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Preface

The primary objective of this two-volume book is to bring together leading
researchers of vibrations who are involved in the development of new computational
and analytical/semi-analytical techniques. Vibration problems are commonly
encountered in various systems of applied mathematics, physics, aeronautical, civil,
architectural, marine, mechanical, nuclear, biological and other areas of science and
technology. These systems need to be analyzed by easy, fast and efficient computa-
tional approaches. Different mathematical theories of vibration, numerical simu-
lation, machine intelligence techniques, physical experiments with computational
investigations and their various engineering and science applications are included in
these two volumes. Accordingly, these volumes will provide an outstanding
opportunity to learn from the contributions of well-known researchers of their
ideas, experiences, and advances.

Volume 1 of this book contains numerical and semi-analytical methods including
analytical methods in solving various vibration problems. A total of 14 chapters are
included in this volume. Chapters 1–3 contain theoretical and modelling inves-
tigations of different vibration problems. Studies on nano-structural members are
incorporated into chapters 4–9. Finally, chapters 10–14 address various applications
of structural vibrations. More details of each chapter are outlined next.

Chapter 1 is contributed by Tornabene, Viscoti, and Dimitri. They have
investigated an interesting problem of ‘Higher-order theory for the modal analysis
of doubly-curved shells with lattice layers and honeycomb cores.’ They proposed an
innovative method based on Higher Order Shear Deformation Theories (HSDTs) to
study the free vibration response of composite lattice structures, with a single or
double curvature. A general method for the homogenization of lattice layers made
of honeycomb cells and grid patterns is presented, which predicts accurately the
anisotropic equivalent elastic constants for a wide range of cell configurations with
different heights, wall thicknesses, and geometric layups. The reliability of the
strategy is successfully verified against solutions from finite element analyses, both in
terms of frequencies and mode shapes, with a very good agreement.

The second chapter is contributed by Ahmad, Gupta, Sujata, and Poomani,
titled, ‘Particle impact damping technology: modelling and applications.’ In this
chapter a modelling technique is introduced to capture the interactions between the
dynamics of the damping particles and the dynamics of the host structure with a
particular focus on the discrete element method (DEM). Hertz’s dissipative contact
model for normal contact forces and Coulomb’s friction model for tangential force
are used to derive the governing equation. The vibration attenuation trend has been
studied for the location of particle dampers, size of particles, fill fraction, and
excitation energy.

Transverse vibration of thick functionally graded (FG) skew plates with various
skew angles has been investigated by Pradhan and Chakraverty in chapter 3.
Material properties of FG constituents may vary spatially along thickness direction
in power-law form. A shear deformation plate theory is considered here to define the

xii



constitutive relation, and the generalized eigenvalue problem is obtained by means
of the Ritz method. The obtained results for natural frequencies are validated with
those from the existing literature.

Chapter 4 is authored by Tornabene, Dimitri, and Brischetto, where mechanical
modelling of functionally graded carbon nanotubes-reinforced composite materials
and structures is studied. Variation of the material properties, such as thermal
resistance, thermal conductivity and coefficient of thermal expansion, is included.
Several higher-order shear deformation theories are used to investigate the problems
of the vibration response, the dynamic stability, and the critical speed evaluation of
thin and moderately thick structures with high values for the in-plane and transverse
anisotropy; the governing equations are solved numerically by means of the
Generalized Differential Quadrature (GDQ) method.

In chapter 5, contributed by Saxena and Sarkar, vibration of micro/nano
structural members is investigated by discrete energy-based formulation. The
authors focused on deriving a molecular-dynamics like discrete framework for
different local and non-local continuum models such as beams and plates so that the
models can simulate discontinuities. A major aspect of the formulation is that it
unifies different local and non-local theories.

Chapter 6 includes the problem of ‘Effect of thermal environment on nonlinear
flutter of laminated composite plates reinforced with graphene nanoplates,’ authored
by Guo, Yang, Żur, Reddy, and Ferreira. The authors employed the element-free
IMLS-Ritz method to obtain the flutter behavior of matrix cracked functionally
graded multilayer graphene nanoplatelets (GPLs) reinforced composites (GPLRCs).

Malikan and Eremeyev have studied forced vibrations of piezo-flexomagnetic
nano-actuator beams in chapter 7. The effect of excitation frequency on the
piezomagnetic Euler–Bernoulli nanobeam taking the flexomagnetic material phe-
nomenon is addressed here. The attained linear differential equation is transferred
into an algebraic equation by using the Galerkin method. Then, the resulting linear
algebraic equation is solved to determine the numerical values of dynamic
deflections.

Nano-electromechanical systems have made significant advances in various
sciences such as mechanics, medicine, and chemistry, due to their unique features
and properties, especially in the fields of sensors and actuators. As such, vibration of
size-dependent carbon nanotube-based biosensors in liquid is investigated by
Sheikhmamoo, Mohammad-Sedighi, and Shishesaz in chapter 8. The equations
and boundary conditions are derived using the Hamiltonian principle. The electro-
static and Casimir forces are the source of the nonlinearity in this problem. In this
work, an analytical modified Adomian decomposition method is used to investigate
the static response of the system. In the static section, the instability of the system
and the pull-in voltage under the influence of surface tension effect and size effect are
investigated.

Chapter 9, authored by Brischetto, Tornabene, and Dimitri, incorporates con-
tinuum 3D and 2D shell models for free vibration analysis of single-walled and
double-walled carbon nanotubes. 3D shell solutions based on the exponential
matrix methodology for the study of the free vibration response of simply supported
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Single- and Double-Walled Carbon NanoTubes (SWCNTs and DWCNTs) are
presented. A continuum approach based on the three-dimensional theory of
elasticity is employed to represent discrete elements such as SWCNTs and
DWCNTs. Proposed analytical 3D shell models are compared with some classical
and refined 2D models based on the Generalized Differential Quadrature Method
(GDQM) in the case of free vibration study of SWCNTs and DWCNTs with
different lengths, diameters and equivalent elastic properties. Moreover, compar-
isons with well-known continuum beam models from the literature are proposed to
analyze the differences between 3D, 2D and 1D approaches, depending on the
carbon nanotube length and on the thickness of its walls.

Crack and interface interaction under quasi-static and dynamic loading is
addressed by Pranavi, Reddy, Rajagopal, and Reddy in chapter 10. A thermody-
namically consistent phase-field formulation for modelling the interactions between
interfacial damage and bulk fracture in heterogeneous materials having matrix and
inclusion phases with a matrix-inclusion interface is presented. A regularization
scheme is considered for both the interface and the crack phase field. A coupled
exponential cohesive zone law is adopted to model the interface which has the
contributions of both normal and tangential displacement jump components. A
novel nonlocal approach is devised to evaluate the smoothed values of jump at the
regularized interface using element specific geometric information. The effects of
stiff and soft interface on the mechanical response and the crack propagation is
studied.

Industrial robotic systems have two essential functional sub-systems namely,
gripper and wrist, that are prone to vibration-induced characteristics. This vibration
is randomized in real-time and can be in situ and/or external impulse-based.
Compliant Robotic Gripper (CRG) belongs to a selected niche of the first sub-
system and these grippers are modular, semi-flexible and often small-enveloped with
multi-task enabled ability. Accordingly, chapter 11 authored by Roy addresses
vibration of compliant robotic grippers and wrists. The chapter includes modelling
of vibration of CRG & CRW ab initio, for both in situ as well as external excitation.
The author also discusses the local effects of vibration in this section, which are in
the form of vibration accumulation at CRW and the consequences of external
forcing on the robotic manipulator. Case-studies supported by test results are
reported for a table-top small-sized semi-flexible robotic system, augmented with
a tailor-made CRG.

Reinforced concrete (RC) beams are one of the critical structural elements in
buildings. These elements suffer from distress and primarily cracks due to many
reasons resulting into degradation of stiffness and strength. The mode shape-based
approaches are very efficient techniques in damage identification in structural
elements. As such, in chapter 12, authored by Panigrahi, Chourasia, and Bisht, a
study of mode shape based approaches for health monitoring of reinforced concrete
beams under transverse loading is presented. An analytical approach has been
developed for identification of damage on a beam model considering damage in the
beam. The mode shapes and modal curvatures have been computed both for an
undamaged and damaged beam structure for damage identification. For validation
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of the approach, simply-supported RC beams were subjected to an incrementally
increasing static two-point loading in steps till ultimate failure. After each load step,
vibration measurements were performed using sensors mounted at critical locations.
The mode shapes and modal curvature graphs have been drawn to find out the
location of developed crack pattern on the beam.

Chapter 13, authored by Gupta, Ahmad, Aditya, and Poomani, addresses the
analysis and testing of honeycomb sandwich structures for spacecraft. Sandwich
panels generally consist of three significant components, two thin face sheets and a
thick core. The adhesive films are placed between face sheets and core to bond them.
The honeycomb sandwich structure is widely used as a primary cylinder, payload
mounting panels, shear webs and other support structures in a spacecraft. The
experimental setup used in this work is described and then responses obtained
through experiments and finite element computations are compared.

Finally, in chapter 14, numerical analysis of Qutb Minar (New Delhi, India)
using non-linear plastic-damage macro model for constituent masonry is inves-
tigated by Chourasia and Panigrahi. A plastic–damage macro model, originally
proposed to model plasticity in concrete, has been adapted to simulate the behavior
of masonry present in Qutb Minar. The natural frequencies obtained from an
idealized finite element model show better correlation with experimental values from
previous studies. The material model implemented is characterized by a bi-
dissipative and isotropic degradation of material during cyclic loading. A seismic
simulation has been carried out for comparison between response in two cases—
elastic and non-elastic material models for constituent masonry. The need to take
account of the dynamic parameters and material non-linearity for a realistic seismic
response prevision has also been established.

The Editors are certain that the contents of this book will be useful for academic
researchers as well as engineers in industry. In academics, this book will be useful for
graduate students and researchers of vibration problems of different fields. The
Editors believe the integrated and holistic analytical, new theories, computationally
efficient approaches presented in various chapters will certainly benefit readers for
their future studies and research. The editors thank all the chapter contributors for
their effort and support in preparing and submitting on time. Finally, the editors
also thank the IOP team for their help and support throughout this project.

May 2021
S Chakraverty
F Tornabene
J N Reddy

Editors
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Chapter 1

Higher order theory for the modal analysis of
doubly-curved shells with lattice layers and

honeycomb cores

Francesco Tornabene, Matteo Viscoti and Rossana Dimitri

This chapter proposes an innovative method based on Higher Order Shear
Deformation Theories (HSDTs) to study the free vibration response of composite
lattice structures, with a single or double curvature. We develop a general method
for the homogenization of lattice layers made of honeycomb cells and grid patterns,
which predicts accurately the anisotropic equivalent elastic constants for a wide
range of cell configurations with different heights, wall thicknesses and geometric
layups. A general lamination scheme is modelled following an Equivalent Single
Layer (ESL) methodology, whereas the Generalized Differential Quadrature (GDQ)
method is proposed to solve accurately the eigenvalue problems with a reduced
computational cost. A systematic investigation is performed to check for the
sensitivity of the dynamic response for shells with a varying honeycomb and grid
layups, along with different geometries and boundary conditions. The reliability of
the present strategy is successfully verified against solutions from classical finite
elements, both in terms of frequencies and mode shapes, with a very good agreement
among results.

1.1 Introduction
In recent decades, new frontiers in many engineering applications have seen a lot of
endeavour in searching for optimum parameters of structures with respect to their
mechanical response [1–3]. In order to seek the best performance, the design can be
oriented looking at structural shapes, as well as a proper selection of the material
constituents, keeping in mind the manufacturing issues [4, 5]. As suggested by
Vasiliev [6, 7], one of the most challenging structures among doubly-curved shells
can be found in latticed composite structures. They are conceived so that a particular
shape can be assessed starting from a correct location of some stiffeners along the
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parametric lines of a surface. These kinds of structures are characterized by large
versatility. Looking up the applications of these structures, several grid architectures
can be found, with open and closed cell lattices, hierarchical cells, disordered or
randomized. Some regular patterns can be additionally found in some applications,
with a different location of hoops and helical ribs, as well as a varying distance
between stiffeners and inclination angle. In this way, each beam element of a three-
dimensional structure is essentially subjected to a compressive load.

Another interesting way for infilling doubly curved structures is represented by
honeycomb cells. According to this technology, a periodic infill is defined within a
layer, characterized by some geometric parameters like the internal cell angle, and
geometry of the cell panels [8]. Different mechanical properties can be obtained for
the same structure, with a proper selection of its geometrical parameters [9].
Nevertheless, the honeycomb cell can be easily applied to layered structures so
that a general orthotropic softcore can be obtained starting from an isotropic raw
material. The application of optimization design algorithms usually requires simple
but accurate formulations based on iterative processes that check for the best
periodic unit cell in the whole structure, and its equivalent elastic properties [10].
Among continuum models, it is possible to apply a homogenization process on the
so-called Representative Volume Element (RVE), to determine its equivalent
elasticity constants, independently of the unit cell scale. In other words, the so-
called separation of scales principle must be guaranteed [11–13], as guaranteed by a
Multiscale Aggregating Discontinuities (MAD) method [14] or a Continuum Strong
Discontinuity Approach (MSDA) [15–17]. One of the most adopted tools for the
homogenization of the unit cell is the well-known Finite Element Method (FEM)
[18]. A comprehensive literature overview about a finite element modeling of lattice
structures can be found in [19–21]. Since the strategy at issue is based on a structural
decomposition, the homogenized properties must be properly assessed independ-
ently from the selected mesh [22]. A finite element-based homogenization of lattice
structures must account for local deformation effects in line with the predefined
shape functions per each element [23].

For honeycomb unit patterns, we can employ a large variety of formulations, based
on different initial hypotheses. Starting from the pioneer works by Gibson and Ashby
(G&A) [24], various homogenization theories have been developed in literature [25–27]
that account for the actual microstructural nature. Most of them, however, cannot
provide a unique value of the equivalent elasticity constants, since they follow the
energy procedure based on the minimum potential energy principle, as suggested by
Kelsey et al [28]. In order to determine a unique value of homogenized stiffness
constants, Grediac [29] proposed a general procedure based on a linear interpolation
between the extreme values of stiffness based on the out-of-plane cell slenderness.
Scarpa and Tomlin [30] measured the equivalent constants for re-entrant cell units
starting from finite element simulations. Malek and Gibson (M&G) [31] embedded a
rigid node assumption in the definition of the homogenized cell model. Each element in
the unit cell was modelled by means of a Timoshenko Beam Theory (TBT) [32], or an
Euler–Bernoulli Beam Theory [33]. An improvement of the G&A formulae was also
proposed by Sorohan et al [34], who introduced some correction factors in order to
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account for the shear effects in the cell walls during a deformation process, as observed
from FEM simulations, as well as experimental predictions.

Further shear correction factors were introduced by Fu and Yin [35] to improve the
original formulation by G&A. In the work by Torabi et al [36] the above-mentioned
formulation was applied for the flutter analysis of a cantilever trapezoidal honeycomb
plate, employing the Differential Quadrature Method. Regarding the out-of-plane
elastic properties, their mean value was computed by the authors between the extreme
ones. Sorohan et al [37, 38] also provided an improved version of the M&G
homogenization theory, based on an accurate geometrical description of the unit
cell, with special attention to the geometry of nodes. In the original M&Gmodel a rigid
node assumption was embedded in the formulation. In this case, instead, its
contribution to the total strain energy was computed by introducing an equivalent
nodal length, based on the actual value of the node area. Following the same approach,
a revision of G&A homogenization has been provided. Based on the recent work by
Tornabene et al [39], a reliable formulation was proposed by the authors to determine
the out-of-plane elastic constants for a large variety of honeycomb-based cells.

On the other hand, when a smearing technique is applied to anisogrid structures,
after the proper definition of a generally-curved geometry, an important aspect is
related to the periodicity of a unit pattern within the entire shell, or of a lattice layer.
Differently from honeycomb cells, the cell geometry within a latticed structure
comes out from the superimposition of various families of ribs which are assumed to
be independent from each other. The overall mechanical properties for similar cell
units are computed by considering the axial behaviour of each beam, accounting for
its orientation with respect to the geometric principal axes of the shell structure.
According to [4], each single rib contribution is computed independently from the
presence of other beams within the unit cell.

In this way, cells with different numbers of rib families are obtained without
considering the nodal stiffness, greater than the free area of the single rib. Based on
this smearing technique it is also possible to assess a homogenized model by
employing two different cell configurations with a different number of internal
intersections. If only one node is embedded in the unit cell, a flake (F) unit pattern is
identified, otherwise a star (S) cell layup is obtained. Actually, the rib family
geometric parameters embedded in the model refer to the angle orientation and
interspace between two adjacent beams [40].

The homogenizedmodel of a shell structure can be described geometrically bymeans
of the differential geometry basics, and a proper definition of the orthogonal reference
system, together with the well-known Lamè Parameters and principal curvatures. The
pioneering works by Calladine [41], Kraus [42] and Gould [43] applied this strategy to
thin shells. The governing equations for the dynamic problem of curved shell structures
are built on a bi-dimensional model that accounts for the through-the-thickness
structural behaviour. In this perspective, two different strategies are proposed in this
chapter: the Equivalent Single Layer (ESL) theory and the Layer-Wise (LW) approach
[44]. In the former, we define the equivalent mechanical properties, in terms of elasticity
constants, stress and strainfield, for the entire shell thickness.Akey aspect of thismethod
is related to an accurate computation of such quantities, especially in the presence of very
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complex lamination schemes and possible coupling effects. On the other hand, the LW
approach can be considered as a generalization of theESL theory, since the fundamental
equationsof the problemarewritten separately at each layer of the lamination schemeby
introducing some general thickness functions [45], in respect of the compatibility
conditions and of a consistent distribution of the stress/strain field.A recovery procedure
based on the equilibrium equations provides the three-dimensional stress distribution
within the shell structure [46]. Startingwith the classical shell theories ofKirchhoff–Love
[47, 48], Reissner andMindlin [49–51], or Reddy [52–54], more advanced models in the
recent literature embed possible warping and stretching functions. In such a context, a
first attempt can be found in the works by Washizu [55] and Reddy [56], where the
authors provide a general description of the displacement field in shell members with a
single constant curvature, and introduce for thefirst timeaunifiednotation for a compact
computation of thickness functions. In the theory developed by Tornabene et al [57], a
generalized ESL approach based onHSDTs has been recently employed for a static and
dynamic analysis of doubly-curved structures with anisotropic materials. It is interesting
to say that the introductionof anisotropywithina structure enhances its shear strainfield,
that can be well-captured only under a proper assumption of thickness functions. In the
furtherworks byTornabene et al [58–60] the same set of fundamental equations has been
also written for each layer of anisotropic structures with very complex geometries.

Thedynamicbehaviorof lattice-based structures is akeyaspect thatmust beaccounted
for optimum design purposes of shell members with high stiffness/weight ratios. In this
perspective, some optimization algorithms can be found in [61–63], which compute
numerically themodal frequencies of arbitrarily-shaped structures.Amongmanypossible
high-performance computational methods, in this chapter we propose the Generalized
Differential Quadrature (GDQ) [64–69] as efficient tool to solve the dynamics of
complicated shell geometries made of innovative materials [70–77], in a strong form.
The proposed method stems from classical quadrature methods [78] and expresses the
derivative of a smooth function as a weighted sum of the values assumed by the same
function in a set of points. As stated in the pioneering work by Shu et al [79], the main
performances of thismethod, in terms of accuracy, convergence, and stability, are related
to the domain discrete point distribution and weighting coefficients selection. In a recent
work [80], theGDQmethodwas successfully compared to a classicalRitz formulation for
the modal analysis of isotropic and non-homogeneous thin-walled structures, while
revealingagreataccuracyevenwitha reducednumberofdegreesof freedom(DOFs).The
high level of accuracy was also demonstrated in many convergence studies [81–84]
involving the statics/dynamics and fracture mechanics nonlinear problems [85–94].

In the present chapter, we propose a homogenized model based on Higher Order
Theories for the dynamic study of doubly-curved sandwich structures with a softcore
layer made of latticed/honeycomb configurations. The governing equations of the
problem together with the boundary conditions are here determined by applying the
Hamiltonian Principle in a variational form, combined with different homogenization
methods for both honeycomb layers and the latticed cores, to derive the equivalent
anisotropic material properties. The GDQ method is, thus, applied to discretize the
governing equations and boundary conditions of the problems, whose solutions are
validated systematically with respect to refined 3D finite element-based solutions.
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The rate of convergence analyses also demonstrate the stability and efficiency of the
response, even for complex coupled mode shapes and a reduced computational effort, as
implemented in the MATLAB code DiQuMASPAB, written by Tornabene et al [95].

1.2 Equivalent single layer shell theory
In this sectionwe introduce all the theoretical basics of an ESL approach for lattice curved
shells according to higher order theories. Particular attention is given to the structural
geometry, the field variable assumptions, the RVE homogenization methods, and the
derivation of the fundamental equations. According to an ESL strategy, all the geometric,
kinematic and equilibrium features of the structure are referred to an equivalent middle
surface, starting from a general three-dimensional formulation of the problem.

1.2.1 Geometrical description of the shell

We start considering the theoretical issues related to the geometry of a lattice structure
with different curvatures. Generally speaking, pantographic structures and honey-
comb shells present a three-dimensional extension, and their mathematical description
usually turns out to be a challenging issue, especially for complicated shapes. In such
cases, an orthogonal curvilinear reference system must be properly introduced to
simplify the geometrical description of a generally-shaped structure, based on the
definition of a principal coordinate system along the parametric directions α 1 and α 2,
in the reference mid-surface, and the outward coordinate ζ in the thickness direction.
Based on an indicial notation, it is ζ α= 3. As a consequence, the position vector

α α ζR( , , )1 2 of a generic point of the structure can be written as follows [57]

α α ζ α α α α α α= + h
zR r n( , , ) ( , )

( , )
2

( , ) (1.1)1 2 1 2
1 2

1 2

where α αr( , )1 2 is the projection of the arbitrary point on the reference surface,
α αn( , )1 2 the normal unit vector, and α αh( , )1 2 the shell thickness (see figure 1.1). In

equation (1.1), the position along the thickness coordinate ζ with respect to the
middle surface is defined with a dimensionless coordinate ζ α α= ∈ −z h2 / ( , ) [ 1, 1]1 2 .
By computing the partial derivatives r,1 and r,2 of the reference surface position
vector with respect to α1 and α2, respectively, it is possible to define at each point the
Lamè Parameters of the middle layer α αA ( , )1 1 2 and α αA ( , )2 1 2

α α α α= · = ·A Ar r r r( , ) , ( , ) (1.2)1 1 2 ,1 ,1 2 1 2 ,2 ,2

The normal unit vector α αn( , )1 2 is thus defined as

α α =
×

A A
n

r r
( , ) (1.3)1 2

,1 ,2

1 2

whereas, the principal radii of curvature α αR ( , )1 1 2 and α αR ( , )2 1 2 are computed as

α α α α= −
·
·

= −
·
·

R R
r r
r n

r r
r n

( , ) , ( , ) (1.4)1 1 2
,1 ,1

,11
2 1 2

,2 ,2

,22
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Note that the in-plane coordinates α α α∈ [ , ]i i i
0 1 , for =i 1, 2, whereas ζ is

limited in the thickness direction as ζ α α α α α α∈ −h h( , ) [ ( , )/2, ( , )/2]1 2 1 2 1 2 . For a
laminated structure, the overall thickness α αh( , )1 2 is determined as [57]

∑α α α α=
=

h h( , ) ( , ) (1.5)
k

l

1

k1 2 1 2

where α α ζ α α ζ α α= −+h ( , ) ( , ) ( , )k k k1 2 1 1 2 1 2 is the thickness for the kth layer of a
l -laminate, with = …k l1, , .

1.2.2 Kinematic formulation

In what follows the displacement field represents the primary unknown. Therefore,
we introduce a procedure for defining equivalent quantities in the mid-structure, and

Figure 1.1. Geometric representation of a generic doubly-curved shell.
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we determine the 3D displacement field vector α α ζ =t U U UU( , , , ) [ ] T
1 2 1 2 3 in

the curvilinear reference system α α ζ′O , , ,1 2 in the following form [57]

∑

∑

∑

α α ζ ζ α α

α α ζ ζ α α

α α ζ ζ α α

=

=

=

τ

τ

τ

=

+

=

+

=

+

τ
α τ

τ
α τ

τ
α τ

U t F u t

U t F u t

U t F u t

( , , , ) ( ) ( , , )

( , , , ) ( ) ( , , )

( , , , ) ( ) ( , , )

(1.6)

N

N

N

0

1

0

1

0

1

1 1 2 1
( )

1 2

2 1 2 2
( )

1 2

3 1 2 3
( )

1 2

1

2

3

or in the compact notation

∑α α ζ =
τ=

+

τ
τtU F u( , , , ) (1.7)

N

0

1

1 2
( )

where ζ=τ τF F ( ) is a diagonal matrix collecting the thickness functions ζτ
αF ( )i , with

=i 1, 2, 3

ζ =τ

τ
α

τ
α

τ
α

F
F

F
F ( )

0 0
0 0
0 0

(1.8)

1

2

3

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

In equation (1.6) a generalized displacement field component vector
α α =τ τ τ τt u u uu ( , , ) [ ]T( )

1 2 1
( )

2
( )

3
( ) with τ = … +N0, , 1 is defined for each τth order

of the kinematic expansion, defined on the reference surface. In order to take into
account the interaction between adjacent layers, for τ = +N 1 we introduce the
well-known Murakami’s function, together with a power series expansion for
τ = … N0, ,

ζ τ
τ

=
= …

− = +τ

τ
F

N

z N

for 0, 1, ,

( 1) for 1
(1.9)

k
k

⎧⎨⎩
where ζ= ∈ −z z ( ) [ 1, 1 ]k k is defined for the kth layer as follows

ζ ζ
ζ ζ ζ

ζ ζ
=

−
− +

−+

+

+
z

2
(1.10)k

k k

k k

k k1

1

1

In what follows we introduce a compact notation, as already proposed in [57] in
order to identify easily higher order theories, namely

…
− …

…

α α α

α α α

α α α

F F F Z
F F F Z
F F F Z

[ ][ ] [ ][ ]
ED [ ][ ] [ ][ ]

[ ][ ] [ ][ ]
(1.11)

N

N

N

0 1

0 1

0 1

1 1 1

2 2 2

3 3 3

where E stands for the ESL approach, D refers to the displacement field, Z is the
Murakami’s function (1.9) and N is the variable expansion order.
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The kinematic relations for the ESL higher order theory are, thus, defined as

∑ε = = = + +
=

ζ
α

ζ
α α α

Ω Ω Ω ΩUD D D U D D D D U( ) (1.12)
i 1

3
i 1 2 3

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

where α α α ε ε γ γ γ εε =t( , , , ) [ ]T1 2 3 1 2 12 13 23 3 is the three-dimensional strain vec-
tor [57] and D is the differential operator split in two different parts ζD and

=α
Ω iD 1, 2, 3i , such that

ζ

ζ

ζ

=
∂
∂

∂
∂

∂
∂

ζ

H

H

H H

H

H

D

1
0 0 0 0 0 0 0 0

0
1

0 0 0 0 0 0 0

0 0
1 1

0 0 0 0 0

0 0 0 0
1

0 0 0

0 0 0 0 0
1

0 0

0 0 0 0 0 0 0 0

(1.13)

1

2

1 2

1

2

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

α

α

α

α

α

α

α

α α

α

=

∂
∂
∂
∂

− ∂
∂

∂
∂

−

=

∂
∂
∂

∂
∂

∂

− ∂
∂

−

= ∂
∂
∂

∂

α α α
Ω Ω Ω

A

A A
A

A A
A

A

R

A A
A

A

A

A A
A

R

R

R

A

A

D D D

1
0 0

1
0 0

1
0 0

1
0 0

1
0 0

0 0 0
1 0 0
0 0 0
0 0 0

0
1

0

0
1

0

0
1

0

0
1

0

0 0 0

0
1

0

0 0 0
0 1 0
0 0 0

0 0
1

0 0
1

0 0 0
0 0 0

0 0
1

0 0
1

0 0 0
0 0 0
0 0 1

(1.14)

1 1

1 2

2

1

1 2

1

2

2 2

1

1 2

1

2

2 2

1 1

1 2

2

1

2

1

2

1 1

2 2

1 2 3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥

By introducing the through-the-thickness assumptions (1.7) for the displacement
field within three-dimensional congruence relations (1.12), the ESL formulation of
kinematic equation comes out

∑∑ ∑∑ ∑∑ε ε= = =
τ τ τ=

+

= =

+

= =

+

=
ζ

α
τ

τ τ α α τ τ α τ α
Ω ΩD D F u Z D u Z (1.15)

N

i

N

i

N

i0

1

1

3

0

1

1

3

0

1

1

3
( ) ( ) ( ) ( ) ( )i i i i i

which is redefined for the τth order as

τε = = … + =τ α α τ
Ω N N iD u for 0, 1, 2, , , 1 1, 2, 3 (1.16)( ) ( )i i
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where

ζ

ζ

ζ

= ∂
∂

∂
∂

∂
∂

τ α

τ
α

τ
α

τ
α

τ
α

τ
α

τ
α

τ
α

τ
α

τ
α

F
H

F
H

F
H

F
H

F
H

F

F
H

F

F

Z

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

(1.17)( )

1

2

1 2

1

2

i

i

i

i i

i i

i i

i

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

1.2.3 Homogenization of the lattice core and equivalent elastic behaviour

Let us now introduce the constitutive elastic relations defining the equivalent behavior of
the shells based on an ESL approach and a homogenization procedure. Thus, the elastic
relationships both in a static and kinematic sense are consistently supported by relation
(1.15), defined in the curvilinear geometric reference system α α ζ′O 1 2 . The assessment of the
elasticity constants is essentially based on possible material symmetries, which define the
so-called material reference system denoted with α α ζ′ ˆ ˆ ˆO k k k

1
( )

2
( ) ( ), for the kth lamina. In

composite laminates, theoutwardgeometricunitvector ζ̂ k( ) for thekth laminacorresponds
to the one for the whole structure ζ, in the global geometric reference system [57]. For this

reason, a simplified notation can be adopted, such that α α ζ α α ζ′ ˆ ˆ ˆ = ′ ˆ ˆO Ok k k k k
1
( )

2
( ) ( )

1
( )

2
( ) . As

mentioned before, for a completely anisotropicmaterial in thekth lamina, the constitutive
behavior in the material reference system can be expressed as follows

σ

σ

τ

τ

τ

σ

ε

ε
γ

γ

γ

ε

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ

=

ˆ
ˆ
ˆ

ˆ

ˆ

ˆ

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

(1.18)

k

k

k

k

k

k

k k k k k k

k k k k k k

k k k k k k

k k k k k k

k k k k k k

k k k k k k

k

k

k

k

k

k

1
( )

2
( )

12
( )

13
( )

23
( )

3
( )

11
( )

12
( )

16
( )

14
( )

15
( )

13
( )

12
( )

22
( )

26
( )

24
( )

25
( )

23
( )

16
( )

26
( )

66
( )

64
( )

65
( )

63
( )

14
( )

24
( )

64
( )

44
( )

45
( )

43
( )

15
( )

25
( )

65
( )

45
( )

55
( )

53
( )

13
( )

23
( )

63
( )

43
( )

53
( )

33
( )

1
( )

2
( )

12
( )

13
( )

23
( )

3
( )

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥
where α α ζσ̂ ˆ ˆ t( , , , )k k k( )

1
( )

2
( ) and α α ζε̂ ˆ ˆ t( , , , )k k k( )

1
( )

2
( ) refer to the 3D stress and strain

state for the kth lamina, respectively. The constitutive relation (1.18) can be written
in a compact matrix form as [57]

σ εˆ = ˆC (1.19)k k k( ) ( ) ( )
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where C k( ) stands for the elastic stiffness matrix. When the constitutive equations are
written in the geometric reference system, the possible discrepancy in (1.18) between
the material symmetry axes and the principal reference system of the shell requires a
proper transformation of the material properties with respect to the geometric
reference system α α ζ′O 1 2 by means of matrix T k( ). Defining with θ k the angle
between α 1 and α̂ k

1
( ), T k( ) can be written as [57]

θ θ θ θ
θ θ θ θ

θ θ θ θ θ θ
θ θ
θ θ

=

−

− −
−

T

cos sin 2 sin cos 0 0 0

sin cos 2 sin cos 0 0 0

sin cos sin cos cos sin 0 0 0
0 0 0 cos sin 0
0 0 0 sin cos 0
0 0 0 0 0 1

(1.20)k

k k k k

k k k k

k k k k k k

k k

k k

( )

2 2

2

2 2

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

The transformed stiffness matrix C̄ k( ) in the reference system α α ζ′O 1 2 is defined as

¯ =C T C T (1.21)k k k k T( ) ( ) ( ) ( )

or in extended matrix form as [57]

¯ =

¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C C C C C C

C (1.22)k

k k k k k k

k k k k k k

k k k k k k

k k k k k k

k k k k k k

k k k k k k

( )

11
( )

12
( )

16
( )

14
( )

15
( )

13
( )

12
( )

22
( )

26
( )

24
( )

25
( )

23
( )

16
( )

26
( )

66
( )

64
( )

65
( )

63
( )

14
( )

24
( )

64
( )

44
( )

45
( )

43
( )

15
( )

25
( )

65
( )

45
( )

55
( )

53
( )

13
( )

23
( )

63
( )

43
( )

53
( )

33
( )

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥

Thus, the constitutive relation between the 3D stress field α α ζσ =t( , , , )k( )
1 2

σ σ τ τ τ σ[ ]k k k k k k T
1
( )

2
( )

12
( )

13
( )

23
( )

3
( ) and the strain field α α ζε =t( , , , )k( )

1 2

ε ε γ γ γ ε[ ]k k k k k k T
1
( )

2
( )

12
( )

13
( )

23
( )

3
( ) in the global reference system α α ζ′O 1 2 reads as

σ ε= ¯ = …k lC for 1, 2, , (1.23)k k k( ) ( ) ( )

To define the equivalent elastic constants for a lattice material, we require some
homogenization procedures capable of studying a wide range of cell and panto-
graphic grid configurations in a general and efficient manner. The homogeniza-
tion of a lattice layer made of various orders of ribs can be assessed taking into
account the axial contribution of each single rib in the RVE. Namely, some simple
load cases must be defined starting from the elastic constants definition (1.18) for
the kth lamina, in the material reference system. In addition, each beam
contribution to the overall stiffness can be computed for the whole pattern
independently from the coupling effects of further stiffeners. As stated by Vasiliev
et al [6, 7], each rib in a unit cell is very slender in all the configurations of
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manufacturing interest, such that the influence of the rigid node zone is not
charged with the role of physical constraint for the adjacent area. Therefore, the
equivalent elastic properties of each unit cell can be written considering the
superimposition of each single beam stiffness in the same reference system. As a
consequence, it is convenient to define the single axial contribution assuming that
each beam is made of an isotropic medium. This means that we have to define the
Young’s modulus Ei, density ρi and shear modulus Gi, for each ith element, while
assuming a global orthotropic behaviour due to the slenderness of the single frame
within the cell. If a local reference system ˆ ˆ ˆx x xi i i

1
( )

2
( )

3
( ) is defined for each stiffener

along its principal axes, an overall constitutive elastic relationship can be written
as

σ

σ

τ

τ

τ

σ

ε

ε

γ

γ

γ

ε

=

C C C C

C C C C

C C C C

C C

C C

C C C C

0 0

0 0

0 0

0 0 0 0

0 0 0 0

0 0

(1.24)

i

i

i

i

i

i

i i i i

i i i i

i i i i

i i

i i

i i i i

i

i

i

i

i

i

1
( )

2
( )

12
( )

13
( )

23
( )

3
( )

11
( )

12
( )

16
( )

13
( )

12
( )

22
( )

26
( )

23
( )

16
( )

26
( )

66
( )

36
( )

44
( )

45
( )

45
( )

55
( )

13
( )

23
( )

36
( )

33
( )

1
( )

2
( )

12
( )

13
( )

23
( )

3
( )

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥

where σ σ τ τ τ σσ ˆ ˆ ˆ =x x x t( , , , ) [ ]i i i i i i i i i i T( )
1
( )

2
( )

3
( )

1
( )

2
( )

12
( )

13
( )

23
( )

3
( ) and ε ˆ ˆ ˆx x x( , , ,i i i i( )

1
( )

2
( )

3
( )

=t) ε ε γ γ γ ε[ ]i i i i i i T
1
( )

2
( )

12
( )

13
( )

23
( )

3
( ) are the stress and strain vector in the local

reference system. Nevertheless, the equivalent density ρ of the unit cell can be
computed starting from the width of each rib, δi, together with the interspace ai

between two adjacent frames characterized by same inclination angle with respect
to the α 1-direction. Eventually, one gets

∑ρ ρ δ=
= a

(1.25)
i

n

1
i

i

i

with n the number of rib families within the unit pattern. Accounting for the
stretching effect acting on each single rib, we define the non-reduced elastic
constants of the constitutive relation (1.24) as

ν

= =

= =
+

= = = = = =

C C E

C G
E

C C C C C C

2(1 )

0

(1.26)

i i
i

i
i

i

i

i i i i i i

11
( )

33
( )

44
( )

22
( )

12
( )

13
( )

23
( )

55
( )

66
( )

Starting from the orthotropic relation (1.24), the actual contribution of the single
frame to the equivalent stiffness of the unit cell can be derived from the application
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of a rotation transformation by an angle ϕi, which corresponds to the rib inclination
with respect to the geometric principal reference direction α1. Thus, the equivalent
elastic properties of a unit cell made of n rib families can be written as

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑

δ ϕ δ ϕ

δ ϕ ϕ δ ϕ ϕ

δ ϕ ϕ δ ϕ

δ ϕ ϕ δ ϕ

δ

= =

= = =

= =

= =

= = = =

= =

= =

= =

= =

=

C E
a

C E
a

C C E
a

C E
a

C E
a

C G
a

C G
a

C G
a

C E
a

C C C

cos , sin ,

sin cos , cos sin ,

cos sin , cos ,

cos sin , sin ,

, 0

(1.27)

i

n

i

n

i

n

i

n

i

n

i

n

i

n

i

n

i

n

1 1

1 1

1 1

1 1

1

k
i

i

i
i

k
i

i

i
i

k k
i

i

i
i i

k
i

i

i
i i

k
i

i

i
i i

k
i

i

i
i

k
i

i

i
i i

k
i

i

i
i

k
i

i

i

k k k

11
( ) 4

22
( ) 4

12
( )

66
( ) 2 2

16
( ) 3

26
( ) 3

44
( ) 2

45
( )

55
( ) 2

33
( )

13
( )

23
( )

36
( )

Hereafter we introduce the following effective notation to identify the main
properties of a unit cell

ϕ = …δ i nS/F ( ) 1, , (1.28)i a
⎡⎣ ⎤⎦

where (S) and (F) refer to the star and flake pattern configuration, respectively,
depending on the number of rigid nodes in the RVE; n is the number of rib families,
and angle ϕi refers to the ith frame family.

For a laminated structure with a latticed softcore, different elastic properties can
be determined, depending on the cellular geometry of the unit pattern. This means
that it is possible to obtain a large variety of elastic performances by simply tailoring
the geometric parameters even for an isotropic medium implementation. More
specifically, the overall properties of a lattice cell unit are mainly related to the wall
slenderness determined by the following dimensionless parameters

α β γ= = =s
l

s
l

b
l

, , (1.29)2

A schematic representation of the geometric quantities that defines a honeycomb
cell can be found in figure 1.2. Each unit cell is intended to be made of an isotropic
medium with bulk density ρs, Young modulus Es, Poisson’s ratio νs, and shear
stiffness ν= +G E /(2(1 ))s s s .

To account for the geometric characteristics of a lattice honeycomb cell, the
following nomenclature can be introduced

ϑc C l l sH / ( , , ) (1.30)2
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where c C/ stands for a classic =s s( )2 or commercial =s s( 2 )2 geometric layup.
These two cell configurations refer to lattices obtained by two different manufactur-
ing processes. In detail, a commercial cell configuration features a double thickness
vertical wall, since it comes out from the juxtaposition of two corrugated sheets. The
geometric parameters of the honeycomb cell are reported in figure 1.2 for the sake of
clarity. Generally speaking, according to [24], a general cellular material can be
modelled as an equivalent orthotropic continuum, where a homogenization proce-
dure should express the unit cell elasticity by means of the engineering constants. In
such a context, a local material reference system is defined, as visible in figure 1.2,
where the local axis x̂ 1 is taken perpendicularly to the vertical cell wall, x̂ 2 is parallel
to the same ribbon, and x̂ 3 coincides with the opposite of the outward unit vector

α αn( , )1 2 of the shell defined in (1.3), so that a right-handed system is obtained.
Equivalent elastic properties of the honeycomb cell consider the in-plane moduli E1

and E2 in the x̂ 1 and x̂ 2 directions, respectively, the shear modulus G12, the
stretching stiffness E3, the out-of-plane shear moduli G13 and G23, together with
the Poisson’s ratios ν12, ν21, ν13, ν31, ν23 and ν32. In what follows, the equivalent
density of the cell is determined as proposed by Gibson and Ashby [24], namely

ρ ρ β α
α

= = +
ϑ + ϑ

A
A

( 2)
2 cos ( sin )

(1.31)s
s

where A s is the effective area of the cell and A its bulk value. At the same time, the
elastic moduli are determined as proposed by Sorohan et al [34]

β
α

β α ρ
ρ

= ϑ
+ ϑ ϑ

= + ϑ
ϑ

=E k E E k E E E
cos

( sin ) sin
,

sin
cos

, (1.32)s s s
s

1 1
3

2 2 2
3

3 3

and the equivalent shear stiffnesses are defined as

β α
α α

β
α

= + ϑ
+ ϑ

= ϑ
+ ϑ

G k E G G
sin

(1 2 ) cos
,

cos
sin

(1.33)s s12 12
3

2 13

Figure 1.2. Lattice core grid patterns. (a) Honeycomb cell, (b) Frame infill.
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with

β ν

β ν α

α

α β ν
α

α

α
α

α

=
+ + + ϑ

=
+ + + ϑ +

ϑ

= +

+ + + + + ϑ

+ + ϑ + ϑ ϑ + ϑ

k

k

k

1
1 (2.4 1.5 cot )

1

1 2.4 1.5 tan
2

cos
1 2

1 2
2.4 1.5

(2 sin )

sin
(( sin ) tan sin )

(1.34)

s

s

s

1 2 2

2
2 2

2

12
2

2
2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

Moreover, the in-plane Poisson’s ratios are computed as

v v
α

α= ϑ
+ ϑ ϑ

= + ϑ ϑ
ϑ

c c
cos

( sin ) sin
,

( sin ) sin
cos

(1.35)12 12

2

21 21 2

The out-of-plane transverse deformation coefficients are calculated taking into
account the symmetry of the stiffness matrix (1.18) of the homogenized material

ν ν ν ν

ν ν ν ν

= =

= =

E
E
E
E

,

,
(1.36)s

s s

s
s s

13
1

31

23
2

32

In addition, the shear modulus G 23 follows the approach by Kelsey et al [28]
based on the minimum potential energy’s principle, for which an upper-bound value
GU

23 and a lower-bound value G L
23 can be computed as

β α
α

= + ϑ
+ ϑ ϑ

G G
sin

( sin ) cos
(1.37)U

s23

2

β α
α

= + ϑ
+ ϑ

G G
sin

(1 ) cos
(1.38)L

s23

where Gs is the shear modulus of the constituent material. On the other hand, the
linear interpolation procedure proposed by Grediac [29] between extreme valuesGU

23

andG L
23 has been demonstrated to be inadequate for re-entrant cells, and it is reliable

only for a limited type of cell configurations [30, 39]. Due to this limitation, as
highlighted in the work by Fu and Yin [35], we apply the following interpolation
formula

γ
γ

= +
+

−G G
A

B C
G G( ) (1.39)L U L

23 23 2 23 23
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where =A 2/5, =B 3/4 and =C 1/4 are some calibrated constants. It is worth
noticing that the interpolation (1.39) fits Torabi’s formula [36], when γ → 0.5,
whereas for γ → 10 a lower bound value of shear modulus is steadily reached.

An ESL model is developed hereafter, such that the three-dimensional constit-
utive relation (1.23) is computed for each single layer of the lamination scheme.
Based on the kinematic assumptions (1.7), we must consider the strain field
coming from the adopted thickness functions matrix ζ=τ τF F ( ) for each τth
order of expansion. Nevertheless, a generalized stress component vector

α α =τ α τ α τ α τ α τ α τ α τ α τ α τ α τ αt N N N N T T P P SS ( , , ) [ ]T( )
1 2 1

( )
2
( )

12
( )

21
( )

1
( )

2
( )

1
( )

2
( )

3
( )i i i i i i i i i i

must be defined for each unknown variable order of the displacement field, by
computing all the stress components along the thickness coordinate ζ, while keeping
in mind the presence of possible coupling effects, due to the anisotropic behavior. In
addition, the equivalent constitutive relation must account for the interlaminar
phenomena. In this way, the ESL generalized strain component vector α αε τ α t( , , )( )

1 2
i

is directly related to α ατ α tS ( , , )( )
1 2

i thanks to a generalized constitutive matrix. A
formulation independent from the thickness coordinate is obtained, since ζ is
computed in the definition of equivalent elastic and kinematic quantities. Based
on the equivalence between the actual elastic strain energy and the homogenized
one, the generalized anisotropic ESL Hooke’s relation comes out [57]

∑∑ τ α α α αε= = … + =
η=

+

=

τ α τη α α η α N NS A for 0, 1, 2, , , 1, , , (1.40)
N

j0

1

1

3

i
( ) ( ) ( )

1 2 3
i i j j

where the generalized elastic matrix τη α αA( ) i j, for τ = … +N N0, 1, 2, , , 1 and
α α α α= , ,i 1 2 3 reads as follows

=

τη α α

τη α α τη α α τη α α τη α α τη α α τη α α τη α α τη α α τη α α

τη α α τη α α τη α α τη α α τη α α τη α α τη α α τη α α τη α α

τη α α τη α α τη α α τη α α τη α α τη α α τη α α τη α α τη α α

τη α α τη α α τη α α τη α α τη α α τη α α τη α α τη α α τη α α

τη α α τη α α τη α α τη α α τη α α τη α α τη α α τη α α τη α α

τη α α τη α α τη α α τη α α τη α α τη α α τη α α τη α α τη α α

τη α α τη α α τη α α τη α α τη α α τη α α τη α α τη α α τη α α

τη α α τη α α τη α α τη α α τη α α τη α α τη α α τη α α τη α α

τη α α τη α α τη α α τη α α τη α α τη α α τη α α τη α α τη α α

A A A A A A A A A

A A A A A A A A A

A A A A A A A A A

A A A A A A A A A

A A A A A A A A A

A A A A A A A A A

A A A A A A A A A

A A A A A A A A A

A A A A A A A A A

A

(1.41)

i j

i j i j i j i j i j i j i j i j i j

i j i j i j i j i j i j i j i j i j

i j i j i j i j i j i j i j i j i j

i j i j i j i j i j i j i j i j i j

i j i j i j i j i j i j i j i j i j

i j i j i j i j i j i j i j i j i j

i j i j i j i j i j i j i j i j i j

i j i j i j i j i j i j i j i j i j

i j i j i j i j i j i j i j i j i j

( )

11(20)
( )[00]

12(11)
( )[00]

16(20)
( )[00]

16(11)
( )[00]

14(20)
( )[00]

15(11)
( )[00]

14(10)
( )[01]

15(10)
( )[01]

13(10)
( )[01]

12(11)
( )[00]

22(02)
( )[00]

26(11)
( )[00]

26(02)
( )[00]

24(11)
( )[00]

25(02)
( )[00]

24(01)
( )[01]

25(01)
( )[01]

23(01)
( )[01]

16(20)
( )[00]

26(11)
( )[00]

66(20)
( )[00]

66(11)
( )[00]

46(20)
( )[00]

56(11)
( )[00]

46(10)
( )[01]

56(10)
( )[01]

36(10)
( )[01]

16(11)
( )[00]

26(02)
( )[00]

66(11)
( )[00]

66(02)
( )[00]

46(11)
( )[00]

56(02)
( )[00]

46(01)
( )[01]

56(01)
( )[01]

36(01)
( )[01]

14(20)
( )[00]

24(11)
( )[00]

46(20)
( )[00]

46(11)
( )[00]

44(20)
( )[00]

45(11)
( )[00]

44(10)
( )[01]

45(10)
( )[01]

34(10)
( )[01]

15(11)
( )[00]

25(02)
( )[00]

56(11)
( )[00]

56(02)
( )[00]

45(11)
( )[00]

55(02)
( )[00]

45(01)
( )[01]

55(01)
( )[01]

35(01)
( )[01]

14(10)
( )[10]

24(01)
( )[10]

46(10)
( )[10]

46(01)
( )[10]

44(10)
( )[10]

45(01)
( )[10]

44(00)
( )[11]

45(00)
( )[11]

34(00)
( )[11]

15(10)
( )[10]

25(01)
( )[10]

56(10)
( )[10]

56(01)
( )[10]

45(10)
( )[10]

55(01)
( )[10]

45(00)
( )[11]

55(00)
( )[11]

35(00)
( )[11]

13(10)
( )[10]

23(01)
( )[10]

36(10)
( )[10]

36(01)
( )[10]

34(10)
( )[10]

35(01)
( )[10]

34(00)
( )[11]

35(00)
( )[11]

33(00)
( )[11]

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

As visible in (1.41), the stiffness matrix is conveniently split into blocks in order to
collect the zeroth and first order derivatives of τF components with respect to ζ. The
definition of all the terms of τη α αA( ) i j is strictly related to the basic material
assumptions. Generally speaking, we employ the three-dimensional constitutive
coefficients C̄nm

k( ) with = …n m, 1, 6, which are redefined as reduced elastic constants
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Q̄nm
k( ), under in-plane stress assumptions. Moreover, by assuming a linear shape

function throughout the thickness, for the in-plane displacement field, we introduce
the well-known shear correction factor κ ζ =( ) 5/6 [49, 50], such that the equivalent
elastic constants for the homogenized material B̄nm

k( ) take the following form [57]

κ ζ
¯ =

¯ =
¯ =

B
E n m

E n m

for , 1, 2, 3, 6

( ) for , 4, 5
(1.42)nm

k nm
k

nm
k

( )
( )

( )⎪
⎪⎧⎨
⎩

where ¯ = ¯E Cnm
k

nm
k( ) ( ) or ¯ = ¯E Qnm

k
nm

k( ) ( ), in agreement with the stress state hypotheses.
Thus, an effective expression for each generalized elastic constant of (1.41) is

summarized as follows [57]

∫∑
ζ ζ

ζ

ζ ζ

τ η

α α α α α

= ¯ ∂

∂
∂

∂

∂
∂

=
∂

∂
=

= … +
=

=
=

=

τη α α

ζ

ζ η
α

τ
α

τ
α

τ
α η

α

η
α

=

+
A B

F F H H

H H
d

F
F

F
F

N N
n m
p q

f g
,

for , 0, 1, 2, , , 1
for , 1, 2, 3, 4, 5, 6
for , 0, 1, 2
for , , ,

for , 0, 1

(1.43)
nm pq

fg

k

l

nm
k

f

f

g

g p q

i j

( )
( )[ ]

1

( ) 1 2

1 2

0

0

0

0
1 2 3

i j

k

k
j i

i
i

j

j

1

1.2.4 Governing equations

We determine now the fundamental equations of motion for shells with a lattice
core, in an ESL setting. These equations are written taking into account the elastic
strain energy and inertial contribution of the structure, to solve a dynamic
eigenvalue problem. The dynamic equilibrium can be computed from the
Hamiltonian Principle in its variational form [57] within a time interval t t[ , ]1 2

∫ ∫δ Φ δ δΦ− = → − =T dt T dt( ) 0 ( ) 0 (1.44)
t

t

t

t

1

2

1

2

with T the kinetic energy and Φ the shell elastic strain energy. Based on the ESL
approach, we account for the thickness functions set (1.7), while defining a differ-
ential operator α

Ω
*D i for each direction in the reference system α α α, ,1 2 3

α

α α α α α α α α α
Ω*

=
Ω* Ω* Ω* Ω* Ω* Ω* Ω* Ω* Ω*( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

D

D D D D D D D D D
11 12 13 14 15 16 17 18 19

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

(1.45)

1

1 1 1 1 1 1 1 1 1⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

α

α α α α α α α α α

Ω*

Ω* Ω* Ω* Ω* Ω* Ω* Ω* Ω* Ω*= ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )21 22 23 24 25 26 27 28 29

D

D D D D D D D D D

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

(1.46)

2

2 2 2 2 2 2 2 2 2

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
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α

α α α α α α α α α

Ω*

Ω* Ω* Ω* Ω* Ω* Ω* Ω* Ω* Ω*
=

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )31 32 33 34 35 36 37 38 39

D

D D D D D D D D D

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 (1.47)

3

3 3 3 3 3 3 3 3 3

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

The equilibrium equations can be written in terms of generalized stress resultants
α ατ α tS ( , , )( )

1 2
i and generalized displacement field α ατ tu ( , , )( )

1 2 located on the
reference surface, for each τth order of expansion, namely

∑ ∑ τ= ̈ = … +
η= =

+
α τ α τη η

Ω
* N ND S M u for 0, 1, 2, , , 1 (1.48)

i

N

1

3

0

1
( ) ( ) ( )i i

The inertial shell properties are collected in the τth order generalized mass matrix
τηM( )

τ η= = … +τη

τη α α

τη α α

τη α α

I
I

I

N NM
0 0

0 0
0 0

for , 0, 1, 2, , , 1 (1.49)( )

( )

( )

( )

1 1

2 2

3 3

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

where the mass matrix terms τη α αI ( ) i j in each principal direction are defined as [57]

∫∑ ρ ζ α α α α α= =
=

τη α α

ζ

ζ

τ
α

η
α+

I F F HH d for , , , (1.50)
k

l

1

k
i j

( ) ( )
1 2 1 2 3

i j

k

k
i j

1

accounting for the weight distribution along the shell thickness. On the other hand,
the differential operators in (1.45)–(1.47) are defined as

α α

α

α α

α

= = = ∂
∂

+ ∂
∂

= − = − ∂
∂

= = = ∂
∂

+ ∂
∂

= − = ∂
∂

= = = −

= − =

= = =

= − =

= = = =

= = =

α α α

α α

α α α

α α

α α α

α α

α α α

α α

α α α α

α α α

Ω
*

Ω
*

Ω
*

Ω
*

Ω
*

Ω
*

Ω
*

Ω
*

Ω
*

Ω
*

Ω
*

Ω
*

Ω
*

Ω
*

Ω
*

Ω
*

Ω
*

Ω
*

Ω
*

Ω
*

Ω
*

Ω
*

Ω
*

Ω
*

Ω
*

Ω
*

Ω
*

A A A
A

A A
A

A A A
A

A A
A

R

R

D D D

D D

D D D

D D

D D D

D D

D D D

D D

D D D D

D D D

( ) ( ) ( )
1 1

,

( ) ( )
1

,

( ) ( ) ( )
1 1

,

( ) ( )
1

,

( ) ( ) ( ) 1,

( ) ( )
1

,

( ) ( ) ( ) 0,

( ) ( )
1

,

( ) ( ) ( ) ( ) 0

( ) ( ) ( ) 0,

(1.51)

11 23 35
1 1 1 2

2

1

12 24
1 2

2

1

14 22 36
2 2 1 2

1

2

13 21
1 2

1

2

17 28 39

15 31
1

16 18 19

26 32
2

33 34 37 38

25 27 29

1 2 3

1 2

1 2 3

1 2

1 2 3

1 3

1 1 1

2 3

3 3 3 3

2 2 2
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If the generalized stress resultants τ αS( ) i in (1.48) are expressed in terms of generalized
strain resultants ε τ α( ) i via the anisotropic Hooke’s law (1.40) and ESL approach, it is
possible to define the equilibrium problem directly by means of the kinematic primary
unknowns α α =η η η ηt u u uu ( , , ) [ ]T( )

1 2 1
( )

2
( )

3
( ) with η = … +N0, , 1. Taking into account

the definition (1.16) of the strain component vector ε τ α( ) i for each principal direction
α α α α= , ,i 1 2 3 coming from relations (1.15), the fundamental equations are derived
for a doubly-curved shell with a generally-oriented lattice core [57]

∑ ∑ τ= ̈ = … +
η η=

+

=

+
τη η τη η N NL u M u for 0, 1, 2, , , 1 (1.52)

N N

0

1

0

1
( ) ( ) ( ) ( )

where

∑∑= =
= =

τη α τη α α α

τη α α τη α α τη α α

τη α α τη α α τη α α

τη α α τη α α τη α α
Ω
*

Ω

L L L

L L L

L L L

L D A D (1.53)
i j1

3

1

3
( ) ( )

11
( )

12
( )

13
( )

21
( )

22
( )

23
( )

31
( )

32
( )

33
( )

i i j j

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

and τ η = … +N, 0, , 1.
The fundamental equation (1.52) can be written in extended form as

⋯ ⋯
⋯ ⋯

⋮ ⋮ ⋱ ⋮ ⋮
⋮ ⋮ ⋱ ⋮ ⋮

⋯ ⋯
⋯ ⋯

⋮
⋮ =

=

⋯ ⋯
⋯ ⋯

⋮ ⋮ ⋱ ⋮ ⋮
⋮ ⋮ ⋱ ⋮ ⋮

⋯ ⋯
⋯ ⋯

̈
̈
⋮
⋮
̈

̈

+

+

+

+ + + + + +

+

+

+

+ + + + + +

L L L L
L L L L

L L L L
L L L L

u
u

u
u

M M M M
M M M M

M M M M
M M M

u
u

u
u

(1.54)

N N

N N

N N N N N N

N N N N N N

N

N

N N

N N

N N N N N N

N N N N N N

N

N

(00) (01) (0( )) (0( 1))

(10) (11) (1( )) (1( 1))

(( )0) (( )1) (( )( )) (( )( 1))

(( 1)0) (( 1)1) (( 1)( )) (( 1)( 1))

(0)

(1)

( )

( 1)

(00) (01) (0( )) (0( 1))

(10) (11) (1( )) (1( 1))

(( )0) (( )1) (( )( )) (( )( 1))

(( 1)0) (( 1)1) (( 1)( )) (( 1)( 1))

(0)

(1)

( )

( 1)

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥
⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

The complete expressions of the fundamental coefficients can be found in [57].
For a free vibration study of doubly-curved shell, we select an harmonic solution

for the fundamental equation (1.52), such that the unknown vector
=τ τ τ τu u uu [ ]T( )

1
( )

2
( )

3
( ) is described in terms of the mode shape

α α α α α α=τ τ τ τU U UU [ ( , ) ( , ) ( , )]T( )
1
( )

1 2 2
( )

1 2 3
( )

1 2 and the corresponding circular fre-
quency ω π= f2 as

α α α α=τ τ ωt eu U( , , ) ( , ) (1.55)i t( )
1 2

( )
1 2

It is worth remembering that the +N( 1)th expansion order is embedded in the
model if we adopt the Murakami’s strategy (1.9) for describing possible interlaminar
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effects, otherwise the maximum order is equal to N . Thus, the free vibration
equations can be set as [57]

∑ ∑ω τ+ = = … +
η η=

+

=

+
τη η τη η N NL U M U 0 for 0, 1, 2, , , 1 (1.56)

N N

0

1

0

1
( ) ( ) 2 ( ) ( )

For the definition of the external boundary constraints, it is useful to express the
generalized stress resultants set τ αS( ) i in terms of the DOFs of (1.52), taking into
account the constitutive elastic relation (1.40), as well as the compatibility equation
(1.16), i.e.

∑=
η=

+

τ α

τ α

τ α

τ α

τ α

τ α

τ α

τ α

τ α

τη α α τη α α τη α α

τη α α τη α α τη α α
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τη α α τη α α τη α α
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η

N
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N
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T
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P
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S

O O O

O O O

O O O

O O O

O O O

O O O

O O O

O O O

O O O

u

u

u

(1.57)
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⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎡

⎣
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

with τ = … +N0, , 1. Based on the Hamiltonian Principle (1.44), and the appli-
cation of the Gauss’ Theorem for integration purposes, one obtains the equilibrium
relations (1.48). Actually, since two different integrals are derived at this stage in any
time interval t t[ , ]1 2 , it is possible to derive both the kinematic and static external
constraints. Hereafter, we consider two different sets of BCs, namely a fully clamped
(C) and a free (F) restraint, defined as [57]
Clamped (C)

τ

α α α α α α α

τ

α α α α α α α

= = = = … +

= = ⩽ ⩽

= = = = … +

= = ⩽ ⩽

τ τ τ

τ τ τ

u u u N N

or

u u u N N

or

0 for 0, 1, 2, , , 1,

at ,

0 for 0, 1, 2, , , 1,

at ,

(1.58)
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1
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1
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2 2
0

2 2
1

1
0

1 1
1

Free (C)

τ

α α α α α α α

τ

α α α α α α α

= = = = … +

= = ⩽ ⩽
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For a smart definition of shell edges, we adopt the following nomenclature

α α α α α
α α α α α
α α α α α
α α α α α

→
→

→
→

⩽ ⩽ =
= ⩽ ⩽
⩽ ⩽ =
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Westedge (W)
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Eastedge (E)
North edge(N)
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,

,
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(1.60)
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1.2.5 Assembly procedure of the discrete governing equations

Once the analytical expression of the fundamental equation (1.56) has been derived
for the eigenvalue problem, we provide a discrete version to solve the problem
numerically. In the present formulation, we employ the GDQ method to solve the
problem in a strong form. First of all, a set of ×I IN M discrete points is identified
within the computational domain. For each point, a coordinate location α α( , )i j1 2

with = …i I1, , N and = …j I1, , M must be provided with respect to the curvi-
linear reference system (1.1). In the present work, a non-uniform bidimensional
Chebyshev–Gauss–Lobatto’s (CGL) distribution has been selected [57], due to its
capability to yield accurate and stable results, as verified in [57, 59, 60, 65, 70],
namely
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The GDQ method allows one to express directly the nth order derivative of a
function as a linear combination of its values assumed in a fixed point distribution. If
f x( ) is a one-variable function with ∈x x x[ , ]0 1 and x i is a discrete point belonging
to a discrete distribution of I N points within its domain, it gives
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f x i I
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The weighting coefficients are computed from the recursive relation provided by
Shu [64]
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depending on the properties of the interpolating polynomials . On the other hand,
based on the integral fundamental theorems, from equation (1.62) we can similarly
derive the well-known Generalized Integral Quadrature (GIQ) procedure [57], which
approximates the integral of a function as follows

∫ ∑= −
=

f x dx w w f x( ) ( ) ( ) (1.64)
k

I

1
x

x

jk ik k
i

j T

in the closed interval x x[ , ]i j . In equation (1.64) the weighting coefficients wik and wjk

can be derived from (1.63).
Accordingly, the partial derivation of a bi-dimensional function α αf ( , )1 2 with

respect to α 1 and α 2 up to the nth and mth order within the bi-dimensional
discretization α α( , )i j is defined numerically as
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with = …i I1, , N and = …j I1, , M . At the same time, the mixed derivative of
+n m( )th order of α αf ( , )1 2 is expressed as [57]
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Now, the discrete form of the fundamental equation (1.56) for the eigenvalue
problem is obtained in a strong formulation, taking into account each expansion
order of the kinematic ESL assumption (1.7)

ωδ δ=K M (1.67)2

K and M being the stiffness and inertia matrix written for the whole domain.
Nevertheless, δ is the global DOFs array, which is conveniently separated as
δ δ δ= [ ]b d

T to account for the external points of the structure denoted with ‘b’,
and those of the internal ones of the computational domain labelled with ‘d’. As a
consequence, also K and M are properly rearranged, such that equation (1.67)
becomes [57]
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Employing a kinematic condensation, it is possible to reduce the size of (1.68) that
yields the following expression

ω δ− − =− −M K K K K I 0( ( ) ) (1.69)dd dd db bb bd d
1 1 2

Equation (1.68) points out also a problem related to the definition of BCs near the
corners of the shell. According to the identification of edges in (1.60), the discrete
corner point belongs to two different sides of the structure. Therefore, the definition
of external constraints is not immediate, as the discrete form of BCs is univocally
defined at each point. To this end, a possible solution is to consider in these points
the sum of the external constraints defined in (1.59). In this way, the free corner
condition can be easily set, since it comes from a combination of some basic
constraint cases.

1.3 Numerical applications
In the present section we perform some numerical examples to validate the proposed
approach against some reference 3D finite element-based predictions. The focus has
been on various parameters occurring in the generalized problem at issue, namely
the presence of variable curvatures within a structure, the introduction of latticed
materials, and different stacking sequences along the shell thickness.

As far as the geometry is concerned, the structure is described with respect to the
reference surface (1.1), in line with the ESL strategy. As summarized in figure 1.1,
two categories of shells are distinguished among the proposed examples. First, a
helicoidal panel is described as a translational surface if a principal coordinate
system is set. It leads to the following position vector [57]

α α α α α α α α α α

α α

= − + − − + −

+ −

a a

a

r e e

e

( , ) cos( ) sinh( ) sin( ) sinh( )

( )
(1.70)1 2 1 2 1 2 1 1 2 1 2 2

1 2 3

This kind of structure consists of a curve described with the principal coordinate α 1

sliding over another one described from the other principal line α 2. On the other
hand, a revolution surface is obtained from a curve along α 1 direction getting
around a reference rotation axis. The parallel direction denotes a principal para-
metric set of lines along α 2. In the following, the principal coordinate reference
surface equation is reported for a revolution paraboloid of nth order [57]

ϑ = ϑ − ϑ +x x x axr e e e( , ) cos sin (1.71)n
1 1 1 1 2 1 3

In equations (1.70)–(1.71), the parameter a is used to fix the geometry scaling. This
parameter assumes a different meaning depending on the selected shell structure. As
a matter of fact, a rectangular plate can be described as a translational surface (1.70)
in which both generatrix and directrix curves consist of a straight line.

As extensively discussed in the previous sections, the main advantage of employ-
ing a lattice medium in the structure is to come across a general orthotropic
behaviour of the structure, even though an isotropic material with spherical elastic
symmetry is assumed. In this way, it is possible to perform a topological
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optimization of the cell unit to assess a priori the dynamic properties of the shell, by
simply tuning the unit cell geometry rather than the entire structure or its BCs.
Moreover, a lattice material turns into a very lightweight performing structure. In
the present chapter two different approaches have been applied to define the central
layer of shells. In figure 1.2 one can find all the geometric quantities employed in the
model for both a honeycomb cell (a) and single grid family (a), based on thin-walled
hypotheses.

The accuracy of the approach is affected by the complexity of the selected
stacking sequence. Two main aspects must be considered, namely, the complexity of
the single layer stiffness matrix (1.22) and the relative thickness of adjacent laminae.
According to [24], a lattice honeycomb structure can be obtained in a lot of
engineering applications, embedding both nanomaterials, aerospace, and civil
applications. For this reason, the validation of the dynamic behaviour is compulsory
for both thin and thick layers within a laminate.

As also stated by Vasiliev et al [6, 7], the manufacturing process of a lattice grid
structure consists of a central thick core made by various stiffeners, together with two
outer thinner isotropic sheets, which cannot be considered as structural contributions.
However, since the dynamic behaviour must be assessed within the whole structure, in
the present work we employ two isotropic thin skins for a lattice grid layer.

The first set of examples studies the accuracy of the proposed homogenization
method to model the honeycomb core. A rectangular plate is considered with in-
plane dimensions ≃ ≃L L 0.4 mx y , which is assumed to be completely clamped
(C) at each edge. The plate is made of an isotropic aluminum material, also for outer
external skins, whereas a three-layer configuration is considered for each case.

As far as the honeycomb unit cell layup is concerned, examples with three
different RVEs have been developed employing various internal cell angles ϑ, as
depicted in figure 1.3, together with a conceptual three-dimensional representation
of the sandwich panel. In particular, the hexagonal honeycomb cell is characterized
by ϑ = °30 , the rectangular one is denoted with ϑ = °0 . Note that we revert to an
auxetic behaviour in the case of re-entrant honeycomb, with ϑ = − °30 . In order to
assess the smearing technique with a right set of cell configurations, different plates
have been developed with various cell wall thicknesses, accounting for both the case
of thin and thick layer. In all the analyses, the central honeycomb core lies within
two external layers with = =h h 0.001 m1 3 . For each case, a refined 3D FEM
model is employed for a large number of DOFs, and the first ten mode frequencies
are calculated, together with their corresponding eigenvectors. The FEM-based
outcomes are treated as reference solutions for the validation check of the proposed
homogenized GDQ model.

The influence of the through-the-thickness axiomatic assumptions are, then,
investigated by adopting different higher order theories. The results are summarized
in tables 1.1–1.3, while a geometric representation of the FEM model can be found
in figure 1.4, along with its homogenized scheme. The finite element model
discretizes the outer layers with parabolic 20-nodes bricks, while the internal grid
assumes higher order shell elements, to yield a conforming mesh, and an optimized
interpolation of the problem.
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In table 1.1 we summarize the first ten natural frequencies of the rectangular plate
with a central infill of hexagonal honeycomb ϑ = °( 30 ). In this case, the equivalent
elastic properties, generally orthotropic, degenerate into a transverse isotropic
material, due to the perfect correspondence between the in-plane elastic moduli
along α 1 and α 2. Accordingly, the symmetry of the domain and BCs is reflected on
the vibration modes, that share four pairs of values, with few discrepancies related to
the geometrical dimensions of L x and L y.The same analyses are then repeated in
table 1.2 for a rectangular honeycomb unit cell ϑ = °( 0 ), by employing different
HSDTs. The 3D FEMmodel is developed taking into account the exact geometry of
the core infill, as well as perfectly-bonded interfaces. All the internal cell walls also
present the same thickness at any arbitrary point. A twofold numerical investigation

Figure 1.3. Honeycomb cell layup.
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is now performed for sandwich panels with thin and/or thick layers. For each case,
two different thickness of the internal cell walls are selected. Based on the
comparative results in table 1.2, it is worth observing an increased accuracy of
GDQ-based predictions with respect to the finite element reference solution, when
the zig-zag function (1.9) is embedded in the ESL displacement field (1.7). This is
particularly evident when the Murakami’s strategy is combined with a classical
FSDT assumption. Any further increase in accuracy is observed, when implement-
ing a third order theory. A similar behaviour can be also observed in the case of re-
entrant honeycomb lattice layer ϑ = − °( 30 ). In table 1.3 we report the first ten mode
frequencies for a completely clamped (CCCC) rectangular plate with a central layer
made of a honeycomb re-entrant pattern. The good accordance between our GDQ-
based results and finite element predictions reveal the great capability of the
proposed homogenization approach and higher order theories to handle the
problem. Unlike other classical homogenization methods, the present formulation
is able to predict accurately the actual value of the shear modulus, G23, which is
usually computed by interpolating the values provided by a static and a kinematic
admissible problem. The non-linear interpolation proposed in equation (1.39) is
calibrated on a series of validation examples conducted on a rectangular plate [39]

Figure 1.4. Finite element models and shell representation of the panels reinforced with a lattice infill.
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and represents a valid alternative to the original Grediac formulation [29] assessed
by Scarpa et al [30]. In this way, also for the re-entrant case, the eigenfrequencies are
properly predicted for a large variety of cell cases, taking into account different cell
configurations in terms of wall thickness and layer height. From a direct comparison
between tables 1.1–1.3, it can be stated that the honeycomb grid does not affect the
dynamic behaviour, for lower frequencies, whereas higher modes depend signifi-
cantly on the cell geometric configuration. In particular, the internal cell angle ϑ is a
key design parameter. For re-entrant honeycomb angles, indeed, a meaningful
increase in vibration frequencies can be noticed for any cell configuration. On the
other hand, since a re-entrant honeycombs turns into a negative equivalent in plane
Poisson’s ratio, ν12, the auxetic behaviour of the central core features complicated
interfacial phenomena. As a consequence, only the EDZ4 theory seems to agree with
the FEM-based solution in terms of vibration modes, especially for thick layer

=h( 0.001 m)2 layups.
As also visible in figure 1.5, the proposed approach is capable of providing very

complex in-plane and out-of-plane deformation phenomena. In addition, for a
honeycomb cell, the variation of the cell geometry can affect significantly the mode
shapes, especially for higher modes. Despite the symmetry of the geometry and BCs,
different eigenvectors are associated with the problem in figure 1.5, by simply tuning
the internal cell angle ϑ. For instance, if we consider three different unit cells with
ϑ = ° ° − °30 , 0 , 30 , the vibration modes 5 and 6 move from a central-symmetric
deformation with four waves for the hexagonal honeycomb, to a three-waves mode
in the case of rectangular cell, and eventually to a four-waves mode in the case of
auxetic configuration. For lower modes, the orthogonality of the deformation field is
induced from different constitutive lattices and in-plane properties.

Another validation analysis is performed on a paraboloidal panel, whose mode
frequencies are summarized in tables 1.4, 1.5. In figure 1.4 we report the representative
geometric parameters for each selected shell structure. In this case we model the central
core with a continuum model based on the equivalent elastic properties of the grid
pattern computed as in equation (1.27). A fine structured mesh is used for the
discretization of the domain, here modelled with C3D20R parabolic elements. The
laminate consists of two external thin layers made of isotropic aluminum and a thick
central core made of a lattice layer rather than a cellular material. The unit cell is made
by four rib families: two of them (ϕ = °0i and ϕ = °90i ) are stretched along the α 1 and
α 2 principal lines, whereas the other two classes of frames are symmetrically sorted
along directions ϕ = ± °45i with respect to α 1. Employing the effective compact
notation (1.28), the unit cell can be identified univocally with the notation

− δ δ δ δ
= = = =F[ 45 / 0 /45 /90 ]a a a a0.1414 m 0.1 m 0.1414 m 0.1 m1

1

2

2

3

3

4

4 , where a i is the interspace
between two adjacent ribs and δ i the width of each frame. A modal analysis is
adopted for a paraboloidal panel with two different BCs and different values of
δ i. A cantilevered configuration (FCFF) of the structure is first analysed, whose
mode frequencies are listed in table 1.4. The same study is, thus, repeated for the
same structure constrained on the two lateral edges along two different meridian
lines (CFCF), as summarized in table 1.5. The 3D FEM solution has been
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compared with predictions from the homogenized model based on different
orders of expansion. Differently from the previous cases, the influence of the
Murakami’s function (1.9) is trivial, since the central core is predominant within
the thickness profile with respect to the external skins, leading to reduced

Figure 1.5. Mode shapes of a rectangular plate with a central lattice honeycomb layer.
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interlaminar phenomena. For this reason, even a classical third order theory by Reddy
[53] behaves well together with the zig-zag strategy (1.9). The accuracy of the proposed
model for grid structures seems to be unaffected by the width δ i for each frame, as
visible in both tables 1.4 and 1.5, except for CFCF shell structures with thick stiffeners
δ = 0.02 mi , for which the EDZ4 formulation seems to provide the highest level of
accuracy among results. Figure 1.6 depicts the first nine mode shapes of a moderately
thick cantilevered paraboloidal panel. In this case, the influence of geometry becomes
crucial for the overall response, because of the transversely-isotropic behaviour of the
unit cell made of four ribs families. Actually, the proposed higher order model is
capable of providing both symmetric and antisymmetric modal deformations, as well
as all possible complex stretching effects that occur along the shell thickness, due to the
interlaminar interactions.

The last set of examples considers a doubly-curved shell structure reinforced by a
honeycomb central layer with =h 5 mm. More specifically, a helicoidal panel is
modelled according to an ESL method, whose geometry definition in the principal

Figure 1.6. Mode shapes of a cantilever (FCFF) revolution paraboloidal panel with a lattice core made of a
grid with four symmetric moderately thick rib families.
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reference system can be found in figure 1.7. Also, in this case we compute the first ten
mode frequencies of the structure, while keeping a CFFC boundary restraint. Three
different unit cells are here implemented, with geometrical properties as defined in
figure 1.3. For each selected case, the helicoidal panel assumes both thin

= =s s( 0.1 mm)2 and thick = =s s( 0.4 mm)2 cell walls, whose results are
summarized in table 1.6 under the assumption of hexagonal ϑ = °( 30 ) honeycomb
softcore. We recall that a transversely isotropic behaviour is provided by the cell unit
at issue. For both thin cells or thick walls, the numerical results for each mode,
always converge to the frequency predictions by the EDZ4 theory. Similarly, in
table 1.7 we summarize the natural frequencies for the helicoidal panel (figure 1.7)
with a lattice layer consisting of a series of rectangular thin-walled cells, as predicted
by different HSDTs. Assuming the EDZ4-based solution as the reference one, it is
worth noticing that lower order theories embedding a reduced number of DOFs
provide results with a lower precision, and a higher dispersion. The same behaviour
can be observed in table 1.8 for a helicoidal structure embedding a lattice layer with
re-entrant cells. Based on results in this table, the accuracy of the proposed model
depends on the shear correction factor assumption, ζk( ), when lower EDZ-N
theories are taken on. In this case, results based on the EDZ1 theory are very
accurate (if compared to EDZ4 predictions), when keeping ζ =k( ) 5/6. On the other
hand, an EDZ2 theory does not require any shear correction factor, which
corresponds to the assumption ζ =k( ) 1. Figure 1.8 plots the first nine mode shapes
for the helicoidal shell with a central layer infilled by re-entrant cells, as computed

Figure 1.7. Geometric representation of a helicoidal panel in the principal reference system.
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with an EDZ4 theory. Based on these plots, the present approach is confirmed to be
capable of getting the bending deformations in each principal direction. For higher
vibration modes, the out-of-plane waves are visible in both principal directions,
together with the warping effects.

1.4 Conclusions
In the present chapter an innovative strategy based on the GDQ method has been
proposed for the free vibration analysis of sandwich and laminated structures with
variable curvatures with a central layer made of a honeycomb pattern or stiffeners
system. The fundamental equations have been derived employing the ESL approach,
where a generalized through-the-thickness assumption has been considered along
with different higher order theories. Within each layer, a completely anisotropic
elastic behaviour has been modelled, once a general rotation of the material
reference system has been provided. Based on a homogenization method, a smeared

Figure 1.8. Mode shapes of a CFFC helicoidal panel with a re-entrant ϑ = − °( 30 ) lattice core.
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orthotropic continuum has been provided, depending on the material properties
and geometric features. A different in-plane constitutive behaviour has been
provided, based on the variation of the internal cell angle. After the definition of a
repetitive unit, the rib unit cell has been homogenized by assuming a thin-walled
hypothesis, taking into account the axial contribution of each frame and the
independence from the number of grid nodes. The fundamental equation of the
problem together with the BCs are derived from the Hamiltonian Principle in its
variational formulation. After the assembly procedure of the governing equations
by means of the GDQ method, a free vibration analysis has been provided for
different lattice and honeycomb shells. The results have been systematically
compared to those provided by highly computational demanding finite elements,
with a great accordance in terms of mode frequencies and shapes. The proposed
higher order formulation based on a homogenized continuum modelling has been
revealed to be a reliable design tool to treat complicated structures with latticed
and honeycomb cores, with respect to high demanding 3D finite element
simulations.
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