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Preface

Deep learning and artificial intelligence (AI) is now as good for use as a general tool
as other medical equipment and software. Having been deployed for some time now,
it has been observed that inaccurate diagnosis cases (both false positives and false
negatives) are decreasing with the usage of AI/DL aided tools. Medical practitioners
are increasingly using diagnosis tools embedded with AI for coming to accurate
decisions. With coming-of-age of AI platforms such as Google Health, DeepMind
and OpenAI, the diagnosis will become more affordable and accessible than ever
before. This book will look into some aspects of usage of deep learning for effective
treatment.

Purpose
The book is written in the post-COVID-19 era and therefore a major section of this
book is dedicated to deep learning (DL) and artificial intelligence (AI) applications
in COVID-19 and respiratory diseases. This book discusses the effect on organs such
as the brain and heart and how in the long term, AI will be able to detect the damage
caused to vital organs. One single chapter is also dedicated to tuberculosis. AI also
has made significant advances in the area of detection of cardiovascular diseases
using multiple medical imaging modalities such as MRI, CT, and ultrasound. This
book covers multiple areas where DL/AI technologies have been critical in accurate
characterization of diseases.

Content and organization
The content of this book is divided into two sections: AI/DL in COVID-19/
respiratory diseases and other cardiovascular diseases. In the first part, four chapters
are dedicated to COVID-19 and one chapter to tuberculosis. In the second part,
three chapters are dedicated to AI/DL in cardiovascular diseases. The description of
each chapter in the first part is given as follows: Chapter 1 discusses the four
pathways through which COVID-19 affects the heart and the brain, and how AI-
assisted medical imaging can detect and diagnose the damage caused. Chapter 2
discusses critical AI technologies that have been applied to detection of COVID-19
induced Acute Respiratory Distress Syndrome (ARDS). In Chapter 3, eight pruned
deep-learning models for COVID-19 CT lung segmentation and lesion localization
are discussed in detail. An inter-variability study of the results of lung segmentation
is done in Chapter 4. In Chapter 5, a segmentation study of tuberculosis-infected
lung images using deep learning is discussed.

In the second part, there are three chapters. Chapter 6 presents a study of different
applications of AI/DL in cardiovascular ultrasound. Chapter 7 discusses different
segmentation/characterization studies related with atherosclerosis. Finally, Chapter
8 talks about different techniques for carotid disease management.
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Chapter 1

An overview of AI applications in medical
imaging for COVID-19-related brain and

heart injuries

Harshit Sharma, Radhakrishn Birla, Mainak Biswas and Jasjit S Suri

Artificial intelligence (AI) has significantly impacted the field of medicine, especially
radiology, in recent years. The COVID-19 pandemic has caused a devastating
impact, with over 416 million people infected and more than 5.8 million lives lost as
of February 23, 2022. Although there have been approximately 228,391 publications
on COVID-19, only a few articles have focused on the influence of AI and medical
imaging on infected patients with comorbidities.

A comprehensive study has recently been conducted to investigate the various
pathways that lead to heart and brain damage in individuals who have contracted
COVID-19. This study has provided valuable insights into the importance of medical
imaging in the management of patients with comorbid conditions, utilizing statistical
data on COVID-19 symptoms. Common symptoms associated with COVID-19
include hypoxia, arrhythmias, plaque rupture, coronary thrombosis, encephalitis,
ischemia, inflammation, venous and lung injury, as well as thromboembolism. The
research primarily focuses on the application of AI in identifying specific tissues in
COVID-19 patients and assessing the severity of their illness through the analysis of
medical images. Given the limited medical resources available to governments
worldwide in the fight against the pandemic, the use of image-based AI has become
increasingly essential for the detection and diagnosis of COVID-19.

The integration of imaging and AI-based tissue classification, along with
preliminary test probability and COVID-19 symptoms, has revealed a promising
method to evaluate the potential danger posed by patients with comorbidities.
Techniques like these can play a crucial role in monitoring and enhancing the
healthcare system during and after the epidemic. Keywords such as COVID-19,
comorbidity, pathophysiology, heart, brain, lung, imaging, artificial intelligence,
and risk assessment have been identified as important factors in this context.

doi:10.1088/978-0-7503-2352-9ch1 1-1 ª IOP Publishing Ltd 2023

https://doi.org/


1.1 Introduction
In December 2019, a new coronavirus called ‘severe acute respiratory distress
syndrome coronavirus 2’ (SARS-CoV-2) was identified in Wuhan, the capital of
Hubei Province in the People’s Republic of China [1]. Initially, the Chinese
government referred to the illness caused by the viral infection as ‘new coronavirus
pneumonia’ (NCP), while the World Health Organization (WHO) named it
‘coronavirus disease 2019’ (COVID-19). A global public health emergency was
declared on January 30, 2020 [2]. The primary mode of transmission for SARS-
CoV-2 is believed to be by means of respiratory droplets or nasal secretions [3].
Interhuman transmission was first observed by Jasper Fuk-Woo Chan et al during
their investigation at the University of Hong Kong-Shenzhen Hospital [4]. As of
July 16, 2022, the pandemic had spread to more than 200 countries, resulting in over
416 million infections and 5.8 million deaths due to its high contagion rate
(Ro = 2.7) [5], as shown in figure 1.1.

Recent studies have revealed that individuals with preexisting conditions face a
higher risk of severe consequences due to COVID-19 [6–10]. In a specific study
focused on COVID-19 patients, diabetic individuals (48, 24.9%) exhibited signifi-
cantly higher mortality rates (81.3% vs. 47.6%) and ICU hospitalization rates (66.7%
vs. 41.4%) compared to non-diabetic individuals (145, 75.1%) [11]. Diabetic
individuals also experienced severe inflammatory reactions and coagulopathy in
the heart, liver, and kidneys. Infected individuals with chronic disorders such as
diabetes, renal disease, dyslipidemia, hypertension, cardiovascular diseases, and
chronic obstructive pulmonary disease (COPD) had a higher prevalence of heart and

Figure 1.1. COVID-19 is distributed over 213 countries on a world map (courtesy: John Hopkins University).
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brain (H&B) damage [12–16]. SARS-CoV-2 has been found to infect the thin lining
of the epithelial cells that line the arteries, leading to atherosclerosis and arterial
inflammatory disease, which are significant contributors to cardiovascular diseases
(CVDs) and H&B damage [12, 17–21]. This may be attributed to a decrease in the
production of angiotensin-converting enzyme 2 (ACE2), which results in endothelial
dysfunction and exacerbates existing atherosclerosis [22, 23]. When individuals with
comorbidities undergo image screening, it has been observed that they exhibit a wide
range of preliminary test probabilities (PTPs) for COVID-19, ranging from mild to
severe [24]. Conventional cardiovascular risk factors (CCVRFs), such as imaging
techniques of the heart or alternative indicators used as substitutes for assessing
coronary artery disease (e.g., carotid artery disease), are closely associated with
comorbid patients. COVID-19 severity prediction models can benefit from the
incorporation of both biomarkers and imaging [25–30]. Figure 1.2 illustrates the
connections between SARS-CoV-2 and comorbidities, as well as the survival rates of
COVID-19 individuals with and without diabetes.

The expression of ACE2 can lead to scarring and potential artery rupture [31–34].
Therefore, it is essential to evaluate CCVRF alongside imaging in individuals with
COVID-19 and other comorbidities [35]. In stage two of the disease, when patients
are severely affected by COVID-19, there is a higher risk of heart damage or the
release of troponin T (TnT). Imaging has proven to be valuable in keeping track of
tissue scarring caused by COVID-19 [35–39].

Different imaging modalities such as magnetic resonance imaging (MRI),
computed tomography (CT), and ultrasound can be employed to detect COVID-
19 symptoms in patients [40–44]. These imaging techniques offer the advantage of
visualizing the scar tissue caused by the disease. However, a drawback is their
inability to provide a ‘risk assessment’ on their own. Artificial intelligence (AI)
technologies have the potential to leverage information from imaging modalities and
generate more precise predictions, enabling accurate identification of tissues and
disease processes [45–51]. The combination of AI and medical imaging (MI) has
demonstrated significant advancements in diagnosis, risk stratification, rapid patient

Figure 1.2. (a) SARS-CoV-2 and its link with other comorbidities, and (b) COVID-19 diabetes and non-
diabetic patients’ mortality rates compared (with permission to reprint [11]).
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evaluation, disease monitoring, and early intervention [40, 48, 52–57]. Consequently,
this review focuses on the utilization of AI-based tissue characterization through
medical imaging in comorbid patients affected by COVID-19.

The chapter is organized as follows: section 1.2 examines the physiological
mechanisms underlying the four pathways that result in heart and brain injuries.
Section 1.3 presents an overview of the justification for utilizing imaging in the
context of the COVID-19 pandemic. Section 1.4 provides an in-depth exploration of
utilizing AI-based tissue characterization for risk assessment. Ultimately, the paper
concludes with a thorough critical analysis.

1.2 SAR-CoV-2 pathophysiology in the context of heart and brain
injury

Numerous studies indicate that SARS-CoV-2 relies on the ACE2 receptor for cell
entry, achieved by binding to the spike protein (S protein) on the cell surface [58–60]
(see figure 1.2). ACE1 and ACE2 are carboxypeptidase enzymes that are structurally
similar but have distinct roles in the renin-angiotensin-aldosterone system (RAAS)
[61]. The ACE2 is found in various cardiac cells, including, astrocytes (brain cells),
enterocytes and type 2 pneumocytes [15, 61–63], and is recognized as a contributing
factor to extrapulmonary complications. Figure 1.3 provides a comprehensive visual
representation of how SARS-CoV-2 induces cardiac and brain damage through four

Figure 1.3. We have shown in four pathways how COVID-19 can cause brain and heart injury. Brain image in
pathway I: http://debuglies.com/2020/01/23/olfactory-disturbances-have-implications-in-mental-and-emo-
tional-well-being-health/ (courtesy of Debug Lies).
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distinct paths: (i) the RAAS pathway, (ii) the immune pathway, (iii) the neural
pathway, and (iv) the hypoxia pathway. These pathways will be further discussed,
along with the resulting injuries, which may encompass infectious toxic encephal-
opathy, acute cerebrovascular diseases and viral encephalitis.

(i) The neural pathway (figure 1.3, the first pathway): Recent epidemiological
investigations have highlighted genomic similarities between MERS,
SARS-CoV-1, and SARS-CoV-2 [6, 64, 65]. Prior research has demon-
strated that coronaviruses, including SARS-CoV-1, have the ability to
enter the brain and directly infect it [66, 67]. In figure 1.3, the sagittal brain
image representing the neural pathway illustrates the olfactory nerve and
bulb, labeled as ‘a’ and ‘b,’ respectively [68–70]. It has been observed that
individuals infected with SARS-CoV-2 may experience symptoms such as
dysgeusia (taste loss) and anosmia (loss of smell) [64, 71–73]. Furthermore,
a mouse experiment where the olfactory bulb was surgically removed
demonstrated a limitation of CoV within the central nervous system (CNS)
[74]. These findings suggest that the neural pathway could be one of the
potential routes for SARS-CoV-2.

(ii) The hypoxia pathway (figure 1.3, the second pathway): Following the entry
of the coronavirus into lung parenchyma cells, there is a reduction in ACE2
levels, leading to the accumulation of neutrophils, increased vascular
permeability, and the release of diffuse alveolar and interstitial exudates.
This process contributes to the development of acute respiratory distress
syndrome (ARDS) and pulmonary edema [75]. ARDS is described by
significant irregularities in the composition of blood gases, causing an
imbalance of oxygen and carbon dioxide and leading to decreased blood
oxygen levels [76, 77]. Prolonged hypoxia can induce myocardial ischemia
and cardiac damage [78, 79] (see figure 1.3, pathway II-A). In the brain,
hypoxia is the primary cause of cerebral vasodilation, edema, and reduced
blood flow due to increased anaerobic metabolism in brain cell mitochon-
dria. This can lead to cerebral ischemia and acute cerebrovascular disorders,
such as acute ischemic stroke [71, 80] (see figure 1.3, pathway II-B).

(iii) The RAAS pathway (figure 1.3, the third pathway): The renin-angiotensin-
aldosterone system (RAAS) pathway plays a critical role in regulating
blood pressure and electrolyte balance. Disruption of this pathway can
contribute to the development of cardiovascular disorders [15]. Prior to
SARS-CoV-2 invasion, angiotensin I (Ang I) is converted to angiotensin II
(Ang II) by ACE1. Ang II causes vasoconstriction and possesses pro-
inflammatory, prothrombotic, and proliferative properties that can neg-
atively impact the hemostasis and vascular tone [77, 80]. Conversely, ACE2
counteracts the effects of Ang II by converting it to Ang (1–7), which has
mitigating effects [75, 78]. Both ACE2 and Ang (1–7) have protective
effects on the cardiovascular and cerebrovascular systems [61]. SARS-
CoV-2 infection disrupts the RAAS, leading to injuries in the heart and
brain through two distinct pathways. The primary mechanism involves an
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increase in Ang II levels due to a decrease in ACE2 levels (figure 1.3,
pathway III-A). Firstly, elevated Ang II levels stimulate the adrenal cortex
in the kidney, resulting in increased aldosterone production. Aldosterone, a
steroid hormone, facilitates the reabsorption of sodium and water in the
distal tubule and collecting duct of the nephron [81]. This leads to an
increase in blood volume and raises blood pressure, causing endothelial
dysfunction and subsequent damage to the heart and brain [82]. Secondly,
elevated Ang II levels and decreased ACE2 levels contribute to endothelial
dysfunction in arterial walls, which can be observed in arterial wall images
[21] (see figure 1.3, pathway III-B). High levels of Ang II can also trigger
the release of pro-inflammatory cytokines, contributing to a cytokine
storm.

(iv) The immune pathway (figure 1.3, the fourth pathway): In recent studies,
SARS-CoV-2 viral pneumonia has been linked to an elevated inflamma-
tory response known as a ‘cytokine storm’ [7, 77, 83, 84]. Advanced stages
of severe COVID-19 are characterized by increased levels of inflammatory
cytokines, which can contribute to multiple organ failure [85–87].
Inflammatory markers such as IL-6, IL-7, IL-12, IL-15, IL-22, TNF-α,
and CXCL-10 have been associated with plaque destabilization. This
increased inflammation can potentially lead to plaque rupture and sub-
sequent damage to the heart and brain [37, 68–70, 80, 85–87, 89–91].

1.3 The role of imaging in patients with comorbidities and
COVID-19

COVID-19 leads to significant damage to the heart and brain through four
pathways (neuronal, hypoxia, RAAS, and immunological), as discussed earlier.
This highlights the need for increased utilization of medical imaging (MI) to expedite
assessments, differential diagnoses, and patient management [92] with appropriate
safety measures. The choice of imaging modality depends on symptom severity, with
consideration for portability and invasiveness. Portable and non-invasive ultrasound
imaging in B-Mode is suitable for low-risk individuals, while x-rays, magnetic
resonance imaging (MRI), and computed tomography (CT) are non-portable and
can be used for patients with a medium risk level [40, 41]. Invasive imaging
techniques like intravascular ultrasonography (IVUS) and ventriculography are
reserved for life-threatening situations [42, 43, 98–100]. Ultrasound is particularly
advantageous due to its rapidity, reproducibility, cost-effectiveness, radiation-free
nature, and portability. It can be performed in isolation, minimizing the risk of
COVID-19 transmission [101, 102].

Throughout the early and later stages of the pandemic, various imaging modal-
ities have proven effective. X-ray imaging of the lungs has revealed different
patterns, signaling the advancement of COVID-19 at different stages and aiding
in treatment planning [103]. Chest CT scans have shown lung involvement in nearly
86% of COVID-19 patients, affecting at least one lobe [104]. Chest MRI scans have
revealed pulmonary tissue consolidation, diffusion-restricted areas, and lung injury
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in COVID-19 patients [105]. MRI examinations of recovered patients have
identified myocardial edema and late gadolinium augmentation, indicating long-
term cardiac damage requiring ongoing care even after recovery [106]. MR scans of
COVID-19 patients have demonstrated myocardial inflammation, highlighting
cardiac damage caused by the cytokine storm associated with the infection
(Pathway IV) [107]. Studies have also investigated the impact of COVID-19 on
the brain, with MRI images showing hemorrhagic rim enhancing lesions in specific
brain regions [108] (figure 1.4). Abnormal findings have been observed in brain MRI
scans of COVID-19 patients, and combined CT and ultrasound investigations have
revealed liver disease and gallbladder abnormalities [109, 110]. Recent MRI scans of
COVID-19 patients’ olfactory bulbs have revealed inflammatory occlusion caused
by the interaction between SARS-CoV-2 and the ACE2 protein expressed in the
olfactory epithelium, resulting in the loss of olfactory function [111].

Invasive imaging techniques are employed to ascertain the diagnosis of individ-
uals with COVID-19 with significant comorbidities. One trial utilized intravascular
ultrasonography (IVUS) in combination with stenting for a COVID-19 patient who
experienced a myocardial infarction [112] (figure 1.5). Precautions regarding
invasive imaging techniques are further explained in section 1.5. Another study
employed ventriculography to detect takotsubo syndrome, a type of cardiac damage
associated with COVID-19 [113]. In several trials, MI of COVID-19 patients played
a critical role in assessing tissue damage and determining the severity of infection,
even in the absence of obvious signs [39, 114]. Therefore, MI is recommended for
evaluating the degree of damage to cardiac and cerebral tissues in individuals with

Figure 1.4. The MRI scan of a patient with COVID-19 showed evidence of bleeding. T2 FLAIR hyper-
intensity was observed in the paired medial temporal lobes and thalami (A, B, E, F), and the hemorrhage was
identified by a hypointense signal intensity on susceptibility-weighted images (C, G). Additionally, postcon-
trast imaging revealed rim enhancement (D, H) (reprinted with permission [108]).
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COVID-19 throughout their lifetime. Individuals with preexisting medical condi-
tions who have contracted COVID-19 are particularly vulnerable and should
undergo MI examination from the time of diagnosis. MI can also be beneficial for
COVID-19 patients with deep vein thrombosis (DVT). An analysis found that
patients suffering from COVID-19 and DVT had a worse prognosis compared to
those lacking DVT. The DVT group had a higher rate of ICU admission (18.2%),
lower rate of discharge (48.5%), and higher mortality rate (38.5%) [115].

However, the evaluation, diagnosis, and monitoring processes for myocardial
infarction imaging can be challenging due to the exponential nature of the
pandemic, limited medical resources, and a shortage of radiologists. These factors
contribute to time-consuming processes and a higher risk of errors [116–118]. To
address these challenges, the utilization of artificial intelligence (AI) in medical
imaging (MI) for tissue characterization can offer valuable support. AI-based
systems have the potential to be scaled up to meet the demands of the pandemic,

Figure 1.5. In a COVID-19 patient with myocardial infarction, both chest CT and intravascular ultrasound
(IVUS) were utilized for diagnostic purposes. The findings from these imaging techniques are as follows: (a)
Chest CT scan revealed localized fibrinous exudative alterations, which are associated with viral pneumonia.
(b) ECG data showed ST-segment elevations in leads V1–V5 when the patient experienced chest pain. (c, d)
Coronary angiography (CAG) indicated occlusion in the proximal segment of the left anterior descending
artery (LAD). (e, f) Blood flow in the LAD was restored after the placement of two drug-eluting stents (DESs).
(g) IVUS revealed a dissection distal to the stent in the LAD, specifically from the 7–12 o’clock position. (h) A
low echogenic shadow with dispersed increased echogenic flicker was observed, indicating the presence of a
thrombus. (i) The dissection was no longer visible after the DES was implanted and the stent was adequately
inflated. (j) The thrombus disappeared following the intervention. These findings were obtained from a
published study and are reprinted with permission [112].
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facilitating rapid MI assessments and diagnoses during the COVID-19 outbreak
[119–121].

Based on the severity of symptoms and patient presentation, AI-driven assess-
ments have the capability to classify or categorize the risk level into different
categories, including zero-risk, low, low-medium, high-medium, low-high, or high-
high risk [120, 122], as illustrated in figure 1.6. The choice of imaging modality
depends on the assessed risk level. For zero-risk patients, no imaging is necessary.

Figure 1.6. AI-based risk assessment plays a crucial role in managing comorbidity patients with COVID-19,
offering valuable insights and aiding in healthcare administration [54, 55, 127–129]. The implementation of AI
in healthcare encompasses various systems that enable accurate decision-making in patient monitoring,
diagnosis, management, and treatment. In the field of medical imaging, artificial intelligence has gained
significant importance due to the abundant volume of three-dimensional data accessible and the necessity to
characterize and quantify diseases utilizing imaging observations [130–132]. Tissue imaging and classification are
particularly vital as they directly impact decisions regarding the severity of COVID-19 in patients [133–135]. The
key advantage of AI technologies lies in their ability to be trained to emulate the cognitive actions of physicians,
allowing for the prediction of disease severity in asymptomatic patients. Several machine learning (ML)-based
approaches have effectively utilized AI to combat COVID-19 within a short timeframe [136, 137].
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Portable imaging modalities are suitable for patients at zero-risk and low-medium
risk levels. Non-portable imaging techniques such as MRI, CT, x-ray, and
echocardiography are appropriate for high-medium and low-high risk patients.
Invasive imaging methods like IVUS and ventriculography are reserved for high-
high risk patients. Precise evaluation of diagnostic results and patient categorization
into specific risk groups can be achieved through pre-test probability (PTP) assess-
ment [123–126]. Non-imaging biomarkers can be utilized by AI-based algorithms
for risk assessment in zero-risk patients. Patients with low risk may undergo
portable 2D/3D imaging modalities, such as ultrasound, while non-portable and
invasive 2D/3D imaging modalities are suitable for low-medium risk patients. High-
high risk patients may require invasive imaging techniques like ventriculography
and IVUS. AI-driven MI plays a crucial role in assessing the risk level based on data
obtained from multiple 2D/3D scans, and treatment decisions can be made
accordingly. The subsequent section will focus on deep learning (DL)-based MI,
particularly in the context of ultrasound scans for COVID-19 patients.

1.4 Machine learning and deep learning for tissue classification
The exponential rise in the number of patients during the pandemic and the limited
availability of trained radiologists have presented challenges in achieving timely
diagnoses. Nonetheless, the integration of AI and related technologies in healthcare
holds significant promise in significantly reducing diagnosis times [119].

1.4.1 ML and DL architectures

The machine learning process consists of two stages. In stage I, various attributes
from the images of COVID lesions are extracted and processed by a machine
learning (ML) model to produce offline parameters. These parameters are then
modified by test lesion photos, leading to intelligent categorization or inference.
Figure 1.7 illustrates a typical machine learning system used for predicting risk class.
The development of a CUSIP (image-based phenotype) relies on the event
equivalent gold standard (EEGS) model [57, 138, 139]. Deep learning (DL)
functions similarly to the visual cortex, employing multiple neural layers directly
applied to tissue images for feature extraction and classification purposes [54].
Convolutional neural networks (CNN) [140], as shown in figure 1.8, are a common
type of deep learning network used for medical image classification. Convolution
and max-pooling operations are employed to extract features and carry out
characterizations. Both ML and DL utilize a supervised learning method is
employed, in which models are trained using preexisting data.

The previous sections have discussed how COVID-19 spreads through four
distinct pathways and can cause damage to the heart and blood vessels (H&B).
Myocardial infarction (MI) can be used to assess the level of tissue damage in these
pathways, aiding healthcare professionals in developing appropriate treatment
strategies for patients. The use of AI models for tissue classification based on
medical images has been widely employed, both during the pandemic and in routine
healthcare settings. In the subsequent sections, we will present a proposed approach
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Figure 1.7. Classic ML model utilizing EEGS model.

Figure 1.8. A convolution neural network (courtesy of AtheroPoint™, CA, USA).
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for describing tissue classification using deep learning (DL) and provide specific
examples of AI applications for each organ.

1.4.2 Tissue characterization ML system for stroke risk stratification

There are two primary types of AI-based approaches: (i) ML-based and (ii) DL-
based methods [63, 141, 142]. ML-based techniques have been developed for the
classification of symptomatic and asymptomatic plaques using ultrasound images.
For instance, support vector machines (SVM), an ML-based method, were utilized
to classify 346 carotid images into symptomatic and asymptomatic plaques [143,
144]. SVM classifiers create a hyperplane with the largest margin between points of
two classes, known as support vectors. In the feature extraction step, texture analysis
is employed to extract features such as entropy, symmetry, standard deviation, and
run percentage [145, 146]. These features were then used to characterize plaque
tissue lesions using SVM with a radial basis function (RBF) kernel, achieving an
accuracy of 82.4%. Higher-order spectra (HOS) analysis has also been found to be
significant in tissue characterization [130]. Another study combined HOS, discrete
wavelet transformations (DWTs), and texture data from 146 patient images to
create an SVM-RBF-based classifier [46, 130, 146–148]. This classifier achieved an
accuracy of 91.7%. Additionally, DWT-based features were used with second-order
kernels to differentiate tissues, resulting in an accuracy of 83.7%. To compare and
evaluate various classifiers, a total of 346 scans from two distinct carotid plaque
datasets (Portugal and the United Kingdom) were utilized. Various classifiers,
including fuzzy classifier [154], k-nearest neighbor [152], radial basis probabilistic
neural network [150], decision tree [151], Gaussian mixture model [149], naive Bayes
classifier [153], and SVM [45] fuzzy classifier [154], were evaluated. The primary
features employed encompassed trace transform [155], fuzzy gray level co-occur-
rence matrix [156], and fuzzy run-length matrix [157]. In the Portugal cohort, the
fuzzy classifier attained the highest accuracy of 93.1%, while both the NBC and
SVM-RBF kernels exhibited comparable performance at 85.3%. These AI models
for plaque classification have been applied in various approaches for cardiovascular
disease (CVD) risk stratification [27, 28, 158].

1.4.3 Vessel characterization, measurement, and risk stratification using ML/DL

1.4.3.1 Chest CT and liver disease classification using AI
During the COVID-19 pandemic, ML and DL techniques have been utilized for the
classification of lung CT images, demonstrating varying degrees of effectiveness
[159–164]. Kang et al achieved an accuracy of 95.5% by employing the utilization of
representation learning to characterize chest CT scans without infection of data
from COVID-19 patients [168]. Wang et al developed a DL-based system to
differentiate CT scans of COVID-19 patients from those of non-infected individuals,
yielding a receiver operating characteristic (ROC) curve with an area under the
curve (AUC) of 0.959 [169].

Additionally, DL-based radiomics using shear wave elastography has been
applied to distinguish diseased (fatty liver) ultrasound images and assess liver
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fibrosis stages with an impressive accuracy of 100% [170–172]. This technique proves
valuable for the identification and categorization of COVID-19 patients.

1.4.3.2 Tissue characterization and risk stratification using artificial intelligence
in lung CT

Over the past few decades, numerous studies have been conducted ML and DL
algorithms for the classification of lung CT images. These studies can be categorized
into two types based on the number of risk stratification classes involved. The initial
set of research focused on distinguishing COVID-19 pneumonia patients from non-
COVID-19 pneumonia patients, resulting in a two-class scenario. The subsequent
collection of studies explored multi-class paradigms.

In one study, the DenseNet 121 model was employed to create and segment lung
masks, achieving an area under the curve (AUC) of 0.9, a sensitivity of 78.93%, and
a specificity of 89.93% for categorizing COVID-19 and control patients [173]. Zhang
et al adopted a three-class classification system that encompassed lung segmentation
and categorization, including COVID-19, community pneumonia, and normal
cases. They utilized the DeepLabv3 model for lung segmentation and 3D ResNet-
18 for classification, achieving an accuracy of 92.49% and an AUC of 0.98 [174].

Other researchers also incorporated AI techniques in their CT lung scan studies.
For instance, Li et al developed a DL system for CT lung analysis capable of
predicting COVID-19 severity and progression [175]. Chen et al devised a UNet++
architecture to segment COVID-19-infected lung regions in CT scans [176, 177]. In a
similar manner, Yang et al conducted lung segmentation on CT images by
identifying pulmonary parenchyma and employing DenseNet for classification.
Their approach achieved an accuracy of 92% and an AUC of 0.98 [178]. In another
study, Oh et al employed x-ray chest images for both classification and segmenta-
tion, achieving an accuracy of 88.9% by employing a patch-based technique with the
same network [179].

1.4.3.3 AI-based plaque tissue characterization and risk stratification for cardiac
health

A DL-based platform is proposed for the treatment of COVID-19 patients with
comorbidities. The platform utilizes preexisting facts obtained by patients suffering
from COVID-19 worldwide to train the DL system. This data includes multiple
ultrasound scans by patients suffering from COVID-19 with comorbidities who
underwent treatment according to strict guidelines [93–97]. The AtheroEdgeTM
system, which is capable of distinguishing and fragmenting plaque regions, auto-
matically extracts tissue regions of interest (ROIs) from the ultrasound scans. The
same AtheroEdgeTM technique is applied to extract ROIs from online patients’
ultrasound scans. The DL model is then used to estimate the susceptibility of plaque
in the online data, which is collected from testing patients after being trained with
the offline data. The predictions obtained from this process are utilized to evaluate
and support the clinical feasibility of the DL system.
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1.5 Summary
In this review, we conducted an analysis of various imaging investigations
performed on COVID-19 patients to assess the impact of the infection on key
organs such as the lungs [104, 105], heart [106, 107], brain [108, 109] and liver. These
imaging investigations were crucial in guiding the medical team in providing
appropriate treatment for COVID-19 patients with varying degrees of symptoms.
Among the available imaging modalities, ultrasonography was found to be
particularly advantageous due to its portability and the ability to perform scans in
isolation rooms, minimizing the risk of infection transmission across different wards.
Similar mobility recommendations were also given for MRI and CT scanning as a
preventive measure to curb the transmission of infections [180–182]. The availability
of mass scanning for admitting patients would enable healthcare professionals to
promptly design treatment plans and potentially save lives. In serious cases of
patients suffering from COVID-19, the use of IVUS [98] and ventriculography (with
necessary preventive measures) is recommended [42, 43, 99, 100] (figure 1.9).

The exponential growth of the COVID-19 pandemic presents challenges in
evaluating and analyzing medical images in light of resource constraints and a
shortage of radiologists. To address this, AI-driven medical imaging (MI) can be
utilized to assist in the analysis, diagnosis, and risk stratification of patients suffering
from COVID-19. AI systems have the capability to process large volumes of images
simultaneously, enabling mass diagnosis to keep up with the rapidly evolving
pandemic curve.

There are two main types of AI: ML and DL [54]. ML models use feature mining
algorithms to make predictions, while DL models directly extract features from
medical images, resulting in clearer images. An AI-based imaging-based risk
evaluation model is recommended, where patients are categorized into risk levels
such as zero/no-risk, low-risk, low-medium, medium-high, low-high, or high-high
based on pre-test probability (PTP) tests [120, 122–126]. MI is then performed based
on the patient’s risk level, followed by AI utilization to assess the risk in MI. DL-
driven tissue characterization systems can be particularly useful for ultrasound
examinations and other imaging modalities. These DL-driven systems are trained
using training data and evaluated using test data, allowing for the evaluation of
tissue damage caused by COVID-19 infection.

Telemedicine, combined with AI support, can play a significant role in monitor-
ing the well-being of patients. Telemedicine enables the management of infections by
monitoring patients’ health through Internet of Things (IoT) devices [183]. Social
media platforms can also contribute to tracking patients’ health and sharing
important research findings through the application of big data analytics [184–186].

1.5.1 A note on COVID-19 precautions

In order to prevent infection, medical personnel must strictly adhere to guidelines
[187–189]. This includes wearing eye protection, disposable gowns that are water-
resistant, and disposable gloves, among other necessary precautions.
Portable equipment should be used to avoid the need for relocating patients. Any
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medical imaging equipment that requires physical contact should be sterilized after
each use, as shown in figure 1.10. Imaging equipment can be positioned outside the
isolation room, allowing image acquisition through the window of the room to
minimize direct interaction, as depicted in figure 1.10(b). When it is necessary to
handle devices, a sterile protective disposable cover, such as an ultrasound probe
cover as illustrated in figure 1.10(c), should be used.

1.6 Conclusion
COVID-19 can cause harm to the heart and blood vessels through four pathways:
RAAS, neuronal, hypoxia, and immune. The severity of a patient’s symptoms
determines the level of risk associated with their condition, which in turn determines

Figure 1.9. Proposed DL-based method for tissue characterization and classification of COVID-19 severity for
patients with comorbidities (courtesy of AtheroPoint™, CA, USA).
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the type of imaging modality that should be used. Portable or non-portable invasive
imaging modalities are recommended depending on the risk level, and appropriate
safety measures must be taken during the imaging process. However, the limited
availability of qualified radiologists poses a challenge to the widespread use of MI
for COVID-19 diagnosis and evaluation.

To address this challenge, AI approaches such as ML and DL can be employed to
expedite MI-based clinical evaluation and diagnosis. These AI methodologies have
the potential to improve the efficiency and speed of diagnosing COVID-19 and
assessing the risk associated with the disease. In particular, a DL-based system has
been developed for COVID-19 diagnosis and risk classification, which can aid in

Figure 1.10. (a) Before taking scans, clinical personnel should follow these protection measures (with
permission to reprint [187]); (b) Images shot through a window (with permission to reprint [188]); (c) probe
covered with disposable sterile sheath (with permission to reprint [189]).
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providing timely and accurate evaluations for individuals with comorbidities who
are at a higher risk of experiencing severe health complications [190].
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