T( ), giving ≈k T JS/ 0.891B c
2 for the infinite system.
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critical temperature, and combined they indicate ≈k T JS/ 0.692,B c
2 slightly lower

than that from using the susceptibility.
For the PR model, a new set of longer runs, all to ×20 106 MCS, was made for

temperatures near T ,c on systems with =L 20, 32, 48, 64, 96, to perform the FSS
analysis. The result in figure 8.9(b) is quite consistent between where c0 goes to zero
and A goes to unity, leading to the estimate, ≈k T JS/ 0.891,B c

2 rather high compared
to the transition in the XY model. Of course, the extra Sz spin component present in
the XY model is allowing the spins to move out of the xy-plane, causing their
in-plane components to be shorter, on average. This implies a lower value of
effective in-plane coupling JS ,xy

2 hence the transition takes place at lower temper-
ature in the XY model. One can come to the same conclusion by considerations of
entropy for the two models.

One sees that the application of finite size scaling drastically improves the
utility of the helicity data for estimations of Tc and extraction of the infinite
sized limit.

8.6.4 Dependence of critical temperature on anisotropy and vacancies

It is interesting to consider the easy-plane model for different values of the anisotropy
parameter λ, besides the case λ = 0 (the XY model). As λ is increased towards 1,
the easy-plane anisotropy becomes weaker, and the spins can move more out of the
xy-plane. This extra freedom of motion corresponds to greater out-of-plane fluctua-
tions, and smaller typical in-plane spin components. The critical temperature for the
XY model was found to be proportional to JS ,2 however, one can think that S2 in
that expression is really the in-plane part of the spins, which now becomes smaller
with weaker easy-plane anisotropy. This suggests that Tc should decrease as λ
increases. This is indeed the case, as seen in the upper curve in figure 8.10, showing
estimates of λT ( )c from finite sized scaling for model (8.2).

Another effect that has been of great interest, and which we only briefly touch on
here, is the question of spin vacancies in the system. A small percentage of the
lattice sites could be occupied by non-magnetic impurities, hence, those sites are
not magnetically active and, for all practical purposes, behave as a missing site or
spin vacancy. Although this might seem to be an unimportant perturbation to the
system, even a few vacancies can have a drastic effect on both the static averages
and the dynamics. In particular, simple calculations for individual vortices show
that they will tend to be pinned on vacancies [17], which produce a strong pinning
potential [18]. Furthermore, Zaspel et al [19] showed that a vortex formed around a
vacancy will require weaker easy-plane anisotropy (smaller parameter δ) to remain
in the in-plane state. While the critical anisotropy λ ≈ 0.7034c for unpinned
vortices, this changes to λ ≈ 0.9545cv for a vortex pinned on a vacancy (both
numbers for square lattice). The missing exchange bonds in the vicinity of the
vacancy are responsible for the lower vortex energy there and the energetic
preference to remain in the in-plane state with sz = 0. Pereira and co-workers
[20] also found that vacancies are responsible for causing oscillations of vortices
and, in addition, an increasing density of vacancies further weakens their attractive
potential [21] and the oscillation frequencies.
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In the lower curve of figure 8.10, data are shown for λT ( )c with 16% of the sites
randomly occupied by ‘repulsive’ vacancies [22], of density ρ = 0.16,vac which were
not allowed to be closer than the second nearest neighbor distance of 2 . This
model forces all vacancies to be surrounded with eight spin-occupied sites, which
allows for each vacancy to be searched easily for the presence or absence of a
pinned vorticity. In fact, this model produces pinned vorticities = ±q 2 as well as
the more usual = ±q 1. One sees that in addition to the possibility of higher
vorticity objects, the presence of vacancies lowers the BKT transition temperature.
The maximum possible density of repulsive vacancies is ρ = 0.25,vac however,
because they are placed suddenly and randomly (or, quenched), the maximum
density that can be placed is ρ ≈ 0.1872.vac

In another model of randomly placed vacancies [23], with no restrictions on their
positions, their maximum density is not limited below unity. The hybrid cluster MC
calculations on this model used averages over 4 to 64 realizations of the vacancy
positions, on L × L systems with =L 16, 32, 64, 96 and T160. c could be found most
precisely by fitting C r( )xx to power law form and locating the point where
η =T( ) 1/4. The results were also verified by comparison with Binder’s fourth-order
cumulant and the helicity modulus. For instance, figure 8.11 shows the trends
in ϒ T( ) with increasing vacancy density. The intersection of the data with the
straight line of (8.62) monotonically moves to lower T with increasing ρ ,vac
exhibiting a striking trend. When many vacancies are present, the lattice becomes

Figure 8.10. From scaling analysis of susceptibility and also checked by Binder’s fourth-order cumulant,
results for the BKT transition temperature in the easy-plane model (8.2) from hybrid cluster MC. The upper
curve is the square lattice model, fully occupied, while the lower curve is a square lattice model with 16% of the
sites occupied by repulsive vacancies. Dotted lines are guides for the eye.
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rather disconnected, and this causes greatly weakened exchange interactions and
correlations. This results in a lowering of Tc with increasing vacancy density, see
figure 8.12. The effect of lower Tc with increasing ρvac is so strong that around a
vacancy density of ρ ≈ 0.41,vac the transition temperature goes to zero. This vacancy
density is then seen to be complementary to the site percolation threshold of about

≈p 0.59c for a square lattice, which is the minimum site density needed to have a
connection across the system. Thus, the BKT transition is only present as long as the
lattice is sufficiently occupied that the exchange interactions are able to percolate
throughout the entire system. There must be sufficient couplings to lead to a
correlation length equal to the system size at =T T .c Note that even though the
system may be somewhat disconnected due to all the vacancies, even so, at the
critical temperature all spins in the system tend to be strongly correlated, which
means that a cluster update scheme is still a necessity for accurate results. See [23] for
further details.

Exercise 8.7. Consider a square lattice with a vacancy (missing spin) at the
origin. Assume that a nearly planar vortex with in-plane angles from (8.7) is
centered on the missing site. (a) Using the nearest out-of-plane spin components
m1 at radius =r 11 (four sites) and m2 at radius =r 22 (four sites), estimate the
core energy E m m( , )core 1 2 for a vortex pinned on the vacancy. (b) Perform the

Figure 8.11. Results for helicity modulus versus temperature in the square lattice XY model with random
vacancies, as calculated from expression (8.58) in hybrid cluster MC. Curves are labeled by the vacancy density
ρ .vac The dashed line is (8.62), whose intersection with the data gives an estimate ofT .c No transition is present
for ρ > 0.41,vac which coincides with the percolation limit.
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stability analysis in the limit ≪m 11 and ≪m 1,2 and estimate the critical
anisotropy parameter λcv where the planar pinned vortex develops non-zero
out-of-plane components.

8.7 Dynamic correlations in XY models
So far, we have discussed mostly the static properties due to vortices in thermal
equilibrium in easy-plane models. Now we consider some aspects of the time-
dependent response, especially, in the space- and time-dependent dynamic correlation
functions or dynamic structure functions, such as ωS q( , ).xx The basic definition and
properties of ωS q( , )xx were introduced in section 5.7.5. The dynamic structure
function gives an indication of the types of excitations in the system, in terms of
indicating what frequency oscillations are present at a chosen wave vector q.
A significant intensity in ωS q( , )xx usually gives a direct indication of the spin
wave spectrum, which appears as sharp peaks for q and ω related by the spin wave
dispersion relation. For more localized objects such as vortices, the space Fourier
transform (FT) of such a structure determines its intensity in q-space, and its motion if
present determines how intensity in ωS q( , )xx appears as a function of frequency.

The dynamic correlation function is the space–time FT of a space and time
displaced spin pair correlation function. The definition (4.118) for the static
correlations C r( )xx was generalized in (5.189) to include time displacement. We

Figure 8.12. From scaling analysis of susceptibility and also checked by helicity modulus [23], results for the
BKT transition temperature in the square lattice XY model (8.2) with λ = 0 from hybrid cluster MC, with
randomly placed vacancies of density ρ .vac The dotted line is a guide for the eye.
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apply it here in discrete form using n to represent lattice sites and r the possible
displacements, using unit spins,

∑ ∑= ++C t
N N

s t s t tr( , )
1 1

( ) ( ) (8.66)
tn

xx

t

x x
n n r0 0

0

N is the total number of spin sites and Nt is the number of time samples. This
function averages pairs of spins at constant space and time displacements r and t,
respectively. The sums can be changed to integrations if a continuum expression
is needed. We are not subtracting out the thermal average values, as was
introduced originally for the static correlations, equation (4.118). The dynamic
correlation function is the space and time FT, but converted to continuum weight
as explained in chapter 5 in the derivation of (5.195). The structure functions are
defined per frequency per squared wave vector, so the fundamental physical unit
is −JS a( ) .1 2

We can calculate ωS q( , )xx from data on a discrete space–time grid from
simulations. The most efficient way to achieve this is via the convolution theorem
and using the relation (5.205). For convenience we change to a dimensionless
quantity, taking out the units,
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This is determined from the space–time FT of the unit spin field,
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Recall from chapter 5 that these are applied to a ×N Nx y system that is integrated
over time out to final time tend using a sequence of Nt time steps, and q and ω are
discrete variables in a simulation. Obviously the correlations of other spin compo-
nents, ωS q( , )yy and ωS q( , )zz can be defined as well. For XY symmetry models, one
should have ω ω=S Sq q( , ) ( , ).xx yy In simulations, we calculate both Sxx and Syy

separately and then average them together into one in-plane structure function.

8.7.1 Hybrid Monte Carlo–spin dynamics simulations

The hybrid MC–SD approach for the thermal time dynamics of spin systems was
introduced in section 5.3. Here we describe a few details of that approach and
discuss the main results, especially concerning the dynamic correlations.

The data shown here have been produced for a 128 × 128 system. The initial part
of the calculation is the hybrid cluster MC method that combines Wolff cluster
moves with over-relaxation and Metropolis single-spin steps. For a given temper-
ature, the system was first equilibrated for =N 20 000skip MCS. Then, a total of
500 000 MCS were made, saving a configuration of the system every 1000 MCS.
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That produces =N 500s different states that were used to initiate the time
integration. Ns is also the number of states from the ensemble that are used for
averages.

For the time integration, the system was integrated using RK4 with an
algorithm time step Δ = −t JS0.04( ) ,a

1 which is adequate for good energy con-
servation. Note that the Landau–Lifshitz equations of motion are integrated
without damping, such that the motion takes place in the microcanonical
ensemble. However, the results from the Ns different initial conditions will be
averaged over in the canonical ensemble for the chosen temperature of the MC.
The algorithmic time step Δta is rather short. Therefore, data for finding time FTs
were saved at the data time interval Δ = Δt t6 ,a which allows for the investigation
of lower frequency responses. In order to take advantage of a fast FT (FFT)
algorithm, the total number of data points in time should be a power of 2, for the
most commonly used algorithms. Therefore we used total time samples =N 2 ,t

p

with FFT index p = 12 producing 4096 time samples. Thus, the interval of time
integration for one initial condition is

= Δ = × × =− −t N t JS JS2 6 0.04( ) 983.04( ) . (8.69)tend
12 1 1

This implies that the lowest non-zero frequency to be analyzed in the FFT is

ω ω πΔ = = = × −

t
JS

2
6.3916 10 ( ). (8.70)1

end

3

The resulting FTs have 4096 frequency points, however, because periodicity in time
is imposed, the second half of the FT is symmetric with the first half, and contains no
extra information (aliasing). For this reason, only about the first quarter of the final
FFT data are useful. We avoid the part affected by aliasing and we focus on the low
frequency part of the spectrum.

For the FT in space, a lattice of 128 × 128 has a very large number of possible
wave vectors. There is no practical need to have data for every possible q, instead, it
is already very useful to produce only the space FT data at selected q. We used only

= q qq ( , 0), (0, )x x and q q( , ),x x for π= =q m L m L2 / , 0, 1, 2 ... /2.x The limited
values of q mean that an FFT is not needed, rather, the space FT is performed
with the help of a table of the appropriate needed phase factors ·q rexp(i ), which are
constant during the calculations.

8.7.2 Low temperature dynamic structure function

At low temperatures <T Tc the primary excitations present are spin waves. This is
seen easily in the dynamic structure functions, some examples of which are shown in
figure 8.13 for =k T JS0.1 .B

2 Note that Sxx is has been calculated as the average of
xx and yy spin component correlations, due to the XY symmetry. Wave vectors of
the form = qq ( , 0)x with π=q m L2 /x and m incremented by 4 are displayed.
Essentially the only feature present in Sxx and also in Szz is a very narrow peak,
at the same location in both Sxx and S ,zz whose position shifts with q. At low wave
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vectors the in-plane intensity is stronger; at the highest wave vectors, the out-of-
plane intensity is more dominant. The peak location is then used to map out the
dispersion relation for spin waves, ω q( ), and the simulations give its temperature-
dependence. One should also mention that there are many smaller subpeaks present

Figure 8.13. Dynamic structure functions (a) in-plane, ωS q( , )xx and (b) out-of-plane, ωS q( , ),zz for the
square lattice FM XY model (L = 128, λ = 0) at =k T JS0.1 ,B

2 obtained from hybrid cluster MC combined
with SD, from averages over 500 initial states, as explained in the text. The wave vectors are π=q L m(2 / )x
with index m in increments of 4, as indicated.
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in ωS q( , );xx especially for smaller q. These can be attributed to finite size effects and
spin wave interference effects [24], that depend on the system size L. For the most
part, compared to the spin wave peak the subpeaks are weak and become smeared
out with increasing temperature.

Another example of the behavior of the structure functions is given in figure 8.14,
at a slightly higher temperature, =k T JS0.4 ,B

2 still below the transition temperature
≈k T JS0.70 .B c

2 Now, the peaks for any chosen q have shifted to slightly lower
frequency and their widths have increased due to the greater thermal fluctuations.
Even so, the spin wave peak is the only significant feature in the structure functions.

A third example is given in figure 8.15 for a temperature approximately the same
as the critical temperature, =k T JS0.7 .B

2 Now, the behavior of the curves is
significantly different, with the growth of much stronger intensity appearing in the
low frequency range, below the spin wave peak, primarily for ωS q( , ).xx This is
referred to as a central peak (CP). At this temperature, it is relatively weak,
compared to the height of the spin wave peak. The in-plane response has the
appearance of a spin wave peak riding on top of a wider background. The out-of-
plane response has more the appearance of significantly broadened spin waves.

The spin wave dispersion relation ω q( ) for the 2D XY ferromagnet on a square
lattice, obtained by MC–SD, can be obtained from the peaks in the structure
function ωS q( , ),xx for a range of q. The results in figure 8.16 have been displayed
for the three temperatures below or near T ,c at wave vectors along both the
(10)-direction and the diagonal (11)-direction. The solid curves are the T = 0
linearized spin wave theory, equation (6.36). The obvious feature of the simulation
data is that the spin wave frequency for finite temperature becomes less than the
linearized theory predicts. This spin wave softening is a typical effect due to thermal
fluctuations, which weaken the effective or thermally averaged nearest neighbor
exchange interactions, and hence the frequencies. One way to describe this effect
theoretically is an approach known as the self-consistent harmonic approximation,
which involves a temperature-dependent rescaling of J. Furthermore, the spin wave
peak cannot be easily identified for >T T ,c especially at small wave vectors, because
it becomes lost in the CP of ωS q( , ).xx This is a rather dramatic effect and again it is
closely associated with the BKT transition.

8.7.3 Higher temperature dynamic structure function and central peak

A fourth example of the dynamic structure functions is given in figure 8.17, for a
temperature above the critical temperature, =k T JS0.9 .B

2 In this case, the response
in ωS q( , )xx at the lower wave vectors has lost the spin wave peak. The only
significant feature is a fairly wide CP. At the larger wave vectors closer to the edge of
the Brillouin zone, there is a weak signature of the spin wave. In the out-of-plane
correlations of ωS q( , ),zz the spin wave peak can be identified for all the wave
vectors. The curves there have the appearance of a spin wave signature riding on top
of a broader but weak CP. Also, at these higher temperatures, the tails are fairly
smooth and do not exhibit any features due to finite size effects.

The appearance of the CP as the temperature passes Tc can be illustrated further
by replotting some results at particular qʼs on a linear scale, for the sequence of
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temperatures. The first example is seen in figure 8.18 for the wave vector index m = 8
which gives π=q ( /8, 0). The curves are labeled by dimensionless temperature
variable T̃ , defined from

Figure 8.14. Dynamic structure functions (a) in-plane, ωS q( , )xx and (b) out-of-plane, ωS q( , ),zz for the
square lattice FM XYmodel (L = 128, λ = 0) at =k T JS0.4 ,B

2 from averages over 500 initial conditions, with
each π=q m L2 /x for indicated m values. Note the shifts of the peaks to lower frequencies and their increased
widths compared to =k T JS0.1B

2 in figure 8.13.
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˜ ≡T k T JS . (8.71)B
2

For ωS q( , ),xx the relatively sharp spin wave peaks at ˜ <T 0.7 have minimal
intensity in the low frequency region. For ˜ = ≈ ˜T T0.7 ,c there is a weak low
frequency tail of the spin wave that extends to ω = 0. At the higher temperature
˜ =T 0.9, ωS q( , )xx does not exhibit any spin wave peak, but only CP intensity.

Figure 8.15. Dynamic structure functions (a) in-plane, ωS q( , )xx and (b) out-of-plane, ωS q( , ),zz for the
square lattice FM XYmodel (L = 128, λ = 0) at =k T JS0.7 ,B

2 from averages over 500 initial conditions, with
each π=q m L2 /x for indicated m values. Note the presence of CP intensity primarily in S .xx
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The spin wave does appear as a reasonably strong but wide peak in ωS q( , )zz

near ω ≈JS/ 0.39. Another example of this behavior is given in figure 8.19, for index
m = 16 which gives π=q ( /4, 0). In this case the CP that appears in ωS q( , )xx for
˜ > ˜T Tc is wider than that at lower wave vector. Again, the spin wave peak is easily
identified in ωS q( , ),zz although it has a long tail down to zero frequency for ˜ > ˜T T .c

8.7.4 Ideal gas model for vortex thermodynamics

Intensity in the dynamic correlations at low frequency and low wave vector is due to
larger or extended objects with slow motions. Although spin waves are extended
objects, they possess a well-defined q and we know that their dynamic response at
finite temperature is mainly a softened and broadened peak at a reduced spin wave
frequency. We have seen that the CP in ωS q( , )xx appears only as the temperature
surpassesT ,c where we know that a considerable density of vortices and anti-vortices
has been generated. The spin waves are still visible in ωS q( , )zz for >T T .c Vortices
generally have extended in-plane spin profiles, and can be excited with slow
velocities, which suggests that they should produce in-plane CP intensity. They
may also produce a weaker out-of-plane CP, due to the out-of-plane spin structure in
moving vortices. Of course, if only slowly moving vortices are present, then they can
produce only small Sz spin components, and small contributions to ωS q( , ).zz These
facts suggest that thermally generated vortices in the BKT transition are primarily

Figure 8.16. The spin wave dispersion relations ω q( ) for the square lattice FM XY model (8.2) with λ = 0
obtained from hybrid cluster MC combined with SD, using the peak found in ωS q( , ).xx Solid curves are the
T = 0 spin wave theory, equation (6.36). The spin wave frequencies at the indicated >T 0 were obtained from
the peak in ωS q( , )xx for wave vectors along both (10)- and (11)-directions. At >k T JS0.7B

2 the spin wave
peak is not distinct from the CP, so ω q( ) was not be estimated.
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Figure 8.17. Dynamic structure functions (a) in-plane, ωS q( , )xx and (b) out-of-plane, ωS q( , ),zz for the
square lattice FM XYmodel (L = 128, λ = 0) at =k T JS0.9 ,B

2 from averages over 500 initial conditions, with
each π=q m L2 /x for indicated m values. In (a) the colors on m values are used to indicate the corresponding
curves. The in-plane correlations now are dominated by the CP signature of vortices. The spin wave peaks are
weakened, greatly broadened and mainly visible only in the out-of-plane correlations.
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responsible for the CP in ωS q( , ),xx and they may make some minor contributions to
ωS q( , )zz at low frequencies.

These ideas inspired an analysis by Mertens et al [25] in terms of an ‘ideal gas’ of
vortices moving in a background of spin waves, which is similar to a model for an

Figure 8.18. Dynamic structure functions for the square lattice FM XY model (L = 128, λ = 0) at
π=q ( /8, 0), corresponding to wave vector index m = 8 in figure 8.17, (a) in-plane, ωS q( , ),xx and (b) out-

of-plane, ωS q( , ),zz for indicated temperatures ˜ =T k T JS/ .B
2 Note the growth of the CP for ˜ > ˜ ≈T T 0.7,c

and how the spin wave peak is more visible in the out-of-plane correlations at ˜ =T 0.9.
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ideal gas of solitons in quasi-1D magnetic chains. Here we describe some aspects of
this ideal gas model. It can be kept in mind that it makes some assumptions which
may not be exactly correct. Further, it is possible to consider other processes that
could lead to CP intensity, such as multi-spin wave interference. The main result of
the ideal vortex gas model is a prediction of the vortex contribution to the width and
height (or total integrated intensity) of the CPs in ωS q( , )xx and ωS q( , ).zz

Figure 8.19. Dynamic structure functions for the square lattice FM XY model (L = 128, λ = 0) at
π=q ( /4, 0), corresponding to wave vector index m = 16 in figure 8.17, (a) in-plane, ωS q( , ),xx and (b) out-

of-plane, ωS q( , ),zz for indicated temperatures ˜ =T k T JS/ .B
2
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The basic assumptions of the ideal gas are as follows. We consider primarily
λ λ< ,c so the vortices are of the in-plane type. For the in-plane correlations, a vortex
at some point causes a reversal of the sign of in-plane spin components on either side
of itself. This can be assumed to be the main way in which the correlation functions
are affected and, as a result, the density of free vortices (including anti-vortices) ρ has
been taken to be related to the correlation length,

ρ ξ≈ −(2 ) . (8.72)2

This can be viewed to say that the correlation length ξ is half the mean vortex
separation, ρ− .1/2 Note that ξ enters into the decay of in-plane correlations via (8.56).
Concerning the time-dependent effects, the free vortices are assumed to move in a
ballistic manner at constant velocity, and their population is assumed to be taken
from a Maxwellian velocity distribution. These two assumptions may be the most
easily called into question, because at the temperatures where many vortices are
present, there are likely to be strong vortex–vortex and vortex–spin wave inter-
actions. Any ideal gas approximation usually assumes a low density of particles,
so that interactions only help with the accomplishment of ergodicity. This is
probably violated for vortices in easy-plane magnets. However, we assume that
the temperature is just slightly aboveT ,c where the lowest number density is present.
In addition to this, vortices are not particles of indefinite lifetime, which is another
reason that the model can be called into question. Even so, it is interesting to
evaluate its predictions.

Here is a synopsis of the calculation of the dynamic correlation function as caused
by ballistically moving vortices. See [25] for further details. Consider a simplified
definition of the correlations of one in-plane spin component, in continuum notation
for unit spins,

=S t s t sr r 0( , ) ( , ) ( , 0) . (8.73)xx x x

For an individual vortex with in-plane angle given by (8.7), the spin component
is ϕ=s trcos ( , ).x The vortex field for the in-plane spin components extends over
the whole system. For two widely separated points in space with initially correlated
or aligned spins, a vortex placed between them will cause a relative sign of −1 in
the spin components at those points. Thus, the generation of vortices between
two points leads to a reduction of their correlations. Then, the calculation of this
correlation function requires a type of counting of the number of vortices passing
between the two space–time locations. Therefore it is reduced to the form,

ϕ= −S tr 0( , ) cos ( , 0) ( 1) , (8.74)xx N tr2 ( , )

where N tr( , ) counts the number of vortices passing a contour between 0( , 0) and
tr( , ). The angle at the initial point, ϕ 0( , 0), is uniformly distributed on π[0, 2 ], so

that ϕ〈 〉 =0cos ( , 0) 1/2.2

The other part involving the average of −( 1)N tr( , ) has appeared in thermal
averages for 1D soliton models. Mertens et al [25] found a way to evaluate it
analytically in two space dimensions. They considered first a 1D calculation, with
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kinks (instead of a vortices) of equal speeds υ observed to pass the contour
→ →x x t(0, 0) ( , 0) ( , ). The counting of N requires doing two cases, υ>x t and

υ<x t, separately. In the first case with υ>x t, the point (x, t) is said to be outside
the light cone (where the light cone has x = υt). This case is sketched in figure 8.20. In
fact, we only need to consider the right-moving kinks (velocity υ+ ) separately from
the left-moving kinks (velocity υ− ). Later, we sum over the effects of all distinct
velocities, and here υ+ and υ− are themselves distinct.

In figure 8.20(a), the kinks in a region of width x − υt cross the contour once and
are counted (green arrows); there are also other kinks that cross twice (red arrows) so
effectively they did not cross and need not be counted (or, they contribute −( 1) ,2

which makes no difference). Assuming a linear density of kinks as ρ ξ= −(2 ) ,1 with
half moving to the right and half moving to the left, the mean number of kinks to
cross to the right is

ρ υ υ
ξ

¯ = − = −
n x t

x t1
2

( )
4

. (8.75)r

Figure 8.20. Diagram of the ‘light cone’ for correlations between points (0, 0) and (x, t) by calculation of
the number of 1D kinks crossing the connecting contour. Point (x, t) is considered outside the light cone here.
(a) For right-moving kinks of speed υ, green (red) arrows show those crossing once (twice), which are counted
(or not). The width that contributes is x − υt, which determines n̄r in (8.75). (b) For left-moving kinks of speed υ,
all those over the width x + υt cross the contour once and are counted, which determines n̄l in (8.78).
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Because a low density is assumed in ideal gas theory, the fluctuating number nr

follows a Poisson distribution,

= ¯
!

= …−p n
n
n

n( ) e , 0, 1, 2, . (8.76)n
r

r

r
r

r

Then the average needed for the right-moving kinks is calculated from

⎡
⎣⎢

⎤
⎦⎥∑ υ

ξ
− = − = = − −−p n

x t
( 1) ( 1) ( ) e exp

( )
2

. (8.77)
n

n n n
r

2r

r

r r

A similar calculation is applied for the left-moving kinks, see figure 8.20(b), where
kinks in the width x + υt all cross the contour and are counted. With nl being the
number crossing to the left, and mean value,

ρ υ υ
ξ

¯ = + = +
n x t

x t1
2

( )
4

(8.78)l

their contribution to the average is a similar result,
⎡
⎣⎢

⎤
⎦⎥∑ υ

ξ
− = − = = − +−p n

x t
( 1) ( 1) ( ) e exp

( )
2

. (8.79)
n

n n n
l

2l

l

l l

These factors combine into one factor for all kinks. When the calculations are
repeated for points (x, t) also inside the light cone, the net result for an arbitrary
point (x, t) inside or outside the light cone can be written as

⎡
⎣⎢

⎤
⎦⎥

υ
ξ

υ
ξ

− = − ∣ − ∣ − ∣ + ∣x t x t
( 1) exp

2 2
. (8.80)N x t( , )

The above calculations apply to a 1D system, but we have a 2D system and
vortices, not kinks, with many different velocities. The 1D results were generalized
to the 2D situation, which produces a sum over the velocity distribution:

⎡
⎣⎢

⎡
⎣⎢

⎤
⎦⎥
⎤
⎦⎥∫ υ υ υ

ξ
υ

ξ
− = − ∣ − ∣ + ∣ + ∣∞

P
r t r t

( 1) exp d ( )
2 2

. (8.81)N tr( , )

0

The Maxwellian speed distribution υP( ), giving the same weight to inward-moving
and outward-moving vortices, is

υ υ
υ

=
¯

υ υ−P( ) 2 e . (8.82)
2

2 2

Of course, this is where one assumes freely moving vortices in thermal equilibrium,
which implies that the root-mean-square speed ῡ is dependent on the temperature.
Integration over speeds can be shown to lead to the space–time correlation function
in the form,

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥ξ

π υ
ξ υ

= − − ¯∣ ∣
¯∣ ∣

S t
r t r

t
r( , )

1
2

exp
2

erfc . (8.83)xx
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It turns out that this can be very well approximated by another analytic expression that
preserves both its integrated intensity and asymptotic behaviors as → ∞r and → ∞t ,

ξ γ≈ − +( )S t r tr( , )
1
2

exp ( ) ( ) (8.84)xx 2 2

where γ is a frequency-like quantity,

γ π υ
ξ

= ¯
2

. (8.85)

One can see that γ sets a time scale for vortex motion in the same way that the
correlation length ξ sets a typical length scale. The space and time structures of this
approximated correlation function are essentially very similar. This allows one to
find the space–time FT. The result is a squared Lorentzian form,

⎡⎣ ⎤⎦
ω

π
γ ξ

ω γ ξ
=

+ +{ }
S

q
q( , )

1
2 1 ( )

. (8.86)xx
2

3 2

2 2 2 2

In fact, this is indeed a CP structure; the maximum intensity occurs at ω = 0. The
height of the CP as a function of q is one quantity that can be analyzed. The ideal gas
model then predicts it to be

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ω
π

γ ξ
ξ ξ

= =
+

=
+

=
−

S
q

A

q
pq( , 0)

1
2 1 ( ) 1 ( )

, 2. (8.87)xx
p2

1 2

2 2 2

The amplitude ω= = =A S q 0( , 0)xx will be taken from the MC–SD data. The
power p = 2 comes from the ballistic ideal gas theory, but we allow for a different
power in the expression for later analysis. The CP also has a q-dependent half-width,
defined as the frequency where ωS q( , )xx reaches half its peak value, which is found
to be

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦γ ξ ξΓ = − + = +( ) q B qq( ) 2 1 1 ( ) 1 ( ) (8.88)x
1 2 2 1 2 2 1 2

Again, its scale or amplitude is determined by the constant = Γ =B q 0( ),x which can
be taken from MC–SD data. The total intensity integrated over all frequency
(assuming symmetry in positive and negative ω) is

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦∫ ω ω
π

ξ
ξ ξ

= =
+

=
+

=
−∞

+∞

−I S
q

C

q
pq q( ) d ( , )

1
4 1 ( ) 1 ( )

, 2.

(8.89)

x
xx

p

2

2 3 2 2 1 2

Its scale is the constant = =C I q 0( ).x These last three equations can be tested by
comparison with theMC–SD simulations. The values at =q 0 are factored out, which
facilitates comparison with simulation or experiment, and allows one to concentrate
more on the dependencies with q. This is helpful because it is difficult for theory to
correctly obtain the amplitude of the CP effects, because indeed other processes
besides vortex motion can be responsible for some of the intensity. Note that the
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vortex ideal gas CP intensity is predicted to vary as ξ ρ∼ −2 1 for small wave vectors,
which is physically reasonable. The vortices generated thermally as T increases above
Tc reduce the long-distance correlations across the system. The predicted CP half-
width is only weakly dependent on q for small q (long wavelengths), and eventually
approaches an approximate linear relation with q at larger values.

8.7.5 Comparison of vortex ideal gas model to simulations

Mertens et al [25] originally made various comparisons of these ideal gas predictions
with early simulation data by averaging over only three initial states, and found
reasonably good agreement for the q-dependencies, but not so much so for the
amplitude of the effects. For comparison here we show some additional results on
128 × 128 systems for just one temperature, =k T JS0.9 ,B

2 slightly above T ,c
averaging over 500 initial states. At this temperature, ρ ≈ 0.094, which would imply
by (8.72) a correlation length on the order of ξ ≈ a1.63 , however, that is probably an
underestimate. The alternative relation,

ρ ξ≈ − (8.90)2

gives instead ξ ≈ a3.26 , which is more consistent with results from static correla-
tions. Indeed, Dimitrov andWysin [26] found ξ = a3.95 at this temperature from the
static correlation function. In addition, they show in figure 1 of [26] that the relation
between vortex number density and ξ−2 is not even linear.

For the full range of wave vectors along the (10)-direction, the CP height for
ωS q( , )xx was measured (at ω = 0); results are shown in figure 8.21. The frequency at

which ωS q( , )xx becomes half the height was used to estimate the half-width Γ ,x

which is plotted in figure 8.22. Then, based on the theory expressions for the squared
Lorentzian CP, one finds that the height and half-width can be combined directly to
estimate the integrated intensity,

π ω ω= − = Γ ≈ = Γ
−( )I S Sq q q q q( )

2
2 1 ( , 0) ( ) 2.44 ( , 0) ( ). (8.91)x

xx
x

xx
x

1 2

The intensity from the simulations is then a derived quantity calculated this way
from the estimates of CP height and half-width, see figure 8.23. This also means that
the amplitudes (values at =q 0) are related by

=≈C AB2.44 . (8.92)

In order to compare simulation data with the theory, the values of CP height,
half-width and intensity at =q 0 were taken directly from the simulations, and not
allowed to be fitted. These values from the simulations give the constants in
dimensionless units, = =A B1.26, 0.087 and = =C AB2.44 0.268. One can note
that the implied definition of ξ π=C /42 results in the estimate of correlation length,
ξ = a1.83 . On the other hand, if the alternative definition (8.90) were used in the
ideal gas model, the result would instead be ξ ≈ a3.66 , which is more reasonable and
close to that from static correlations [26].

Figure 8.21 shows the MC–SD data for CP height compared with the ideal gas
theory expression (8.87), at the power p = 2 and also for an alternative value
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=p 3/2. The theory expression with p= 2, ξ = a3.67 fits well to the simulations at
low q, but deviates significantly with increasing q. Other values of ξ are shown for
comparison. It was noticed that putting =p 3/2 allows for a much better fit to large
q, using ξ = a4.58 . However, the simulation data go to a constant height at the zone
boundary, whereas the theory expression continues decaying.

Figure 8.22 shows the MC–SD data for CP half-width Γ q( )x compared with the
ideal gas theory, equation (8.88). A value of ξ = a6.11 gives a good match at low q;
it seems that there is a change in the slope of Γ q( )x around π≈q a0.32 / .x A value of
ξ = a5.50 gives a better fit over the full range of q. Trial curves with smaller values of
ξ such as ξ = a3.67 fail to follow the MC–SD data.

Figure 8.23 shows the MC–SD data for CP intensity I q( ),x from using (8.91),
compared with the ideal gas theory, (8.89). Various values of ξ for the ballistic
theory p = 2 can only fit to the data at lower q; the best is around ξ = a3.67 . Similar
to the peak height, the integrated intensity seems to be better fit over a wider range of
q by switching to the power =p 3/2, for which ξ = a3.97 gives a good fit. Eventually
at large enough q, the MC–SD tends to a constant, then the theoretical expression
(8.89) cannot follow the data.

These results indicate that the vortex ideal gas theory does predict a CP, and while
the gross features are present, probably the details do not work out completely
correctly. It is difficult to obtain all three of the main quantities, peak height, peak
width and integrated intensity, to match to the theory with the same correlation

Figure 8.21. CP height at ˜ =T 0.9 for wave vectors = qq ( , 0)x on the 128 × 128 FM XY model system.
Symbols are from the hybrid MC–SD simulations. Curves are the ideal gas expression (8.87), using the
different values of ξ indicated. The power p = 2 is the ballistic ideal gas model; for power =p 3/2, however, the
data can be fit over a much wider range of qx.
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length parameter ξ. It is also possible that the structure of ωS q( , )xx is not so close to
a squared Lorentzian, as indicated that the peak height might better be fit with the
power =p 3/2 instead of p = 2 as in the ideal gas theory. The amplitudes of these
quantities were fixed to the simulation results, because they could not be consistently
matched, to give one good set of values for ξ and γ. Even so, the idea of slow-moving
vortices and the sign-change in a vortex, that causes a contribution to the dynamic
correlations, is completely reasonable as an explanation of the vortex part of CP
intensity.

We have noted that the theory presumes relation (8.72) between vortex density
and correlation length, however, an alternative relation (8.90) without the factor of
2 could be one improvement. In any case, the vortex density is not really linearly
proportional to ξ−2 [26], as assumed. As mentioned earlier, another probable
correction to the results is to take into account the spin wave and multi-spin wave
interference contributions, because these also contribute to CP intensity. At higher T
and higher vortex density, the ideal gas assumption will become invalid. The process
itself of VA pair creation has been proposed as making a contribution to CP
intensity [27], especially belowTc [28]. In addition to these effects, other simulations
indicate that vortices have significantly finite lifetimes [26]. This is certainly an effect
that is mixed up with the scattering of spin waves off vortices and spin waves off
other spin waves. This means that the ballistic approximation is probably not as

Figure 8.22. CP half-width at ˜ =T 0.9 for wave vectors = qq ( , 0)x on the 128 × 128 FM XY model system.
Symbols are from the hybrid MC–SD simulations. Curves are the ideal gas expression (8.88), using the
different values of ξ indicated. Note that the value ξ = a6.11 fits well at low qx, where the spin wave peak in

ωS q( , )xx is very weak.
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good as it should be, as finite lifetime will lead to a lower frequency limit below
which the vortex ideal gas theory needs modification.

The theory was extended also to apply to out-of-plane correlations ωS q( , ),zz

however, this depends strongly on the true structure of moving vortices. Mertens
et al [25] again found a CP, but of Gaussian form. For interested readers further
discussion of that can be found in the literature.

8.7.6 Dynamic correlations with vacancies

Earlier we saw how spin vacancies lead to a reduction of Tc in the XY model, as
shown through calculations of the helicity modulus and static correlations.
Vacancies tend to attract and pin vortices, even for temperatures below T .c It has
been seen [22] that most of the vortices produced below Tc are in fact, pinned on
vacancies. Then, it is interesting to ask if there is a dynamic signature due to pinned
vortices, that appears in the dynamic structure function. A vortex pinned on a
vacancy has lowered its energy by doing so. It is in a local potential energy
minimum, then, it possesses certain dynamic modes of oscillation about its
minimum, which should present themselves in ωS q( , ).xx

In a paper [29] by Paula et al this question was addressed by making MC–SD
simulations for the XY model with a percentage of randomly placed vacancies. They

Figure 8.23. CP integrated intensity at ˜ =T 0.9 for wave vectors = qq ( , 0)x on the 128 × 128 FM XY model
system. Symbols are from the hybrid MC–SD simulations. Curves are the ideal gas expression (8.89), using the
different values of ξ indicated. The power p = 2 is the ballistic ideal gas model; for power =p 3/2, however, the
data can be fit over a much wider range of qx.
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found that for temperatures below the critical temperature (for a given density of
vacancies), there appears in ωS q( , )xx not only the spin wave peak, but as well an
extra small peak at a low frequency inversely proportional to the lattice size L. This
could be typical of finite size effects. However, the frequency found for the mode
seems to match that expected for the normal mode oscillations for a pinned vortex,
as calculated analytically and by simulations [20]. At T = 0 the prediction is for the
frequency of a single vortex on a single vacancy in a L × L system is predicted to be

ω =
L

JS
13.57

. (8.93)0

When considering higher temperature, the frequency of this type of mode is expected
to soften due to thermal effects. Softening is also involved with increasing vacancy
density, which weakens the average exchange couplings and therefore lowers the
frequencies, see figure 3 of [29].

As an example of these effects, here we show some results from MC–SD
simulations with a vacancy density ρ = 0.16,vac for the 128 × 128 XY model, see
figure 8.24. For reference, simulation results for the same pure system, without
vacancies, are shown in figure 8.25. The averages have been made over 500 states of
the ensemble, including averaging over the random vacancy locations. This was

Figure 8.24. In-plane dynamic correlations in the presence of 16% vacancies on the 128 × 128 FM XY model
system, from MC–SD simulations, for wave vectors π= m Lq ( , 0)(2 / ) with m values indicated next to the
curves. The temperature =k T JS0.26B

2 is about 4/7 ofT .c The arrow at ω ≈JS/ 0.064 indicates a mode likely
due to vortices pinned on vacancies, whose frequency does not change with q. Note that the peak also is
present no matter whether m is odd or even. There is also a very strong peak at ω = 0 for all the q shown,
caused by the vacancy disorder; compare figure 8.25.
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achieved by making 25 realizations of the vacancy positions, from which the MC
simulations were run to 20 000 MCS for equilibration, and then run another 20 000
MCS, taking a state to be an initial condition for the SD every 1000 MCS. The SD
part of the simulations was run the same way as described earlier for the XY model,
using =2 409612 time points separated by Δ = × −t JS6 0.04( ) .1 At a 16% vacancy
density, the transition temperature is ≈k T JS0.453 ,B c

2 see figure 8.12. Due to the
lowerTc compared to ≈k T JS0.70B c

2 in the pure model, we consider the simulations
at relatively lower temperatures. So we show results at ≈ =k T k T JS(4/7) 0.26B B c

2

and at ≈T T .c
Referring to figure 8.24 for ≈T T(4/7) c with 16% vacancies, the spin wave peak is

the dominant feature, moving in frequency as the wave vector is changed. However,
also a very strong peak appears at ω = 0 for any q. Such a peak at zero frequency of
course belies the presence of a frozen-in spin structure. This feature has not been
carefully analyzed, but it is certainly caused by the vacancies and the fact that the
thermal averages of total Sx and Sy are now not zero when vacancies are present.
The vacancies break the full symmetry of the system. The exchange interactions
where sites do not all have four nearest neighbors must produce a frozen-in
organized spin structure. Note that in figure 8.25 for the corresponding wave vectors
in the pure system, naturally there is no zero-frequency peak.

The second obvious feature in figure 8.24 that is directly caused by the presence of
vacancies is the weak peak at a low frequency of about ω ≈ JS0.064 , indicated by an

Figure 8.25. In-plane dynamic correlations in the pure 128 × 128 FM XY model system (no vacancies), from
MC–SD simulations, for wave vectors π= m Lq ( , 0)(2 / ) with m values indicated next to the curves. The
temperature is about 4/7 ofT .c The inset shows a zoom of the weak typical finite size responses below the spin
wave peaks, that depend on whether m is odd or even.
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arrow. That feature and some other similar small peaks remain present for all the q
shown. Paula et al [29] have indicated that this small feature is ultimately caused by
the oscillations of vortices pinned on vacancies. The frequency is quite low
compared to the T = 0 prediction from (8.93), which gives ω ≈ JS0.106 ,0 however,
the vacancies distributed over the system weaken the average exchange interactions,
which causes a considerable lowering of this mode’s frequency. The values of m used
to produce the wave vectors, according to π=q m L2 / ,x are both odd and even, and
yet the low frequency features remain nearly the same. Compare the inset in figure
8.25 for the pure system, which shows the very weak response below the spin wave
frequency. In the pure system these low frequency peaks alternate by odd/even
values of m, which is typical for finite size spin wave effects. This gives a strong
indication that the small low frequency structures in the system with vacancies really
are due not to spin wave effects, but to pinned vortices.

It is interesting to make another comparison for the same system, with (figure
8.26) and without (figure 8.27) vacancies, but at a temperature more or less equal to
T .c In the system with vacancies, the spin waves are broadened, and there starts to
appear a general wide background similar to a CP. The narrow peak at ω = 0 is still
present. There is also a very faint but broadened possible peak around ω ≈ JS0.055 ,
that is probably the pinned vortex oscillation. It has been both broadened and

Figure 8.26. In-plane dynamic correlations in the presence of 16% vacancies on the 128 × 128 FM XY model
system, from MC–SD simulations, for wave vectors π= m Lq ( , 0)(2 / ) with m values indicated next to the
curves. The temperature is the critical temperature. The arrow at ω ≈JS/ 0.055 indicates the mode probably
due to vortices pinned on vacancies, that has shifted downward with increasing temperature. Note that the
peak also is present no matter whether m is odd or even. The strong narrow peak at ω = 0 for all the q is still
present, caused by the vacancy disorder; compare figure 8.27.
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moved to a lower frequency compared to that in figure 8.24 for ≈T T(4/7) ,c due to
greater thermal effects. Again this faint peak is present regardless of whether the
wave vector index m is odd or even. In the system without vacancies at =T T ,c figure
8.27, the spin wave peaks are narrower, and there is also a general wide background,
with weak oscillations. Looking more closely, the curves still exhibit a weak set of
finite size effects peaks that depend on whether m is odd or even. These finite size
effect peaks are rather broadened due to the temperature. But there is no single weak
peak present independent of q such as that in the system with vacancies.

All these results taken together point to the idea that the fraction of vortices
pinned on vacancies make small-amplitude oscillations. The oscillation has a
particular signature, which is exhibited as a weak peak at a frequency lower than
that given in the zero-temperature estimate of equation (8.93). The softening of its
frequency occurs both due to increasing temperature and increasing vacancy density.
Each of those effects lowers the effective exchange interaction strength, thereby
reducing the mode frequency. Once the temperature is above T ,c this weak peak is
gone because of the growth of the much larger CP associated with the much greater
vortex density of the BKT transition.
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