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William J Nuttall, Satoshi Konishi, Shutaro Takeda and David Webbe-Wood

Chapter 1

Introduction

William J Nuttall, Satoshi Konishi, Shutaro Takeda and David Webbe-Wood

1.1 Background
Nuclear fusion, the energy that makes the Sun shine, is regarded by many as the
ultimate energy supply for humankind [1], and its promise of clean, safe, and
virtually unlimited energy has driven global research and development for the last
several decades. During this period, fusion research has sometimes met with
criticism that the progress is too slow, or perhaps, stagnated. Today, however,
there are indications that something is changing, the tide has turned. One can see
that fusion energy makes headlines almost every day on major news outlets like
Forbes1 and Bloomberg2. The Economist, which ten years ago, observed ‘Viable
nuclear fusion has been only 30 years away since the idea was first mooted in the
1950s’ [2] now reports with greater optimism: ‘There is, then, no shortage of ideas
about how a practical fusion reactor might be built…. Everyone talks a good story
about this.’ [3] This reinvigorated optimism was partly brought in by relatively new
players in the fusion community: start-up companies.

Historically, fusion research has been the domain of large public institutions.
These mainstream efforts seek to bring fusion to fruition as a source of energy and
have been led initially by national governments and lately by international
collaborations. The current international effort is focused on the ITER program—

an international project with 36 nations participating directly or indirectly3 at a cost
of over €20 billion [4]. It is expected that the first deuterium-tritium operations of
ITER will occur sometime after 2035.

1 For example, ‘Fusion Energy: Who Has The Courage To Take It To Market?’ by Wal van Lierop on August
21, 2019.
2 For example, ‘Nuclear Fusion Could Rescue the Planet From Climate Catastrophe’ by Jon Asmundsson and
Will Wade on September 28, 2019.
3Members of the European Union are represented in this project via the Union. It is not clear at the time of
writing what the position of the United Kingdom will be after Brexit.
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ITER will be followed by a set of DEMOs, an electricity-producing fusion power
plant that is the last step to the commercial plants. It is anticipated that construction
of DEMO, or set of DEMOs, will commence after 2040 [5, 6]. In this established
sequence, the first demonstration fusion power plant would start supplying elec-
tricity around 2050 (see chapter 9). The start-up companies are striving to shortcut
this path by 20 years using more innovative approaches. Some start-ups report on
ambitions to start electricity generation even earlier, perhaps even as early as by
2025 (see chapters 5 and 7).

To illustrate how the landscape is changing in the global fusion community, the
authors calculated the percentages of private versus public effort in terms of the
number of devices4 as shown in figure 1.1. This comparison shows that while only
10% of the currently operating fusion devices are owned by the private sector, half of

Figure 1.1. Percentages of fusion devices in the world in 2020: public versus private (based on [7]).
(a) Operating devices (b) planned or under construction devices.

4 Based on the IAEA Fusion Device Information System (FusDIS), a directory of fusion experimental facilities
worldwide available online on https://nucleus.iaea.org/sites/fusionportal/Pages/FusDIS.aspx.
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the planned or under construction fusion devices are already led by private entities.
In fact, in the United States, the majority of fusion devices now belong to the private
sector.

The rise of private fusion enterprises would have been inconceivable even a
decade ago. Fusion research was once looked upon as being a synonym of ‘big
science’—large-scale scientific research consisting of projects funded usually by a
national government or group of governments5. While it might still be appropriate to
assess this global trend cautiously, such enterprises are gaining more and more
support from investors. Prominent investors like Jeff Bezos and Bill Gates are
among the supporters of this emerging sector. As a result, there are at least 40
private enterprises pursuing faster commercialization of fusion globally, with around
$2 billion raised in total as of 2020 (chapter 7). These forward-thinking start-ups are
competing to be the first to deliver on the long-overdue promise of virtually
unlimited clean energy: they are transforming big science.

1.2 What is nuclear fusion?
But what is fusion? At its simplest, nuclear fusion is the application of Einstein’s
famous equation:

= ΔE mc2

When two light nuclei are fused together to form a heavier nucleus6 (sometimes
releasing other particles), the mass of the resulting nucleus and emitted particles
slightly less than that of the two initial nuclei. This ‘lost’ mass is released as kinetic
energy, as illustrated in figure 1.2. This is nuclear fusion.

Figure 1.2. Fusion converts tiny amounts of mass into vast amounts of energy. Courtesy of Aya Kuretani.

5Marriam-Webster: https://www.merriam-webster.com/dictionary/big%20science
6 In some cases, more than one nucleus is produced
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Nuclear fusion is responsible for the production of energy in stars. At the core of
stars, protons react with other protons to form deuterium nuclei7 (2H) and positrons.
The deuterium nuclei can merge to form helium-4 nuclei (4He), or they can interact
with other protons to form helium-3 (3He). Two helium-3 nuclei can fuse to form a
nucleus of an unstable beryllium isotope (6Be) that breaks apart to give 4He and two
protons. The energy released at each step causes stars to shine, including the Sun. As
such, fusion can be regarded as the ultimate source of energy: life on earth would not
be possible without fusion reaction.

In addition to the fusion processes briefly outlined above, a number of other
fusion reactions exist. Examples include (where Q is the energy released in the
reaction):

2H + 2H → 3T + 1H, Q = 4.04 MeV;
2H + 2H → 3He + n, Q = 3.27 MeV;
2H + 3H → 4He + n, Q = 17.6 MeV;
1H + 11B → 3(4He); Q = 8.68 MeV;
1H + 6Li → 3He + 4He; Q = 4.023 MeV;
3He + 3He → 4He + 2p; Q = 12.9 MeV;
3He + 6Li → 1H + 2(4He); Q = 16.88 MeV;
3He + 6Li → 2H + 7Be; Q = 0.113 MeV.

The reaction of principal interest to most commercial fusion developers is the
deuterium (2H or D)—tritium (3H or T) reaction, as this ‘D-T reaction’ is regarded
as the easiest to achieve [8]. However, a small number of companies, including TAE of
the United States8, are developing concepts based on other reactions (see chapter 7).

Unfortunately, the nuclei carry a positive electrostatic charge and repel each other
before they can fuse. For fusion to occur, the plasma containing the fusion fuels
must reach the thermal (kinetic) energy required, which requires both the contain-
ment and the heating of the plasma.

To use fusion as an energy source, the energy released by fusion reaction must be
greater than the energy that is required to induce the reaction. The ratio of the
energy output from nuclear fusion reactions in the plasma to the energy supplied to
sustain the plasma is known as the fusion energy gain Qfus [8]. Qfus = 1 is referred to
as the break-even condition.

Qfus is closely linked to the plasma density n, the plasma temperature T, and the
efficiency of contained thermal energy (confinement time τE). The combination of
these three factors nTτE is known as the Lawson criterion, which is used to evaluate
the performance of a fusion reactor. A higher performance for this combination of
factors can be achieved in different ways, and this is where the ingenuities of the
scientists are put to the real test. In magnetic confinement approaches, magnetic
fields are applied to increase the confinement time, whereas in inertial confinement

7The 2H species is often referred to a deuterium and the symbol D used. Similarly, the 3H nuclei are referred to
as tritium with the symbol T.
8 Formerly known as Tri Alpha Energy
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approaches, use is made of lasers or other techniques to compress targets to provide
the high densities required. Both approaches are described in chapter 2.

When realized, fusion energy may have significant advantages over other low
carbon energy sources: it does not suffer from the issues of variability that affect
wind and solar; compared to nuclear fission, the issues of radioactive waste are much
reduced. In addition, there are no risks of runaway accident; and above all, since the
deuterium fuel can be extracted from seawater and lithium remains an abundant
metal9, fusion energy has almost unlimited fuel resources on earth—it is estimated
that fusion could sustain humanity for the next one billion years [9]. That said,
fusion is not without resource sustainability concerns, for example as regards helium
as discussed in Chapter 11, section 11.7.1.

1.3 Purpose and structure of this book
This book aims to give readers, with or without a background in nuclear science or
engineering, an appreciation of where the state of the art is and the future prospects
for commercialization. This book is, in part, a follow up of a workshop organized
jointly by the Open University (UK) and Kyoto University (Japan) under the
auspices of the Anglo Japanese JUNO network (JUNO: A Network for Japan-UK
Nuclear Opportunities) at Hughes Hall, Cambridge University in June 2019.

The book is organized into four sections. The first section, Private Fusion Primer,
gives a brief overview of private fusion. In chapter 2, Dr Richard Pearson from
Kyoto Fusioneering Ltd and Dr Shutaro Takeda from Kyushu University introduce
the basics of fusion reactor engineering to the readers. Next, Dr Shutaro Takeda and
Dr Sehila M Gozalez de Vicente from the International Atomic Energy Agency
(IAEA) provide considerations for the commercialization of the technology in
chapter 3. Subsequently, in chapter 4, Mr David Webbe-Wood summarizes possible
funding schemes for future commercial fusion power plants.

The second section, Progress in the Private Sector, showcases the latest progress
of the private fusion start-ups. First, Dr Melanie Windridge from Tokamak Energy
Ltd. presents an argument for their approach, progress, and plans in chapter 5.
Subsequently, in chapter 6, Professor Yoshitaka Mori from The Graduate School
for the Creation of New Photonics Industries shares with the readers their public–
private CANDY laser fusion concept. Chapter 7 provides an overview of the
approaches of other private fusion companies by Dr Richard Pearson and Professor
William Nuttall.

The third section, Public Sector Push to Commercialization, outlines the public
sector’s efforts toward commercialization. Professor Howard Wilson and his col-
leagues from the UK Atomic Energy Authority describes the UK’s STEP programme
in chapter 8. Next, in chapter 9, Professor Takuya Goto from National Institute for
Fusion Science (NIFS) presents a technical overview of the Japanese public strategy
for magnetically confined fusion energy.

9 That is, notwithstanding the pressures placed on its supply by the burgeoning battery manufacturing industry.
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The fourth section, Challenges and Future Opportunities, discusses the challenges
and future opportunities of private fusion. In chapter 10, Dr Richard Pearson gives
general observations on the challenges private fusion companies have to overcome.
Professor William Nuttall provides the historical background of the private fusion
and extrapolates the story to future opportunities in chapter 11. Professor Satoshi
Konishi and Dr Shutaro Takeda then expand the idea to utilize nuclear fusion as a
means of decarbonization in chapter 12. Finally, the book ends with the conclusions
and thoughts of the editors.

Only time will tell when and how humanity realizes commercial fusion energy. It
seems that the second decade of the 21st century represents the key moment that will
determine the future of a concept that has been imagined for many decades. As the
chapters that follow will discuss, the public sector efforts thus far have been essential
in making the private sector initiatives possible. Whether the leadership in the field
passes from the public to the private sector, or whether the relationship will be closer
and more collaborative than that, will be something that we will see emerge in the
coming years. What seems clear, however, is that fusion faces its best opportunity in
many decades to find a bold and ambitious way ahead.
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