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Characterizing acute respiratory distress
syndrome in COVID-19: a narrative review
of artificial intelligence-based lung analysis

Ashutosh Jha, Radhakrishn Birla, Mainak Biswas and Jasjit S Suri

COVID-19 has infected millions of people and caused hundreds of thousands of
deaths worldwide. One of the most serious complications of COVID-19 is acute
respiratory distress syndrome (ARDS), which can be fatal. People who are at least
60 years old or have underlying health conditions are at higher risk of developing
ARDS.

Medical imaging, such as computed tomography (CT) scans and chest x-rays, can
be used to diagnose ARDS. However, these tests can be time-consuming and require
specialised equipment. Artificial intelligence (AI) is being developed to automate the
diagnosis of ARDS from medical images.

AI-based systems can be used to quickly and accurately identify patients who are
at risk of developing ARDS. They can also be used to monitor patients who have
already developed ARDS and to assess the severity of their condition.

AI-based systems are still under development, but they have the potential to
improve the diagnosis and treatment of ARDS. By automating the diagnosis of
ARDS, AI can help to reduce the time it takes to get patients the treatment they
need. AI can also help to improve the accuracy of diagnosis and to identify patients
who are at risk of developing ARDS.

The use of AI in the diagnosis and treatment of ARDS is still in its early stages,
but it has the potential to revolutionise the way this serious condition is managed.

2.1 Introduction
In December 2019, a new coronavirus called severe acute respiratory distress
syndrome coronavirus 2 (SARS-CoV-2) [1] emerged in Wuhan, Hubei province,
China. Initially referred to as novel coronavirus pneumonia (NCP) by the Chinese
government [2], it was later renamed coronavirus disease 2019 (COVID-19) by the
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World Health Organization (WHO). COVID-19 is currently a global pandemic [4]
and primarily affects the respiratory system, potentially leading to acute respiratory
distress syndrome (ARDS) and death. As of December 21, 2020, there have been
over 77.4 million reported cases of COVID-19 worldwide, resulting in 1.7 million
fatalities [5]. The virus has a high Ro value, ranging from 2.43 to 3.10, indicating its
high level of contagiousness [6]. Figure 2.1 illustrates the distribution of reported
cases per million population worldwide, with colors ranging from white to dark red.
The countries with the highest mortality rates include France, Brazil, Mexico, Italy,
the USA, India, the UK, and Spain [7]. It is worth noting that COVID-19 is
considered a syndemic, as it involves both biological and social factors [3].

From a genetic standpoint, COVID-19 is found to be more closely related to
SARS-CoV-1 rather than the MERS-CoV. However, it is different from SARS-
CoV-1 in terms of clinical severity, incubation period, and transmissibility [8].
Despite various government measures such as social distancing, mask-wearing,
quarantine, and non-pharmacological preventive treatments for overall well-being,
the global spread of COVID-19 has continued to increase [9, 10].

COVID-19 exhibits distinct imaging characteristics and affects organs beyond the
lungs [11, 12]. Consequently, there has been an exponential increase in research on
COVID-19, with nearly 72 000 related articles published since December 2019,
averaging 2000 articles per week (as seen on the PubMed website) [13]. Notably,
over 900 articles focus on the intersection 2 of COVID-19 and artificial intelligence
(AI), encompassing machine learning (ML), transfer learning (TL), and deep
learning (DL) models (as shown in figure 2.2(d)). AI has the potential to aid in
the characterization of ARDS in the lungs and the diagnosis of COVID-19’s impact
on other parts of the body [14]. Careful investigation of AI for ARDS

Figure 2.1. Total confirmed cases per million as of December 21, 2020 [15]. (Source: Center for Systems
Science and Engineering (CSSE) at Johns Hopkins University, Maryland, USA.).
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characterization is essential to assist healthcare practitioners in managing COVID-19
pneumonia and its progression to ARDS.

AI plays a significant role in the management of COVID-19, including patient
follow-up, risk assessment, medical imaging, and telemedicine [16]. While AI has
been applied in radiological imaging for tasks like classifying images into control,
community viral pneumonia, and COVID-19 pneumonia [18–20], it remains unclear
if these models align with the expectations of critical care physicians and pulmonol-
ogists. Can AI effectively incorporate information on a patient’s pre-existing
conditions, age, and lung scan patterns to correlate them with the severity of
COVID-19? Additionally, there are important questions to address, such as the
suitable imaging modalities for ARDS, optimal image-based classifiers for classify-
ing and detecting ARDS severity considering age and comorbidity, estimating
patient survival, methods for measuring severity of COVID-19 due to ARDS,
assessing the impact of pre-existing conditions on ARDS mortality, and detecting
and classifying early stages of ARDS. Addressing these issues is crucial for accurate
diagnosis and evaluation of AI-based therapeutic applications [14].

Figure 2.2. Images of COVID-19 infection: (a) lung ultrasound (hyper-echoic region of the COVID-19 lung),
(b) chest x-rays (the infected region in the lung), and (c) lung CT (segmented lung region; courtesy of Luca
Saba, University of Cagliari, Italy). (d) The number of COVID-19 studies involving ARDS, ML, TL, DL,
validation, data acquisition (DA), and 3D imaging.
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The main imaging tools used for lung imaging include CT, x-rays, ultrasound,
and a combination of PET and CT to visualise lung function [21–23]. This study
examines different AI-based solutions for classifying COVID-19 lung severity,
considering TL, DL, ML, and their combinations. It also highlights important
issues that current AI-driven COVID-19 research should tackle in order to provide
valuable contributions to the medical field.

This review makes several contributions. Firstly, it explores the pathophysiolog-
ical aspects of COVID-19-induced ARDS, specifically examining the stages leading
to gas-exchange disorders in the alveoli. Secondly, it links comorbid conditions
derived from numerous studies to ARDS, including diabetes, hypertension, chronic
kidney disease, obesity, cardiovascular diseases, hyperlipidemia, liver disease,
cancer, renal dysfunction, HIV, cerebrovascular disease, and lung disease. It also
establishes the connection between comorbidity, mortality, and ARDS. Thirdly, it
examines the contrast between AI methods employed for characterizing lung
diseases before the COVID-19 pandemic (non-ARDS periods) and those utilized
during ARDS periods. Fourthly, it introduces seven distinct approaches, referred to
as schools of thought (SoT), that utilize AI techniques to assess the severity of
COVID-19 within the context of ARDS. Fifthly, it presents a comparative
examination of various imaging modalities used for evaluating lung conditions
in ARDS. Lastly, it demonstrates how the integration of AI with ARDS and
comorbidity contributes to the advancement of personalized medicine, offering
valuable insights into assessing ARDS conditions within the framework of
COVID-19.

The study is structured as follows: section 2.2 presents the research strategy,
section 2.3 describes the pathophysiology of ARDS, section 2.4 analyses the impact
of comorbidity in COVID-19, section 2.5 discusses AI architectures categorised into
SoT, section 2.6 explains the practical aspect of AI for COVID-19, and sections 2.7
and 2.8 provide critical discussion and conclusion, respectively.

2.2 Research strategy
Figure 2.3 depicts the flowchart of the research strategy adopted in our paper. We
conducted research using four online databases: IEEE Xplore, PubMed, Web of
Science and ArXiv. Initial screening used the keywords ‘COVID-19,’ ‘coronavirus,’
or ‘ARDS,’ with the modality terms ‘lung CT,’ ‘x-ray,’ or ‘ultrasound.’ The search
was augmented with terms ‘artificial intelligence,’ ‘machine learning,’ or ‘transfer
learning,’ or ‘deep learning,’ resulting in 1557 articles. We eliminated 115 duplicate
articles and those that were not focused on COVID-19 severity, including classi-
fication, leaving us with a total of 1442 articles. From these, we further refined our
selection based on relevance and novelty, resulting in 399 articles. We excluded
articles that were not relevant to comorbidity, resulting in 242 articles. After
removing records with insufficient data, we ended up with a final set of 230
resources. These resources were used in our narrative study, which incorporated
AI-based, comorbid-based, and pathophysiology-based articles.
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2.3 The pathophysiology of acute respiratory distress syndrome
The primary mode of transmission for the SARS-CoV-2 virus is through nasal
droplets and saliva of an infected person [19]. Upon entry into the body, the virus
targets the alveolar type 2 cells (AT2 cells) by binding its viral spike proteins (S1 and
S2) to the angiotensin-converting enzyme 2 (ACE2) receptor [24], as depicted in
figure 2.4. Previous research by Mossel et al has indicated that the SARS-CoV-1
coronavirus exhibits more aggressive replication in AT2 cells compared to alveolar
type 1 cells (AT1 cells) in the lung [25]. SARS-CoV-2, with an 80% genetic similarity
to SARS-CoV-1, has been shown, via molecular pathways [26], to possess a
significant affinity for binding [27]. In the inflammatory phase (termed phase 3),
systemic inflammatory mediators are released as a response to SARS-CoV-2
infecting alveolar type 2 (AT2) cells on the surface of the alveolar epithelium [28].
These inflammatory mediators stimulate alveolar macrophages, leading to the
production of cytokines such as IL-1, IL-6, and TNF-α. This elevated cytokine
production, along with the release of chemokines, can trigger a condition known as a
cytokine storm. The sequential occurrence of the systemic inflammatory response,
cytokine storm, and organ failure significantly impacts the pathophysiology of
ARDS. Similar sequences have been observed in other coronaviruses, including
MERS-CoV and SARS-CoV-1 [29, 30]. These processes contribute to the increase in
trypsin.

Moreover, the inflammatory response induced by SARS-CoV-2 infection affects
the integrity of zonula occludens and endothelial tight junction proteins, leading to
weakening and disorganization of endothelial cells. Consequently, the vascular
permeability of these cells is increased, allowing intravascular fluids to leak into the

Figure 2.3. The flowchart showing the research strategy.
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surrounding tissues [31]. During the dilatation phase (referred to as phase 4), the
cytokine storm disrupts the endothelial barrier function, which is a consequence of
cytokine release following viral infection. This dysfunction contributes to increased
vascular permeability. In the edematous phase (designated as phase 5), the elevated
intravascular permeability results in the movement of fluids due to diffusion
(including neutrophils, proteins, platelets, and erythrocytes) from the blood vessels
into the sub-alveolar and interstitial spaces, resulting in the development of diffuse
alveolar and interstitial exudates, along with alveolar edema. These manifestations
can be detected through radiological consolidations observed in lung CT scans,
aiding in the diagnosis and monitoring of treatment response [32]. ARDS is
characterized by the presence of diffused alveolar and interstitial exudates, accom-
panied by elevated sub-alveolar edema [33].

In the alveolar collapsing phase (referred to as phase 6), the accumulation of fluid
in the sub-alveolar and interstitial space leads to increased tension, causing the
collapse of alveoli. Consequently, the disrupted alveolar structure hinders efficient
gas exchange [34]. The alveolar collapse contributes to a ventilation-to-perfusion
mismatch between carbon dioxide and oxygen, resulting in impaired gas exchange.

Figure 2.4. The pathophysiology of ARDS after COVID-19 infection, which consists of six phases:
(i) inflammatory phase, (ii) dilatation phase, (iii) edematous phase, (iv) alveolar collapsing phase, (v) gas-
exchange disorder, and (vi) hypoxemia. (Courtesy of AtheroPoint™, Roseville, CA, USA; reproduced with
permission.)

Multimodality Imaging, Volume 2

2-6



This condition, known as alveolar gas exchange disorder (designated as phase 7),
leads to hypoxemia and the development of acute respiratory distress syndrome
(ARDS) [35]. If left untreated, the progression of ARDS can increase mortality
rates.

2.4 Comorbidity and ARDS
Comorbidities commonly associated with COVID-19 in the context of ARDS
include factors such as old age, ethnicity, hypertension, diabetes mellitus (DM),
elevated body mass index (BMI), cardiac diseases, and respiratory disorders.
Research has indicated that ARDS tends to have more severe outcomes in older
patients [36–38], African Americans (Black people in general) [39], individuals with
hypertension [36, 40], diabetes [36, 38, 41], higher BMI [42–44], respiratory diseases
[42], and myocarditis [45–47]. The inclusion of comorbidities is vital in classifying AI
models that can be trained separately to improve diagnosis and predict COVID-19
severity. The cited comorbidity studies [48–101] were sourced from the website
https://pubmed.ncbi.nlm.nih.gov/. Figure 2.5 visually presents the number of sub-
jects with comorbidities included in the ARDS-focused studies.

During the selection process, we applied specific criteria based on keywords such
as diabetes, hypertension, obesity, cardiovascular diseases, chronic kidney disease,
liver disease, renal dysfunction, cancer, hyperlipidemia, human immunodeficiency
virus (HIV), cerebrovascular disease, and lung disease. These keywords were utilized
to identify relevant studies discussing comorbidity and age groups. 48 studies from
specialized medical journals were chosen, provide a rationale and inspiration for
gathering statistical data to support the development of innovative AI solutions for
the monitoring and diagnosis of COVID-19 severity. Figure 2.6, presented as a pie
chart, illustrates the percentage of comorbidity subjects among the selected studies.
It is noteworthy that these studies primarily focused on comorbidity and age groups.
Among the contributing factors, diabetes and hypertension were identified as the

Figure 2.5. The number of subjects enrolled in the ARDS-based studies that consider comorbidities.
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two most important comorbidities, accounting for approximately 68% of the cases.
The remaining comorbid predictors exhibited similar percentages, ranging from 4%
to 13%. According to the selected studies, comorbidities were responsible for 14% of
the total deaths in the ARDS framework. This pie chart emphasizes the significant
role played by comorbidities in mortality across the cohort. Furthermore, Figure 2.7
illustrates the distribution of deaths caused by a combination of age factors and one
comorbidity, at least, within the cohort. The age range with the highest impact was
identified as 66–69, comprising 58% of the overall cohort, which is followed by the

Figure 2.6. Depiction of comorbidities collected from 48 studies.

Figure 2.7. Mortality due to the age factor (in years) with comorbidities in the cohort from the selected studies.
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age group above 70, which constituted 20% based on the studies included in the
analysis.

All the subjects included in the cohort had COVID-19 along with one or more
comorbidities. These comorbidities were found to contribute to the deterioration of
COVID-19. Consequently, each comorbidity depicts a distinct category within the
cohort, with similar grayscale features or imaging characteristics. This observation
suggests the possibility of developing multiple knowledge-based AI systems, each
trained independently on cohorts specific to a particular comorbidity. By utilizing
these independently trained AI systems specific to each comorbidity, it becomes
possible to analyze lung scans and evaluate COVID-19’s severity.

2.5 Artificial intelligence architectures for ARDS characterization
by school of thought

The application of AI in disease characterization has been embraced across various
medical imaging domains. This encompasses the role of AI in identifying diseases,
extracting the region of interest (ROI) related to the disease, and automatically
classifying the disease based on binary or multiclass events. We have selected
machine learning and deep learning characterization systems that align and
harmonize with ARDS frameworks. The purpose of employing this characterization
system is to leverage the creative and innovative approaches developed for various
modalities, organs, or applications, fostering knowledge exchange and advance-
ment. It should be noted that certain examples mentioned are from our own research
group, deliberately selected to emphasize the significance of tissue characterization
and disease characterization through the utilization of AI models. These unique and
exclusive solutions serve as a ‘one-stop-shop’ for researchers interested in under-
standing the relationship between ARDS paradigms and other organ paradigms.
This cluster also provides direct access to our group for more detailed information
on parallel characterization systems. AI-based characterization has been applied to
various body and disease applications, including the brain [102–104], stroke [105–
107], vascular plaque [108–110], arrhythmia [111], liver [112–114], coronary artery
[115, 116], prostate [117], ovarian [118, 119], diabetes [120], thyroid cancer [121],
skin cancer [122, 123], heart [124–126], rheumatoid arthritis [128], and gene
expression [127]. This framework of characterization can be expanded and applied
within the context of ARDS.

Regarding studies comparing non-ARDS and ARDS, research specifically
focused on ARDS started after December 2019, whereas lung segmentation and
classification techniques for non-ARDS cases had been in existence for several years
before SARS-CoV-2 emerged. Certain AI models that were initially developed for
non-ARDS lung data have been partially investigated and adapted for ARDS lung
data. In table 2.1, we present studies conducted in ARDS and non-ARDS frame-
works, specifically focusing on segmentation, classification, and sub-regional appli-
cations such as cancer, tumor segmentation [129–136], and nodule. Please be aware
that we excluded animal studies and lung cellular images, specifically concentrating
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on human lungs. Furthermore, validation and inter- and intra-observer variability
studies were not considered in table 2.1.

It is important to highlight the three key components of an AI-based ARDS
system: lung region segmentation, classification, and COVID-19 severity measure-
ment (refer to table 2.2). In this narrative review, we propose a classification of the
literature based on different AI architecture categories, referred to as schools of
thought (SoT), as outlined in table 2.3.

AI architecture classification has had a significant impact in numerous engineer-
ing domains, especially in medical imaging. Biswas et al [17] have examined a
specific category of AI architectures for medical imaging, while our study demon-
strates the application of various architecture classes (SoT). Biswas also delves into
the evolution of architectures within the realm of deep learning and its potential for
the present and future.

In the past, both manual and automated feature selection methods were utilized
in AI architectures. Manual feature selection involved hand-picking specific features
and feeding them into the classification model during the learning and training
process. This approach belonged to an older generation of methods and represented

Table 2.1. AI-based studies involved during Non-ARDS and ARDS periods. AI-based Non-ARDS: AI on
ARDS lung data during pre-COVID-19. AI-based ARDS: AI on ARDS lung data postmarked December
2019 COVID-19 (post-COVID-19).

Subsystems AI-based Non-ARDS AI-based ARDS

Segmentation Characteristics
Watershed, region-based,
contour-based, fusion-based,
and model-based.
References [129, 137–146]

Characteristics
FC-Densenet103, Unet,
DenseNet, and DenseNet121-
FPN.
References [147–165]

Classification Characteristics
Grayscale feature extraction
and ML classifier, and
model-based techniques.
References [166–170]

Characteristics
ResNet50, CNN, SVM,
ResNet101, VGG16, and VGG19.
References [148, 150–153,
157–159, 171–175]

Joint segmentation
and classification

Characteristics
They use the same characteristics
as adapted by segmentation and
classification domain for
AI-based Non-ARDS.
References [167, 169, 170]

Characteristics
They use the same characteristics
as adapted by segmentation and
classification domain for AI-based
ARDS.
References [148, 150, 151, 154,
156–159, 162]
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a traditional school of thought. However, with advancements in AI, the concept of
deep learning emerged, which aimed to mimic the brain by using a greater number of
layers to filter features. DL paradigms, characterized by their ability to automati-
cally compute millions of training parameters, represent a more recently evolved
subset of machine learning. These methods belong to a newer school of thought,
primarily defined by their foundational architecture.

While the AI industry has been predominantly dominated by DL and manual
feature selection methods, alternative architectures are continuously being explored.
DL, which has been widely used, is starting to show limitations, particularly during
training. As a result, new architectures have emerged to address these challenges.
One such architecture is transfer learning, which involves generating pre-trained
weights to expedite and simplify DL systems. Transfer learning is considered a more
recent school of thought and is regarded as a classic in its category. The classification
of AI architecture has evolved to align with different schools of thought based on the
components and characteristics of the architecture. This approach is similar to how
image segmentation was categorized into various architectures or schools of thought
in the past. For instance, segmentation was classified as region-based, contour-
based, or knowledge-based. These categories were then fused together to create
intermediate architectures, known as fused architectures, that combined regions with
contours or regions with knowledge. This generation of fused architectures repre-
sented another architectural paradigm or school of thought. This concept can be
observed in the seminal papers by Suri [176–178].

In the context of AI architecture, the term ‘School of Thought’ (SoT) is
synonymous with architectural design. Each individual architecture, as well as fused
architectures, can be considered as a distinct SoT. Fused architectures have been
developed by various research groups worldwide and have been documented in the
literature. Therefore, the SoT represents a more refined approach to architectural

Table 2.2. Types of artificial intelligence architectures and severity index.

SN

AI components and attributes

Lung
segmentation

AI
component

Severity
index

Auto/semi-auto
ML/DL/TL/DL+
ML/DL+TL

Categorical/continuous/
Categorical + continuous

1 Auto DL Categorical + continuous
2 Auto DL+ML Categorical + continuous
3 Auto DL Categorical
4 Semi-Auto DL+ML Categorical + continuous
5 Auto ML Categorical + continuous
6 Auto DL+TL Categorical
7 Auto TL Categorical

+: both technologies are present.
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design, allowing for a more nuanced classification. In our previous studies, we have
also employed the concept of SoT. It is important to note that while the SoT aligns
with the generations of architecture, it provides a more nuanced understanding of
the differences between them.

The AI models used in different SoT along with their salient features are listed
below.

SoT-1 represents an effective approach for quantifying the severity of COVID-19
lung damage and classifying the lung based on binary or multiclass frameworks. In
this approach, lung segmentation is automated without the need for human
intervention. This can be achieved using commercial software like XMedCon
[179] or AI techniques such as threshold segmentation [180] or UNet-based
segmentation [146]. The AI component in SoT-1 utilizes state-of-the-art or custom
DL architectures.

SoT-2 serves a similar purpose as SoT-1, aiming to provide quantitative and
categorical assessments of COVID-19 severity. However, it utilizes a more complex
hybrid architecture compared to SoT-1. By integrating more than one AI archi-
tecture, including both DL and ML techniques, SoT-2 has exhibited comparable
accuracy and the capability to accomplish supplementary sub-goals, including
prognosis analysis. One drawback of SoT-2 is the increased effort and time needed
to combine and fine-tune the different components of the AI.

SoT-3 is specifically designed to classify patients into different categories, such as
non-COVID-19, COVID-19, and other types of pneumonia. Many COVID-19
studies utilizing AI have adopted SoT-3 for this purpose. Like SoT-1, SoT-3
automates lung segmentation. It employs an end-to-end automated pipeline that
focuses on classifying pneumonia cases, including COVID-19. This approach
enables faster and more straightforward implementation of research. However,
one drawback of SoT-3 is its limited capacity to provide actionable insights for
healthcare professionals in the treatment of patients suffering from COVID-19. For
instance, SoT-3 does not facilitate the measurement of biomarkers that could
indicate disease severity.

SoT-4 is centred around semi-automatic lung segmentation conducted by experts
before the AI-driven processing of radiography images. It incorporates a hybrid AI
component that combines different AI architectures to calculate multiple metrics.
SoT-4 provides researchers with the flexibility to construct a pipeline that attains the
desired balance between accuracy, complexity, and speed, depending on the specific
metrics of interest. Nevertheless, a drawback of SoT-4 is the significant time required
for designing the semi-automatic lung segmentation process and developing appro-
priate hybrid models.

SoT-5 involves the use of automated lung segmentation along with feature
selection methods, manual feature engineering, and traditional ML models. The
computed features are employed to calculate biomarkers, which are subsequently
utilized for predicting the severity of COVID-19 and classifying patients. SoT-6
research utilizes a hybrid model for automated segmentation that combines DL and
TL to generate categorical metrics for patient classification [181]. Similarly, SoT-7
research focuses on TL and comprises both an online and an offline system. In the
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offline system, researchers manually extract relevant features from radiography
images, which are then used to train a classifier. The trained coefficients are
subsequently transferred to the online classifier, enabling real-time classification
and prediction of COVID-19 severity. Effective lung segmentation using ML
techniques has been demonstrated in previous studies [146, 167]. Figure 2.8
showcases an online ML-based COVID-19 risk prediction system, which is
consistent with the ML systems previously published by the research group [165,
182, 183].

Figure 2.9 displays a DL architecture reference, established using [184]. Among
various DL architectures, the convolutional neural network (CNN) is extensively
employed. CNNs employ multiple convolutional filters to extract basic visual
features from input image data. These filters are stacked in layers to capture more
complex visual features. Pooling layers are frequently integrated with CNN layers to
reduce spatial information in the intermediate representation, while padding layers
help preserve the correct data dimensions.

TL is an advanced technique that enhances the capabilities of DL architectures. It
involves pre-training these architectures on large datasets, enabling them to achieve

Figure 2.8. An online ML-based COVID-19 risk prediction system. (Courtesy of AtheroPoint™, Roseville,
CA, USA; reproduced with permission).

Figure 2.9. A custom CNN-based DL architecture comprising different layers.
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higher accuracy even with limited training data, less powerful hardware, or
restricted training time. The reference architecture for TL, called VGG16, is
depicted in figure 2.10, as described in [185].

Table 2.3 gives us a comparative analysis of multi-modal AI architectures that are
utilized for the diagnosis of COVID-19, highlighting their main characteristics. The
‘Arch Type’ column provides reference to seven different architectures developed
according to the workflow and goals of various AI research studies. The ‘Reference’
and ‘Modality’ attributes indicate the sources referenced and the specific imaging
modality employed. The attribute ‘3D/2D Imaging’ indicates that the research is
either focused on three-dimensional or two-dimensional radiological imaging, as
discussed in [186, 187].

The attribute ‘Highlight/Objective’ in the table signifies the distinctive aspect or
objective that the research might have. The ‘Architecture Description’ attribute
provides a description of the specific AI architecture utilized in the study. The
‘Performance Metrics’ attribute indicates the metrics employed by the researchers to
assess the effectiveness of their work. For a more in-depth understanding of AI and
the applications, readers are advised to explore specialized reviews that focus on AI-
based methodologies.

2.6 Workflow considerations for COVID-19 lung
characterization: CT vs. x-ray

The three chest-imaging modalities x-ray, CT, and ultrasound have been strongly
recommended by WHO for the diagnosis of COVID-19 [90]. In their guidelines, the
following observations were given for COVID-19 diagnosis. (i) x-rays was found to
be lower in sensitivity and higher specificity than chest CT imaging [188, 189]. (ii)
Chest x-rays are less expensive, have lower radiation, take less acquisition time, and
are less expensive to use for monitoring than CT. (iii) Chest CT was found to have
higher sensitivity but lower specificity and emits more radiation than x-ray. (iv)
Lung ultrasound was found to have very low diagnostic accuracy but offers an
alternative for several other applications, such as the abdomen, carotid, urology,
obstetrics, and gynaecology imaging. On the other hand, ultrasound has a high risk

Figure 2.10. An example of transfer learning (TL) architecture using VGG16.
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of COVID-19 infection transmission due to close contact with the patient compared
to other imaging modalities. In accordance with the guidelines published by the
American College of Radiology on April 8, 2020 [190], MRI is not recommended for
COVID-19 patients due to the elevated risk of infection [91]. While there are studies
available on MRI and COVID-19 [92–94], no specific literature was found that
directly addresses the combination of COVID-19, MRI, and AI. The main reason is
the long scanning time, risk of infection, and high cost associated with MRI. On the
contrary, FDG-PET/CT imaging, which is a more advanced technique compared to
CT alone [191], has been used in many studies for diagnosing COVID-19 [95, 96].
However, no relevant studies combining FDG-PET/CT imaging, COVID-19, and
AI were found. This could be attributed to the higher cost associated with PET/CT
imaging [23, 192].

X-ray and CT imaging modalities are considered appropriate for COVID-19
diagnosis according to the recommendations of the World Health Organization, as
indicated in table 2.4. Figure 2.11(c) demonstrates the percentages of studies
utilizing either CT, x-ray, or both modalities, with CT being regarded as the gold
standard. Several significant studies have been conducted using AI for automated
COVID-19 diagnosis with x-rays and CT [21–23, 192–202]. Open-source COVID-19
datasets for x-ray and CT imaging, such as the one provided by RSNA, have gained
popularity in the scientific community.

To compare studies involving x-ray and CT imaging, several attributes were
considered, including the risk classes, number of subjects, 2D vs. 3D imaging, AI
models, automated vs. non-automated ROI segmentation, augmented vs. non-
augmented techniques, hardware and software used, K-fold cross-validation,
performance, and optimal models. Several notable studies [203–208] included
cohorts of over 1000 subjects. The number of classes in the studies was categorized
into multiclass and binary classifications, with a majority focusing on binary
classification [203, 204, 209–216]. While most studies utilized 2D x-ray images,
two studies employed 3D CT volumes as input [210, 212]. ROI segmentation, an
essential step in chest image analysis, was mostly automated, with five studies

Table 2.4. Compatibility of imaging modality for COVID-19 and adaptability for AI [230]

Imaging
modality

Suitable for
COVID-19 as per
WHO guidelines Cost

Risk of
radiation

Risk of infection
due to close
contact

Compatible with
AI for COVID-19
diagnosis

PET/CT High Very
high

Very high Low Low

CT High High Very high Low Very high
X-ray Medium Low High Low Medium
Ultrasound Low Low No High Low
MRI Low High No Low Low
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employing automated methods [203, 211, 212, 217, 218], and one study using
manual segmentation [209]. Full-sized images were predominantly utilized in the
classification process.

Regarding AI models, the studies primarily fell into two categories: ML and DL.
In one study, a network based on DL achieved a classification accuracy of 90.13%
when distinguishing pneumonia, normal, other diseases, and COVID-19 cases in
chest x-rays [219]. Figure 2.12 visualizes sample images and their corresponding

Figure 2.11. (a) An x-ray scanner. (b) A CT-scanner (Courtesy of Luca Saba, University of Cagliari, Italy). (c)
Studies using CT vs. x-ray.

Figure 2.12. X-ray scans of COVID-19, pneumonia, and normal lungs [219] (permission pending).

Figure 2.13. CT scans classified as positive for coronavirus abnormalities and their corresponding color
heatmaps [220] (permission pending).
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colour maps from this study. Another study utilized a network based on DL to
detect COVID-19 abnormalities in lung CT scans and generate a heatmap indicating
severity levels [220]. Figure 2.13 provides an illustration of the resulting images.

To address data limitations in medical studies, image augmentation techniques
were commonly employed. Transfer learning with DL models was particularly
utilized when datasets were small, often consisting of a few thousand samples [210–
212, 215, 218]. These augmentation techniques involved various operations such as
image transformation, blurring, and colour manipulation. Some studies also
adopted a patch-based framework with a small number of trainable parameters,
incorporating multi-scaling for spatial features in diagnosis of COVID-19 [221, 222].
Cross-validation, specifically the K-fold strategy, was frequently used to evaluate AI
performance. Authors employed five-fold [203, 205, 215, 218], and ten-fold [207]
cross-validation approaches to comprehensively assess model performance.

To prevent overfitting during AI model optimization, researchers utilized
techniques like cross-validation and transfer learning in supervised learning.
Overfitting occurs when a model performs well on known data but struggles with
unknown data. Increasing the training dataset size was among the approaches used
to mitigate overfitting. The performance of the classifier was influenced by various
factors, including the training iterations, number of subjects, training time, and
sample size. At present, there is no definitive best-performing model or method that
can be identified. However, as further trials and studies are conducted, it is
anticipated that superior AI models will be emerging.

2.7 Critical discussion
Clinical requirements for COVID-19 AI systems. To develop an optimal AI system
for COVID-19, it is crucial to meet several key clinical requirements. Firstly, the
system should demonstrate robustness and stability, ensuring that its output remains
reliable and consistent even in the face of variations in patient demographics or
other related characteristics. Secondly, it should demonstrate reliability and repre-
hensibility, consistently producing results that are similar in multiple trials. In
addition, when deployed in an operating room, the AI system should be cost-
effective and have reasonable speed compared to traditional techniques for
diagnosing COVID-19, like RT-PCR tests. To ensure broad applicability, the AI
system should be trained and tested on a diverse and representative dataset, ensuring
its generalization. It is essential for the AI system to provide an accurate assessment
of COVID-19 severity, as this metric plays a critical role in guiding treatment
decisions for patients. Incorporating this capability into an AI diagnostic system is
highly desirable. Overall, an ideal system embedded with AI for COVID-19 must
meet these clinical requirements to effectively assist healthcare professionals in
diagnosing and managing the disease.

Validation of the AI system’s results by radiologists, pulmonologists, and doctors
is necessary to assess its effectiveness. Furthermore, the AI system should utilize 3D
imaging to segment and analyze the impact of COVID-19 on various organs,
providing additional support to clinicians. By integrating these clinical
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requirements, there is significant potential for enhancing the current state of AI-
assisted diagnostics for patients suffering from COVID-19. This has the potential to
greatly improve the current standard of care by incorporating AI technology into the
diagnostic process.

System optimization. DL techniques are extensively utilized in DL-based AI
systems for the detection and classification of COVID-19. Researchers have
employed data augmentation techniques to increase the size of the training dataset
for COVID-19. The choice of the number of convolution layers in DL models is
typically based on researchers’ intuition. However, it is crucial to optimize DL-based
AI systems for COVID-19 by considering the relationship between augmentation,
the resulting classification accuracy, and the number of convolution layers. This
optimization process can lead to enhanced performance and accuracy in COVID-19
classification tasks. Please refer to figure 2.14 for a visual representation of these
concepts.

Scientific validation. To validate and evaluate an AI-based COVID-19 diagnostics
system, it is essential to consider a wide range of comorbidity conditions. Various
scenarios should be taken into account where assumptions may differ. For instance,
modifying the thickness of CT scans or providing different views (coronal, sagittal,
axial) to the system for the purpose of diagnosing can impact its performance.
Moreover, the validation of system stability must be done by altering the combi-
nation of data used and employing partition protocols like K10, K5, and K2. A AI
system which is stable will demonstrate minimal standard deviation across different
data combinations [165]. Additionally, the system should undergo validation using
patients from diverse age groups and with different comorbidities to ensure its
robustness and reliability in real-world applications. These validations have great
importance in establishing effectiveness and generalizability of the AI-based
diagnostics systems that are used for COVID-19 [165].

Clinical validation. To gain approval from regulatory authorities, it is vital to
conduct gold standard validation for the research. This involves comparing the
predictions made by the AI system with a physical examination of the body’s
organs. One method to accomplish this is to validate the body tissues

Figure 2.14. A 3D graph representing the relationship between CNN layers, data augmentation, and accuracy.
(Courtesy of AtheroPoint™, Roseville, CA, USA; reproduced with permission [14].)
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microscopically to evaluate how severe the ARDS is which has resulted from
COVID-19, as shown in figure 2.15. Furthermore, it is crucial to perform an analysis
of intra-observer and inter-observer variability [223] to address any potential human
bias in the system. These validations play a critical role in ensuring the accuracy and
reliability of the AI system’s predictions, thereby increasing its credibility and
acceptance by regulatory authorities [223].

AI for COVID-19 comorbidity and age-group frameworks. The AI system’s design
should be flexible enough to consider patients’ comorbidities, including conditions
such as cardiovascular diseases, diabetes, obesity, pancreatic diseases, retinopathy,
angiography, and blood vessel diseases [224], with their corresponding age groups.
In [225], a study was conducted to develop an AI system for predicting cardiovas-
cular diseases in a diverse patient population. Similarly, the AI systems discussed in
[226, 227] can be extended to incorporate comorbidities and different age groups to
enhance the accuracy of COVID-19 diagnosis.

To address this challenge, the primary AI system can be divided into multiple
subsystems, each tailored for specific comorbidity categories and further categorized
based on different age groups. For example, if there are five comorbidities and three
age groups, a total of 15 subsystems would be developed. Each subsystem should be
trained independently using a distinct gold standard database [228]. By incorporat-
ing additional input data related to the patient’s comorbidities and age group, an
appropriate AI subsystem can be identified for each new patient.

3D image acquisition and processing. The majority of AI research on COVID-19
has predominantly focused on evaluating the severity of lung infection using 2D
imaging, which may not fully capture the disease’s progression. To overcome this
limitation, there is a need to explore COVID-19 data in 3D, as depicted in
figure 2.16. One potential approach is to utilize scans acquired during the contrast
enhancement of a lung ultrasound, which can provide valuable insights for early
management and prognosis of COVID-19 [231]. In a study cited in [232], researchers
employed 3D CT scans to diagnose and classify lung lesions affected by COVID-19,
offering a more comprehensive understanding of the disease’s characteristics.
Furthermore, in another study mentioned in [233], the authors utilized the

Figure 2.15. Microscopic views of (a) interstitial pneumonia and (b) COVID-19 pneumonia. (Courtesy of
Luca Saba, A.O.U., Cagliari, Italy.)
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DensNet121-FPN architecture and a deep learning strategy for lung segmentation
and classification, leading to improved accuracy in the analysis.

Multi-modality data. Radiographic techniques provide several diagnostic options
for COVID-19, including lung chest x-rays, CT, PET/CT scans, and lung ultra-
sound. The choice of the appropriate imaging modality depends on factors such as
the patient’s age, pre-test probabilities (PTPs), and comorbidities [18]. To evaluate
the severity of a COVID-19 infection, troponin levels can be used as a PTP test,
serving as an indirect indicator of hypoxia. In the early stages of COVID-19, x-rays
and lung ultrasounds are cost-effective and easily accessible diagnostic tools, given
their compact size. However, for patients with comorbidities, advanced age, or
COVID-19-induced acute respiratory distress syndrome (ARDS) leading to hypo-
xia, lung CT is often the preferred choice. Lung CT provides robust diagnostic
capabilities and higher resolution in such scenarios. When developing systems
embedded with AI for COVID-19, it is crucial to ensure their adaptability and
generalizability across multiple imaging modalities to cater to the specific needs of
individual patients. By considering these factors and the insights presented in the
cited references, AI systems can be effectively designed to integrate and analyze data
from different imaging modalities, thereby optimizing the diagnostic process for
COVID-19 patients.

Tissue characterization of lung scans. In one of the last investigations [3], an
analysis was conducted using bispectrum (B) on lung tissues affected by COVID-19.
The study employed a higher-order spectrum (HoS) approach which validated the

Figure 2.16. Three lungs with non-COVID-19 pneumonia (a1, a2, and a3). Three lungs with COVID-19
pneumonia with different COVID-19 severities (b1, b2, and b3). (Courtesy of AtheroPoint™, Roseville, CA,
USA; reproduced with permission.)
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findings and was not dependent upon the AI for any validation. The results,
illustrated in figure 2.17, revealed that samples infected by COVID-19 exhibited
significantly higher B-values compared to non-infected samples. This observation
suggests that AI systems can effectively utilize these patterns to differentiate between
non-COVID-19 and COVID-19 samples. By incorporating such insights and
methodologies, AI systems can enhance their capability to accurately identify and
distinguish cases of COVID-19.

Data collection. To mitigate biases related to ethnicity, comorbidity, age, and
other factors among COVID-19 patients, it is highly advantageous to collect data
over an extended period and from diverse geographical locations [234]. This
approach ensures the inclusion of a more representative and comprehensive dataset.
Furthermore, the patient data should encompass multiple classes, including a
control group and various types of pneumonia classes such as HIV, viral,
COVID-19, MERS, and bacterial [235]. By adhering to these criteria, the develop-
ment of a more robust and generalized AI system for COVID-19 diagnostics
becomes feasible, eliminating the need for localized validations or retraining. Such
an approach facilitates the creation of a versatile solution that accounts for the
inherent variations and complexities in different patient populations. By considering
these aspects, AI systems can be designed to deliver accurate and reliable COVID-19
diagnostics, benefiting healthcare providers worldwide.

Figure 2.17. Bispectrum analysis of non-COVID-19 pneumonia (NCoP) and COVID-19 pneumonia (CoP).
(Courtesy of AtheroPoint™, Roseville, CA, USA; reproduced with permission.)
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AI and hardware constraints.GPUs have a vital role in DL investigations, providing
the necessary computational power for both training and testing phases [234, 235].
Researchers heavily depend on GPUs for their computational capabilities. Popular
open-source platforms like Google Colab are frequently used, with Python being the
programming language of choice, along with frameworks like TensorFlow or PyTorch
[14, 102].

Strengths, limitations, and extensions. This research offers important findings on
different aspects of ARDS in relation to comorbidity, medical imaging modalities for
COVID-19 patients with ARDS, workflow considerations for imaging tools, AI archi-
tecturedesign fordiagnosing the severityofARDS-related lungconditions, and the roleof
AI inmanagingcomorbidities.Theresearchemphasizes theessential elements required for
a dependable and secure AI-driven approach to evaluate the severity of COVID-19.

Although this study introduces novel approaches by incorporating AI designs
based on comorbidity, it acknowledges that there are other aspects that could be
included for a more comprehensive analysis. For example, further exploration of the
biological processes underlying comorbidities could provide valuable insights, but
due to limitations in the length of the manuscript, they were not included.
Additionally, more rigorous comparisons of deep learning paradigms could be
incorporated, and the study references previous dedicated reviews that offer
opportunities for further exploration in these areas (table 2.5 and 2.6).

Future research should focus on developing methods that utilize GPS within
targeted lung regions in 3D and 2D medical images for rapid assessment of COVID-
19 severity. These methods should take into account factors such as comorbidity and
time constraints to enable accurate and timely determination of severity [236–238].
Additionally, this foundational study creates opportunities for further exploration in
various medical fields, including cardiology, neurology [239], ophthalmology [241],
and diabetology [240]. The application of statistical tools, such as systematic review
and meta-analysis (SRMA), can provide comprehensive and evidence-based insights
in these areas. However, it is important to note that the inclusion of SRMA goes
beyond the current scope of this narrative review.

2.8 Conclusion
This recent study focuses on the investigation of various comorbidities, their impact
on an ARDS-based framework, and their association with mortality rates. The
study proposes solutions based on AI that incorporate comorbidity as a factor that is
independent in the design. It presents the key features and architectural character-
istics of seven different SoT approaches. The study highlights the need for a
thorough investigation of AI system’s important components before its clinical
application for diagnosing severity of COVID-19. These components include clinical
and scientific validation, optimizing the architecture design by balancing layers and
augmentation, and selecting the appropriate imaging modality based on the
troponin release and severity of COVID-19 symptoms. The study concludes that
the incorporation of comorbidity and age group as novel features in AI design holds
great promise for characterizing ARDS in the future [242–245].
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