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Chapter 3

Quantitative malignancy recognition of lung
cancer using non-invasive image modalities

Chung-Ming Lo

3.1 Introduction
Currently, lung cancer is the most common cancer worldwide. Although various
medications and therapies have been developed, the death rate is still high [1, 2].
Like in other cancers, a possible reason for this phenomenon is the high prevalence
of late-stage cancers. That is, the cancers are not detected earlier. One way to reduce
the late detection is lung cancer screening using low-dose computed tomography to
find early-stage peripheral lung cancers [3]. However, computed tomography cannot
detect endobronchial lesions. Therefore, bronchoscopic examination plays a neces-
sary role as an imaging modality in diagnosing endobronchial/tracheal lesions [4, 5].

About 85% of lung cancers are non-small-cell lung cancer (NSCLC) [4, 5].
Among these, 80% are adenocarcinomas (ACs) and squamous cell carcinomas
(SCCs). The differentiation by type in the clinic leads to the following different
treatment strategies. Patients with advanced lung ACs tend to have mutations of the
epidermal growth factor receptor (EGFR) which respond well to EGFR-tyrosine
kinase inhibitors (EGFR-TKIs) but SCCs do not [6–8]. Cytotoxic chemotherapy or
radiotherapy have been the standard treatments to deal with SCCs in the past and
recently immune checkpoint blockade therapy has gradually become the new
standard to treat advanced SCC with a high expression of programmed death
ligand 1 (PD-L1). Consequently, patients with different types of lung cancer should
undergo different treatment. The determination of the correct histological type is the
key starting point.

An immunohistochemical (IHC) panel is commonly used to determine the
histological type, however, this takes a couple of days. For endobronchial lesions,
bronchoscopic biopsy can be used as a convenient way to acquire tumor tissue and
diagnose the pathological type. The limitation is that only a small amount of tissue is
extracted. Due to the heterogeneity of malignant tissues, uncertainty is associated
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with this invasive procedure. During cancer detection, bronchoscopic imaging
techniques are convenient to detect abnormalities. An accompany diagnosis of
histological type using bronchoscopy would be helpful in determining staging and
subsequent treatment. Both traditional white-light bronchoscopy (WLB) and auto-
fluorescent imaging (AFI) may have the potential ability to detect and diagnose
endobronchial premalignant lesions in the bronchial mucosa [6–8]. The extent of the
mass and the resection margins can be also estimated simultaneously [9]. In the
literature, the comparison of AFI and WLB showed higher detection rates and
sensitivities but variable specificity [10]. Inter-observer variability should be reduced
to make these approaches more practical [9].

Machine-learning based automatic classification has been widely used for medical
images. After image preprocessing, such as contrast enhancement or color analysis,
meaningful diagnostic features from bronchoscopy can be extracted and combined
to generate a classification model. Each case is given a probability indicating the
likelihood of it being a certain type. Analyzing the whole tumor area with so-called
computer-aided diagnosis (CAD) would be more objective and efficient.

A previous CAD system was developed to classify normal mucosa and lung
tumors using WLB [11] and achieved an accuracy of 80%. In this study, we further
extend the application to differentiate cancer types using WLB and AFI. In the
experiment, via bronchoscopy, textures in multiple color channels of RGB are
separately quantified to classify ACs and SCCs. The hue–saturation–value (HSV)
color space translates the color component, making it more intuitive to provide a
better color interpretation, such as the results mentioned in medical applications.
The proposed method may facilitate the physicians’ decision making in a clinical
environment.

3.2 Materials and methods
3.2.1 Patient information

This study analyzing bronchoscopy images was approved by the institutional review
board of Shuang Ho Hospital (New Taipei City, Taiwan). Due to its retrospective
nature, informed consent from patients was waived. From September 2015 to April
2017, 70 patients at Shuang Ho Hospital were examined under BF-F260 (Olympus
Optical, Tokyo, Japan). Among the 70 cases, 36 had normal mucosa findings while
34 had neoplastic findings using WLB and AFI. The pathological diagnosis of the 34
abnormal neoplastic cases was determined by bronchoscopic biopsies and a
pathologist. In the image observations, only 23 endobronchial tumors were clearly
recognized with WLB and AFI without confounding by bleeding. Other cases were
difficult to interpret using human observation. Additionally, two SCCs, two
unknown carcinomas, and one tracheal tumor were excluded due to small size.
Finally, the enrolled tumor database included 12 ACs (patients aged 42–83 years)
and 11 SCCs (for WLB, only 10; patients aged 50–90 years). The AC and SCC
samples are shown in figures 3.1 and 3.2. The tumor areas that appeared in the WLB
or AFI were determined and delineated by a physician as regions of interest (ROIs).
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3.2.2 Multichannel features

Medical images include various image appearances according to the tissue proper-
ties and how they are interpreted [12–14]. Tissues such as skin, fat, and bone can be
differentiated by the rate of absorption of radiation in x-ray imaging or computed
tomography. Different tissues have different reflecting echoes, which is the basic
theory of ultrasound. These imaging modalities generate a gray-scale representation
of organs inside the human body because they are determined by signal intensity.
Compared to gray-scale images, the bronchoscopy images used in detecting lung
cancer in this study have visible light as the illuminance source. These color images
are composed of multi-channels, i.e. the standard red (R), green (G), and blue (B).

Day-to-day imaging examinations in hospitals mostly generate gray-scale images,
which belong to the remit of the radiology department. Thus, previous CAD systems
have quantified the image features of ultrasound, magnetic resonance imaging, and
so on [15, 16]. Gray-scale images have only one channel, i.e. the brightness. In most
situations, the diagnostic information extracted from the gray-sale is already
sufficient for medical decision making, such as the differentiation of benign and
malignant [15–19]. In this study, the proposed CAD systems use image features
extracted from multiple channels to classify different lung cancer types. The

Figure 3.1. Samples of (a) adenocarcinomas in white-light bronchoscopy, (b) the corresponding tumor area
and (c) squamous cell carcinomas in white-light bronchoscopy, (d) the corresponding tumor area.
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bronchoscopy images generated from WLB and AFI are in color. Therefore,
calculating quantitative image features from multiple channels rather than the
conventional gray-scale is the main purpose of the experiment. In addition, the
original standard RGB is not suitable for describing color. In order to extract
meaningful color features for tissue characterization, the color space transformation
is performed first to convert RGB to hue (H), saturation (S), and value (V). After
that, textural features are individually extracted from the H, S, and V channels for
the pattern recognition of lung cancers.

3.2.2.1 HSV transformation
As mentioned previously, unlike other medical images, bronchoscopy generates
color images when using either WLB or AFI. Also, in clinical examinations,
physicians have to detect abnormalities according to the color characteristics of
tissues. Since color information plays such an important role, the use of color space
substantially affects the classification result. The RGB color space is the original
color space used by image capture modules and the JPEG format. However, it is not
intuitive to describe color using the RGB composition. A better color space used to
describe color is HSV [20]. HSV was proposed to imitate human perception. When
the physician detects abnormal tissues from background tissues, they must depend
greatly on hue, saturation, and brightness. Hue means the main color such as red or

Figure 3.2. Samples of (a) adenocarcinomas in autofluorescent imaging, (b) the corresponding tumor area and
(c) squamous cell carcinomas in autofluorescent imaging, (d) the corresponding tumor area.
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yellow. Saturation indicates how rich the hue is, and brightness can tell us the level
of luminance. Figure 3.3 shows the shape of the HSV color space.

3.2.2.2 Textural features
Pattern recognition in medical images always depends on the correlations between
pixels, that is texture analyses [15, 16]. Texture is a second-order statistic, which
means feature generation involving two or more pixels together rather than a lone
pixel. Previous studies in the literature have used textural features to classify tissues
in ultrasound or other imaging modalities [15, 16]. Here, the texture features were
extracted from three channels (H, S, V) and combined to present the differences
between malignant types.

The target tissues were just the tumor area, which was delineated by the
physicians who carried out the bronchoscopy. Next, the gray-level co-occurrence
matrix (GLCM) [21] was used to describe the joint frequencies of pair-wise pixel
combinations. Because color images have three channels, the GLCM was individ-
ually applied to three channels. The whole delineated area was scanned to generate
co-occurrence matrices P = [p(i,j∣d,θ)] showing the frequencies of two adjacent pixels
at a distance d and a direction θ. As per the equation listed below, the two gray-scale
pixel values were i and j. Four offset directions, θ = 0°, 45°, 90°, and 135°, were used
to find the correlations between the two adjacent pixels, as shown in figure 3.4. To
achieve rotation invariance, these four directions were combined in the matrix. The
statistics of the matrix listed below are the 14 GLCM textural features:

∑ ∑ μ μ σ σ= − −p pAutocorrelation ( )( )/ ; (3.1)
i j x x y y x y

∑ ∑ ∑= ∣ − ∣ ={ }n p i j i j nContrast ( , ) , ; (3.2)
n i j

2

∑ ∑ μ μ

σ σ
=

− −i j p i j
Correlation

( )( ) ( , )
; (3.3)i j x y

x y

∑ ∑ μ μ= + − −i j p i jCluster prominence ( ) ( , ); (3.4)
i j x y

4

∑ ∑ μ μ= + − −i j p i jCluster shading ( ) ( , ); (3.5)
i j x y

3

Figure 3.3. The HSV color space presents hue (H), saturation (S), and value (V).
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∑ ∑= ∣ − ∣p i j i jDissimilarity ( , ) ; (3.6)
i j

∑ ∑= p i jEnergy ( , ) ; (3.7)
i j

2

∑ ∑= − p i j p i jEntropy ( , )log( ( , )); (3.8)
i j

∑ ∑= −
+ −i j

p i jHomogeneity
1

1
( , ); (3.9)

i j

∑= −i p iDifference variance ( ); (3.10)
i x y

2

∑

∑ ∑

= −

× −

= = −

+ +p i p i

HXY HXY
HX HY

HXY p i j p i j

Difference entropy ( )log( ( ));

1
max{ , }

Entropy ( , )log( ( , )),

(3.11)
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Figure 3.4. Texture features are correlations between adjacent pixels in (a) white-light bronchoscopy and (b)
autofluorescent imaging.
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where μx, μy, σx, and σy are the means and standard deviations of the distributions of
p(i,j∣d,θ):

∑ ∑ ∑ ∑μ μ= =i p i j j p i j( , ), ( , ) (3.15)x i j y j i

and

∑ ∑ ∑ ∑σ σ= − = −i u p i j j u p i j( ) ( , ), ( ) ( , ). (3.16)x i
x

j y j
y

i

2 2 2 2

3.2.2.3 Statistical analysis
Quantitative texture features were extracted from three channels. To determine
whether they had diagnostic ability, these features were evaluated to determine if
they were statistically significant in the differentiation of cancer type. The
Kolmogorov–Smirnov test [22] was first used to evaluate if the texture features
were normally distributed. Features having normal or non-normal distributions
were then tested using the corresponding Student’s t-test [22] and Mann–Whitney
U-test [22]. The features with a p-value of <0.05 show a statistically significant
difference. Texture features were also combined in the binary logistic regression
model [23]. Using backward elimination, the most relevant feature combination can
be selected during the elimination process.

Due to the limited size of the collected database, the leave-one-out cross-
validation method [24, 25] was used to validate the generalization ability of the
prediction model. With k cases, in each iteration k − 1 are used for training and the
remaining case was used to test the trained model. Using a biopsy-proven result as
the ground truth of the cancer type, each case was given a malignancy probability.
With different thresholds, five performance indices, including the accuracy, sensi-
tivity, specificity, positive predictive value (PPV), and negative predictive value
(NPV), were obtained. The probability formula combined selected features to
indicate the likelihood of being a certain type of cancer:

=
+ − × + × +⋯+ × +P

e
1

1
. (3.17)

c x c x c x c( )n n1 1 2 2 0
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Performance index comparisons were evaluated using the chi-squared test in SPSS
software (version 16 for Windows; SPSS, Chicago, IL, USA). The trade-offs
between sensitivity and specificity under different thresholds were illustrated using
the receiver operating characteristic (ROC) curve. Az, the area under an ROC curve,
was also evaluated using a bivariate chi-squared test in the ROCKIT software
(C Metz, University of Chicago, Chicago, IL, USA).

3.2.3 Result

3.2.3.1 White-light bronchoscopy
From HSV color space, every channel has 14 GLCM textural features. In the test
results, as shown in table 3.1, the significant features (p < 0.05) are correlation,
cluster prominence, cluster shading, and difference variance in the S channel, and
cluster prominence and cluster shading in the V channel. The logistic regression
classifier selected correlation (S), difference variance (S), and cluster shading (V) to
generate the prediction model and achieve an accuracy of 86% (19/22), a sensitivity
of 90% (9/10), a specificity of 83% (10/12), a PPV of 82% (9/11), and an NPV of 91%
(10/11). The AUC was 0.82. Only one SCC was misclassified.

3.2.3.2 Autofluorescent imaging
Two kinds of bronchoscopy images were used in the experiment to automatically
classify malignant types. Same as WLB texture features, 42 AFI texture features
were tested first. The information measure of the correlation in S and correlation in
V had significant p-values <0.05 as shown in table 3.2. By combining these two
features in the logistic regression classifier, the model achieved an accuracy of 83%
(19/23), a sensitivity of 73% (8/11), a specificity of 92% (11/12), and Az = 0.82. A
further experiment was carried out using RGB features, and the information
measure of the correlation in R and G were significant. Combining the features
achieved an accuracy of 57% (13/23), a sensitivity of 73% (8/11), a specificity of 42%
(5/12), and Az = 0.67. Obviously, HSV performed better than RGB, in particular for
specificity (p-value = 0.009 4) and only one AC was misclassified.

Table 3.1. Significant textural features in the hue–saturation–value (HSV) color space tested by the Student’s
t-test.

Texture feature

AC SCC

pMean ± SD Mean ± SD

Correlation (S) 0.987 ± 0.004 0.979 ± 0.004 <0.001a

Cluster prominence (S) 1589.937 ± 818.998 738.032 ± 433.412 <0.01a

Cluster shading (S) 130.865 ± 66.141 64.554 ± 36.635 <0.01a

Difference variance (S) 20.257 ± 9.692 12.559 ± 6.827 <0.05a

Cluster prominence (V) 298.707 ± 206.022 143.151 ± 80.896 <0.05a

Cluster shade (V) −32.370 ± 20.906 −16.407 ± 8.691 <0.05a

aA p-value <0.05 indicates a statistically significant difference.
AC, adenocarcinoma; SCC, squamous cell carcinoma; S, saturation; V, value; SD, standard deviation.

Lung Cancer and Imaging

3-8



3.2.4 Discussion

Currently, bronchoscopy is widely used in detecting and taking biopsies of
endobronchial lesions of lung cancer. If physicians could obtain an initial classi-
fication of carcinomas using only bronchoscopy images, their practical use in clinical
contexts would be much greater. Therefore, this study proposed using quantitative
image features to generate a prediction model for a rapid and accurate assessment of
malignancies. Based on the color textures in the HSV color space, the proposed
CAD system can generate more objective diagnoses with less inter-observer
variability than was reported in the previous literature as the diagnosis limitation.
Using WLB, the CAD system achieved an accuracy of 86% (19/22), a sensitivity of
90% (9/10), a specificity of 83% (10/12), a PPV of 82% (9/11), and an NPV of 91%
(10/11). AFI had better sensitivity and specificity to clinically detect early endo-
bronchial lesions. In our result, using GLCM textural features from HSV images
achieved an accuracy of 83% (19/23), a sensitivity of 73% (8/11), and a specificity of
92% (11/12), which was better than the results achieved using RGB features.

The HSV model separates the brightness component (V) of a color from its
chrominance components (H and S). Previously, Sural et al used HSV to develop a
workflow in image segmentation and color histogram generation. The HSV features
achieved substantial improvement in content based image retrieval [26]. For medical
images, HSV has also shown its comparably better ability in the definition of
existing trauma colors than RGB [27]. HSV transformation is not a time-consuming
or computation intensive process. Using the HSV color texture, an initial assessment
of tissue malignancy using bronchoscopy images can be an alternative approach to
the histological examination of biopsy specimens. Clinical physicians could obtain
rapid results before a final pathological diagnosis is available. This alternative
procedure could facilitate physician availability for more severe and urgent lung
cancer patients.

Although this study did not collect many cases, the experiments using WLB and
AFI to classify malignant lung tumors is the first study exploring the ability of the
image processing and logistic regression classifier. We showed that both WLB and
AFI can achieve accuracies higher than 80%. A previous CAD system achieved a
similar accuracy (83% versus 80%) in classifying normal mucosa and tumors using
WLB [18]. It also demonstrates the strong potential for the use of image features to
classify different types of tumors. In future studies, automatic lesion detection
should be added to improve the practical use of the proposed CAD system. While

Table 3.2. Significant HSV textural features and corresponding p-values evaluated using Student’s t-test.

Feature

AC SCC

p-valueMean ± SD Mean ± SD

Information measure of correlation (S) −0.854 ± 0.015 −0.821 ± 0.039 <0.05a

Correlation (V) 0.984 ± 0.003 0.976 ± 0.013 <0.05a

aA p-value <0.05 indicates a statistically significant difference.
AC, adenocarcinoma; SCC, squamous cell carcinoma; S, saturation; V, value; SD, standard deviation.
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carrying out bronchoscopy, physicians could detect more possible abnormalities and
perform a rapid assessment of malignancy and subsequent treatment. Also,
combining WLB and AFI may achieve higher accuracy, although the clinical use
is not so practical.

3.3 Conclusion
This study proposed using WLB and AFI image features to classify different
malignant types. HSV transformation and texture features were used to strengthen
the classification ability. Both WLB and AFI achieved a diagnostic accuracy higher
than 80%, which can provide an assessment suggestion to physicians in clinical use.
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