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Preface

In recent years, research into energy and environmental sustainability has received
more importance in interdisciplinary areas of science and engineering due to the vast
increase in industrial globalization. So, many research organizations and academic
institutes are promoting these frontier areas as a way of developing highly efficient,
environmentally friendly technology to achieve sustainability goals. Thus, photo-
catalysis is an emerging, simple, and low-cost technique that has the potential to
resolve issues related to hydrogen generation and the photocatalytic degradation of
pollutants under sunlight illumination. This textbook summarizes the fundamental
mechanisms, properties, and applications of different types of photocatalysts. It
contains seven chapters that cover the current progress and future scope of new and
advanced photocatalytic materials, written by well-known authors in these fields.
Therefore, this textbook is designed to be of benefit in undergraduate as well as
postgraduate courses in science and technology. As per the global scope of
environmental research, this book can provide an ideal platform for the reader to
understand the concepts presented in a more systematic way, increasing their interest
in the content of the book. So, we thank all the contributing authors for their efforts
to enhance the depth of this book and their expertise in making this textbook
attractive among the other books. We also thank IOP Publishing for introducing this
textbook on new and advanced photocatalytic materials and their sustainable
approach for the betterment of mankind. We sincerely hope this book can ultimately
make a significant contribution to research and development activities in the field of
photocatalysis.
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Vijay B Pawade and Bharat A Bhanvase

Chapter 1

An introduction to photocatalysts and their
applications

Vijay B Pawade and Bharat A Bhanvase

This chapter introduces the fundamentals of photocatalysts and their role in the
development of sustainable technologies. It explains the basic principles, mecha-
nisms, and workings of photocatalysts for wastewater treatment and hydrogen
generation. It also explores the different types of photocatalysts, including their
characteristics and features at both the nanoscale and the microscale. The methods
of synthesis and the importance of green synthesis compared to other conventional
routes are discussed in detail. In addition, this chapter discusses some other
important parameters reported in the research literature, such as the reusability
and stability of photocatalysts, factors affecting the photocatalytic performance of
photocatalysts, and the need for new and advanced strategies to improve the
photocatalytic efficiency of photocatalysts for the production of energy and the
development of environmentally friendly technology.

1.1 Introduction
In the last few decades, a major worldwide focus has been placed on the develop-
ment of sustainable technology to protect the environment and maintain the
harmony of nature on our mother planet. It is our social responsibility to protect
and balance the environment through the development of new and advanced
sustainable technologies. Nowadays, there is tremendous growth and strong com-
petition everywhere due to the supply of, and demand for products in the global
market due to the vast increase in populations in underdeveloped countries. Thus, to
meet the need for low-cost products and the need to recycle cheaper raw materials,
many new small- and large-scale industries have been set up to fulfill the global
demands for materials and related products. During the recycling of technologically
outdated products and devices, many kinds of toxic gases and heavy elements are
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produced and dispersed into the air, water, and soil; these not only affect the quality
of the air, water, and soil but also increase their toxicity levels. Thus, among these
three sources of pollution, the prevention of air and water pollution are the top
priorities, as they impact all living things on our planet. They also have a major
impact. In terms of the social and economic development of nations, further
increases in pollutant levels in fresh air and water increase the potential risks to
people’s health and cause many health issues related to respiratory disorders,
dermatitis, asthma, mutagenicity, cancer, etc [1]. Photocatalysis is a more promising
and sustainable way to resolve to resolve such global environmental issues related to
air and water pollution than other techniques. Because it can effectively convert and
utilize solar energy, it has received more attention in recent years for its prospective
use in photocatalytic wastewater treatment and advanced water splitting processes
for the production of H2, which is considered to be a clean and environmentally
friendly source of energy [2, 3]. Basically, a photocatalyst is a material involved in
specific chemical reactions that take place under exposure to light radiation, in
which it converts the solar energy into other useful forms. For the photocatalytic
process, sunlight is the most prominent inexhaustible and clean source of driving
energy that leads to slow reaction conditions, high energy of the active species, and a
deep oxidation effect during the photocatalytic reaction. This reaction can be caused
by the absorption of sunlight in different regions of the spectrum, such as UV, visible
light, and infrared radiation; the specific region involved usually depends on the
photocatalyst material [4–7]. Thus, the photocatalytic process has the ability to
resolve the problems related to the environment and energy without the utilization
of excessive fossil fuels. Photocatalysts are capable and operate well under natural
sunlight, but more effort is needed for the development of highly efficient visible-
light-driven photocatalyst materials [8]. Khan et al [9] reported that research and
development into the photocatalytic process exhibits a broad scope for widespread
application in the near future. However, a few parameters of photocatalytic
materials, such as their efficiency, thermal stability, purity, environmental compat-
ibility, and low efficiency in photocatalytic reactors, are major hurdles that restrict
their application at scale. In recent years, inorganic bandgap semiconductors such as
ZnO, CdS, ZnS, ZnSe, CdSe, ZnTe, etc. have been widely studied for the photo-
catalytic process due to their unique chemical properties and high stability [10–13].
Among these, zinc oxide (ZnO) is the most favorable, environmentally friendly, and
economically viable for large-scale wastewater treatment. In the following section,
we discuss the details, principles, and working mechanisms of the photocatalytic
materials and their types that are proposed for the advanced water treatment and
hydrogen generation processes.

1.2 The principles and mechanism of photocatalysis
The photocatalytic process is based on the absorption of light by the photocatalyst,
for which metal-oxide semiconductors are preferable because of their suitability for
the formation of electron–hole pair creation in the conduction band (CB) and the
valence band (VB) [14]. Thus, during the absorption of light, electrons in the VB are
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excited into the CB where they form electron (e−) and hole (h+) pairs. There are two
photochemical reactions that involve the photoinduced electrons and holes, which
are continuously generated. A schematic of the photocatalytic process and its
mechanism of pollutant degradation under solar illumination are shown in figure 1.1.
In general, photocatalytic materials play a major role in initiating the oxidation and
reduction reactions in the presence of solar energy. The following steps are followed
during the photocatalytic process:

Step I. The generation of hole/electron pairs
Step II. The separation of charge carriers and their diffusion towards the

electrode surface
Step III. Photooxidation and -reduction reactions take place at the surface of

the photocatalyst.

Here, photoinduced holes and electrons react with O2 and H2O on the photo-
catalyst’s surface, which leads to the formation of O−2 and OH• radicals. These
radicals have strong redox potentials, and hence, when they react with pollutants,
photodegradation takes place. A possible photocatalysis reaction is shown in
figure 1.1.

When active species are adsorbed by the photocatalyst’s surface, the electron
transfer process becomes more prominent [15]. Further, during the water cleaning
process, oxygen acts as a common electron acceptor. When photogenerated
electrons react with oxygen, they reduce to O−

2 and can be transformed into various
oxygen-activated species, such as HO•, H2O2, HO2

• and HO2 anions [16, 17], which
involve the oxidation of the electron donor [18], while the generated holes can
oxidize the electron donor. At the same time, reactive oxidizing species and free

Figure 1.1. The photocatalytic mechanism under solar illumination.
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carriers react with absorbed surface impurities, and the degradation of pollutants
takes place. The efficiency of the photocatalysis process depends on the ability of the
photocatalyst to produce a large number of holes and electrons, which results in
the production of reactive free radicals. A shift in the light absorption range of the
photocatalyst into the visible spectral range helps to generate a large number of
electron–hole pairs, thereby improving the degradation response of the photo-
catalyst [19]. Hence, the absorption range plays a key role for highly active
photocatalysts.

1.2.1 Types of photocatalyst

As compared to conventional water treatment processes, advanced oxidation
processes are assigned great importance due to their stronger oxidation capabilities,
faster reaction times, and production of smaller amounts of secondary pollutants.
These processes are generally categorized into homogeneous and heterogeneous
processes, depending on the type of reaction medium. Further, they can be classified
into energy- and non-energy-related categories [20]. The abovementioned heteroge-
neous photocatalytic oxidation technique is widely accepted for the degradation of
pollutants in wastewater [21]. This technique has some advantages, such as
flexibility, simplicity, low cost, the use of an environmentally friendly catalyst,
and high photocatalytic efficiency. In the recent years, many new types of photo-
catalysts have been proposed and used for the removal of organic pollutants from
wastewater [22, 23], Some of these are discussed below.

1.2.1.1 Homojunction semiconductor photocatalysts
Homojunction semiconductor photocatalysts are synthesized by incorporating
semiconductor interfaces that have compatible bandgap energies and chemical
compositions and specific dimensions [24]. They also possess particular physical,
electrical, and optical properties and exhibit superior photocatalytic activities for the
photodegradation of waterborne organic pollutants [25]. Nanoscale photocatalytic
devices have been fabricated by using homojunction photocatalysts and are
applicable in various disciplines [26, 27]. Further, homojunction photocatalysts
help to improve photocatalytic efficiency in the production of hydrogen via the
water splitting process [28]. But the use of semiconductors for photocatalytic
applications has some limitations.

1.2.1.2 Hetrojunction semiconductor photocatalysts
Heterogeneous semiconductor photocatalysis is another type of advanced oxidation
process that has received great attention due to its prospective use in resolving
energy and environmental issues by, for example, generating hydrogen through the
water splitting process and degrading organic pollutants through redox reactions
[29]. Semiconductor heterojunctions are constructed by combining two semicon-
ductors, and they have been demonstrated to be one of the most efficient ways to
spatially separate photoexcited electron–hole (e−/h+) pairs [30, 31]. When a hetero-
junction photocatalyst is illuminated by a light source, photoexcited charge carriers
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are forced to move between the two semiconductors, building up an electric field and
hence inhibiting the recombination of the charge carriers. The formation of a built-
in electric field at the semiconductor heterojunction interface and the transfer rate of
a photoexcited charge carrier depend on the semiconductivity of the materials, the
work function, and the ratio of the CB to VB potentials of the semiconductors.

1.2.2 Single-atom photocatalysts

Single-atom photocatalysts (SACs) are considered to be low-cost, high-efficiency
photocatalysts and have been assigned more importance in the field of catalysis [32].
Qiao et al [33] were the first to report the concept of ‘single-atom catalysis’ [34].
SACs have been synthesized by loading a single metal atom onto a suitable support;
further electrons are exchanged with the support to form single-atom active sites,
enhancing the photocatalytic performance of the material [35]. Due to continuous
research into, and development of the preparation of SACs, many preparation
techniques have come into existence. Thus, the flexible pairing of metal centers and
charge carriers facilitates the preparation of environmentally friendly and sustain-
able single-atom photocatalysts with high catalytic efficiency [36, 37]. SACs are also
used to produce both homogeneous and heterogeneous catalysts [38, 39]. The
absorption range and charge separation efficiency of SACs are high [40]. As a result
of these characteristics, SACs are emerging materials in the photocatalytic field for
the evolution of photocatalytic H2 and the removal of toxic contaminants from
wastewater [41, 42].

1.2.3 Quantum-dot-based photocatalysts

Quantum dot (QD)-based composite catalysts are considered to be promising
candidates for resolving issues related to energy and environmental sustainability.
QDs are zero-dimensional spherical nanoparticles, and their physical dimension is
smaller than the exciton’s Bohr radius [43, 44]. Colloidal semiconductor nanocrystal
QDs 2–10 nm in size may contain 10–50 atoms within their volume [45]. Recently,
Kandi et al [46] discussed the scope and advantages of quantum dots in the
photocatalytic hydrogen production process. There are some characteristics of
QDs that make them suitable for enhanced H2 production compared to other types
of nanostructured materials with superior properties; these characteristics play a
significant role in enhancing photocatalytic activity. Some of the important proper-
ties of QDs are given below:

(i) The capability to absorb light in the visible spectral range
(ii) A better multiple-exciton generation rate under solar illumination due to

the quantum confinement effect.
(iii) Better charge transport and separation characteristics.
(iv) Size-dependent tuneable optical properties.
(v) Their visible-light absorption edge can be enhanced by doping them with

wide-bandgap semiconductors.
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At present, many research groups are working on the development of highly efficient
QDs based on hybrid systems that have the above characteristics and properties and
are applicable for effective photocatalysis.

1.2.4 Perovskite-based photocatalysts

Perovskite-structured materials represented by the chemical formula ABX3 belong
to a ternary family of crystalline structures in which the A-site contains metal
cations, rare earth ions, or alkaline earth metal ions with larger ionic radii and the
B-site contains transition-metal ions with smaller ionic radii, while X indicates the
oxygen atoms available in the host structure. Perovskite-structured materials
exhibit many interesting properties; further, perovskite nanomaterials show
excellent photocatalytic efficiency due to their characteristics such as superior
chemical and thermal stability, nontoxicity, cost-effectiveness, tuneable properties,
adjustable bandgap, large charge carrier lifetime, etc [47]. The shape- and size-
dependent properties of a perovskite nanostructure depend on the method of
synthesis and its structural characteristics. Today, perovskite nanoparticles have
the potential to be used in a variety of applications, such as chemical sensing,
catalysis, water splitting, and the photodegradation of organic pollutants. But
single-component perovskite materials have a broader bandgap, and hence
recombination of the charge carrier takes place much faster, which restricts their
performance in visible-light-driven photocatalysis. For effective photocatalysis
under solar illumination, strong absorption near 520 nm is needed. Further
challenges still remain, such as resolving the problems of the separation and
recycling of perovskite materials in treated water. To overcome these challenges,
further research activity and strategies, such as modification of their surface,
doping with metal ions, coupling with metal nanoparticles, the synthesis of
nanocomposites, etc. [48], are required to improve the photocatalytic performance
of these materials.

1.2.5 S-scheme photocatalysts

S-scheme heterojunction photocatalysts exhibit characteristics such as a superior
light absorption ability, a high charge carrier separation efficiency, a strong redox
potential, and a diverse range of both inorganic and organic semiconductors.
Considering the related advantages and disadvantages of conventional heterojunc-
tion photocatalysts, the step-scheme (S-scheme) is a novel semiconductor catalyst
that fulfills the current need for efficient photocatalysts [49]. Here, the heterojunction
is formed by contact between two different semiconductors, which helps to increase
the absorption band edge of the semiconductors, further improving the separation
and migration rate of the photogenerated carriers [50]. As a result of the close
contact between the different semiconductors, the electrons from the reduced
semiconductor spontaneously migrate toward the oxidized semiconductor and build
an electric field that is directed toward the oxidized semiconductor. At the same
time, the holes in the VB of the reduced semiconductor and the electrons in the CB
of the oxidized semiconductor combine, which results in the accumulation of a
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greater number of negatively charged carriers (i.e. electrons) in the CB of the
reduced semiconductor and a greater number of positively charged carriers (i.e.
holes) in the VB of the oxidized semiconductor. Thus, the S-scheme heterojunction
photocatalyst shows strong redox capacity [51] and has a wide range of potential
applications. S-scheme heterojunction photocatalysts can be categorized as inor-
ganic–inorganic [52], inorganic–organic [53], or organic-organic composites [54].
The inorganic–inorganic types of S-scheme heterojunction photocatalysts are of
great interest for the photocatalysis process.

1.2.6 rGO-based composite photocatalysts

Graphene is a zero-bandgap material, which restricts its applications, particularly
in the electronics field. Therefore, doping graphene with heteroatoms can form a
number of localized energy levels in its bandgap, and hence it can exhibit tuneable
properties that make it responsive in visible light. However, there are some
restrictions on the use of GO, such as its toxicity and corrosiveness, the explosive
nature of the reducing agents, etc [55]. However, reduced graphene oxide (rGO)
also exhibits excellent properties such as tunable electrical properties, trans-
parency, and the ability to integrate with various photoactive surfaces to enhance
their efficiencies. Further, it has good electrical conductivity and a large surface
area and is a better substitute for pure graphene which can be synthesized at low
production costs using a simple reduction process [56]. Thus, it makes rGO a
desirable candidate for solar-driven photocatalytic applications. Coupling rGO
with oxide materials promotes electron separation, boosting their photodriven
activity in the visible spectral region and promoting the degradation of some
harmful dyes. Thus, 0D, 1D, and 2D nanostructured semiconductors coupled
with rGO nanocomposites play an important role in improving photocatalytic
activity, hydrogen generation, nitroaromatic reduction, etc. In the case of semi-
conductor composites, coupling the semiconductor with rGO helps to separate
the photogenerated charge carriers at the catalyst/RGO interface. Here, the
nature of the semiconductor/rGO interface and defects in the rGO play an
important role in enhancing the photocatalytic activity. Recently, Witjaksono
et al synthesized and reported visible-light-driven N-doped rGO with reduced
bandgap energy, i.e. from 3.4 to 2.2 eV [57]. This material reduced the electron–
hole pair recombination rate by exhibiting the characteristics and features of a
visible-light-driven photocatalyst [58]. Similarly, ferrite-based rGO nanostruc-
tures are magnetic materials and have good absorption in the visible spectral
range. Further, they are strongly responsive to applied magnetic fields and can be
readily recovered using conventional magnetic bars [59]. Today, rGO is one of the
benchmark materials for improving the performance of some advanced materials
used in the development of sustainable technology [59]. Recyclability and
recovery are also important aspects of the development of new photocatalyst
materials. Researchers have made many efforts to resolve current issues and
future challenges in these fields.
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1.2.7 Semiconductor photocatalysts

Semiconductor photocatalysts contain different materials such as metal oxides,
nitrides, or sulfides (e.g. TiO2 and MoS2) [60, 61] as well as metal-free semi-
conductors such as C3N4. Other materials, such as copper, gold, and silver metal
nanoparticles, exhibit strong localized surface plasmon resonance (LSPR) properties
under visible-light irradiation. These nanoparticles were assigned great importance
at the beginning of 21st century, but they have higher costs, which restricts their
wider industrial scope. However, semiconductor photocatalysts are comparatively
lower in cost and have been a topic of research for more than 50 years, but they
suffer from the issue of a low absorption band in visible light and hence lower
degradation efficiency. Based on some characteristics, features, and innovative
approaches, they are considered promising materials for use in industrial applica-
tions at enhanced photocatalytic efficiencies. Semiconducting nanomaterial-based
photocatalysts such as ZnO, CdS, ZnS, ZnSe, CdSe, ZnTe, etc. have been studied
many times in the last few decades, and they are widely accepted due to their unique
properties and good stability, which also promote strong redox reactions [10, 11].
ZnO is the most favorable, environmentally friendly, and economical catalyst for the
large-scale treatment of wastewater due to its direct bandgap energy, which is of the
order of 3.37 eV. It also seems to have an excellent degradation response under UV
light illumination. The available wavelength spectrum of solar radiation contains
only 4% of UV light but 43% of the visible-light component. To shift the response of
ZnO under visible light, there is a need to alter the optical properties of ZnO by
adding a narrow energy gap semiconductor, which improves its absorption capacity
in visible light and also reduces the e−/h+ recombination rate [62]. ZnSe/ZnO is a
well-known example of a composite catalyst, in which ZnO is combined with ZnSe,
which acts as a narrower-bandgap semiconductor (2.67 eV). The bandgap of ZnSe is
well aligned with that of ZnO, hence, it improves the photocatalytic degradation
efficiency of ZnO [63]. However, much more investigation is still needed to explore
the future prospects of advanced semiconductor materials to fully meet the needs of
energy and environmental sustainability.

1.3 Synthesis methods
1.3.1 Chemical methods

In recent years, many conventional methods have been used to prepare nano-
structures of different dimensions [64]. Thus, the top-down and bottom-up
approaches are popular methods for the preparation of oxides and other forms of
materials. The bottom-up approach is well suited for the fabrication of defect-free
nanostructured materials of specific shapes and sizes. Some of the techniques, such
as combustion, the hydrothermal method, the solvothermal method, the sonochem-
ical method, the sol–gel method, etc. fall into the category of bottom-up approaches,
as shown in figure 1.2. These are well-known methods used in materials synthesis.
Among these techniques, great importance it attached to the green synthesis route,
which involves the use of nonacid mediums as well as nontoxic materials for the
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preparation of materials [64, 65]. Thus, the chemical approach is well suited for the
preparation of inorganic nanostructured photocatalytic materials because of its
ability to produce materials in the desired shape and size, and the methods used in
the bottom-up approach are also cheaper than those of the top-down approach. But
there is always a need to take care in the selection of nontoxic raw materials and the
formation of the final pure-phase product while avoiding the presence of the acid
medium, impurities, etc. High-temperature solid-state diffusion is also a well-known
technique that corresponds to the top-down approach used to prepare perovskite
oxide nanostructures, but this technique leads to the formation of an impure phase
that contains inhomogeneous perovskite oxide nanomaterials due to repeatedly
grinding, crushing, and preheating them before calcination. This leaves some defects
on the surface of the nanostructured materials, and the presence of such defects may
affect the properties of the nanostructured materials. In contrast, using the sol–gel
method, the coprecipitation method, or the combustion method, it is possible to
obtain pure perovskite oxide nanomaterials with a high surface area and an ideal
nanostructure size. These are the simplest and most efficient techniques with which
perovskite oxide materials are synthesized. Hydrothermal methods are also well-
known synthesis techniques that allow the nanostructure’s shape and size to be
controlled. However, these techniques require precursors that readily mix well in
aqueous solution at high temperature and constant pressure [66]. Therefore, the
hydrothermal method is an important branch of inorganic synthesis that depends on
the solubility of material in hot water under high pressure [67]. During the
hydrothermal reaction, parameters such as the type of solvent, temperature, and
time of reaction play an important role; in such reactions, nucleation and grain
mechanisms form nanosized crystallites.

1.3.2 Green synthesis

Today, green synthesis is an environment-friendly technique for the preparation of
nontoxic metal-oxide nanoparticles and has received great interest in the field of

Figure 1.2. Chemical methods used for the synthesis of materials.
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nanotechnology. During the synthesis of nanomaterials by chemical methods, some
toxic gases are liberated during chemical reactions, and the harmful chemical species
present are also adsorbed on the surfaces of nanoparticles. Thus, considering this
drawback, green synthesis is an emerging technique for the production of NPs.
Further, this method is clean, safe, and a cost-effective way to deploy environ-
mentally friendly processes [68]. It is possible to synthesize nanoparticles of different
shapes and sizes using this technique. The use of different fuels or reducing agents
also plays an important role in obtaining the pure phase and the desired nano-
structure morphology [69].

1.4 The reusability and stability of photocatalysts
Efficiency and reusability are two basic parameters that play an important role in the
practical use of photocatalysts. They can be recycled at least five times, and the
photocatalytic materials must remain stable during this process. The recovery of the
materials can be carried out through the centrifugation technique after each cycle.
The separated materials are then rinsed more than two times with deionized water.
Later, the recovered materials are reused in the photocatalytic dye degradation
process. Metal-oxide nanostructures such as acid protease functionalized silver
nanoparticles (APTs–AgNPs) exhibit excellent catalytic performance that removes
up to 95% of methylene blue (MB) dye from wastewater, and the reuse of the
materials does not significantly alter their efficiency after each run. Hence, they can
be reused more often with a minimal reduction in their efficiencies. But there is a
need for more research to resolve the issues of the maintenance of effective
photocatalysis and NP reusability associated with structural effects such as the
porosity and surface area of metal oxides [70]. NaYF4:(Gd, 1% Si)/TiO2 is another
well-known metal-oxide-coupled phosphor composite photocatalyst; it can be
reused and is stable for up to three cycles, but the degradation efficiency of this
material decreases from 95% to 60% and 40% in the 2nd and 3rd cycles, respectively.
However, NaYF4: (Gd, Si)/TiO2 composites can be considered to be low-cost and
efficient photocatalysts for the removal of pollutants from wastewater [71].

1.5 Factors affecting photocatalytic activity
1.5.1 The bandgap

In recent decades, wide-bandgap semiconductor photocatalysts have been assigned
more importance due to their use in environmentally friendly wastewater treatment
processes. Among the different types of oxides, ZnO and TiO2 are the most
promising materials; they have been studied many times because of their character-
istics, such as high chemical stability, low cost, and nontoxic nature [72–74].
However, due to their large bandgap, these types of large-bandgap semiconductors
can absorb only light in the UV region and are unable to absorb visible light. They
also have a fast recombination rate of photogenerated electron–hole pairs that
restricts the effective degradation of pollutants [75]. These issues related to semi-
conductor photocatalysts could be resolved if their light absorption range in the UV
region could be easily extended to the visible region by tuning their bandgap; this
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might be made possible by adding some impurities to their structure or by adopting
some new methods of synthesis [76]. In general, semiconductor photocatalysts
bandgaps that fall between 1.23 and 3 eV include the oxidation and reduction
potential ranges of H2O. The redox potentials of the photocatalytic water splitting
process correspond to EH+/H2 = −4.44 eV and EO2/H2O = −5.67 eV, respectively
[77]; the difference between these is 1.23 eV, which is therefore the minimum
bandgap that must be present for a material to be considered an effective photo-
catalyst. Fujishima and Honda reported water splitting by the photocatalytic
approach; they studied both large- and narrow-bandgap semiconductor materials
theoretically and experimentally [78, 79]. Semiconductor materials with a large
bandgap (greater than 3 eV) have band edge positions suitable for the overall water
splitting and hydrogen evolution processes, but their light absorption range is not
compatible with the visible spectrum. Thus, there is a need for more efforts to search
out new materials or design innovative materials with a broad absorption range that
covers the full spectral component of visible light.

1.5.2 Particle size

The shape, size, and morphology of a material can affect its photocatalytic
properties. Consider the bandgaps of bulk materials: the atomic orbitals overlap,
producing bands with a small energy gap as compared to those of nanomaterials.
However, in nanoscale metals, the orbitals are discontinuous; they rather form
discrete energy levels in the band structure, which can be tuned by changing the
nanoparticle diameter, as shown in figure 1.3. Hence, as the particle size decreases,
the electrons become more confined in the particle, and confined electrons have
more energy. Thus, the atomic orbitals of nanoparticles become discrete or
quantized. The presence of the quantum confinement effect in nanomaterials leads
to tunable electrical and optical properties.

Therefore, the bandgaps of bulk and nanostructured materials are different, and
changes in particle size affect the bandgap energy, the light absorption capacity, and

Figure 1.3. The effect of particle size on the bandgap.
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the average free range of photogenerated charge carriers in the material. When the
particle size of the material is smaller than the thickness of its space charge layer,
which is negligible, then photogenerated charge carriers migrate from the bulk phase
to the material’s surface via the diffusion process and take part in surface redox
reactions. The charge transfer rate of carriers and their separation efficiency can be
improved by reducing the charge migration distance [80]. Therefore, small particles
usually have a high specific area and show better adsorption properties that help to
initiate the interaction between the catalyst and the reactants. Small particles thereby
provide abundant active sites and a large light absorption area that hosts redox
reactions and hence improves the photocatalytic performance [81].

1.5.3 Doping

Doping elements into a different host material is the most common strategy for
improving the performance of metal-oxide semiconductors [82–85]. It can affect
many parameters, such as the morphology, particle size, bandgap, binding energy,
lattice defects, and other associated properties [86, 87]. For example, if the average
particle size of pure SnO2 particles is 52.3 nm, then the addition of Ag results in a
reduction in the particle size of SnO2; the new particle size may turn out to be 45.5
nm [88]. Further, Yakout et al [88] reported that the use of Co doping in an Ag/SnO2

system was not effective in reducing the particle size. But the addition of higher
amounts of dopants may affect the particle size, which may also result in a more
uniform grain size distribution. Entradas et al also reported [89] that the particle size
distribution was narrower when the amount of Co codoping was increased. This
created agglomeration clusters of particles in pure SnO2 due to the presence of the
dopants [90].

1.6 Strategies for boosting photocatalytic efficiency
In the last few years, many researchers have made concerted efforts to design and
develop new energy-efficient photocatalysts which are better at harvesting the
maximum component of the solar spectrum, generating large numbers of charge
carriers, and providing catalytic sites to support effective photocatalytic process [91].
To resolve the issues related to metal-oxide photocatalysts, various strategies have
been proposed in the research literature to boost the photocatalytic efficiency of
catalysts; some of these are discussed below.

1.6.1 Spatial separation of excitons

As discussed above, the photocatalytic efficiency of catalysts greatly depends on the
separation rate of electron/hole pairs. In order to generate photoinduced charge
carriers, a photocatalyst must be adequately excited by the incident photon flux
energy. These positive and negative charge carriers can take femtoseconds (fs) to
picoseconds (ps); they also subsequently take time to transit the surface of the
photocatalyst (nanoseconds (ns) to microseconds (μs)) to reach the corresponding
bands to initiate the redox reactions [92]. During the transit of charge carriers in the
catalyst, there is a high probability of e−/h+ recombination that can release heat.
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The recombination of e−/h+ pairs occurs within picoseconds to nanoseconds, which
is much faster than their transfer rate to the surface of the catalyst (where they
participate in oxidation and reduction reactions) [93]. Thus, to reduce the recombi-
nation rate, there is a need to develop new strategies to boost the separation of
charge carriers and enhance the efficiency of photocatalysts.

1.6.1.1 The loading of cocatalysts
The loading of a cocatalyst improves the separation and transfer of excitons in the
photocatalytic process, which helps to promote and stabilize the activity of the
photocatalyst. Under light illumination, the photogenerated negative charge carriers
in the CB of the catalyst are transferred toward the cocatalyst, which prevents the
recombination of charge carriers in the VB [94]. Therefore, contact between the
catalyst and the cocatalyst is essential for the transportation of charge carriers.
When the charges reach the catalyst interface, the cocatalyst helps to improve the
separation of charge carriers. When metallic cocatalysts are deposited on the surface
of photocatalysts, they form a Schottky heterojunction that restricts the backward
flow of electrons to the CB and thereby induces an electric field that enhances the
separation of charge carriers, thereby promoting effective photocatalytic activity
[95]. Semiconductor cocatalysts with narrow bandgaps also form heterostructures
that improve charge separation. Similarly, cocatalysts consisting of transition-metal
dichalcogenides have also exhibited better separation of electrons and holes because
of their unique metallic and semiconductor structures. Among the different types of
cocatalyst metals, cocatalysts such as Ag and Pt are excellent candidates for
enhancing the photocatalytic efficiency of photocatalysts [96]. Recently, Sun et al
[97] reported the photocatalytic response of CoP-loaded QDs as cocatalysts on CdS
nanorods, confirming enhanced H2 production under visible-light illumination.

1.6.1.2 Metal-oxide–coupled composites and their photocatalytic response
García et al [98] reported the photocatalytic performance of Bi codoped strontium
aluminates blended with nanocrystalline TiO2. Here, small grains of TiO2 were
made available on the surface of the strontium aluminate grains. With an increase in
the surface area of the composite grains, an enhancement in photocatalytic activity
was achieved. Figure 1.4 shows the photocatalytic degradation of MB achieved
using the blended composite catalyst under UV light illumination. It can be seen that
complete degradation of MB occurred after 210 min of UV exposure. Thus, the
composite TiO2–Bi codoped sample degraded 91.0% of the MB dye after 210 min of
exposure time. Figure 1.4 shows that lower concentrations of Bi codoping in TiO2–

strontium aluminate composites exhibit a rapid photocatalytic degradation response
as compared to pure TiO2 powder.

1.6.1.3 Persistent phosphors and their photocatalytic response
Wang et al [99] reported the photocatalytic response of persistent phosphor used for
the degradation of RhB. Figure 1.5 shows the persistent luminescence spectra of Zn2+

and Cr3+ codoped Ga2O3 phosphor. The photoluminescent excitation and emission
spectra of the phosphor were observed in the UV–visible spectral range. When the
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phosphor is illuminated under ultraviolet light, a large number of charge carriers are
created, and their energy is transferred to Cr3+ luminescence centers. These charge
carriers are trapped by the oxygen vacancies, and after the irradiation source is cut off,
the trapped electrons and holes are released and transferred to the luminescence
centers by Cr3+ ions, which then emit characteristic persistent luminescence.
Figure 1.6 shows the degradation of RhB as a function of the irradiation time.

Figure 1.4. Photocatalytic degradation of MB as a function of exposure time under UV light illumination. The
photodegradation responses of TiO2–Bi(2.0 and 0.0 mol%) codoped strontium aluminate composites are shown in
curves (a) and (b), and the response of pure TiO2 is shown in curve (c); the responses of the TiO2–Bi (15.0 and 1.0 mol%)

codoped strontium aluminate composites are shown in curves (d) and (e), respectively. Reprinted from [98],
Copyright (2015), with permission from Elsevier.

Figure 1.5. The persistent luminescence spectra of Ga2O3:Cr
3+

(0.01) and Zn2+(0.005) phosphors. Reprinted from
[99], Copyright (2014), with permission from Elsevier.
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It was found that the absorption of RhB photocatalyzed by Ga2O3:Cr
3+

(0.01) reached
10% under UV light irradiation in 180 min, while the absorption of RhB photo-
catalyzed by the doping of Zn2+(0.005) into Ga2O3:Cr

3+
(0.01) took only 120 min. Thus,

it can be seen that doping with Zn2+ can improve the photocatalytic properties of
Ga2O3:Cr

3+
(0.01) phosphor [100, 101].

1.6.1.4 The photocatalytic response of nanosized mixed metal oxides
It is well known that wide-bandgap nanosemiconductors such as TiO2, ZnO, SnO2,
CeO2, and NiO have excellent abilities to remove toxic dyes and organic pollutants
from wastewater via photocatalytic degradation [102]. Nanosized titania (TiO2) has
a superior ability to remove textile dyes via degradation because of its effective
generation of charge carriers under UV light illumination. However, due to its large
bandgap, it does not work effectively under a visible-light source. Therefore, mixed
metal-oxide systems have recently gained more importance due to their good
photocatalytic degradation performance under visible or UV light sources.
Various mixed metal-oxide systems that incorporate TiO2, such as TiO2–CeO2,
TiO2–SnO2, TiO2–CuO, TiO2–CdO, etc. have been shown to have excellent photo-
catalytic properties. These types of coupled metal-oxide systems exhibit better
visible-light-driven photocatalytic activity and have higher dye degradation effi-
ciency when used to remove toxic dyes and organic contaminants [103]. Recently,
Rajendran et al [104] reported the photocatalytic response of a TiO2/NiO composite
catalyst used for the degradation of methyl orange. According to their experimental
evidence, they observed 98% of methyl orange degradation within 60 min of
irradiation. Here, the best performance (98%) of the composite catalyst was
observed at pH = 7 (neutral), as shown in figure 1.7. In this composite system,
the p–n junction takes a form in which Ni3+ states promote a large number of

Figure 1.6. The absorption degradation of RhB as a function of irradiation time under ultraviolet light
irradiation. Reprinted from [99], Copyright (2014), with permission from Elsevier.
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electrons, which reduces the recombination rate and helps to enhance the photo-
catalytic degradation process under visible light.

1.7 Applications
Due to globalization in the industrial sector, issues related to energy and the
environment are becoming more serious. Nowadays, water and air pollution are hot
topics due to their adverse effects on human health. To control and resolve these
issues, there is a need to adopt sustainable technology for the betterment of
mankind. Photocatalysis is an evergreen and economically viable way of solving
the problems associated with wastewater treatment and air pollution. Hence, this
research topic has become more attractive in the fields of science and engineering.
Considering the global need for sustainable energy and environmental technology to
replace traditional polluting technologies, photocatalysis is one of the better
approaches with which to explore the innovative idea of using clean and natural
solar light energy [105]. In the 1970s, Honda and Fujishima published their
important discoveries related to water splitting and hydrogen generation using
TiO2 semiconductors for photocatalysis [60]. The scope of photocatalysts in energy
and environmental sustainability is discussed below.

1.7.1 Energy sustainability

In the last few decades, many countries have used fossil fuels such as coal, oil, and
agricultural waste products to generate electricity in power plants to fulfill the
demand for energy in all sectors; such fossil fuel uses have made a major
contribution to air, water, and soil pollution all over the world. The utilization of
oil and petroleum products in automobiles and heavy transportation vehicles is

Figure 1.7. The degradation performance of the composite catalyst at different pH values. Reprinted from
[104], Copyright (2020), with permission from Elsevier.
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another major cause of air pollution. The use of this type of traditional power
generation technology disperses many kinds of harmful pollutants into the atmos-
phere, so the level of toxic contaminants affecting the air quality index is increasing
rapidly; these pollutants are also a major cause of global warming. To reduce
environmental damage, there is an urgent need to develop and replace the tradi-
tional sources of energy and related polluting technologies with sustainable energy
sources. Among the different renewable and sustainable energy sources, hydrogen is
the most promising source for the current century, as it has the advantages of being
an eco-friendly form of energy with lower production costs; however, it still has
some challenges, such as increasing the production rate, storing the fuel, etc [106].
The photocatalytic production of hydrogen results in pure hydrogen that can be
converted into energy and H2O, which is also environmentally friendly [107]. In the
past, hydrogen was produced using nonrenewable resources such as natural gas and
petroleum-based technologies. However, these processes suffer from some disadvan-
tages and liberate some other pollutants that are not much cheaper to deal with from
a commercial perspective [108]. Hence, considering the previous drawbacks as well
as the economic and environmental benefits of the new and advanced photocatalytic
hydrogen generation process using solar light energy as the source of clean and low-
cost sustainable energy technologies [109].

1.7.2 Environmental sustainability

In recent years, water pollution from industrial waste has been a very serious global
issue. Contamination due to heavy metals and organic dye molecules in natural
water resources accumulates for a long time, causing negative effects for organisms
and human health.

To conserve natural water resources and control environmental pollution, there is
an urgent need to develop environmentally friendly water purification technology and
other sustainable energy technologies to avoid environmental issues in the air, water,
and soil. From the literature database [100–110], it can be seen that approximately
10 000 types of dyes are used in industry for different purposes; therefore, the amounts
of textile dyes and other dyes found in industrial wastewater are excessive. When these
spread into fresh water resources, many types of toxic contamination can affect the
quality of the water. The consumption and use of such contaminated water may cause
health issues such as skin rashes, sinus infections, and cancer by entering the human
ecosystem through water and animals [110]. Traditional methods including biological
treatment, reverse osmosis, coagulation, adsorption, and ultrafiltration are ineffective
water treatment processes [111]. Compared to these methods, the energy-efficient
photocatalysis process has great potential to remove and degrade organic pollutants
naturally using solar energy; it represents the lowest-cost and most favorable method
that can utilize low-cost and nontoxic catalysts for the development of technology for
water purification and environmental protection [112, 113]. Therefore, many research
organizations are currently working in fundamental and applied research areas in the
field of environmental sustainability to protect our planet and maintain the harmony
of nature.
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1.8 Conclusions and future prospects
Photocatalysis is a promising low-cost, energy-efficient, and environmentally
friendly technique for resolving environmental and energy problems. There is a
great demand for metal-oxide photocatalysts with a visible-light-driven photo-
catalytic response for the production of hydrogen and wastewater treatment.
Further, research into large-scale production and treatment processes remains
incomplete. So, in the future, more work is needed to develop this environmentally
friendly technology that utilizes natural sunlight for the photocatalytic reaction. In
this century, more research is focused on the development of sustainable technology,
and photocatalysis has attracted great interest due to its attractive and broad scope
for use in the near future due to the current global problems related to energy and
the environment. There are still a few challenges in the development of photo-
catalytic materials, such as achieving high efficiency, thermal stability, purity, and
environmental friendliness and overcoming low efficiency in photocatalytic reactors,
which is also a major hurdle for their use on a large scale.
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