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Chapter 1

Introduction

In this chapter we will introduce many of the concepts that are central to the subject
matter of this book. The topics will include a preliminary survey of the different
waves or excitations in solids, along with a brief discussion of their linear and
nonlinear (NL) dynamical properties, some examples of the low-dimensional
structures and arrays that will be of importance for later applications and also the
experimental and theoretical techniques that will be needed as tools in this study.

We will be less concerned here with the static, or time-independent, behaviour of
solids and instead focus on the temporal (and usual spatial) evolution of some
characteristic property that can propagate through a solid or be localized in certain
regions. Corresponding to the latter case the excitations mentioned above can be
considered as just the wave-like Fourier components of a general propagating signal
in the solid. Physically the signal might, for example, consist of optical waves,
vibrations of the atoms in the solid, the fluctuating magnetization in a magnetic
material, or the collective motion of charges in a plasma. In a finite-sized solid the
excitations will be required to satisfy boundary conditions at the surfaces or
interfaces and so their properties may become modified. The novel properties of
the excitations in certain finite structures, sometimes taken in conjunction with their
NL dynamics as explained later, are of fundamental interest scientifically and may
lead to a wide variety of practical device applications.

1.1 Types of excitations or waves
1.1.1 Fundamentals of excitations

We start by briefly describing the ‘bulk’ (or ‘volume’) excitations that are character-
istic of effectively unbounded solids, where there are no surface effects to be taken into
account. Details may be found in standard textbooks on solid-state physics (see, e.g.,
Kittel [1], Ashcroft and Mermin [2], and Grosso and Parravicini [3]). The modifying
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effects of surfaces and interfaces will be introduced next by following, for example, an
approach based on symmetry arguments adopted for geometries of thin films and
multilayers as in the book by Cottam and Tilley [4]. From a consideration of the
symmetry and crystal lattices we shall arrive, via reciprocal lattices and Brillouin
zones, at a form of Bloch’s theorem for the elementary excitations.

A bulk crystalline solid may be regarded as a three-dimensional (3D) repetition in
space of a basis or building block consisting of one or more atoms. The basis can be
associated with the points on an infinitely extended lattice, which may be defined
from symmetry in terms of three fundamental non-coplanar translational vectors,
denoted by a ,1 a2 and a .3 It then follows that the vector R connecting any two lattice
points can be expressed as

= + +n n nR a a a , (1.1)1 1 2 2 3 3

where n1, n2 and n3 take any integer values. Of course, the lattice may have other
symmetry operations, such as rotations and reflections, that also leave the space lattice
unchanged. We will see that the translations are particularly important and they imply
that any physical quantity f r( ) at a general position r in the system satisfies

= +f fr r R( ) ( ) (1.2)

for any R given by equation (1.1). Depending on the context, the quantity f(r) might
refer to a component of the magnetization vector or a charge density, for example.

The unit cell of a lattice is just the smallest volume with the property that all space
can be filled by periodic repetitions of the unit cell for each lattice. Its specification is
not unique, but one simple choice is the parallelepiped formed by the basic vectors
a ,1 a2 and a .3 Another construction is the Wigner–Seitz unit cell formed by drawing
the perpendicular bisecting planes of the lattice vectors from any chosen lattice point
to its neighbouring sites. Details are given in, e.g., [1–3]. Some choices of unit cell are
shown in figure 1.1 for the special case of a two-dimensional (2D) oblique lattice
with the basic vectors a1 and a .2

The next step is to introduce the reciprocal lattice. The basic vectors b ,1 b2 and b3

of this lattice in reciprocal space have the properties in 3D that

πδ· =a b 2 , (1.3)i j ij

Figure 1.1. An oblique 2D space lattice with the basic vectors a1 and a ,2 showing two choices for the unit cell.
The one on the left is a parallepiped and the Wigner–Seitz cell is illustrated on the right.
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where i and j can take values 1, 2 or 3, and δij is the Kronecker delta (equal to unity if
the subscripts have the same value and zero otherwise). For example, we may write
b1 = π ×V a a(2 / )( )0 2 3 and so forth, with = ∣ · × ∣V a a a( )0 1 2 3 denoting the volume of
the unit cell for the space lattice (see, e.g., [1]). Since f r( ) introduced in equation
(1.2) is a periodic function (generally in 3D) it can be expressed in terms of a Fourier
series using complex exponentials as

∑= ·f Fr Q Q r( ) ( )exp(i ), (1.4)
Q

where theQ vectors are required to satisfy ·Q Rexp(i ) = 1. It is easily shown [1] that
they are expressible in terms of the basic vectors of the reciprocal lattice as

ν ν ν= + +Q b b b , (1.5)1 1 2 2 3 3

with ν ,1 ν2 and ν3 denoting integers. Finally we note that the unit cell of the reciprocal
lattice is known as the Brillouin zone. The results are particularly straightforward in
the case of a simple-cubic (sc) space lattice with lattice parameter a, because the
reciprocal lattice is also sc. We may choose for the space lattice

= = =a a aa a a(1, 0, 0), (0, 1, 0), (0, 0, 1), (1.6)1 2 3

whereupon the basic vectors of the reciprocal lattice are simply

π π π= = =
a a a

b b b
2

(1, 0, 0),
2

(0, 1, 0),
2

(0, 0, 1). (1.7)1 2 3

Now we discuss how the translational symmetries of the space and reciprocal
lattices influence the elementary excitations in an unbounded solid. The most
fundamental result is embodied in Bloch’s theorem [5], which provides information
about the spatial behaviour of the variable that describes the amplitude of the
excitations. This variable, which we will denote generically as a function of position
as ψ r( ), depends on the type of excitation. For example, it could be the quantum-
mechanical wave function in the case of electronic states, an atomic displacement in
the case of lattice vibrations (or phonons), or the fluctuating magnetization in the
case of spin waves (SWs) (or magnons). These and other specific examples will be
discussed in more depth in later chapters after we consider some general properties
here. Bloch’s theorem can be expressed generally as

ψ = · Ur q r r( ) exp(i ) ( ). (1.8)q

Here U r( )q is a periodic amplitude function, just as in equation (1.2), and the phase
factor ·q rexp(i ) describes a plane-wave variation of the amplitude ψ r( ). We shall not
provide a proof of this result, since this can be found in the solid-state physics textbooks
cited earlier. The wave vector q is evidently not unique, since it can be easily checked
that values differing by any reciprocal latticeQ as defined in equation (1.5) will equally
satisfy the requirements of Bloch’s theorem. Typically, as we will see later, an energy
eigenvalue E will be calculated for the dynamic variable ψ r( ) using its equation of

Dynamical Properties in Nanostructured and Low-Dimensional Materials

1-3



motion, e.g., in the case of an electronic excitation ψ r( ) could be the spatial wave
function which satisfies Schrödinger’s equation. On writing E = ωℏ q( ) with ω q( )
representing the angular frequency of the excitation, it follows that we must have

ω ω+ =q Q q( ) ( ). (1.9)

In the idealized case of an unbounded crystal lattice the components of the vector q
can take any real values, but equation (1.9) tells us that it is sufficient to take only q
values that lie within the first Brillouin zone (the Wigner–Seitz cell centred at q = 0).
For the example of an sc space lattice mentioned earlier this gives q = q q q( , , )x y z with

π π π π π π− < ⩽ − < ⩽ − < ⩽a q a a q a a q a, , . (1.10)x z z

There are analogous results to equations (1.6), (1.7) and (1.10) for other 3D space
lattices [1], such as body-centred cubic (bcc) and face-centred cubic (fcc) lattices.

While there are many 3D space lattices, there are relatively few in 2D. In fact, there
are only five instead of fourteen. As wewill see later, these 2D lattices will be important
for thinfilmswhere there is translational symmetry in the 2Dplanes of atoms parallel to
the surfaces, but not in the other dimension perpendicular to the surfaces.Consequently
Bloch’s theoremwill bemodified, as we discuss later. A 2D example, which is currently
of considerable interest, is provided by graphene, which can be produced in the form of
single sheets of atoms arranged in a 2Dhexagonal or honeycomb space lattice (see, e.g.,
[6, 7]). The lattice structure is illustrated in figure 1.2 and it can be described in terms of
two vectors a1 and a2 that form the basis of a unit cell with two carbon atoms per cell.
There are two sublattices of carbon atoms, labelledA and B, as shown. Relative to the
x- and y-coordinate axes we may write

= − =( ) ( )a a
a a

3
2

3 , 1 ,
3
2

3 , 1 , (1.11)1
0

2
0

Figure 1.2. The spatial structureof a single sheetofgraphene.Eachcarbonatomliesononeof two interpenetrating
sublattices labelled A and B (shown here as red and blue circles, respectively). A possible choice for the two basic
lattice vectors a1 and a2 is indicated, together with the corresponding unit cell (shown shaded).
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where a0 denotes the nearest-neighbour carbon–carbon distance. Also the basic
vectors of the reciprocal lattice are simply [7]

π π= − =( ) ( )
a a

b b
2
3

1, 3 ,
2
3

1, 3 . (1.12)1
0

2
0

In some other nanosystems to be considered later we might have just one direction
in which there is a translational symmetry. For example, long nanowires and
nanotubes that have a uniform, finite cross-sectional shape will exhibit translational
symmetry with respect to their length coordinate only. Also one-dimensional (1D)
linear-chain materials (such as the ferromagnetic chain pyroxene NaCrGe2O6 [8])
will have this property. By contrast, nanostructures that are finite in all three spatial
dimensions will display no translational symmetry and are sometimes referred to as
being zero-dimensional (0D).

1.1.2 Linear and nonlinear dynamics for excitations

Before looking further into the influence of the geometric structure on the
excitations, it is useful to briefly consider how the excitations relate to the linear
and NL aspects of the system dynamics. Although real physical systems might
exhibit linear dynamics to a good approximation in many circumstances, it is
nevertheless the case that NL behaviour will occur to some extent and may be
enhanced under particular circumstances. It is to be expected that the excitations
associated with the linear regime will consequently have their properties modified
when nonlinearities are taken into account. It is important to enquire in what ways
and to what degree this takes place and if there are practical effects to be utilized.
Apart from this, we will find that there are some excitations associated with the NL
regime of behaviour that have no counterpart in the linear approximation.

At this preliminary stage we will highlight some distinctions between the linear
and NL dynamics of excitations, mainly by taking a few specific examples. These and
other cases will then be explored in much more detail later, especially in chapter 7.
Some general references covering NL dynamical phenomena, mostly for bulk
properties, are the books by Yariv [9], Butcher and Cotter [10] and Mills [11] for
NL optical materials and by Gurevich and Melkov [12] and Stancil and Prabakhar
[13] for NL magnetic materials.

We start by considering an example of optical (electromagnetic) waves in a
dielectric material, ignoring for the moment any specifically magnetic effects. The
material is assumed to be homogeneous and sufficiently large that we need not
explicitly take account of boundary effects. The response of the material to an
external position- and time-dependent electric field tE r( , ) is conventionally
described in terms of a dielectric function ɛ by writing

∫ ∫ɛ ɛ= − ′ − ′ ′ ′ ′ ′t t t t tD r r r E r r( , ) ( , ) ( , )d d . (1.13)0
3

Here ɛ0 is the permittivity of free space and tD r( , ) is the electric displacement (see, e.g.,
[14, 15]). The D and E vectors are also related to the polarization P in the material by

ɛ= +t t tD r E r P r( , ) ( , ) ( , ), (1.14)0
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where tP r( , ) is the polarization induced in the material. Rather than considering
these quantities in terms of position and time, it is more useful for the dynamics to
make Fourier transforms to a wave vector q and angular frequency ω according to,
for example,

∫ ∫ ω ω ω= · −t tE r E q q r q( , ) ( , )exp(i i )d d . (1.15)3

Then equation (1.13) can be re-expressed more compactly and conveniently as

ω ɛ ɛ ω ω=D q q E q( , ) ( , ) ( , ), (1.16)0

while the corresponding result for the polarization is

ω ɛ ɛ ω ω= −P q q E q( , ) [ ( , ) 1] ( , ). (1.17)0

The q-dependence of the dielectric function in the above two equations is known as
spatial dispersion and arises from the fact that the dielectric term in equation (1.13)
depends on the spatial separation − ′r r rather than on r and ′r separately. However,
in many cases this spatial dispersion may vanish or be negligible and we have simply
a frequency-dependent dielectric function ɛ ω( ) that is characteristic of the dynamical
processes in the material being considered. Examples will be given later.

Before going any further we need to elaborate on two points regarding the above
discussion. The first is that, in general, the vectors D and P may not necessarily be
collinear with E. The above relationships are still applicable provided the scalar
dielectric function, ɛ ωq( , ) or ɛ ω( ) as appropriate, is replaced by a second-rank tensor
or equivalently a matrix in these cases. The second and more significant point is that
for small values of the electric field there is a linear relationship, as expressed by
equation (1.16), between D and E. In other words, ɛ ωq( , ) is a constant function that
does not depend on E and it is called the linear dielectric function. At larger electric-
field values there is usually a NL regime in which the dielectric function becomes
dependent on E. A conventional approach in NL optics is to expand the dielectric
function as a power series in terms of components of the electric-field components, as
we describe in a later chapter. Various different NL effects can then be identified
depending on which terms in the expansion are important. For example, the Kerr-
type nonlinearity involves an effective NL dielectric function [10, 11] of the form

ɛ ɛ ρ= + E . (1.18)NL 2

Here both the linear part ϵ and the coefficient ρ before the field-dependent term may,
in general, be functions of wave vector q and frequency ω.

To probe further some distinctions between the linear and NL dynamics arising
due to the form of the dielectric function, we now turn to the basic equation satisfied
by the electric field. This is just the electromagnetic wave equation arising from
Maxwell’s equations [14, 15]:

ɛ ω ∂
∂

− ∇ =
t

c
E

E( ) 0. (1.19)
2

2
2 2
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This result is the form appropriate for a transverse wave (i.e., when the wave vector q
specifying the propagation direction is perpendicular to E) and c is the velocity of
light in a vacuum. We note that the solution of this equation in the linear regime is
relatively straightforward, because the linear dielectric function does not depend on
E and so equation (1.19) is a linear differential equation. We are ignoring spatial
dispersion here. The solution in this case where we assume an unbounded medium
can be found in a plane-wave ω· − tq rexp[i( )] form, yielding

ɛ ω ω=q c( ) . (1.20)2 2 2

This is just the implicit dispersion relation (ω versus q relationship) arising when the
electromagnetic wave is coupled to the polarization field of themedium. The excitation
is generally referred to as a polariton. If the dielectric function is just a constant and
written as n ,2 where n is the refractive index of the medium, we recover the usual
dispersion relation ω = c n q( / ) for a photon (light) with speed c/n in the medium. By
contrast, a simple example of a frequency-dependent dielectric function occurs for an
electron plasma, as for the gas of electrons in a metal or semiconductor in the presence
of positive ions that ensure the overall charge neutrality. The plasma oscillations [1, 2]
of the electron gas are known to define a characteristic angular frequency, the plasma
frequency ω ,p given by ωp

2 = ɛn e m/0
2

0 where n0 is the 3D concentration of electrons,
each having mass m and charge −e. It can be shown (see also chapter 4) that

⎛
⎝⎜

⎞
⎠⎟ɛ ω ɛ

ω
ω

= −∞( ) 1 , (1.21)p
2

2

where ɛ∞ is the limiting dielectric constant at frequencies well above ωp and damping
has been neglected. Substituting this into the expression in equation (1.20) and
rearranging gives the plasmon-polariton dispersion relation explicitly as

ω ω= + c q . (1.22)p
2 2 2

This simple dispersion relation is drawn as the solid line in figure 1.3. We have also
included for comparison the dashed line ω = cq which corresponds to the light line
for propagation in a vacuum. There are two limiting regions of interest for the
polariton. One is for ω ≪cq/ 1p when ω ω≃ p and the other is for ω ≫cq/ 1p when
ω ≃ cq. There is also a band gap of forbidden frequencies where no plasmon-
polaritons exist and this occurs here in the frequency range from 0 to ω .p

The above discussion relates to an example of a bulk (or volume) excitation, since
no account has been taken of any surface or boundary and the linear excitation
propagates (or is wave-like) in all three spatial dimensions. Other linear types of
polaritons may occur that are associated with surfaces and interfaces, and this
behaviour will be one of the main topics in chapter 5.

We discussed earlier how NL effects could arise, for example, through a Kerr-
type form of the dielectric function, as in equation (1.18). Before concluding this
section we will outline a case of a NL polariton due to this term; more details will be
given in chapter 7 (but see also [4]). This example is related to the phenomenon
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known as self-guiding and can occur for polaritons at an interface (see [16, 17] for
reviews). We start with a qualitative description by recalling that within linear optics
the guiding condition for a light wave to remain localized (through multiple internal
reflections) within a film is that the refractive index of the film should exceed the
refractive index of the bounding medium on each side [14, 15]. It might therefore be
expected that, provided (i) ɛ and ρ in equation (1.18) are both positive and (ii) the
electric-field term ∣ ∣E 2 can be localized with a large value near a surface, the situation
will be broadly analogous to a guiding film with a large refractive index. The above
conditions can, in fact, be realized as we now demonstrate by considering an
interface between a linear medium and a Kerr NL medium.

Specifically we will assume that the NL medium fills the lower half-space <z 0,
while a linearmediumoccupies the upper half-space >z 0.The interface between them
corresponds to the plane z = 0 and the system is assumed to be infinite in the x- and y-
coordinate directions. We look for solutions for which the electric field is a s-polarized
wave, which means that it can be written as = EE (0, , 0) with its propagation being
along the x-direction. From Bloch’s theorem and assuming an angular frequency ω it
follows that all electromagnetic-field quantities are proportional to ω−q x texp(i i ).x
Substitution of equation (1.18) into the wave equation (1.19) yields

⎛
⎝⎜

⎞
⎠⎟κ ρ ω− − =E

z c
E E

d
d

0, (1.23)
2

2
2

2

2
2

Figure 1.3. Dispersion relation for a linear plasmon-polariton (solid line) in a 3D material, as given by
equation (1.22). The angular frequency, in terms of dimensionless ω ω/ p is plotted versus dimensionless
wavenumber, in terms of ωcq/ .p
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where we define κ, which is real for large enough qx, by

κ ɛω= −q c (1.24)x
2 2 2 2

and we assume solutions exist where E is real. The NL differential equation can then
be solved by multiplying each side of (1.23) by E zd /d and integrating to obtain

⎛
⎝⎜

⎞
⎠⎟ κ ρ ω− + =E

z
E

c
E

d
d 2

0. (1.25)
2

2 2
2

2
4

Here a constant of integration has been set to zero on the assumption that both E and
E zd /d tend to zero as → −∞z inside the NL medium. Next, equation (1.25) can be

rearranged as an expression for E zd /d as a function of z and directly integrated, giving

κ
ρ ω κ

=
+

E
c

z z
2

cosh[ ( )]
(1.26)

1 2

1 2
0

as the solution appropriate for <z 0, where z0 is another constant of integration.
For completeness we also need to consider the solution for E in the linear medium
(labelled 1) for >z 0. By contrast with equation (1.23) we now have a much simpler
second-order linear differential equation, for which the solution satisfying the
requirement →E 0 as → ∞z is

κ= −E E zexp( ). (1.27)1 1

Here κ ɛ ω= −q c( / )x1
2

1
2 2 1/2 by analogy with equation (1.24), with ɛ1 denoting the

dielectric constant of medium 1 and as before we take κ1 to be real. The constant E1

is easily found from the electromagnetic boundary condition at the interface z = 0
that the tangential electric-field components must be continuous. We are still left,
however, with the problem of finding the other constant z0.

This kind of situation is typical of many problems involving NL excitations and
in the present case it can be handled by finding another equation involving z0 from
consideration of the power flow in the propagating wave. In electromagnetism this
comes from the time-averaged Poynting vector [14, 15] and further discussion will be
deferred to chapter 7. However, we have demonstrated here by the form of equation
(1.26) that a spatially localized electromagnetic wave can occur due to the non-
linearity of the medium.

1.2 Survey of types of nanostructures
In the examples given so far, we have considered excitations in unbounded (bulk)
media, in a 2D sheet (for graphene), or at the planar interface between two media.
More generally there may be multiple boundaries (surfaces or interfaces) that affect
the dimensionality and symmetries of the system, thus modifying the form of
Bloch’s theorem. Also, the boundaries introduce different length scales and here we
will be mainly interested in effects in the range of nanometres (nm) up to micro-
metres (μm). We will now describe briefly some of the different nanostructures that
will be considered in the following chapters. Examples are represented schematically
in figure 1.4.
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1.2.1 Low-dimensional structures

In this category we have materials with reduced dimensionality as expressed in terms
of the number of spatial dimensions in which there is translational symmetry. They
include the 2D cases of thin films with finite thickness L and parallel planar surfaces,
as well as sheets of atoms such as the graphene example mentioned earlier. They are
characterized by a 2D space lattice associated with the planes of atoms parallel to
the surfaces, as mentioned in subsection 1.1.1, and the form of Bloch’s theorem will
be modified slightly compared with equation (1.8) to become

ψ = ·( )z U zr q r r( , ) exp i ( , ). (1.28)q

We have assumed that the z-axis is chosen to be perpendicular to the surfaces, so the
in-plane vectors are = x yr ( , ) and = q qq ( , ).x y The challenge in solving for the
excitations in films is finding the z-dependence of the amplitude termU zr( , ).q

In the case of linear excitations in films we will often find later that this z-dependence
is expressible as a linear combination of terms having the form q zexp(i ),z

j( ) where qz
j( )

may be complex with a series of allowed values labelled by j (see, e.g., [4]). There are
two possible situations that may arise. One is that qz

j( ) is real and thus it represents the
third wave-vector component of a bulk excitation in the film with total wave vector

= qq q( , ).z
j( ) This bulk excitation is affected by the film surfaces because it must satisfy

boundary conditions there. The other possibility is that qz
j( ) may have an imaginary

part, which we denote as κi . Then the q zexp(i )z
j( ) term will involve a real factor such as

κ− zexp( ), which is characteristic of a localized surface excitation that decays with
distance from one of the film surfaces. A surface excitation can therefore be typically
described in terms of a 2D wave vector along with a decay length that is equal to κ− .1

The category of low-dimensional structures also includes nanowires (or nano-
rods), which have just one direction of translational symmetry (the axis along the
length of the wire) and therefore the excitations are characterized by a 1D wave
vector. The straightforward modification of Bloch’s theorem in this case yields

ψ = ( )x y z q z U x y z( , , ) exp i ( , , ), (1.29)z qz

where it is assumed here that the z-axis is along the translational symmetry axis.

Figure 1.4. Schematic illustration of some types of nanostructures: (a) low-dimensional structures, (b) periodic
multilayers or superlattices and (c) laterally patterned periodic structures.
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Finally, we may have structures that are finite in all three dimensions, such as a
small cuboid or a sphere. These have no translational symmetry (so Bloch’s
theorem does not apply) and they may be labelled as being 0D, such as the
‘quantum dots’ that have been of particular interest for semiconductors or
flat ‘platelets’ or ‘disks’ for magnetic materials (see, e.g., [18, 19]). The low-
dimensional structures mentioned here are illustrated schematically using examples
in figure 1.4(a).

1.2.2 Multilayers and superlattices

If more than one material is utilized, then more elaborate cases of nanostructures
can arise than those in the previous subsection. One simple possibility is to build up
multilayers with alternating thin films of two materials, denoted as A and B, to form
an ⋯ABABAB pattern of growth on a substrate material. Such an example is
provided in figure 1.4(b) for the materials shown in different colours. The simplest
case would be a bilayer AB, but multilayers with a large number of layers (e.g.,
hundreds or more) can be fabricated. In all cases these systems would have the
property of translational symmetry for lattice directions parallel to the planar
surfaces and interfaces. Thus the 2D Bloch’s theorem in equation (1.28) still applies,
with the only essential difference being that the term U zr( , )q may have a more
complicated dependence on z. There may, for example, be excitations that are
localized only near the interfaces between A and B layers.

Another aspect of multilayers that makes them of special interest occurs when all
the A layers have identical properties (composition, thickness, etc) to one another
and likewise for all the B layers. The structure then consists of repeats of the same
basic AB building block. If there is a large number of these repeats, then a new
symmetry operation emerges corresponding to translations in the z-direction
through a periodicity length = +D d d ,A B where dA and dB denote the thicknesses
of the individual A and B layers. We then have an example of a periodic superlattice,
for which the inbuilt artificial periodicity in the z-direction may be associated with a
new 1D Brillouin zone that extends in reciprocal space from π− D/ to π D/ . Since D is
typically much larger than the lattice parameter a of either constituent material, this
new Brillouin zone is smaller than the crystal Brillouin zone. This can have striking
consequences for the excitations that propagate as waves in the perpendicular
(z-)directionof the superlattice.A smallerBrillouin zone can sometimesbeadvantageous
as regards the experimental techniques for studying the excitations and it also leads to a
‘folding’ of the dispersion curves, as we will discuss through examples in section 1.5 and
later chapters.

The concept of a superlattice was originally introduced by Esaki and Tsu [20] for
ultrathin semiconductor multilayers where the layer thicknesses were less than the
electronmean free path, but currently the term is appliedmore generally formultilayers
that are either periodic or are generated according to certain mathematical rules. In the
former category we may also have periodic arrangements with three (or more)
components, ⋯ABCABCABC for example, as well as the two-component superlattice
described above. In the latter category wemay include quasi-periodic superlattices (see,
e.g., [21], where the sequencing of layers along the growth direction is quasi-periodic in
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the sense that it involves two different fundamental periods whose ratio is an irrational
number. One way to achieve this is through the Fibonacci sequence of numbers, F{ }n
with integer =n 0, 1, 2, ..., that is defined by the recursion relation

= ++ +F F F , (1.30)n n n2 1

with the initial conditions = =F F 1.1 0 It is straightforward to prove that as n
becomes very large ( → ∞n ) the ratio +F F/n n1 tends to the value + ≃(1 5 )/2 1.618
which is known as the golden mean. For the application to Fibonacci superlattices
some fundamental property of the layered growth is developed by analogy with
equation (1.30), as explained later. The excitations in quasi-periodic superlattices
have novel properties (e.g., regarding their localization, multifractal behaviour, etc)
that make them of special interest [22].

1.2.3 Laterally patterned structures

By contrast with the previous subsection we will now discuss some artificial
nanostructures produced by a lateral arrangement (usually periodic) of elements
such as that represented in figure 1.4(c). This shows an alternating sequence of
stripes of two different materials deposited side-by-side on a planar surface, rather
than stacked vertically. Interest in such structures was given impetus in 1987 through
seminal work by Yablonovitch [23] and John [24], who studied artificial electro-
magnetic materials, typically in low dimensions, that have periodic modulation of
the refractive index. This was originally undertaken with a view to control the
propagation, localization and scattering of light, and led to periodic structures
known as either photonic crystals or alternatively photonic band-gap materials for
applications in optoelectronics. Some consequences for the photonic band structure
in periodic cases are developed in section 1.5.

More recently, aided by advances in materials growth and fabrication on the sub-
micron scale, other types of laterally patterned materials have been utilized to study
phonons (hence phononic crystals), SWs or magnons (magnonic crystals; MCs) and
plasmons (plasmonic crystals), among others. One of the characteristic features of
these materials is the tailoring of the band structure of the excitations and the
forbidden-frequency gaps (or band gaps) in the spectrum. We shall discuss these
cases in more detail in later chapters. Just as with the superlattices in the previous
subsection, effects will arise due to a modified Bloch’s theorem and mini-Brillouin
zones due to the artificial periodicity. The example depicted in figure 1.4(c) with a
striped array is a 1D crystal in the lateral plane, but 2D patterning (as with a chess or
checker board array) provides another case of interest.

1.3 Experimental techniques for dynamic properties
Although a wide range of different physical phenomena will contribute to the
dynamic properties of materials, many of the same experimental techniques will be
applicable. This will also be the case as regards the theoretical tools needed to study
the excitations and so it is useful to give a broad introduction in this chapter and to
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provide some general references. The experimental aspects are covered first in this
section and the theoretical topics will be described in section 1.4.

We will emphasize here the techniques that are most useful as regards the
dynamical properties and characterization of the excitations. These include inelastic
light scattering, inelastic particle scattering, electromagnetic techniques and mag-
netic (or spin) resonance methods, etc. A fuller account can be found in [4]. We do
not describe here the sample growth and preparation techniques, or the analytical
tools for surface and interface structural properties, since these are not the focus of
this book and they have been extensively covered elsewhere (see, e.g., [19, 25, 26]).

Both Raman and Brillouin scattering of light by dense media involve an inelastic
process whereby the incident light of angular frequency ωI (or a photon of energy

ωℏ I) and wave vector kI interact with the medium by creating or absorbing an
excitation and producing a scattered light beam. Although these effects were
discovered in the early part of the 20th century, it was not until much later with
the advent of the laser and other technical developments that they were widely used
for studying bulk and surface excitations. The essential difference between the two
techniques lies in the method used to analyse the frequency of the scattered light; this
involves a grating spectrometer for Raman scattering (RS) (where the wavenumber
shifts of the light are typically in the range 5–4000 cm−1) and a Fabry–Pérot
interferometer for Brillouin scattering (where the wavenumber shifts are below
about 5 cm−1). Note that a wavenumber shift of 1 cm−1 corresponds to a 29.98 GHz
frequency shift. We label the excitation by ω and q and the scattered light by ωS and
k ,S and the two possible processes (known as Stokes and anti-Stokes scattering) are
represented schematically in figure 1.5. When the light scattering takes place in a
bulk (effectively infinite) 3D transparent material the energy and momentum are
conserved and so

ω ω ωℏ = ℏ ± ℏ ℏ = ℏ ± ℏk k q, , (1.31)I S I S

where the upper (lower) signs correspond to the Stokes (anti-Stokes) case. The
dispersion relations for the incident and scattered light yield η ω∣ ∣ =k c/I I I and

η ω∣ ∣ = ck / ,S I S where ηI and ηS denote the corresponding values of the refractive
index. The above relations, together with the conservation properties in equation
(1.31), imply that only excitations with wave vectors near the centre of the Brillouin
zone in a bulk material are excited.

There are several modifications for the application of light scattering in low-
dimensional and/or optically absorptive materials. First, with thin films and

Figure 1.5. Representation of the (a) Stokes and (b) anti-Stokes processes of inelastic light scattering.
The incident and scattered photons are depicted by solid lines and the created or absorbed excitation by a
dashed line.
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multilayers on the one hand, or nanowires and nanowire arrays on the other, the
conservation of momentum will apply only in the 2D or 1D direction(s) where the
system has translational symmetry. In the other dimension(s) there will be a spread
of wave-vector components for the excitation, implying a spread of frequencies in
the measured spectrum. The extent to which this occurs depends on the optical
absorption (or imaginary part of the refractive index) in the material. If the absorption
is large, which is typical for metals and some semiconductors, the light will penetrate
only close to the surface of the material, so light scattering can be sensitive to surface
properties and to the excitations localized there. In the case of 0D materials (or dots)
none of the wave-vector components will be conserved. As well as providing
information about the frequencies, light scattering also probes the intensities of the
excitations. The scattering cross section is, in fact, related to the correlations between
components of the electric field for the scattered light and this provides a connection
between theory and experiment, as we describe later. Some general references for
inelastic light scattering are [27] (mainly in bulkmaterials), [28, 29] (mainly in thin films
and multilayers) and [30] (mainly in other low-dimensional materials).

Next we turn to the inelastic scattering of particles by the crystal excitations. In
principle this process may involve larger momentum changes than encountered with
light, so by contrast particle scattering may be useful for probing excitations
throughout the entire Brillouin zone, depending on the type of particle involved.
In electron energy loss spectroscopy (EELS), and in its high-resolution variant
(HREELS), a beam of electrons is scattered from the surface of a material, as
reviewed in [31, 32]. A typical geometry for the scattering of particles from a planar
surface is shown in figure 1.6, where a surface excitation such as a phonon is emitted
or absorbed in the process. The condition for conservation of energy yields

ω= ± ℏE E , (1.32)I S

where we follow the notation in figure 1.6 and the upper (lower) sign refers to the
creation (annihilation) case for the excitation. The other scattering condition
corresponds to the conservation of the momentum component in the direction
parallel to the surface plane, giving

θ θℏ − ℏ = ℏk k qsin sin . (1.33)I I S S

Also, we have the classical energy–momentum relations = ℏE k M( ) /2I I
2 and

= ℏE k M( ) /2S S
2 with M denoting the particle mass. Generally for EELS or

Figure 1.6. Geometry for inelastic particle scattering from a planar surface of a material, where the incident
and scattered beam are in the same vertical plane.
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HREELS we can approximate by assuming ω≫ ℏE ,I which is usually well satisfied
(e.g., if ∼E 100 eVI and ωℏ ∼ 100 meV), implying ∣ ∣ ≃ ∣ ∣ ≡ kk k .S I I For the same
reason we can also ignore Umklapp processes in equation (1.33). It follows that, by
varying the angles θI and θ ,S the in-plane wave vector can be varied across its 2D
Brillouin zone and the ω-versus-q dispersion relation for the surface excitation can be
investigated. An example of this type of analysis is provided by the work of Lehwald
et al [33] for phonons localized at a Ni surface. Spin-polarized EELS has been used for
magnetic excitations at surfaces [34]. It involves employing a spin-polarized incident
electron beam together with a polarization analyser in the scattered beam.

The inelastic scattering of particles that are much heavier than electrons allows
for larger momentum changes and hence offers the prospect of making it easier (in
principle) to study excitations with large wave vectors. Inelastic neutron scattering is
well established for studying bulk excitations. However, neutrons interact only very
weakly with materials and have macroscopically large penetration depths, so this
method is relatively insensitive to surface effects. This drawback may be mitigated if
the surface or interface area is effectively increased (e.g., by using a short-period
superlattice) or if a neutron beam is used at grazing incidence to a surface (see, e.g.,
[35]). However, in the context of surface excitations, the inelastic scattering of small
neutral atoms, such as He atoms, has proved to be more useful. The He atoms at
suitable incident energies (e.g., of order 20 meV) will be scattered back from a
surface by essentially just the first monolayer (ML) of the material. Also the atoms in
the incident beam will have a de Broglie wavelength (=h ME/ 2 I ) that is typically
comparable with the lattice constant, so the entire 2D Brillouin zone can be studied.
The technique was pioneered by Brusdeylins et al [36] using time-of-flight spectro-
scopy to study surface phonons. The basic equations for the scattering are essentially
the same as for EELS, equations (1.32) and (1.33), except that it is no longer true
that ≃k kI S because of the larger particle mass here. In the case of a 90° scattering
geometry (when θ θ π+ = /2I S in figure 1.6) it is straightforward to show that ω and
q∥ are related by

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ω

θ
θ

= ℏ +
−k

M

q k

k2

sin

cos
1 . (1.34)

2
I
2 I I

I I

2

This allows the dispersion relation of a surface excitation to be deduced.
To conclude this section we briefly mention some experimental techniques that

are specific to certain types of excitations. Others will be mentioned in later chapters.
Magnetic resonance techniques are widely used for excitations in magnetic materi-
als, both in the bulk and in low-dimensional geometries (see [29] for a review). At
low power levels a microwave magnetic field (in a direction transverse to the
magnetization) will couple linearly to the zero wave-vector SWs (magnons) in a
ferromagnet, leading to the ferromagnetic resonance (FMR) condition when the
frequencies of the field and excitation match. The analogous effect in antiferro-
magnets is called antiferromagnetic resonance (AFMR) and typically occurs at
higher frequencies. In SW resonance (SWR) in ferromagnetic thin films the
technique is used to excite selectively the standing SWs across the film thickness
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that have small but nonzero wave vectors. At higher power levels the oscillating
(or ‘pumping’) magnetic field can be used to promote various NL SW processes in
ferromagnets, as we will discuss in chapter 7.

Another area involving specialized techniques occurs with excitations that
generate electromagnetic waves. These can be studied using optical methods that
employ, for example, evanescent wave coupling in the region near closely positioned
interfaces between media of different refractive index. This is the basis of the method
of attenuated total reflection (ATR), which has been successfully applied to
plasmons and polaritons (see chapters 4 and 5). Evanescent wave properties are
also exploited in scanning near-field optical microscopy, which is a form of scanning
probe microscopy.

1.4 Theoretical methods for dynamic properties
1.4.1 Equations of motion for excitations

Some of the theoretical considerations have already been mentioned in earlier parts
of this chapter, particularly in subsection 1.1.2, where we presented some simple
examples of linear and NL excitations. There we emphasized the role of an equation
of motion for the excitation amplitude, e.g., Maxwell’s wave equation for the electric
field as in equation (1.19), along with boundary conditions and/or the use of Bloch’s
theorem to deal with spatial periodicity where needed.

From such an approach one would normally be able to deduce the excitation
frequency and hence a dispersion relation, as well as information about the spatial
variation in the case of a localized excitation. As discussed earlier in section 1.2, a
bulk excitation will depend on a 3D wave vector q, whereas a surface or interface
excitation at a planar interface will be characterized by a 2D wave vector q and one
or more attenuation factors (or decay lengths). Other considerations apply in 1D
and 0D systems, as mentioned before. Calculating the excitation frequencies in a
low-dimensional system normally involves having a set of homogeneous equations of
motion satisfied by the amplitude variable(s) in the different parts of the system.
These equations may either be differential equations if a macroscopic (or contin-
uum) approach is being followed, as in the previous examples given for electro-
magnetic excitations, or finite-difference equations if a microscopic approach is
used, as in a discrete-lattice model. Both approaches will be used throughout the
following chapters. Also, in some cases, numerical simulation packages have been
developed to carry out these calculations. An example is the Object Oriented
MicroMagnetic Framework (OOMMF) project at the US National Institute of
Standards and Technology, which is applicable to studying a range of properties of
micromagnetic low-dimensional systems [37].

It is useful to briefly consider some other examples that involve a homogeneous
equation of motion, apart from the electromagnetic one given previously. First we
take the case of an infinite, isotropic elastic medium with a longitudinal vibrational
wave (an acoustic phonon) propagating in one direction, which we label as the
z-direction. If we denote u z t( , ) as the local displacement in the z-direction of the
medium, ρ as the uniform density of the medium and vL as the longitudinal sound
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wave velocity, the usual linear wave equation with weak damping (constant γ > 0)
included is (see, e.g., [1, 3])

ρ ργ ρ∂
∂

+ ∂
∂

− ∂
∂

=u
t

u
t

v
u

z
0. (1.35)

2

2 L
2

2

2

A solution is easily found by taking ω∝ −u z t qz t( , ) exp[i( )] which yields the
condition ω ωγ+ = v qi .2

L
2 2 In the limit of zero damping (γ → 0) this gives the

usual acoustic-phonon dispersion relation ω = v q,L as expected.
When a discrete-lattice approach is followed, leading to finite-difference equations

for the spatial variables instead of differential equations, some special techniques are
useful. One of these is the tridiagonal matrix (TDM) method, which is useful for
surface and interface problems when the interactions are short range, often just
between nearest neighbours. A general outline of the method is given in the appendix
and some applications are discussed later, e.g., for the lattice dynamics of phonons in
chapter 2 and for exchange-dominated SWs in ferromagnets in chapter 3.

A somewhat different situation will occur if the excitation is described in terms of
a quantum-mechanical operator, rather than a classical amplitude as above. This
will be so, for example, in the case of a magnetic system consisting of a lattice of
atoms where each atom is associated with a spin angular-momentum operator (see
chapter 3). If the quantum-mechanical system is represented by a Hamiltonian H,
then the equation of motion for any operator A of the system is obtained from [38]

ℏ =i
A
t

A H
d
d

[ , ], (1.36)

where ≡ −A H AH HA[ , ] ( ) denotes the commutator between the two operators.
For simplicity we shall henceforth usually take units such that ℏ = 1. Equation
(1.36) may be either a linear or NL equation in A, depending on whether the
outcome of evaluating the commutator of the operator A (for the excitation) with
the Hamiltonian gives an expression that is linear in A or has some other more
complicated dependence. Examples of both cases will arise later in this book, but it is
probably most clearly illustrated for magnons in ferromagnets (see chapters 3 and 7).

1.4.2 Linear-response theory for excitations

In many cases we are interested in other properties of the excitations apart from their
dispersion relations. For example, we may need to know the relative statistical
weighting (or spectral intensity) of the excitations or to find a scattering cross section
to compare with experiment. This information can be provided by linear-response
theory and we will now outline this method and then illustrate it with an example.
The basis of the method is to calculate the response of the system to a small applied
stimulus, taking care to choose the appropriate classical or quantum variables
(relating to the excitation being studied). The response functions provide not only the
dispersion relations for the relations but also the intensity-related information
mentioned above. General accounts of linear-response theory are to be found, for
example, in [4, 39] where the connection to Green functions is also explained.
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A comprehensive treatment in the context of low-dimensional systems can be found
in [40]. Here (and also in the appendix) we will present, for later reference, only the
important results.

We suppose that a time-dependent perturbation described by Hamiltonian
= −H t Bf t( ) ( )1 is applied to the system, where f(t) is a scalar external field that

couples linearly to a system variable denoted by the operator B. An example is when
B is a displacement from equilibrium in an elastic medium and f(t) is a mechanical
force. The total Hamiltonian can be written as

= −H H Bf t( ), (1.37)0

where H0 denotes the Hamiltonian for the unperturbed system, taken to be in
thermal equilibrium at time = −∞t . At any later time the response of the system can
be expressed in terms of the change Ā t( ) produced in any other system variable
corresponding to an operator denoted as A. The procedure for doing this is outlined
in the appendix and the main conclusion is that

ω¯ =ω ωA A B F; ( ), (1.38)

where ¯ωA and ωF ( ) are defined to be the frequency Fourier components of Ā t( ) and
′f t( ), respectively. This result holds within a linear approximation in terms of the

perturbation term and the proportionality factor written as 〈〈 〉〉ωA B; in equation
(1.38) is identified as the Fourier component of the Green function that describes
correlations between the operators A and B. The above result establishes the role of
Green functions as linear-response functions, in the sense that they are just the same
as the proportionality factor between an applied stimulus to the system, represented
by ωF ( ), and the response that it produces, represented by ¯ωA . The formal
definitions and some basic properties of Green functions are given in the appendix.

In order to illustrate the formalism for response functions and Green functions,
we return to the physical example of excitations in an infinite elastic medium
considered earlier in this section. The homogeneous equation of motion for the
displacement u(z) for a longitudinal acoustic (LA) wave in the z-direction was given
by equation (1.35), to which we now add a driving term (a perturbation) which is
chosen to represent a harmonic point force at position ′z in the system, i.e., we take

ω δ= − − ′( )f z t f A t z z( , ) exp( i ) ( ), (1.39)0 0

where f0 is an amplitude and A0 is the area presented by the system in the xy-plane.
The total interaction energy with the system is

∫ ∫ ∫ ∫ω δ

ω

= − = − − − ′

= − − ′

H t u z f z t x y z f t u z z z z

f t u z

( ) ( ) ( , )d d d exp( i ) ( ) ( )d

exp( i ) ( ), (1.40)

1 0

0

so it takes the general form assumed earlier. The equation of motion on generalizing
(1.35) becomes

ρ ργ ρ ω δ∂
∂

+ ∂
∂

− ∂
∂

= − − ′u
t

u
t

v
u

z

f

A
t z zexp( i ) ( ). (1.41)

2

2 L
2

2

2
0

0
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As anticipated, the outcome is that we now have an inhomogeneous differential
equation. We may first take a common time dependence such as ω− texp( i ), leaving
as the equation for the spatial dependence

ρ
δ+ = − − ′u

z
q u

f

v A
z z

d
d

( ), (1.42)
2

2
2 0

L
2

0

where the complex q2 is defined in the same way as following equation (1.35). We
seek the solution that is bounded as − ′ → ±∞z z and has the correct behaviour as

− ′ →z z 0. It may easily be verified that the result is

πρ
= − ′u z

f

v A
q z z( )

i

2
exp(i ). (1.43)0

L
2

0

In the spirit of linear-response theory this is the driven equation for u(z) due to a
harmonic force applied at point = ′z z . From equation (1.38) we obtain the Green
function as

πρ
′ = − ′ωu z u z

v A
q z z( ); ( )

i
2

exp(i ). (1.44)
L
2

0

Since the above result is a function of − ′z z , as expected for a system with
translational symmetry, we can re-express it by making a Fourier transform from
the spatial variables to a wave-vector component k in the z-direction:

∫
π ω ωγ

≡ ′ − ′ =
− −

ω ω
−∞

∞
− − ′

( )
u u u z u z z z

A v k
; ) ( ); ( ) e d( )

1

2 i
.

(1.45)

k
k z z

,
i ( )

0 L
2 2 2

The last step for this result is accomplished by splitting the range of integration into two
partswith < ′z z and > ′z z .Wenote that the condition for the energy denominator to be
zero yields the dispersion relationω = v kk L for the excitation (an acoustic phonon) if the
damping is ignored. This illustrates a general property for the denominator of Green
functions. Finally we may use equation (1.45) together with the fluctuation-dissipation
theorem in the appendix to obtain〈∣ ∣ 〉 ωu k

2
, which is ameasure of the spectral intensity (or

mean-square amplitude) of the excitation as a function of k andω. A numerical example
of the result appears in figure 1.7, where the peaks occur for ω close to ω± k provided the
damping is relatively small (γ ω≪ k). The peaks are unequal in height due to the
statistical-mechanical weighting, which depends on the temperature T. This has con-
sequences, for example, regarding the difference in intensities observed between Stokes
and anti-Stokes peaks in inelastic light scattering, as we will discuss in chapters 2 and 3.

1.5 Photonic band gaps in periodic structures
We have already briefly mentioned periodic structures in subsections 1.2.2 and 1.2.3,
which are typically formed from two or more materials, either as superlattices or as
lateral arrays. The bands of excitations in such structures (i.e., their frequency versus
wave-vector relationships) can be very complicated in general and particular
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features may sometimes arise, such as the appearance of band gaps at the mini-
Brillouin-zone boundaries mentioned earlier. The properties for the occurrence and
manipulation of such bands have led to the tremendous interest in band-gap
materials, initially in the photonics case in optics (see [41] for a thorough review)
but subsequently for other excitations as well. In this introductory chapter we
present a simple formulation for a 1D photonic band-gap material (a photonic
crystal) and discuss some extensions to 2D or 3D. This treatment will serve as a
template for carrying out other calculations for periodic (and quasi-periodic)
structures in the later chapters.

1.5.1 Bulk-slab model

Here we consider alternating layers of medium A and medium B to form the
superlattice structure depicted in figure 1.8. The layer thicknesses are dA and dB, both
assumed to be large compared with the atomic lattice parameters of the materials.
The length associated with the artificial periodicity is = +D d dA B and so the 1D wave
vector Q (the so-called Bloch wave vector) in the z-direction associated with this
translational symmetry has a first Brillouin zone corresponding to π π− < ⩽D Q D/ / .
Further it will be assumed that the dielectric functions are ɛA and ɛ ,B taken for
simplicity to be the bulk dielectric constants (independent of the excitation angular
frequency ω). This is sometimes referred to as the bulk-slab model of a superlattice.

We now employ standard results from electromagnetism for the optical wave
propagation in the layers, taken to be in the xz plane. There are basically two cases,
depending on whether the waves have s-polarization (with electric-field vector E in the
y-direction) or p-polarization (with E in the xz-plane). The wave-vector component
Q enters into the calculations through Bloch’s theorem in the form

+ =z D QD zE E( ) exp(i ) ( ). (1.46)

Also all field components will be taken to have dependences on x and t as
ω−q x texp(i i ),x where for completeness we have included a wave vector qx in the

x-direction to allow for oblique incidence of the optical waves at each interface.

Figure 1.7. The spectral intensity 〈∣ ∣ 〉 ωu k
2

, versus reduced frequency ω ω/ k for the acoustic phonons in an
infinite elastic medium (see the text). We denote ω ≡ v kk L for a fixed value of wave-vector component k. The
assumed numerical values of the parameters correspond to dimensionless ωℏ =k T / 2B k and γ ω =/ 0.2.k
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The calculation for s-polarization will be shown first. The solution of the wave
equation (1.19) for Ey in any layer will be a superposition of a forward- and a
backward-travelling wave in the z-direction. Alternative forms can be written down,
depending on whether the phases are taken relative to the lower (L) or upper (U)
interface of each layer, giving

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

= − + − −

= − − + − − −

E a q z lD b q z lD

a q z lD d b q z lD d

exp i ( ) exp i ( )

exp i ( ) exp i ( ) (1.47)

y l Az l Az

l Az A l Az A

L L

U U

in an A layer (with ⩽ ⩽ +lD z lD dA) where qAz must satisfy

ɛ ω+ =q q c . (1.48)Az x A
2 2 2 2

For the field in the adjacent layer B in the same cell l (with + ⩽ ⩽ +lD d z l D( 1)A )
and with qBz defined similarly to equation (1.48), we have

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

= − − + − − −

= − + + − − +(
E d q z lD d e q z lD d

d q z l D e q z l D

exp i ( ) exp i ( )

exp i ( ( 1) ) exp i ( 1) . (1.49)

y l Bz A l Bz A

l Bz l
U

Bz

L L

U

Using a matrix notation the amplitudes in equation (1.47) are related by

=u F u , (1.50)l A l
U L

where we denote

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟=u

a

b
(1.51)l

l

l

L,U
L,U

L,U

Figure 1.8. Geometry and notation for the calculation of the photonic (optical) band structure of a two-
component alternating periodic superlattice. The wave propagation directions are taken to be in the xz plane.
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and FA is a 2 × 2 matrix given by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟=

− −F
f

f

0

0
(1.52)A

A

A
1

with phase term =f q dexp(i ).A Az A Likewise for the other layer we write

=w F w (1.53)l B l
U L

with analogous notations and definitions.
The electromagnetic boundary conditions at the = +z lD dA and = +z l D( 1)

interfaces require that Ey and Hx are continuous (implying that Ey and ∂ ∂E z/y are
continuous). These can be used to give additional relationships between the column
matrices of coefficients. The results can eventually be expressed in matrix form as

= = +X u X w X w X uand , (1.54)A l B l B l A l
U L U

1
L

where

⎜ ⎟⎛
⎝

⎞
⎠= − =X q q i A B1 1 , , . (1.55)i

iz iz

The equations (1.50), (1.53) and (1.54) may now be combined to give

=+u T u , (1.56)l l1
L L

which relates amplitudes in cell l to the equivalent part in cell +l 1 and introduces
the transfer matrix T given by

= − −T X X F X X F . (1.57)A B B B A A
1 1

The transfer matrix has some useful properties, as we now explain. First, it is
unimodular in the sense that =Tdet 1, which can be proved from the form of
matrix products in equation (1.57). Second, the statement of Bloch’s theorem in
equation (1.46) is equivalent to

=+u QD uexp(i ) (1.58)l l1
L L

and therefore we have the property that

⎡⎣ ⎤⎦− =T QD I uexp(i ) 0, (1.59)l
L

where I is the unit 2 × 2 matrix. There is a similar equation obtained by relating ∣ 〉−ul 1
L

to ∣ 〉u ,l
L yielding

⎡⎣ ⎤⎦− − =−T QD I uexp( i ) 0. (1.60)l
1 L
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By adding equations (1.59) and (1.61) we find

⎡⎣ ⎤⎦+ − =−T T QD I u2 cos( ) 0, (1.61)l
1 L

which holds for any cell l. Therefore, from the property that + −T T( )1 = T I(tr ) ,
where ‘tr’ denotes the trace, we must have

=QD Tcos( )
1
2

tr . (1.62)

This is a general result, providing an implicit dispersion relation for the excitation
frequencies in terms of the Bloch wave vector Q and the transfer matrix T.

Explicit evaluation shows that the diagonal elements of T in the present example
are

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

= + − −

= + − −

−

− −

( )
( )

( )

( )

T f f q q f q q q q

T f f q q f q q q q

4 ,

4 .
(1.63)

A B Az Bz B Az Bz Az Bz

A B Az Bz B Az Bz Az Bz

11
2 1 2

22
1 1 2 2

When these results are substituted into equation (1.62) we find after some algebraic
manipulation that the dispersion relation in this case of s-polarization is

= −( ) ( ) ( ) ( )QD q d q d g q d q dcos( ) cos cos sin sin (1.64)Az A Bz B Az A Bz Bs

where

⎛
⎝⎜

⎞
⎠⎟= +g

q

q

q

q
1
2

. (1.65)Bz

Az

Az

Bz
s

The calculation for the case of p-polarization is very similar and it is found that
equation (1.64) is still applicable provided gs is replaced by gp where

⎛
⎝⎜

⎞
⎠⎟

ɛ
ɛ

ɛ
ɛ

= +g
q

q

q

q
1
2

. (1.66)B Az

A Bz

A Bz

B Az
p

The dispersion equation in the general form represented by (1.64) occurs
commonly for excitations in periodic structures, as we will see in later chapters. It
is sometimes called the Rytov equation, since its first derivation is attributed to Rytov
in the context of acoustic waves [42]. Full discussion of the results for the above
optical superlattice, or photonic crystal, can be found in [41, 43]. We present a
numerical example of a dispersion relation in figure 1.9 in the special case of normal
incidence where qx = 0 and the distinction between s- and p-polarization vanishes.
The plot is in dimensionless units for frequency ω versus Q. In the reduced-zone
scheme used here the dispersion curves are ‘folded back’ and gaps open up atQD = 0
and π. In this example the band gaps (or stop bands) are relatively large because we
have assumed a significant difference, or mismatch, between the dielectric constants

Dynamical Properties in Nanostructured and Low-Dimensional Materials

1-23



of adjacent layers. If the dielectric constants are taken to be close in value, the gaps
shrink to a small value.

Finally we remark that the transfer-matrix method can straightforwardly be
modified to apply other types of excitations, as well as to study the localized surface
and/or interface modes (when they exist) in periodic and quasi-periodic structures
that are either semi-infinite or finite in extent (in the z-direction). Results to illustrate
this will be covered in some of the later chapters.

1.5.2 Photonic crystals in 2D and 3D

In the previous subsection it was demonstrated that stop bandswould arise as a result of
1D periodicity in a superlattice. The interesting question arises as to whether it is
possible to achieve 2D, or even 3D, arrays that would have stop bands or band gaps for
optical signals at some frequencies and for both polarizations. The first investigations
relating to this weremade byYablonovitch [23] in 1987, while related light localization
studieswere carried out around the same timeby John [24].Amotivation for these early
studies was the realization that a stop band with the properties mentioned would
prohibit spontaneous emission of radiation in optical transitions and this could be
utilized for semiconductor lasers and devices. However, subsequently a wide range of
other quantum-optical device applications has emerged and an excellent reference is the
book by Joannopoulos et al [41], which also covers the modelling techniques used to
calculate the stop bands and the transmission characteristics.

The first realization of a full photonic band gap (PBG) material was due to
Yablonovitch et al [44] who formed a structure that absorbed 15 GHz radiation for
all spatial directions and polarizations. It was made by drilling air holes at various

Figure 1.9. Dispersion curves of frequency (in terms of ωD c/ ) versus Bloch wave vector (in terms of QD) for
normal-incidence optical waves in a 1D photonic crystal consisting of a two-component alternating periodic
superlattice. The assumed parameters are = =d d D0.5 ,A B ɛ = 3A and ɛ = 2.B The PBGs are shown as the
shaded areas.
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angles into a dielectric block. Such an arrangement, whilst effective, would be
impractical for scaling to the higher frequencies (shorter wavelengths) required for
most applications. Versatile alternative structures have been based on the so-called
‘woodpile’ periodic arrangements of semiconductor rods, in which each rod may
have a rectangular cross section with dimensions of order 1 μm and a length that is
much larger. Such an arrangement using rods of polycrystalline silicon (dielectric
constant ∼13) on a Si substrate is illustrated in figure 1.10. In this structure the
spatial alignments and separations between rods constitute an effective face-centred
tetragonal lattice symmetry and the stop band corresponds to the 10–14.4 μm range
of wavelengths. Another PBG structure that has been investigated (see [41]) is the
‘inverse opal’ arrangement. These are formed by utilizing the property of micro-
scopic spheres (e.g., of silica, SiO2) to self-assemble into an fcc lattice from a
colloidal solution. The structure can then be inverted by filling the voids between
spheres with a high-dielectric material and finally dissolving away the spheres.

As well as the intense activity mentioned above with the focus on 3D PBG
materials, there have also been advances in developing 2D structures [41]. In
particular, there have been studies of structures with artificial 2D periodicity,
including cases where the dielectric functions are dispersive, giving rise to plasmons,
phonons and polaritons, for example. We will discuss some of these 2D cases in the
later chapters.
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