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Chapter 1

Introduction to smart healthcare and the role of
cognitive sensors

Smith K Khare, Asif Manzoor Khan, Varun Bajaj and G R Sinha

Artificial intelligence, deep learning, and machine learning technologies have greatly
facilitated the upgrade of healthcare systems. Implantable sensors, wearable
cognitive devices, and portable monitoring systems have enabled the acquisition
and analysis of physiological data from anyone, anytime, anywhere. Furthermore,
advancements in the Internet of Things (IoT) have facilitated the healthcare
transition from face-to-face consulting to telemedicine. Cognitive sensors offer a
way to monitor an individual’s activities and biological and physiological traits.
These sensors offer a wide range of applications in brain–computer interfaces,
human activity recognition, diagnostic and decision tools for brain disorders, and
analysis of human physiology. This chapter introduces a framework for smart
healthcare systems, summarizes state-of-the-art smart healthcare systems, the role of
cognitive sensors for health monitoring, an overview of applications using cognitive
sensors, challenges in implementing smart healthcare, and the security challenges of
smart healthcare systems. This chapter also aims to explore the current challenges in
existing healthcare systems and future directions for advancing healthcare technol-
ogies with an integration of the Internet of Things and cognitive sensors.

1.1 Introduction
The word ‘smart’ has recently gained massive popularity in various fields. This word
has evolved to follow a lightning progression in the research of technology
development with simplistic procedures, tremendous information in terms of data,
speed in decision-making, efficient power consumption, and secured systems [1]. The
building of an intelligent system has contributed to almost every area, including
innovative schools, intelligent transportation, smart campus, smart healthcare, and
many more [1]. The intelligent system, in simple words, is a combination of the
physical world composed of many sensors, actuators, algorithms, calculations, and
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decision-making. These components are information technology elements integrated
with day-to-day objects and data networks, making the system intelligent and
efficient. Smart healthcare is one such element or application area of these smart
environments. Cognitive sensor data analytics combined with smart healthcare play
an essential role in cognitive healthcare systems. A cognitive sensor enables timely
detection of severe brain disorders and provides a way to improve the brain–
computer interface. This chapter provides an overview of three critical components
which are listed below:

(i) Introduction of smart and secure healthcare systems;
(ii) Elements of cognitive sensors;
(iii) Broad application areas and decision-making tools for sensor data

analytics.

The remainder of this chapter is organized as follows. Section 1.2 provides an
overview of smart healthcare systems along with critical components and security
components. Section 1.3 covers different types of cognitive sensors along with
application areas and data analytics stages, and finally, section 1.4 covers a
conclusion of the study.

1.2 Smart healthcare
Health is a lack of illness, but also, it is characterized by a combination of mental,
social, and physical well-being. People need good health for a happy and better life,
a principle component of human life. The lack of medical experts, nurses, and
physicians, outdated health services, a poor standard of living, and an ideological
gap between the people of urban and rural areas are responsible for global health
issues. The increase in informatization in today’s era has resulted in the advance-
ment of scientific theory and technologies. There is a rapid transition from tradi-
tional medicinal solutions to digitized solutions from abundant data. Intelligent and
innovative health are not just mere words. Multi-level changes from low to high-
level information has resulted in overall development. Low-level information can be
routine activities, dietary habits, standard of living, etc. In contrast, high-level
information comprises data acquired from body sensors, medical history, environ-
mental factors, and family history. Technology advancement has resulted in caring
from disease-centered treatment to patient-centered treatment, generalized to
personalized management, clinical to regional health management, from disease
level diagnostic treatment to preventive healthcare treatment [2] (figure 1.1).

1.2.1 Idea of smart healthcare

The concept of intelligent healthcare was first coined from the ‘Smart Planet’,
introduced in 2009 by IBM. The Smart Planet was composed of embedded types of
sensors that acquire data as multi-level information, denoising the data to make it
free from artifacts. The artifact-free data is transmitted over channels using the
Internet of Things (IoT), followed by information processing over the cloud using
supercomputers, which then results in decision-making [3]. Similarly, smart
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healthcare integrates different parties for a targeted healthcare issue. To realize this,
smart healthcare takes data from the sensors connected to various human body
vitals using wearables and transfers the data from mobile to dynamically integrated
networks for data analytics and decision-making using artificial intelligence (AI)
algorithms. In simple words, smart healthcare is transitioning from treatment after
disease diagnosis to the tracking of vitals to prevent it from occurring.

1.2.2 Technologies of smart healthcare systems

Competent healthcare consists of data acquired from multiple sensors with different
parameters. The data can be an individual’s habits, diet, activities, and type of work,
as well as the data relating to vital organs like the heart, brain, muscles, etc [4].
Multiple biosensors record this data from the vitals in electrical activities, imaging
techniques, or other techniques [5]. The next component of smart healthcare includes
multiple participants like medical experts, nurses, patients, research institutes, and
hospitals. Smart healthcare is an entire world composed of multi-dimensional data
analytics for monitoring and preventing diseases, early diagnosis and timely treat-
ment of diseases, intelligent data management, decision-making for individuals’
good health, and new medical research breakthroughs. The elements of biotechnol-
ogy combined with the IoT, modern mobile technologies, digital electronics, big
data, and AI are the building blocks of intelligent healthcare, constituting the overall
development of medical technologies. Assistance to the patients or individuals is

Figure 1.1. Broad overview of a smart and secure healthcare system.
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offered by monitoring and analyzing data from multiple wearables and offering
medical facilities through virtual assistance [4].

In contrast, from the medical expert’s perspective, data is monitored remotely
through a smart clinical decision support system. Based on the output of this system,
assistance is provided to improve diagnostic services. Doctors use different inte-
grated and multifunctional information platforms, including electronic healthcare
records, laboratory management systems, picture and video communication sys-
tems, etc. Hospitals and research institutes use wireless services, including technol-
ogies like radio-frequency identification and the IoT for managing the supply chain,
integrated data accumulation services, and high-performance computing for deci-
sion-making. Smart healthcare systems also assist medical experts in robotic surgery
and tele-solutions in providing precise and accurate surgical operations. From a
nurse’s perspective, continuous monitoring, robotic assistance, and monitoring
sensor data remotely can improve patient care. Finally, the use of AI, machine
learning (ML), and big data analysis to screen drug data enables the identification of
suitable subjects for testing and evaluation. Therefore, through continuous data
analysis using advanced technologies, smart healthcare provides intelligent, low-
cost, efficient, and low-risk solutions for medical assistance through telemedicine,
fruitful use of medical resources, secured data transfer, and accurate surgical
operations for a healthier society [5].

1.2.3 Status of the applications in smart healthcare systems

The applications and services of smart healthcare systems are mainly categorized
into three parts: individual and family users, regional institutes, and scientific
research centers (e.g. hospitals and universities). The critical application areas of
smart healthcare systems are explained in the following sections.

1.2.3.1 Treatment and diagnostic assessments
Technological advancement, the rapid growth of ML and AI, and intelligent robotic
technology have facilitated smart and innovative treatment and diagnosis of acute
diseases. High-performing artificial intelligence has improved and achieved results
for acute illnesses like cancer, hepatitis, COVID, and other types of healthcare
abnormalities. Today, robotic and AI solutions have surpassed the accuracy of
clinical experts, researchers, and doctors. Deep andML-based automated computer-
based clinical decision support systems have taken pathology and image-based
detection to the next level. One example in this series is the clinical decision support
system provided by IBMWatson (capable of delivering minute detailing of literature
and clinical data). With a clinical support system, doctors offer early detection and
diagnosis of various disorders, which reduces the probability of misdiagnosis, and
provides timely medication [7].

1.2.3.2 Intelligent health management
The number of chronic diseases reported annually is rising worldwide [8]. Chronic
diseases are incurable, slow, long for disease advancement, and costly to treat [9].
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Health management through traditional healthcare systems and a doctor-centered
approach are incompatible, incapable, and error-prone, with a rapid increase in
cases. The new healthcare system offers automated patient monitoring, analysis of
health data, and medical intervention of healthcare data. It also automates patient
health data management through applications and information platforms. The
advancement in data analytics has also facilitated the integration of data from
multiple sensors to provide hierarchical health management systems using decision
support systems. In addition, mobile platforms use wearable data to provide
economical healthcare solutions, reduce medical errors, and provide ease of
communication between a user and medical experts.

1.2.3.3 Virtual assistant
Virtual assistance is the analytics of big data as an information source and provides
user-assisted or desirable output after evaluation through some algorithms and
learning from past experiences. It uses expertise and understanding of scenarios to
finish various tasks. Virtual assistance is crucial in bridging the gap between patients,
nurses, doctors, and research institutes in the healthcare environment. The use of
virtual assistance from a hospital or research institute perspective can facilitate
saving workforce and medical resources efficiently to cover the need of doctors and
patients simultaneously. From a doctor’s perspective, virtual assistance helps to
provide critical information to the patients and assists the patients with efficient
medical procedures, thereby providing the best solution with minimal use of
resources and time. On the other hand, from the patient’s point of view, virtual
assistance can significantly help track changes in the sensor data analytics in terms of
abnormal body behavior and enable them to seek medical services more efficiently
and conveniently [10].

1.2.3.4 Prevention and monitoring of diseases
Conventional healthcare diagnostic procedures are manual in terms of involving
medical and scientific experts to collect data and make analyses. This includes data
collection, comparison of healthcare records per the defined standards of the
authorities, and providing the observed findings [11]. These manual, time-consum-
ing, error-prone, and data-dependent techniques make the system inaccurate and
slow. As a remedy, a smart healthcare system and analytics of various sensor data
can be an effective solution. The smart disease analytics model acquires data from
smart apps and wearable devices. The acquired data is uploaded to the cloud
through wired or wireless networks. The efficient signal analytics and ML models
with some efficient algorithms analyze the data and make real-time predictions to
provide support through short message services [12]. These systems are updated to
track the changes in decision-making or assist with the change in data.

1.2.3.5 Smart hospitals
The concept of intelligent hospitals is composed of three elements which are family
or individuals (service seeker), doctors and nurses (service provider), and hospitals/
research institutes (service infrastructure). Smart hospitals are information and
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technology-dependent, integrating IoT and data from various sensors [13]. The
services provided by smart hospitals include services to patients, services to
management, and services to the doctors/staff. The benefits to patients can be
digital data monitoring, robotic assistance, innovative pharmaceutical services, and
smart/secure payment services. The services to medical staff include smart assistance
through digital platforms like computer-based decision-making, help through
automated robots, and computer-based drug assistance to patients. Similarly, digital
management of staff, intelligent tracking of biological instruments, digital drug
management, and advanced services are provided by infrastructure management.

1.2.3.6 Drug discovery
The increasing amount of data, development of AI, and multi-disciplinary collab-
oration make drug research and development a prominent area. The traditional
approach for drug discovery includes target screening, drug research and discovery,
recruiting subjects for trials, clinical trials, results in analysis, and decision-making.
The traditional methods are manual, slow, biased, and error-prone. However,
automated screening of subjects, analysis of effects, and results using AI not only
enhances discovery results but also expedites the research process. AI and ML not
only provide an effective solution but also ensure robustness by auto-updating the
parameters and features based on the addition of data from different races and
countries [14].

1.2.4 Security of smart healthcare systems

All computer-based technologies are affected by a fear of security concerns.
Similarly, serious security threads can also attack and affect intelligent healthcare
systems. Healthcare systems are associated with critical data related to the health
status of an individual. If cyber-attackers or individuals attack such data, it might
modify crucial information, which may have life-threatening effects. Taking into
account the importance of data, if necessary measures are not taken, vulnerabilities
in the system could enable hackers to steal important information. In addition,
continuous monitoring, rigorous auditing, and periodic updates are required to keep
the system safe and secure [15]. The integrity, availability, authorization, confiden-
tiality, non-repudiation, and authenticity of the system must be fulfilled to secure it
(figure 1.2).

Alongside the security aspects mentioned earlier, some issues are also required to
be addressed [16]. A minor breach in the security of an intelligent system could claim
a life of an individual or affect multiple patients (figure 1.3). The following aspects
are also required to be taken into consideration such as:

• routing attacks;
• location-based attacks.

In routing-based attacks, denial of services (DoS) is critical and can affect the
security of healthcare systems and patient data. Many services are demanded or
requested with unknown traffic to slow down or disable the benefits to patients and
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hospitals. In DoS, patients may gain access to information without any authenti-
cation. It also enables attackers to send false information about the patients resulting
in misdiagnosis, fraudulent emergency calls, and wrong treatment. A pictorial
example of DoS is shown in figure 1.4(a).

Location-based attacks are categorized into Sybil attacks, replay attacks, and
forwarding attacks (figure 1.4(b)–(d). During Sybil attacks, an attacker uses a fake
ID to communicate with other nodes in the network. It destroys the identity of the
nodes obtained while communicating and replicates the counterfeit nodes.

Figure 1.2. System requirement for a secure environment.

Figure 1.3. Types of attacks in a smart healthcare system.
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In a replay attack, an attacker gains access to a healthcare system, capturing the
network information and sending it to the receiving node with the claim of being an
original or authenticated user.

The forwarding or a gray hole attack is a particular type of black hole attack.
During forwarding attacks, access is gained to multiple nodes that behave like a
normal node. Information is dropped in terms of packets and attempts are made to
send new packages with the wrong information. This is one of the most dangerous
attacks; harmful to the medical healthcare systems or patients seeking treatment.

The above threats are malicious to the healthcare system, and demand an urgent
solution. The steps following can mitigate these security threats.

1. Timely update of the hashes and the certificates.
2. Periodical conduction of secure booting.
3. Secured authentication.
4. Strong and secure communication and routing protocol.
5. Devices with end of life capabilities.
6. Efficient and secured storage of certificate and keys.
7. Update of firmware, devices, and applications.
8. Voice, facial, handprint, and fingerprint scanner.
9. System with durability, flexibility, stability, uniqueness, and universal

characteristics.

Figure 1.4. Exemplary illustration of various attacks: (a) denial of services attack, (b) multiple ID Sybil attack,
(c) drop selected packets and forward attack, and (d) replay attack.
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1.3 Cognitive sensors
The human brain is one of the crucial organs in the body. It is the central control
module of the body that coordinates activities like memory creation, physical
activities, emotional sensation, and hormone secretion. Analogous to the electronic
computer system, neurologists consider the brain a biological computer responsible
for reasoning, problem-solving, creativity, and capturing and storing external
information [17]. It combines about 100 billion neurons and 1000 billion support
cells. These cells and neurons communicate through electrochemical reactions to
generate a pattern as per the changes occurring in the brain providing information
about neurological states [18]. These patterns are studied to develop a real-time
brain–computer interface (BCI) system and detect brain disorders.

1.3.1 Types of cognitive sensors

Multiple techniques have been developed over time to access brain patterns. These are
categorized as blood flow based and electrical activity based methods. The blood flow
based plans include computerized tomography (CT), magnetic resonance imaging
(MRI), functional MRI (fMRI), and positron emission tomography (PET). These are
based on the fact that cerebral circulation and neuronal processing are correlated.
Electrical activity based approaches overcome these limitations since electric waves
are quick and direct measures of brain activity. Electroencephalography measures
the electrical activities of the brain, magneto-encephalography measures magnetic
activities of the brain, and the brain activity in fNIRS is measured by using
near-infrared light.

1.3.1.1 Computed tomography
Hounsfield was the first to coin the prototype of the CT scanner in 1969. It is also
known as x-ray CT, utilized by archeologists, biologists, radiologists, neurolo-
gists, and other scientists to study and analyze a targeted area by generating cross-
sectional images [19]. CT scans use x-rays to show the brain’s structure, with
details such as blood perfusion (plates a and b). The perfusion generates two-
dimensional images that are often low in resolution. Over time, significant
improvement in CT scans have been achieved. Different variants of CT scans
have been developed to generate high-resolution images that enable deeper
investigation of brain regions. High-resolution CT requires high radiation drug
dose but results in the production of high-resolution images. Micro-CT can
produce a spatial resolution of about 1–100 μm. Three-dimensional ultrasound
CT is another advancement with high-resolution 3D proofs for identifying various
abnormalities and disorders.

The risk of CT is minimal. However, if produced by a more significant number of
scans, this slight risk may result in serious public health issues. The radiation from a
CT scan increases the risk of cancer [18]. The CT scan technique is especially more
likely to cause cancer in children than in adults. As per the study, the chances of
developing brain tumors and leukemia increase after exposure to CT radiation [20].
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1.3.1.2 Positron emission tomography (PET)
The PET scan technique is a functional nuclear medicine technique used to display
the total concentration of the labeled radioactive elements in the body with clear
images. The PET scan measures the emissions from radioactive materials called
radiotracers injected into the bloodstream. The tracers are labeled with fluorine-18
(F-18), nitrogen-13 (N-13), oxygen-15 (O-15), and carbon-11 (C-11) [21].

The amount of radioactive dose injected during PET is the same amount as used
in a CT scan. The typical duration to obtain a PET scan is about 10–40 min. The
positron emission data is computer-processed to produce two- or three-dimensional
images showing the distribution of chemicals throughout the brain. A cyclotron
produces positron-emitting radioisotopes, which are utilized to label chemicals [19].
The PET scan is a powerful tool for diagnosing non-curable brain disorders like
schizophrenia, Parkinson’s, and Alzheimer’s, and in addition, to identify local
neurofunctional changes by voluntary movements and tactical movement of the
human body.

1.3.1.3 Magnetic resonance imaging
Magnetic resonance imaging (MRI) is a non-invasive visualization to study the
anatomy of the human brain and other vital human organs. The MRI technique
provides excellent fine resolution of the gray and white matter of the brain [19, 22].
The different variants of MRI are gradient and spin echo, magnetic resonance
angiography, susceptibility and diffusion-weighted, and functional MRI (fMRI).
The advantage of MRI is that it is radiation-free compared to other imaging variants
like PET and CT scans. During MRI studies, a strong magnetic field is produced by
magnets. The magnetic field results in hydrogen ions alignment in the targeted
portion. The spin echoes of these ions produce images by the computer system. In
addition, it is also possible to get time-series data from the fMRI. MRI and fMRI
have been widely used to detect brain infections, CNS tumors, brain disorders, and
spine infections.

1.3.1.4 Functional near-infrared spectroscopy
In preterm newborns undergoing intensive care, fNIRS was first utilized to monitor
the proper supply of nutrients and oxygen to the brain [23]. It was first used with a
single channel measurement. fNIRS is a non-invasive neuroimaging technique that
maps measurement of brain tissue concentration. It assesses variations in blood
oxygenation levels in various brain regions, revealing the areas of the brain
employed for various cognitive tasks. Through the use of fNIRS, the color of light
reflected back from the skull is measured.

It is becoming more commonplace to examine infant brains using this method
because it is absolutely secure. Using this method to measure brain activity carries
no risks. Additionally, fNIRS provides better spatial and temporal resolution than
EEG and fMRI, respectively. Furthermore, although fNIRS’ spatial resolution is
less precise than fMRI’s, it nevertheless allows for the localization of activity
patterns to certain cortical areas. When examining the quickly developing brains of
young infants and children, such knowledge is essential.

Cognitive Sensors, Volume 2

1-10



1.3.1.5 Magnetoencephalography
Magnetoencephalogram (MEG) signals measure the brain’s magnetic field variations
that capture neuronal activities [24]. The spatial resolution of magnetoencephalography
is much better than that of electroencephalography. Due to the excellent spatial
resolution provided by anMEG, it has been widely accepted in detecting brain disorders
and stroke identification. The technological advancement has also improved spatial
resolution to another level because of source location techniques and an increased
number of sensors (i.e. more than 250 channels). The main difficulty in capturing the
brain’s neuronal activities using anMEG is the strength of signals generated by anMEG
of order pT (which is about 100 times less than that of the Earth’s magnetic field) [24].
However, the minute magnetic field generated by neuronal processing is measured
by a highly sensitive magnetic field meter called a superconducting quantum
interference detector, due to which an MEG recording is possible. Digital advance-
ment has proved magnetoencephalography to have a unique feature in the assess-
ment of stroke motor rehabilitation. The quantitative magnetoencephalography
technique has also shown a significant breakthrough in brain disorder and stroke
assessment. However, MEG-based research was started very late, requiring further
exploration for stroke assessment and brain disorder detection. In magnetoence-
phalography, a specific magnetically shielded room is needed to avoid the effect of
external magnetic noise on the brain-generated magnetic field. This limits MEG
utility to real-time aspects like BCI systems. In addition, magnetoencephalography
requires bulky and costly equipment.

1.3.1.6 Electroencephalography
The other technique based on electrical activity extensively used for assessing brain
patterns is an electroencephalogram (EEG) record [25]. The measure of electrical
activities of the brain’s nerve cells of the scalp is measured by an EEG. The
advantages of an EEG include short time constants, function in realistic environ-
ments, and simple and inexpensive equipment. EEG signals study various neuro-
logical states in the form of electrical activities. During an EEG recording, sensors
placed at the appropriate location on the scalp can reveal crucial information about
the changes in the brain. EEG electrodes are placed over the head of subjects using
the 10–20 electrode positioning system [26]. It is an internationally standardized
system which records spontaneous EEG. The recorded EEG signal has amplitude in
the micro-volts (μV) range, and frequency variation falls in the range of 0.5–60 Hz [25].
The recording of an EEG provides excellent temporal resolution of rapid brain
activities, but it comes with a cost of limited spatial resolution due to a limit on
electrode placement [24]. The technological advancement in EEG acquisition has
facilitated up to 256 electrodes or channels. An EEG signal consists of several base
frequencies or rhythms, which reflect certain behavioral, diagnostic, therapeutic, and
neuropsychiatric states of the brain [25]. The base frequencies of an EEG are
categorized into the following frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha
(8–13 Hz), beta (13–30 Hz), and gamma (30–60 Hz) [25]. EEG signaling facilitates
portable, low-cost, non-invasive, non-radioactive, and real-time solutions for acquiring
neural activity [27]. This attracts researchers across the globe to investigate changes in
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the brain from EEG signals for various physiological conditions and neurological brain
disorders [28, 29].

1.3.2 Applications of cognitive sensors

The data from cognitive sensors are composed of images or time-series changes in
brain activities. The data from the sensors are utilized to detect various brain
abnormalities and activities. Detection of these sensors’ instantaneous changes in the
brain has provided therapeutic and technical advancements. The revolution in
healthcare has been possible due to these minute changes in brain variation
detectors, resulting in the detection and diagnosis of various brain disorders such
as epilepsy (seizure), Parkinson’s disease, Alzheimer’s disease, schizophrenia,
attention deficit hyperactivity disorders, tumor detection, and many more [30, 31].

The increasing rate of neurological disorders has a high economic burden on
patients and their families. One person in every three individuals is affected by some
neurological condition in their life [32]. Over the past three decades, there has been a
40% increase in deaths due to neurological disorders and still counting [33]. A survey
conducted between 1990–2016 suggests that in 2016, about 276 million people had
disability-adjusted life-years due to neurological disorders [33], among the second
highest causes of death globally. The incidence of neurological disorders in males was
higher than in females [33]. The number of deaths and disability-adjusted life-years
was highest due to stroke, migraine, Alzheimer’s disease and other dementias, and
Meningitis. Epilepsy ranked fifth among all, whereas Parkinson’s disease was at 11th
position [33]. According to The Pan American Health Organization, in 2019, more
than half a million deaths were accounted for due to neurological conditions, of which
40% included male (213 129) and 60% were female (320 043) [34]. About 32.9 deaths
per 100 K population (age-standardized), including 33.1 and 32.2 deaths per 100 000
population in men and women [34]. Years of life lost due to premature mortality
(YLL) were 7.5 million (3.5 and 3.9 million YLLs in men and women, respectively).

In contrast, years lived with a disability were about 8.2 million, including 3.1 and 5.1
million males and females [34]. Most brain disorders are incurable, but their symptoms
develop over time and timely detection and proper medicationmay provide vital solutions
to prevent or reduce the advancement of symptoms. Therefore, there is an urgent need for
an accurate and automated decision-making model for the timely detection and diagnosis
of these neurological disorders. In addition, these neurological disorders severely affect the
motor imagery abilities of individuals, making it difficult for them to carry out daily
activities. Therefore, efficient and accurate detection of physiological conditions like the
detection of emotions, motor imagery tasks, sleep stages, drowsiness, and mental states
play a crucial role in developing the brain–computer interface (BCI). The development of
a BCI using physiological states not only helps in technological advancements but also
provides ways to make the individual affected by different accidents partially independent.
However, detecting neurological conditions directly from raw images and time-series
signals is difficult due to instantaneously varying signals. Therefore, analysis of these
images and signals using different tools can extract hidden representative information to
enable decision-making (figures 1.5 and 1.6).
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Figure 1.5. Direction and challenges of various levels of cognitive sensor data analytics.

Figure 1.6. Overview of multi-level cognitive sensor feature fusion.
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1.3.3 Analysis of cognitive sensors’ data

Analysis plays a crucial role in identifying critical information hidden in the data
acquired from cognitive sensors. Various types of analysis of the image and time-
series data are required to find relevant information. Image and signal processing are
crucial in removing different kinds of artifacts and noise from the image and time-
series data. Over time, various tools have been developed for analyzing and
classifying this data. A brief introduction to some of the available techniques is
listed and discussed below.

1.3.3.1 Time-domain analysis
Order statistics, principal component analysis, independent component analysis
(ICA), and optimum allocation sampling (OAS) are all elements of the time-domain
analysis used to evaluate different features [35]. The statistical features used for
analysis and classification of brain states using cognitive sensors’ data involve
evaluation of mean, standard deviation (STD), temporal mean, quartile, skewness,
and kurtosis. But direct extraction of such features may not provide distinctive
characteristics for classification. OAS converts a long-length non-homogenous
cognitive data sequence into a homogenous sequence and has also been used for
the analysis and classification of cognitive signals. ICA has been extensively used to
lower the dimensionality of the signals. It decomposes multi-dimensional time-series
signals into statistically independent components. The utility of ICA has been found
extensively in feature extraction, artifacts removal, and channel selection [36].

1.3.3.2 Frequency-domain analysis
This analysis involves transforming signals into the frequency-domain to analyze
spectrum, energy, and power. The estimation of the data spectrum is achieved with
two types of techniques:

(a) Non-parametric analysis methods, (b) parametric analysis methods. The
frequency-domain analysis done using non-parametric methods is also known as a
classical method. Power spectra are obtained from autocorrelation sequences using
Fourier transforms [37]. In this category, the Welch method is used for the
estimation of the power spectrum. However, the non-parametric methods lead to
the leakage of spectral components due to which researchers shift their interest to the
non-classical or parametric methods. Non-classical methods or parametric methods
are employed to evaluate spectral content. One such type of non-classical method is
autoregressive model coefficients. The wavelet transforms, fast Fourier transform
(FFT), and Walsh transforms have been explored for analyzing the frequency
components of the signals [38].

1.3.3.3 Filtering and non-linear analysis
Filtering techniques have also been used for the analysis of cognitive signals. Filters
have been designed to obtain different spectral components, rhythms, and features
to extract important information from the sensors’ data. Non-linear analysis
involves techniques like the largest Lyapunov exponent, fractal dimensions
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(Higuchi, Kolmogorov, and Katz), correlation dimensions, and Hurst exponent [37].
The chaotic measures have been studied to check the variability and predictability of
cognitive signals. In addition, evaluation of recurrence quantification analysis,
minimum redundancy and maximum relevance, and magnitude squared coherence
estimate have also been explored. The approximate entropy, sample entropy,
Renyi’s entropy, wavelet entropy, spectral entropy, fuzzy entropy, permutation
entropy, Tsallis entropy, Kolmogorov–Sinai entropy, higher-order spectra entro-
pies, recurrence quantification analysis entropy, Karskov entropy, Shannon entropy,
sure entropy, and neg-entropy are suggested for exploring the variability and
predictability of cognitive sensors’ data [39].

1.3.3.4 Non-stationary decompositions
The decomposition technique is a powerful tool used for the analysis and classification
of sensors’ data. It splits the signals into multi-components providing the character-
istics of a signal. These multi-components are used for feature extraction and further
for classification purposes. Discrete wavelet transform (DWT) and wavelet packet
decomposition (WPD) decompose a finite time signal into sub-bands (SBs). It is
obtained by scaling and shifting operations on the mother wavelet [40]. In DWT
decomposition, an appropriate number of decomposition stages are defined. The test
signal passes through the high-pass and low-pass channels simultaneously in the first
stage, followed by down sampling. The output of each stage represents two
components or coefficients: detail (D) and approximation (A). The approximation
(A) part is further decomposed following the same process as the previous stage. The
procedure continues until defined levels of decomposition are achieved. WPD is an
extension of DWT in which the detail coefficients D are also decomposed along with
approximation coefficients [40]. This variation produces a different number of
components for both decompositions. For the J-stages, DWT produces J + 1 set of
components, whereas WPD generates 2J set of components [40]. Advanced versions
of DWT have also been developed, which are tunableQ-factor wavelet transform [38,
41, 42], rational dilated wavelet transform [28], dual complex wavelet transform, and
flexible analytic wavelet transform which uses an iterative filter bank structure [43].
Empirical mode decomposition decomposes the signal into instantaneous amplitude
and instantaneous frequency components [44]. The sub-signals represent the combi-
nation of amplitude and frequency-modulated components called intrinsic mode
function. Empirical wavelet transform builds adaptive wavelets capable of extracting
amplitude and frequency-modulated components from a signal [45]. Separating the
distinct modes is the same as segmenting the Fourier spectrum and applying some
filtering to each detected support, which represents the capability to extract and
classify statistical features. A signal can be divided into several modes using varia-
tional mode decomposition. VMD determines the relevant bands and adaptively
estimates the bandwidth of modes, due to which it has gained wide acceptance [46, 47].

1.3.3.5 Time–frequency analysis
Time–frequency (TF) analysis describes how the spectral content of a signal varies
with time. Time–frequency representations (TFRs) are divided in two main classes:
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linear and quadratic techniques [48, 49]. Linear TFRs work on the linearity principle
(i.e. if a signal x(t) is a linear combination of some signal components, then the TFR
of x(t) is also a linear combination of the TFRs of individual signal components [48]).
Two important linear TFRs are: short-time Fourier transform [35] and wavelet
transform [50]. In quadratic TFRs, the variants of Wigner–Ville TFR have obtained
the most attention. The Wigner–Ville distribution (WVD) TFR attains a good tradeoff
between times versus frequency resolution [30, 50, 51]. The WVD has better resolution
than linear TFRs but suffers from cross-term interference.

1.3.3.6 AI-based decision-making
AI is the emulation of human intelligence in devices that have been designed to
behave and think like humans. The ability to reason and take actions that have the
best likelihood of reaching a certain objective is the ideal quality of AI. The idea that
computer programs can automatically learn from and adapt to new data without the
aid of humans is referred to as ML, which is a subset of AI. Deep learning
algorithms, which are the subset of ML, allow for this autonomous learning by
ingesting vast quantities of unstructured data, including text, photos, and video. In
short, AI is a bigger domain of which ML and DL are the subsets as shown in
figure 1.7.

With the advent of intelligent healthcare, ML has gained much traction in
medicine and is very effective. It improves service delivery, makes it faster, gives
healthcare facilities the ability to reach singularity, and improves the productivity of
medical staff by reducing the time and effort to do things. Additionally, it supports
patients’ efforts to guard their money against pointless purchases. An illustrative
classification of various machine learning modalities is shown in figure 1.8. Ml
techniques like the support vector machine (SVM), decision tree, ensemble class of
classifiers, k-nearest neighbor, and artificial neural network models have

Figure 1.7. Classification of AI, ML, and deep learning.
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significantly contributed to healthcare informatics [52]. These networks are able to
not only classify whether an individual has some abnormalities or not but also
successfully predict the risk of disease development from various day-to-day
parameters. However, with the advent of technology, the amount of data has risen
multifold. This rapid increase in the amount of data has limited the performance of
traditional ML techniques to some saturated level. Therefore, deep learning
techniques have recently grabbed a lot of attention in data analytics in almost
every field. The biggest advantage of deep learning technology is that with the
increase in input data, the system’s performance is improved drastically with more
illustrative model parameters, as shown in figure 1.9. This technological and data
advancement has shifted the data analytics domain from ML to the deep learning
era [53]. The deep learning modalities are so diverse and broad that they can be used
as a single component to discriminate or generate the domain information, but also,
in combination with these discriminative and generative data analytics, take smart
healthcare data analysis to the next level. Figure 1.10 provides a brief overview and
taxonomy of the recent deep learning techniques.

Figure 1.8. Classification of machine learning techniques.

Figure 1.9. Exemplary performance comparison of ML and deep learning techniques versus amount of data.
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1.4 Conclusion
The issues of smart healthcare and cognitive sensors are solved using technology and
regulation, which are two sides of the same coin. The first side of technology can be
inoculated by maturity, scalability, and stability of the related technologies through
updates and upgrades. In addition, we require interpretable and explainable analysis
of the big underlying data to achieve maximum performance and compatibility for
different sensors, devices, and platforms. Lastly, stable data transfer, integrity,
security, and authenticity can be maintained by the use of blockchain techniques.
Regulation of the proposed systems can be achieved through seeking expert
suggestions from relevant fields and industrial goals. As the technologies are
associated with healthcare systems, the developed solutions must provide:

• self-management;
• privacy of individuals and their data;
• timely and appropriate medical services which are cost-effective and result
oriented.

To sum up, smart healthcare should improve overall system efficiency, reduce
research time, provide timely and accurate medical aid, reduce service costs, and
have a safer environment. In terms of cognitive sensors, a standard protocol must be
designed for a particular brain-related issue. The solution must be secure to acquire
the users’ data, must be able to produce accurate interpretation with minimal human
intervention, and provide effective and timely medical treatment. There exists a lot
of challenges in the current healthcare system about the rapid and lightning
advancements in technological development, especially in the field of AI, differences
in the opinions of patients, doctors, experts, researchers, and healthcare industries,
lack of global standards, and versatile studies of the topic including various
parameters like geographical locations, race, and varying medical standards.

Figure 1.10. A taxonomy of DL techniques.
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