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Preface

This collection highlights the applications of Nanotechnology for dentistry appli-
cations. There are 13 chapters contributed by the experts from different laboratories/
regions. Nanotechnology applications in different fields of wide interest including
dental caries and erosion and dental implants have been covered in detail. Chapters
covering the nanotechnology applications for dental therapeutics and periodontal
disease management are undoubtedly meant to connect the reader to the promising
trends and alternative therapies. In addition, individual chapters with focus on
nanotechnology applications in specialties like orthodontics, endodontics and
prosthodontics have been included that are of interest to novice researchers in
addition to professionals. A chapter on neurotoxicity of different nanomaterials
used in dentistry needs a special mention as this emphasizes the need to proceed
cautiously while exploring the new dimensions of ‘Nano’. Contributors have mostly
adopted a bottom-up approach. I have tried my best to avoid intrusion in the plan of
contributing experts and this is probably the reason that individual chapters have
come up with a sense of completeness in them.

I sincerely thank Michael Slaughter, Senior Commissioning Editor—
Bioengineering, Medical Physics, Biophysics, IOP Publishing for giving me an
opportunity to present this volume. I wish to thank Phoebe Hooper, ebooks
Editorial Assistant, IOP Publishing for extending all the support during the different
publication stages of this project. I sincerely thank the expert contributors for
contributing to this volume in a timely fashion and helping me to meet the schedule.

Ashutosh Kumar Shukla, Prayagraj, India
June 2021
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Ashutosh Kumar Shukla

Chapter 1

Use of phosphate-based nanoparticles to
enhance the effects of fluoride against dental

caries and erosion

Juliano Pelim Pessan, Caio Sampaio, Igor Zen, Dongmei Deng,
Rob Exterkate, Alberto Carlos Botazzo Delbem and Douglas Roberto Monteiro

Fluoride therapy is considered one of the main strategies for dental caries control
and is responsible for the substantial decrease in the prevalence of this disease
worldwide. Nonetheless, despite the large body of evidence on the effects of fluoride
on caries dynamics, concerns on its potential side-effects, the limited action against
dental erosion, and the polarization of dental caries, have stimulated the study of
alternative strategies to enhance the effects of conventional fluoridated products on
dental caries and erosion. In this sense, the association of fluoride and polyphos-
phate salts has shown to be effective in enhancing enamel remineralization and
reducing enamel demineralization and erosive wear, both in professionally-applied
and self-application products; such effects have been recently reported to be
enhanced by the use of nanoparticles. In addition to polyphosphates, nanoparticles
of hydroxyapatite, silver, calcium fluoride, calcium sodium phosphosilicate, and
bioactive glass, have demonstrated promising effects on variables related to dental
caries and dental erosion. This chapter will present the main data on the association
of fluoride and different nano-sized compounds, from studies with different levels of
evidence, assessing the effects on enamel de- and re-mineralization, erosive tooth
wear, and on dental biofilm. Insights on the mechanisms of action and future steps
for research will also be addressed.

1.1 Introduction
The use of fluoride (F), in several vehicles and different modes of application, is
regarded as one of the main strategies for dental caries control worldwide. Its main
mechanism of action is related to its presence in the oral environment (e.g., biofilm,
saliva, mucosa, tooth surfaces), even at low concentrations, where it is able reduce
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demineralization (by protecting and/or incorporating into the apatite crystallites)
and to catalyze remineralization [1, 2]. Furthermore, the application of high fluoride
concentrations promotes the formation of calcium fluoride (CaF2) globules on tooth
surfaces, which are dissolved under acidic conditions, allowing the release of calcium
(Ca) and F in the oral environment [2–4].

Robust evidence attests that F varnishes, gels, mouthwashes and toothpastes
promote significant effects on the caries dynamic [5–8]. Nonetheless, the marked
decrease in caries incidence and prevalence in most industrialized countries owing to
the widespread availability of F, has been accompanied by increasing concerns on its
side effects, such as acute or chronic (i.e., enamel fluorosis) toxicity [9, 10].
Furthermore, the polarization of this disease in low-income countries [11], as well
as the lack of substantial action on dental erosion [12], has encouraged the search for
novel strategies aiming to enhance the preventive effect of F-products, aiming to
maximize the therapeutic effects, while minimizing unwanted side-effects.

Among the most studied compounds, cyclophosphates salts have been extensively
assessed over recent years. It has been extensively documented that the addition of
sodium trimetaphosphate (TMP) or sodium hexametaphosphate (HMP) in
F-containing products substantially improves their protective effects on dental
caries dynamics, under in vitro, in situ, and in vivo conditions [13–21]. Also,
significant effects have been reported against dental erosion [22–29]. Taking into
account the promising results described above, recent studies have further assessed
the performance of these compounds when applied in the nano-size form, with more
pronounced effects of nanoparticles over micrometric ones.

Special attention has also been given to silver nanoparticles, which have been
shown to act synergistically with fluoride on microorganisms related to dental caries
[30–33], besides demonstrating promising protective effects on enamel de- and
re-mineralization processes [33]. Another agent comprehensively studied is nano-
hydroxyapatite (nano-HAp). In spite of being often assessed alone, the incorpo-
ration of nano-HAp to F-vehicles has demonstrated promising beneficial effects on
parameters related to dental caries, dental erosion and dentin hypersensitivity, due
to its similar composition to the hard dental tissues, and to the increased surface area
of nanoparticles, which may facilitate the availability of calcium phosphate ions to
enamel [34, 35].

In addition, nano-sized CaF2 has presented promising effects regarding param-
eters related to biofilms, mechanical behavior, and F release of restorative materials
such as nanocomposites [36, 37] and resin-modified glass ionomer (RMGI) [38],
resulting in the improvement of the preventive properties without compromising the
mechanical capacity of the materials. Bioactive glass (nBAG) is another nano-
particle that has gained interest in recent years. It is often used on glass ionomer
cement (GIC) and RMGI [39], as it is able to maintain a high alkaline pH that leads
to a supersaturated ion environment, resulting in antibacterial effects [40]. Also,
nBAG acts directly on the enamel and dentine remineralization, acting by dentine
tubules occlusion and promoting rapid apatite formation [39–41].

Considering the context above, this chapter addresses the main findings on the
association of F and nano-sized cyclophosphates (TMP and HMP), nano-HAp,
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silver nanoparticles, nano-CaF2, and nano bioglass, from studies with in vitro, in situ
and in vivo protocols assessing the effects on enamel de-/re-mineralization, erosive
wear, and on dental biofilms. Insights on the mechanism of action, future steps for
research and the current level of evidence for each strategy will also be addressed. It
is noteworthy that some of the technologies above have been also studied alone (i.e.,
without fluoride), but will not be addressed in the present chapter due to its scope.

1.2 Nano-sized sodium trimetaphosphate
Sodium trimetaphosphate (TMP) is an inorganic phosphate widely employed in the
food and cosmetic industry for several decades. This polyphosphate has been shown
to increase the effects of fluoridated products on de- and re-mineralizaion, tooth
erosion, dentine tubule obliteration, and biofilm formation [20, 22, 23, 42]. When
co-administered with fluoride in dentifrices, gels, varnishes or mouthwashes, the
resulting therapeutic/protective effects are similar to or greater than those attained
by using twice as much fluoride [22–24, 26, 27], which is highly desirable from a
clinical standpoint. Regarding biofilm formation, TMP alone is known to promote a
reduction in the metabolism and components of the cellular matrix, in addition to
forming a less compact biofilm, the latter favoring acid neutralization by saliva
through the biofilm’s layers, thus preventing tooth demineralization and/or enhanc-
ing remineralization [20]. The synergism between fluoride and TMP observed in
laboratory studies was confirmed in a randomized clinical trial, given that children
who brushed with a toothpaste containing 500 ppm F containing TMP developed
significantly fewer caries lesions than those who used a conventional (1100 ppm F)
toothpaste [31].

In light of the promising results of conventional TMP (microparticulate) and
considering the advantages of nanoparticles over micrometric ones, intensive
research has focused on studies with nano-sized TMP (nTMP) over recent years.
An in vitro study assessed the effects of fluoridated toothpastes (1100 ppm F)
containing micrometric TMP or nTMP on enamel remineralization, showing that
the enamel treated with nTMP-containing toothpaste became 62% harder compared
with 1100 ppm F, and 32% harder than its counterpart containing micrometric TMP
[42]. This study also showed that the nTMP-containing toothpaste was more
effective in increasing enamel uptake by ~100% and ~150% compared with
1100 ppm F and TMP toothpastes, respectively. Similar effects have been reported
on the protection of enamel against demineralization and erosive tooth wear. The
use of a nTMP-containing toothpaste was 44% more effective in reducing demin-
eralization and promoted enamel F uptake 73% higher than its counterpart with
micrometric TMP [43]. In addition, the toothpaste supplemented with nTMP was
30% more effective against erosive tooth wear compared with micrometric TMP, in
an in vitro/ex vivo protocol. Interestingly, the effects of the nTMP toothpaste were
similar to those attained by the use of a 5000 ppm F toothpaste, reinforcing its
potential use in erosion-prone patients, including children and adolescents. The
main studies assessing the effects of nano-sized sodium trimetaphosphate on
variables related to dental caries, erosion and biofilms are summarized in table 1.1.
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These results taken together support the hypothesis that the effects of nTMP are
similar to those reported for micrometric particles, but potentiated by the properties
of nano-sized materials, such as their high ratio of surface area to volume, as well as
a high percentage of atoms on the surface compared to larger particles, which makes
them more reactive compared to micrometric particles [43]. In brief, TMP has been

Table 1.1. Summary of the main studies assessing the effects of nano-sized sodium trimetaphosphate related to
different variables assessed

Author (year) Technology Protocol Vehicle Main findings

Silva et al
(2019) [101]

nTMP In vitro GIC 1.25% CHX and 14% nTMP added to a GIC
increased its antimicrobial/antibiofilm
action and its ability to reduce enamel
demineralization, with minimal effects on
the mechanical properties of RMGIC.

Emerenciano
et al (2018)
[102]

nTMP In situ Toothpaste 1100 ppm NaF/nTMP promoted a greater
protective effect against enamel
demineralization and significantly affected
the composition of biofilm formed in situ
when compared to 1100 ppm NaF
toothpaste.

Danelon et al
(2018) [28]

nTMP In vitro Toothpaste The addition of 3% nTMP to 1100 ppm NaF
toothpastes significantly increased the
protective effect against enamel erosion
compared with its counterparts with
mTMP or without TMP. This effect was
not influenced by the presence of acquired
enamel pellicle and saliva.

Danelon et al
(2017) [43]

nTMP In vitro Toothpaste Fluoride toothpaste containing nTMP at 3%
significantly decreased enamel
demineralization compared to its
counterparts without TMP or
supplemented with mTMP.

Souza et al
(2016) [103]

nTMP In situ Toothpaste The protective effect of 250 ppm NaF-nTMP
dentifrice was similar to a conventional
dentifrice (1100 ppm F) for most of the
variables studied, having a more
pronounced effect on the subsurface lesion.

Danelon et al
(2015) [42]

nTMP In situ Toothpaste Addition of 3% nTMP to a conventional
toothpaste (1100 ppm F) promoted an
additional remineralizing effect of artificial
caries lesions compared with counterparts
with mTMP or without TMP.

TMP: sodium trimetaphosphate; nTMP: nano-sized sodium trimetaphosphate; mTMP: micro-sized
sodium trimetaphosphate; NaF: sodium fluoride; RMGIC: resin-modified glass ionomer cement; CHX:
chlorhexidine.
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suggested to retain charged ions of CaF+ and Ca++ by replacing Na+ from a cyclic
structure [23]. At acidic pH, these linkages are broken, releasing Ca++ and CaF+,
which can further take part in a series of events that ultimately would lead to the
formation of neutrally charged species (CaHPO4° and HF0) that have a higher
diffusion coefficient into the enamel than charged species [44]. Furthermore, the
association of F and TMP has been shown to enhance the formation of CaF2

deposits on the exposed tooth surfaces [22, 28, 42–45], which are known to be key
players on the dynamics of both caries and erosion [4, 46–48].

1.3 Nano-sized sodium hexametaphosphate
HMP is an inorganic cyclophosphate that has demonstrated extensive effects on
enamel de- and re-mineralization processes, on dental erosion, as well as on oral
biofilms. Due to its great affinity to metallic ions (Mg2+, Ca2+, K+, Al+, Fe3+), HMP
interacts with the dental surface, which substantially reduces mineral solubility
[14, 15, 18]. Due to these features, when co-administered with F, this phosphate
enhances the effects of dentifrices or gels on enamel de- and re-mineralization
processes, in comparison to conventional products not supplemented with HMP
[13–15, 17]. A synergistic effect between F and HMP administered in the form of a
gel was also observed on dental erosion in an in situ/ex vivomodel. It was shown that a
low-F gel (4500 ppm F) promoted significantly lower enamel wear and mineral loss
compared with a conventional formulation containing twice as much F (9000 ppm F)
[49]. In addition to HMP’s effects on the dental hard tissues, promising results have
been demonstrated on biofilms in vitro. HMP, associated or not with other actives such
as silver or F, was shown to have antimicrobial potential, besides interfering with the
composition of the biofilm’s extracellular matrix [50–52]. Although the mechanism by
which HMP acts on biofilms is still not completely clear, it is possible that the great
affinity that this phosphate presents to metallic ions (forming ionic complexes) helps
HMP to bind to Ca2+ and Mg2+from the bacterial cell walls, thus increasing cell
permeability [53, 54].

Similarly to TMP, the great effect of HMP on the above-mentioned caries and
erosion parameters has also encouraged the evaluation of this phosphate as nano-
particles (nHMP), given that reducing the size of the particles could enhance its
effects in comparison to the commercial version of the product (i.e., microparticles)
[55]. In that sense, although no evidence is available on the effects of nHMP over
conventional HMP on dental erosion, in vitro and in situ studies attest to the
additional benefits of nHMP over microparticles on enamel de- and re-mineraliza-
tion processes, and on biofilms. The most studied vehicle for coadministration of F
and nHMP is dentifrice, which has been shown to promote superior protective
effects against enamel demineralization [55, 56], besides promoting an additional
remineralizing effect of artificial caries lesions [57] compared with a F-toothpaste
containing micrometric HMP. In addition to the effects on tooth enamel, the
association between F and nHMP was shown to significantly reduce the carioge-
nicity of the dental biofilm formed in situ, as it significantly increased F and Ca
concentrations and significantly reduced the amount of insoluble extracellular
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polysaccharides in comparison to its counterparts containing micrometric HMP or
containing F alone [57]. Furthermore, the addition of nHMP to a GIC was shown to
improve F release and its antimicrobial activity, in spite of reducing the physico-
mechanical properties of the product [58]. Table 1.2 summarizes the main studies
assessing the effects of nano-sized sodium hexametaphosphate on tooth structures
and on biofilms.

1.4 Nano-hydroxyapatite
Hydroxyapatite (HAp) is one of the most studied compounds for the control of
dental caries, erosion and/or hypersensitivity, since it is a mineral essentially
composed by calcium and phosphate [Ca10(PO4)6(OH)2] found in dental enamel,
dentine and bone [59]. Knowledge on the composition of the hard dental structures
can help to better understand how nano-HAp might be an interesting alternative for
the enhancement of F-vehicles.

Table 1.2. Summary of the main studies assessing the effects of nano-sized sodium hexametaphosphate related
to different variables assessed

Author (year) Technology Protocol Vehicle Main findings

Danelon et al
(2019) [57]

nHMP In situ Toothpaste The addition of nHMP to a F-toothpaste
was able to promote an additional
remineralizing effect of artificial caries
lesions compared with its counterparts
with mHMP or without HMP.

Garcia et al
(2018) [56]

nHMP In situ Toothpaste F-dentifrice supplemented with nHMP
demonstrated a greater protective effect
against enamel demineralization and on
the composition of biofilm when
compared with a conventional
F-toothpaste or a F-toothpaste
containing mHMP.

Hosida et al
(2018) [104]

nHMP In vitro GIC HMP incorporation, especially in the nano-
sized form, in restorative GIC increased
antimicrobial activity and F release, and
decreased enamel demineralization,
despite reduced its physico-mechanical
properties, in comparison to a
conventional GIC without nHM.

Dalpasquale
et al (2017)
[55]

nHMP In vitro Toothpaste The addition of nHMP to a F-toothpaste
enhanced its protective effects against
enamel demineralization when compared
to its counterpart containing mHMP or a
conventional F-toothpaste.

HMP: sodium hexametaphosphate; nHMP: nano-sized sodium hexametaphosphate; mHMP: micro-sized
sodium hexametaphosphate; GIC: glass ionomer cement.
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Briefly, permanent dental enamel is an acellular and avascular structure com-
posed mainly of inorganic material, essentially hydroxyapatite (accounting for ~85%
of the composition), arranged as apatite crystals, which then form the enamel
prisms. The remaining volume—disposed among the crystals—is composed of water
(~12%) and organic material (~3%, mainly collagen) [2, 60, 61]. As for dentine,
although its structure is also composed of mineral content in the form of
hydroxyapatite, the volume is lower. Dentine tissue is constituted of ~47% of
minerals, ~33% organic material and ~20% water, which makes dentine more prone
to acid dissolution in comparison to enamel. Unlike dental enamel, dentine is a
vascular and cellular tissue, which means that it is susceptible to response to outer
stimuli [2, 62].

In turn, nano-HAp consists of a bioactive and biocompatible material, which acts
by facilitating the availability of calcium phosphate ions to enamel, due to its similar
composition to the hard dental tissues and to the increased surface area of the
nanoparticles compared with micrometric ones [34, 35]. Although most of the
studies have proposed the incorporation of nano-HAp in oral care products (e.g.,
toothpastes, gels and varnishes) as an alternative to F, this compound has also been
studied in association with F, in products for the control of dental caries, erosion
and dentine hypersensitivity. In brief, the effects of nano-HAp on variables related
to dental caries have been assessed in a larger number of studies compared to those
for dental erosion or dentin hypersensitivity. The data, however, is somehow
conflicting. Although some studies reported that nano-HAp enhanced the protective
and therapeutic effects of F-toothpastes on enamel de- and re-mineralization
processes [63], most of them either did not include a suitable positive control group
(i.e., a conventional F-dentifrice) or adopted a protocol insufficient to attest such
promising trends, as detailed below.

The main studies assessing the effects of nano-HAp on several variables are
described in table 1.3. A toothpaste containing nano-HAp combined with F led to a
lower demineralization depth in comparison to a placebo toothpaste [35]; however,
this study did not include a positive control group containing the active compounds
alone, which hinders any conclusion on the actual effects of this association.
Another work also observed that a toothpaste containing 7% nano-HAp and 1000
ppm NaF promoted a higher remineralizing effect compared with a F-only tooth-
paste. Nonetheless, the only parameter analyzed was surface hardness, and the
experimental groups had to be adjusted prior to statistical analysis due to protocol
limitations [64]. Besides F-toothpastes, the addition of nano-HAp to a fluoridated
varnish was also shown to promote a higher remineralizing effect of enamel surface
in comparison to a conventional F-varnish or to a paste containing casein
phosphopeptide-amorphous calcium phosphate (CPP-ACP) [64]. Despite the inter-
esting effects reported above, some methodological issues were identified, which
suggest that further in vitro studies are still demanded prior their study under clinical
conditions.

In addition to the above-mentioned findings, other studies have reported less
promising trends on the effects of nano-HAp combined with F on caries-related
variables. An experimental toothpaste containing nano-HAp, regardless of the
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Table 1.3. Summary of the main studies assessing the effects of nano-hydroxyapatite related to different
variables assessed

Author (year) Technology Protocol Vehicle Main findings

Ionescu et al
(2020) [105]

Nano-HAp In vitro Toothpaste F, Mg, Sr-carbonate substituted
n-HAp toothpaste reduced the
microbial colonization on
resin-based composite.

Leal et al
(2020) [66]

Nano-HAp In vitro Toothpaste Nano-HAp did not improve the effect
of dentifrices containing 5000 μg F/g
on root dentin demineralization.

Demito et al
(2019) [35]

Nano-HAp In situ Undefined
product

Groups treated with nano-HAp
combined with 9000 ppm NaF
presented lower demineralization
depth in relation to the negative
control group.

Kooshki et al
(2019) [64]

Nano-HAp In vitro Varnish F-varnish containing nano-HAp
promoted a higher remineralizing
effect of enamel surface in
comparison to a conventional
F-varnish (not supplemented with
nano-HAp) or to a paste
containing casein phosphopeptide-
amorphous calcium phosphate
(CPP-ACP).

Soares et al
(2018) [71]

Nano-HAp In vitro Gel 1.23% F gel containing nano-HAp
modified the composition and
morphology of the enamel surface.

Yu et al (2017)
[78]

Nano-FHAp
and nano-
HAp

In vitro Powder nano-FHAp formulation showed
higher plugging rate and
penetrating depth into the tubules
in comparison to F or nano-HAp.

Ebadifar et al
(2017) [63]

Nano-HAp In vitro Toothpaste The F-toothpaste containing nano-
HAp was more effective than the
F-toothpaste without nano-HAp
for the purpose of remineralization.

Souza et al
(2015) [68]

Nano-HAp In situ Toothpaste Nano-HAp/F toothpaste was the only
product able to significantly reduce
dentine demineralization in
comparison to toothpastes
containing CPP-ACP + NaF, NaF
alone or a placebo formulation.
The test toothpaste also enhanced
enamel remineralization compared
to the placebo.

Nanotechnology for Dentistry Applications

1-8



addition of F, was unable to reduce dental demineralization compared with a
placebo toothpaste [65]. Moreover, despite a toothpaste containing nano-HAp
promoted protective effects against dentin demineralization similar to those
observed for a 1100 ppm F toothpaste, no additional benefit was observed when
nano-HAp was coadministered with F in formulations containing 1100 or 5000 μg F
g−1 [66]. Furthermore, a F-dentifrice containing 30% nano-HAp decreased the
enamel surface hardness, while the incorporation of 5 or 15% nano-HAp into a
F-dentifrice did not significantlly promote an additional effect on the enamel surface
hardness when compared to their counterpart without nano-HAp [67].

On the other hand, a well-designed in situ study compared the effects of a
toothpaste containing 10% HAp, 0.2% NaF, nano-HAp/F with toothpastes con-
taining amorphous casein-phosphate and NaF or NaF only and observed discrete
differences among the treatments on dental de- and re-mineralization processes,
although the nano-HAp containing toothpaste was the only one able to reduce

Taha et al
(2015) [77]

Nano-FHAp In vitro Paste Nano-FHAp pastes may offer
immediate short-term relief of
dentin hypersensitivity because of
their ability to occlude tubules and
to adhere to wet dentin surfaces; its
long-term effect is due to ion
release.

Comar et al
(2013) [65]

Nano-HAp In vitro Paste The experimental nano-HAp pastes,
regardless of the addition of F,
were unable to reduce dental
demineralization.

Wang et al
(2012) [70]

Nano-HAp In vitro Paste nano-FAp paste with neutral pH
value (7.5) for enamel erosion
repair significantly enhanced the
enamel surface hardness, reduced
enamel mass loss and increased
surface roughness.

Lin et al (2011)
[69]

Nano-FHAp
and nano-
FAp

In vitro GIC The F release properties of the GIC
was improved by incorporating
nano-FAp or nano-FHAp,
simultaneously maintaining a
clinically sufficient bond strength
when nano-FAp was added.

Jeong et al
(2007) [67]

Nano-
Carbonated
apatite

In vitro Toothpaste The dentifrice containing 5% nano
carbonated apatites and 25% silica
was the most effective in
remineralizing early caries lesion.

Nano-HAp: Nano-hydroxyapatite; F: fluoride; Mg: magnesium; Sr: strontium; Nano-FHAp: nano-fluorhy-
droxyapatite; Nano-FAp: nano-fluorapatite; CPP-ACP: amorphous casein-phosphate stabilized by casein
phosphopeptides; GIC: glass ionomer cement.
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dentine demineralization (ΔZ) and to improve enamel remineralization (ΔΔZ)
compared to the negative control group (placebo) [68]. Furthermore, nano-HAp
or nano-fluorhydroxyapatite (nano-FHAp), incorporated to a GIC led to a higher F
release, without compromising its mechanical properties, in comparison to a
conventional GIC not supplemented with nano-HAp or nano-FHAp [69].

Unlike for dental caries, little is available in the literature regarding the effect of
nano-HAp associated with F on dental erosion. It was verified in vitro that a neutral
pH (7.5) paste containing nano-HAp and F significantly enhanced the enamel
surface hardness, avoided the enamel mass loss and increased surface roughness [70],
which could be interesting for erosion repair. In addition, an acidulated phosphate
F-gel (1.23% F) containing nano-HAp modified the composition and morphology of
the enamel surface, in comparison to its counterpart without nano-HAp [71]. Due to
the scarce data available on the effects of nano-HAp combined with F on dental
erosion, this field still needs to be further explored in order to verify the actual effects
of this combination for the control and/or treatment of dental erosion in humans.

Despite the robust body of evidence on the effect of nano-HAp alone on dentin
hypersensitivity [72–77], the literature is scarce on the effect of nano-HAp associated
with F for that purpose. It has been demonstrated in vitro that pastes containing
nano-fluorhydroxyapatite (n-FHAp) may offer immediate short-term relief of dentin
hypersensitivity because of their ability to occlude the tubules and to adhere to wet
dentin surfaces [80]. Another study found that a new toothpaste containing nano-
FHAp showed higher plugging rate and penetrating depth into the tubules in
comparison to another product containing only F or nano-HAp [78].

Given the context above, it is safe to consider that the combination of nano-HAp
and F is still an open topic for all the variables described in this section (i.e., dental
caries, erosion and dentin hypersensitivity) due to the lack of more robust evidence
on the action of these two compounds when co-administered. Thus, further studies
should be performed to clarify the above-mentioned trends, preferably associating
in vitro with in situ protocols, which are useful in providing different insights into
mechanisms of action.

1.5 Silver nanoparticles
Fluoridated silver nanoparticles (or silver nanoparticles fluoride—SNF) have been
proposed as an alternative to silver diamine fluoride (SDF), and are reported to have
antimicrobial activity, along with the advantage of not staining dental and mucosa
tissues [30, 79]. In vitro studies attest such effects against Streptococcus mutans
[83, 84], and Lactobacillus [80], showing significant reductions on acidogenicity and
adherence of these microorganisms [32]. The antimicrobial mechanism of SNF is
related to their ability to penetrate the bacteria cell wall and cause denaturation of
the plasma membrane, in addition to interruption on DNA replication, leading to
damage to the bacterial membrane [81, 82]. SNF can also release Ag ions to the cell’s
interior and produce reactive oxygen species, disturbing protein synthesis and
leading to cell lysis [83]. Due to their smaller particle size, this compound acts
against both planktonic and colonized bacteria [84].
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SNF also has the ability to prevent demineralization of sound enamel and to
reduce the incidence of enamel caries lesions, with effects on both mineral loss and
lesion depth, assessed by transverse microradiography [85]. The effects of solutions
containing fluoride and SNF particles were shown to be dose-dependent, which were
also able to promote increases in surface mineral density owing to mineral
deposition [85]. Also, an in vitro study demonstrated that treatment of dentin
subsurface lesions with a solution containing 5% NaF and 4000 ppm Ag nano-
particles promoted a similar remineralizing effect compared with 5% NaF alone,
without promoting significant color changes compared with the respective controls
(placebo or 5% NaF) [86]. Similar findings were observed in another in vitro study
assessing enamel remineralization using optical coherence tomography, demonstrat-
ing that silver nanoparticles do not interfere with fluoride owing to the ionic stability
of the latter, which do not react when associated with other biomaterials [87].

Another effect is related to the ability to not stain tooth and mucosa tissues
[33, 86]. This is a clear advantage over SDF, as tooth staining has been widely
documented as a side effect when applied to carious lesions, leading to a tooth black
stain and minor injuries to the oral mucosa tissue [88]. An in vivo study showed the
use of SNF had a success rate of 66.7% when compared to the control group (water)
in arresting tooth decay and staining dental tissue [89]; this success rate is similar to
that attained by SDF use (66.9%), as reported in a previous study [90]. Interestingly,
a randomized clinical trial evaluated once a year the application of 5% SNF and
38% SDF in primary carious molar teeth, showing that both groups inhibited
dentine caries progression and presented equivalent effects; SNF had a success rate
of 77% and SDF 71%, the latter not leading to tooth staining [89]. As aforemen-
tioned about the staining, this black stain in carious tissue occurs due to the
oxidation process of the ionic silver chloride contained in SDF formulation [86, 91],
and with nanoparticle size reduction, leads to the non-teeth-staining due to the
contact surface increase [92]. The main studies assessing the effects of SNF are
summarized in table 1.4.

1.6 Nano-CaF2
Unlike the above-mentioned agents, which have been added mostly to F-containing
toothpastes or solutions, nano-CaF2 has been extensively studied combined with
restorative materials or with products for orthodontic cementation, such as
composites and RMGIC, leading to promising effects on parameters related to
biofilms and mechanical properties, besides enhancing their F release. The main
results from studies assessing the effects of nano-CaF2 are displayed in table 1.5.

It was shown in vitro that experimental composites containing nano-CaF2

produced high F release at low filler levels. Furthermore, these composites presented
higher flexural strength and elastic modulus in comparison to a control composite
without nano-CaF2 or a RMGIC [93]. Another study verified that a novel CaF2

nanocomposite combined with chlorhexidine (CHX) reduced S. mutans biofilm
formation, acid production, CFU-counting and metabolic activity, in comparison to
commercial composites (containing or not F) or to an RMGIC. Although such
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reductions were more evident for the CHX-containing CaF2 composite, a sub-
stantial trend of decrease in metabolism and acid production was also observed for a
nano-CaF2 composite without CHX, in comparison to a F-free composite [36]. It
was also verified from another nanocomposite containing CaF2 that F release values

Table 1.4. Summary of the main studies assessing the effects of fluoride and silver nanoparticles related to
different variables assessed

Author (year) Technology Protocol Vehicle Main findings

Aldhaian et al
(2021) [85]

SNF In vitro Solution Fluoride and silver nanoparticles reduced
mineral loss and lesion depth in a
dose-response manner.

Yin et al (2020)
[86]

SNF In vitro Solution NaF solution with AgNPs remineralized
artificial dentine caries without significant
tooth stain compared to its counterparts.

Yin et al (2020)
[33]

SNF In vitro Solution NaF solution with AgNPs showed
antibacterial activity against SM and also
no tooth staining effect .

Zhao et al (2020)
[91]

SNF In vitro Solution NaF + PEG-AgNPs and SDF had a similar
remineralizing effect in artificial dentine
caries. Moreover, NaF with PEG-AgNPs
does not stain dentine caries.

Tirupathi et al
(2019) [79]

SNF RCT Varnish
and
solution

Annual application of SNF has the same
clinical efficacy as SDF in preventing the
progression of dentinal caries and does
not stain tooth.

Costa e Silva et al
(2019) [87]

SNF In vitro Solution SNF has an efficient effect in remineralizing
dental enamel.

Teixeira et al
(2018) [32]

SNF In vitro Toothpaste SNF formulation had a better antibacterial
effect compared to NaF dentifrices and
similar action on the demineralization of
enamel indicating their potential
effectiveness to prevent caries.

Freire et al (2017)
[31]

SNF RCT Solution SNF decreased number of CFUs of SM,
proving to be an effective dental biofilm
inhibitor.

Santos Jr et al
(2014) [89]

SNF RCT Solution The use of SNF decreased risk of caries at
seven days (81%) and five (72.2) and
12 months (66.7) when compared to
control group (H2O).

Targino et al
(2014) [30]

SNF In vitro Solution SNF proved to be antimicrobial agent, with
low toxicity to living cells, and potential
advantage of not staining teeth black.

RCT: Randomized clinical trial; PEG-AgNPs: Polyethylene glycol-coated silver nanoparticles; SDF: Sodium
diamine fluoride; SNF: silver nanoparticles fluoride; NaF: Sodium Fluoride; CFU: colony-forming units; SM:
Streptococcus mutans.
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exceeded releases of traditional and RMGIC materials. In addition, the experimen-
tal CaF2-nanocomposite presented relatively high strength and sustained release of
F ions in comparison to traditional composites or RMGIC [93].

Promising data have also been reported for the incorporation of nano-CaF2 to
RMGIC. The addition of nano-CaF2 to a conventional RMGIC (GC Ortho LC,
Fuji, Aichi-ken, Japan) reduced several parameters related to biofilms (i.e., metabolic
activity, production of extracellular polysaccharides and lactic acid, total microbial
counts, and the counts of total streptococci and S. mutans), in comparison to a
conventional RMGIC or to an adhesive system for orthodontic cementation, especially
when combined with dimethylaminohexadecyl methacrylate (DMAHDM).
Furthermore, the RMGIC containing nano-CaF2 promoted an increase in enamel
hardness and a decrease in lesion depth of artificial enamel lesions [94]. In addition,
another nano-CaF2-containing orthodontic cement presented higher F release in
comparison to a conventional RMGIC (GC Ortho LC, Fuji, Aichi-ken, Japan) [38].

The incorporation of nano-CaF2 in a pit and fissure sealant was also shown to
increase F release and hardness compared with a counterpart without nano-CaF2

(Helioseal F, Ivoclar, Mississauga, ON, Canada) [95]. Moreover, a novel alginate
nanocomposite hydrogel containing nano-CaF2 showed that F released from the
nano-CaF2 in the composite hydrogel functioned as a stimulating agent for cell
proliferation and migration, in addition to inhibiting bacteria growth in vitro. This
combination has also been shown to promote a decrease in the bacterial load, in
comparison to its counterpart without nano-CaF2 [96].

1.7 Bioactive glass
In addition to the above-mentioned compounds, which have been studied more
extensively in vehicles and modes of administration, other lesser studied compounds
deserve attention, whose results are summarized in table 1.6.

Bioactive glass or bioglass (BAG) is another material with marked remineralizing
effects on dental structures, and has been used as an strategy to enhance the effects of
GICs [39, 40]. In vitro studies have shown that nanosized BAG particles create a
supersaturate ionic environment on dentine tubules (leading to dentine tubule
occlusion), and a fast apatite formation, which prevents dentine hypersensitivity
compared to micrometric particles [40, 41]. Moreover, a study assessing enamel
demineralization and antibacterial effects of orthodontic bonding resins showed that
the addition of fluoride to BAG resulted in higher antibacterial activity in a
concentration-dependent trend, enhanced protective effects against demineraliza-
tion, and the ability to prevent white spot lesions in comparison with a commercially
orthodontic bonding adhesive [41].

Furthermore, it has been shown that teeth sonochemically coated with magnesium
fluoride (MgF2) nanoparticles significantly inhibited S. mutans biofilm formation
in vitro in comparison to uncoated teeth [97]. In addition, the incorporation of nano-
chitosan (nano-CH) in a conventional GIC led to higher compressive strength, wear
resistance, as well as F release for 7 days in vitro, in comparison to its counterpart
without nano-CH [98].
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Table 1.6. Summary of the main studies assessing the effects of nanoparticles of bioactive glass, magnesium
fluoride, amorphous calcium phosphate and β-tricalcium phosphate, related to different variables assessed

Author (year) Technology Protocol Vehicle Main findings

Nam et al
(2019) [41]

BAG In vitro BAG and OBA BAG presented a higher
antibacterial activity in a
concentration-dependent, better
anti-demineralization effect,
and ability to prevent white spot
lesion when compared to its
counterpart.

Yli-Urpo et al
(2004) [39]

BAG In vitro GIC and RMGIC RMGIC with BAG had the
ability to remineralize dentine
in vitro.

Eshed et al
(2013) [97]

Nano-MgF2 In vitro Artificial teeth coated
with MgF2

nanoparticles

The artificial tooth surface covered
with an nano-MgF2 layer
successfully inhibited S. mutans
biofilm formation by over 60%.

Karimi et al
(2019) [100]

Nano-ACP In vitro GIC The working time of the formulated
resin-modified glass ionomer
decreased significantly upon
increase of nano-ACP content
from 5 to 20%.
Nano-ACP-incorporated
RMGICs showed improved
photopolymerization and setting.
The addition of
nano-ACP to of RMGICs did
not affect compressive strength or
F release. The biocompatibility of
the test RMGICs improved at
~20%. Alkaline phosphatase
activity and osteogenic
differentiation of mesenchymal
stem cells noticeably increased
after exposure to ACP-
incorporated RMGIC.

Seyedlar et al
(2019) [106]

Nano-TCP In vitro Solution Nano-TCP solution was not more
effective than the NaF 0.05 wt%
in preventing demineralization.

Iafisco et al
(2018) [99]

Nano-ACP In vitro Biomimetic
amorphous calcium
phosphate doped
with F ions

The experimental material showed
good ability to partially occlude
the tubules of acid-etched dentin
and to restore demineralized
enamel into its native structure.

(Continued)
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Furthermore, the effects of a nano-biomimetic amorphous calcium phosphate
doped with F ions were assessed on dental remineralization and dentin tubules
occlusion. This compound was shown to promote partial occlusion of the tubules of
acid-etched dentin and to restore demineralized enamel into the original structure,
with no significant influence on the chemical-physical features of ACP, apart from
the quicker conversion in the crystalline phase when immersed in aqueous solution
[99]. Nano-ACP was also evaluated when incorporated to an RMGIC, resulting in
enhanced alkaline phosphatase activity, without compromising the material’s
compressive strength or F release [100]. Such effects noticeably increased osteogenic
differentiation of mesenchymal stem cells after exposure to ACP-incorporated
RMGIC [100].

1.8 Conclusions
Considering the above-mentioned context on the nanoparticles presented, most of
these compounds can be considered as promising alternatives for the enhance-
ment of the F-vehicles on dental caries (effects on dental hard tissues and
biofilms), on dental erosion and on dentine hypersensitivity. Despite relevant data
on the mechanisms of action of these technologies achieved by in vitro protocols,
it is important to emphasize that the literature is still scarce on data from in vivo
studies. Thus, future research should focus on in situ and/or in vivo
methodologies, as they are paramount in the determination of the actual effects
of these nanoparticles.
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