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Volume 1
Diabetic retinopathy
Ayman El-Baz and Jasjit S Suri

Chapter 1

Computerized tool for the automatic
segmentation of DRT edemas using OCT scans

Joaquim de Moura, Placido L Vidal, Jorge Novo and Marcos Ortega

Diabetic macular edema (DME) is a complication of diabetes mellitus that results
from the formation of intraretinal leakage in the macular region. This relevant eye
disorder is recognised as a leading cause of visual loss among the industrialized
world, as reported in the statistics of the World Health Organization guidelines. This
chapter presents a software tool for the automated segmentation of diffuse retinal
thickening regions from optical coherence tomography (OCT) images. For this
purpose, two retinal regions were defined and extracted: the inner retina and the
outer retina. Then, a learning process was used to analyze a comprehensive and
heterogeneous subset of relevant patterns in the OCT scans. Finally, two comple-
mentary post-processing stages were applied to improve the obtained performance
and the overall efficiency of the presented tool. The presented tool achieved
satisfactory performance, achieving a Jaccard of 0.6625 and a Dice of 0.7899,
which demonstrates the suitability of the adopted solution.

1.1 Introduction

Image processing, analysis and computer vision represent very interesting, interdisci-
plinary and dynamic scientific fields of computer science [1]. In particular, these
relevant areas provide different computational tools that are commonly employed in
many technological domains to solve different real-world problems [2]. In this context,
after an explosion of interest during the 1980s and 1990s, the last three decades have
been characterised by the maturity of these areas and a notable growth in different
active applications from different domains of knowledge, such as industry [3], medicine
[4], finance [5], engineering [6], agriculture [7] and education [8], among others [9, 10].
Therefore, as a result of this considerable technological advance, we can observe a
significant increase in emerging computational solutions that include hardware,
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software, services and many automatic technologies that have the main objective of
improving and facilitating the daily work of specialists and professionals [11, 12].

In particular, in the field of medicine, clinical experts often use different
computer-aided diagnosis (CAD) systems for automatic or semi-automatic process-
ing, analysis and recognition of medical images of different types, such as conven-
tional x-ray [13, 14], magnetic resonance [15], computerised tomography [16] or
ultrasound scans [17], among others. Therefore, the use of CAD solutions has grown
in importance in recent years, facilitating the work of clinicians in diagnostic
procedures, avoiding tedious and time-consuming manual procedures.

Specifically in the field of ophthalmology, CAD tools spread rapidly over the
years, progressively being integrated into the clinical workflow to assist the clinical
specialists in diagnostic, prognostic and therapeutic tasks in daily practice. In this
context, these computational tools use the clinical information obtained through
different imaging modalities, such as classical retinography [18], fluorescein angiog-
raphy [19], optical coherence tomography (OCT) [20-22] and optical coherence
tomography angiography (OCTA) [23], among others.

OCT is a non-invasive imaging examination widely used in ophthalmology for
retinal imaging as well as for morphological analysis of different healthy or
pathological structures [24, 25]. This well-established imaging technique uses low-
coherence (high-bandwidth) interferometric technology to provide, in real-time, a set
of two-dimensional scans of the histological structures of the main ocular tissues via
sequential gathering of longitudinal and lateral reflections. In figure 1.1, we can see a
representative illustration of a spectral domain OCT system.
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Figure 1.1. Representative illustration of a spectral domain OCT system.
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The OCT scans allow a direct high-resolution visualization of the morphology
and architecture of the retina and their corresponding histopathological properties.
Consequently, these images provide a valuable resource for the detection, diagnosis,
and treatments of several eye disorders [26, 27] such as, for example, glaucoma,
central serous chorioretinopathy, pigment epithelium detachment, age-related
macular degeneration, epiretinal membrane or diabetic macular edema (DME).

With regards to DME, this serious ocular disease is considered a worldwide
health concern, in accordance with the World Health Organisation (WHO) guide-
line statistics [28]. In particular, DME is one of the most important consequences
associated with diabetes mellitus, being considered a major cause of vision loss and
affects mainly the developed countries. Specifically, figure 1.2 illustrates 6 OCT
images showing the presence and absence of DME discase.

Using the OCT imaging as a reference, Otani et a/ [29] proposed a categorisation
of DME disease according to three classes: diffuse retinal thickening (DRT), serous
retinal detachment (SRD) and cystoid macular edema (CME). To do so, the authors
analysed several imaging characteristics of the OCT scans. Subsequently, Panozzo
et al [30] expanded the existing clinical categorisation by defining new characteristics
that can be seen on OCT images and that better characterise this relevant eye
disorder. To do this, the authors included information on the volume, diffusion,
morphology and presence of the epiretinal membrane. Figure 1.3 illustrates an OCT
scan with the three clinical categories of DME analysed.

Regarding the DRT, this type of DME is typically defined by a sponge
appearance as a consequence of fluid leakage with restricted reflectivity in the
retinal tissues. In addition, since this type of DME usually appears before the SRD
and CME regions, it is frequently considered by the clinical experts as a valuable

Figure 1.2. Examples of OCT scans. First row, OCT scans of patients without DME disease. Second row,
OCT scans of patients with DME disease.
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Figure 1.3. OCT image showing the presence of all classes of DME: DRT, CME and SRD.

Figure 1.4. OCT scan with the manual delineation of the pathological DRT region.

marker for the diagnosis of this relevant eye disorder [31]. In figure 1.4, we can see an
OCT scan with the manual delineation of the pathological DRT region.

Some proposals using OCT scans for the identification, segmentation or charac-
terisation of intraretinal fluid regions associated with DME disorder have been
published in recent years. As reference, Gopinath et al [32] proposed a strategy for
the segmentation of macular edemas in OCT scans. To achieve this, the authors use
a convolutional architecture to train a mapping function that captures the output of
multiple motions to generate a probability map of the locations of pathological
fluids in a given OCT scan. Following a similar strategy, Schlegl et al [33] proposed
an automatic tool for the quantification of fluid regions in OCT scans by means of
different machine learning models. In the work of de Moura et al [34], the authors
proposed a comprehensive analysis of representative descriptors for the intraretinal



Photo Acoustic and Optical Coherence Tomography Imaging, Volume 1

fluid characterization in OCT images. In another proposal [35], the authors
presented a novel paradigm to identify fluid accumulations in the retina using
intuitive heat maps. Roy et al [36] presented a CNN architecture for the segmenta-
tion of pathological fluid regions in OCT scans. Samagaio et a/ [37] proposed a novel
approach to classify the presence of macular edemas using OCT scans. In another
proposal [38], the authors presented an automatic system for the segmentation and
characterization of the DME regions in OCT scans. In the work of de Moura et al
[39], the authors proposed a deep features analysis in a transfer learning-based
process for DME screening using OCT scans. Similarly, Chan et al [40] proposed a
framework based on a transfer learning approach for DME recognition on OCT
scans. As we can see from the existing studies, the proposed systems only aimed at
identifying areas of intraretinal fluid and, therefore, did not address the identification
or segmentation of DRT regions. In this sense, at present, only the works [41, 42]
addressed the precise segmentation of DRT regions by OCT scans.

In this chapter, we describe a fully automatic system that identifies and segments
DRT edemas from OCT images, following the reference clinical classification in the
field of ophthalmology. Firstly, two regions of the retina were automatically
delineated: one corresponding to the ILM/OPL region (inner retina) and other to
the OPL/RPE region (outer retina). Then, a learning strategy was adopted,
analyzing a set of samples of a specific size to extract different feature descriptors.
And finally, a post-processing step was applied to improve the overall performance
of the presented system.

The chapter is structured as follows: Section 1.2 contains a detailed explanation of
the methodology presented. Section 1.3 presents and discusses the obtained results
with a brief explanation on their significance. Finally, section 1.4 includes a series of
final notes drawn for this research and a commentary on future lines of work.

1.2 Computational identification and segmentation of DRT edemas

The presented pipeline, illustrated in figure 1.5, consists of three main stages: a first
stage, in which the main layers of the retina are segmented and two retinal regions
are delimited: inner retina and outer retina; a second stage, a set of features within
the outer retina is extracted and a machine learning strategy is adapted for the DRT
segmentation; a third step, in which a post-processing stage was applied to refine the
DRT segmented regions. Each of these stages will be discussed below.

DRT Segmentation E> Post-Processing
Feature Measurement > First Approach: FP analysis >
Division of the Retinal Region Feature Selection and .
in the Inner and Outer Retina Classification > SecendppicachiENianalysI >

Figure 1.5. Main stages of the automatic segmentation of DRT regions.
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1.2.1 Identification of the region of interest

The different types of pathological fluid accumulations are normally found in typical
relative positions within the layers of the retina. Specifically, DRT edemas usually
occur in the OPL/RPE region. In this way, two regions of the retina were identified,
facilitating the subsequent segmentation of this relevant DME type. The following
subsections describe this entire process in more detail.

1.2.1.1 Retinal layer segmentation

Regarding the automatic segmentation of the main retinal layers, we followed the
previous study of Gonzalez-Lopez et al [43]. In particular, we segment four retinal
layers: the inner limiting membrane (ILM), the inner/outer segments (ISOS), the
outer plexiform layer (OPL) and the retinal pigment epithelium (RPE). For this
purpose, firstly, we used a denoising algorithm based on the Butterworth Fourier
filter to mitigate the speckle noise [44], preserving the information contained in the
OCT scans. Next, an active contour-based strategy was used to delineate the retinal
boundaries. As said, these retinal regions correspond to the region of the retina
where the DRT edema usually appears (figure 1.6).

1.2.1.2 Segmentation of the innerlouter retinal regions

Using the segmented retinal layers as reference, two regions are segmented: the ILM/
OPL region (inner retina) and the OPL/RPE region (outer retina), as represented in
figure 1.7. Based on clinical knowledge, these retinal regions were identified in order
to simplify the subsequent DRT segmentation stage.

1.2.2 DRT segmentation

In order to accurately segment the DRT regions, a machine learning algorithm was
employed to characterize the pathological regions only in the restricted search space
(outer retina). To achieve this, a set of windows of a given size was analyzed, thereby
extracting a comprehensive subset of features. Finally, a post-processing step was
carried out to improve the results obtained in the segmentation stage. The following
subsections describe this entire process in more detail.

Figure 1.6. Representative example of the retinal layer segmentation stage.

1-6



Photo Acoustic and Optical Coherence Tomography Imaging, Volume 1

* OPL 1SOS RPE

Outer retina

Figure 1.7. Representative example of the segmentation of the inner/outer retinal regions. (a) OCT scan with
the main retinal layers segmented. (b) The inner retinal region. (c) The outer retinal region.

Global Intensity-Based Features (GIBS): [1-15] Maximum, minimum, mean, median,
standard deviation, variance, 25th percentile, 75th percentile, among others.

Gray-Level Co-Ocurrence Matrix (GLCM): [16-31] Contrast, energy, correlation and
homogeneity.

Histogram of Oriented Gradients (HOG): [32-112] 9 histogram bins and 9 windows
per bound box.

Feature Extraction

( Gabor: [113-240] Mean, standard deviation, orientations = 8 and scales =8. )

Local Binary Pattern (LBP): [241-304] Mean, standard deviation, neighbors = (4, 8,
12 and 16) and radius = (1, 2, 3, 4, 5, 6, 7 and 8).

Retinal Thickness Analysis (RTA): [305-307] Thickness analysis: ILM/RPE,
OPL/ISOS, and the ratio between the ILM/ISOS and OPL/ISOS regions.

Figure 1.8. Schematic representation of the feature extraction.

1.2.2.1 Feature extraction

To characterize the pathologic patterns of DRT-type edema, a comprehensive set of
307 features was extracted from the outer retinal region, as represented in figure 1.8.
In particular, this set of features includes characteristics of intensity, texture and
knowledge of the domain.

1.2.2.2 Feature selection and classification
The 307 extracted features were posteriorly analyzed to obtain the subset that
maximizes the separability between the DRT and non-DRT regions and, therefore,
facilitating the classification process. To do this, we use the well-known Sequence
Forward Selection (SFS) [45] algorithm. In particular, this feature selector employs a
strategy in which features are sequentially added to a subset of empty candidates
until the addition of more features does not decrease the given selection criteria. A
machine learning technique is then used to evaluate different prediction models
using the previously chosen subset of features. To this end, four classifiers were used
to measure the performance of the presented methodology: the Naive Bayes, the
Parzen, the Quadratic Bayes Normal Classifier (QDC) and the k-Nearest Neighbors
(kNN) for three different k values (k = 3, 5 and 7).

As training details, the initial image dataset was partitioned into two smaller
datasets with 50% for training and 50% for testing. In addition, a 10-fold
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cross-validation with 50 repetitions was performed. As a final result of this
classification stage, all columns in the outer retinal region were categorized into
DRT or non-DRT categories.

1.2.3 Post-processing

In this stage, two independent post-processing approaches were designed to improve
the results obtained by the presented system. In the following subsections, this whole
process is described in more detail.

1.2.3.1 First approach: FP analysis

The first post-processing approach focuses on the analysis and subsequent reduction
of the false positive rates. In this sense, these false detections of DRT columns
usually occur due to the presence of other pathological structures of similar
appearance that can be observed in the outer retinal region. To do this, we
implemented a strategy that calculated the minimum width of each segmented
region with respect to the nearest corresponding region, thus eliminating small
isolated regions, as represented in figure 1.9.

1.2.3.2 Second approach: FN analysis

The second post-processing approach focuses on the analysis and subsequent
mitigation of the false negative rates. In particular, these misclassified regions are
mainly derived from the presence of speckle noise and/or vascular shadows in the
outer region of the retina. To achieve this, we implemented a strategy based on an
aggregation factor (d). Specifically, this strategy joins two contiguous regions if the
distance between them is less than a predefined aggregation factor, as represented in
figure 1.10.

Figure 1.9. Representative example of the first post-processing step. (a) DRT regions without the post-
processing step. (b) DRT regions with the post-processing step.
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Figure 1.10. Representative example of the second post-processing step. (a) DRT regions without the post-
processing step. (b) DRT regions with the post-processing step.

1.3 Results and discussion

The presented method was validated using an image dataset consisting of 70 scans.
These scans were obtained using an OCT confocal scanning laser ophthalmoscope
(cSLO) imaging device from Heidelberg Spectralis. All the OCT scans were obtained
focusing on the macular region of patients diagnosed with DME. In addition, this
dataset has a variable resolution that ranges from 401 x 1015 to 481 x 1521 pixels.
To ensure the complete anonymity and confidentiality of participants in this study,
we used anonymised data images available for research purposes.

To validate the presented methodology, an expert clinician labeled 560 samples to
represent the presence of DRT edemas, including 280 for each category, DRT and
non-DTR columns. As said, the used dataset was partitioned into 2 subsets, 50% for
training and 50% for testing. In addition, we performed a 10-fold cross-validation
with 50 repetitions without any pre-processing stage on the input OCT images. In
particular, the presented system was evaluated by means of the Accuracy, Jaccard
and Dice coefficients, described in equations (1.1), (1.2) and (1.3), respectively.

Accuracy = TP+ TN (1.1)
TP + TN + FP + FN
Jaccard = ™ (1.2)
TP + FP + FN
Dice = 2x TP (1.3)

2x TP + FP + FN

Firstly, we analyze the subset of features that maximizes the separability between the
DRT and non-DRT regions. To do this, we use an SFS algorithm to analyze the
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initial set of 307 features. As a result of this feature analysis, we can conclude that
most of the features were selected from the HOG, Gabor and LBP. Figure 1.11
shows the results obtained with different classifier configurations using a subset of
features that was obtained by the SFS algorithm.

Once the best subset of features has been determined, we analyze the different
classifiers considered in this work to determine which best discriminates between
DRT and non-DRT regions. Figure 1.12 presents the results obtained by each
classifier using the most relevant subset of features. As we can see, the best results

| ms

Naive Bayes W15

_—_— . 25
3-kNN m 3
W45

5-kNN

N° of features

0,00% 25,00% 50,00% 75,00% 100,00%
Accuracy

Figure 1.11. Analysis of different classifiers using larger progressive feature sets.

M Naive Bayes [l 3-kNN [ 5-kNN [l 7-kNN | Parzen [ QDC

1,00
075 +

0,50 +

Accuracy

025 +

0,00 +

Classifier

Figure 1.12. Summary of the accuracy results obtained from each classifier using the most relevant subset of
features.
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were obtained with the KNN algorithm with k = 7, reaching an accuracy value of
93.66% with only 21 features.

Using the best classifier configuration as a reference, we analyze different window
sizes to determine the best way to distinguish the texture patterns that are present
in the DRT edema regions of the surrounding healthy tissues. Each window has
a variable height value (%) centered on the analyzed column. These /& values
are calculated by the distance between the ISOS and the OPL retinal layers.
Figure 1.13 presents the performance of the 7-kNN learning strategy for different
window sizes. Once again, satisfactory results were obtained, reaching accuracy
values over 88.66%. In particular, the best values were achieved with a window size
of (h x 23) pixels, which resulted in an accuracy of 93.66%.

To evaluate the segmentation process, DRT identifications (SFS feature selector
+ 7-kNN algorithm) and their respective height values of the outer retina (distance
between the ISOS and the OPL retinal layers) were used. The presented method
obtained satisfactory results, achieving a 0.8381, 0.6106 and 0.7480 in Accuracy,
Jaccard and Dice coefficients, respectively, without any post-processing step.

Using the segmentation of DRT regions as a reference, we tested the capabilities
of both designed post-processing approaches. To do so, firstly, we analysed the first
post-processing step for the reduction of the FP rates, eliminating the isolated DRT
regions. As mentioned above, these false detections are generally produced by the
existence of other pathological structures that may be found within the analyzed
region of the retina. In particular, we analyzed the best combination between the
width of the DRT regions (wn,) and the distance to the closest DRT columns (dpip).
The results obtained provided a reasonable balance between Jaccard and Dice
(0.6162 and 0.7516, respectively) using values of wy;, and dg;, (16 and 10,
respectively).

The second post-processing step aims at the analysis of DRT columns and
subsequent reduction of the FN rates, connecting nearby pathological regions using

1,00 + W hxs
W hxi

hx17

0sses *°07° i MW hx1g
W hx23
W hx2s
MW hx29
W hx33

075 +

0,50 +

Accuracy

025 +

0,00 +

T
7-kNN

Figure 1.13. Accuracy results obtained from the 7-kNN algorithm for different window sizes.
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the aggregation factor (d). As indicated, these misclassified DRT regions are mainly
derived from the presence of speckle noise and/or vessel shadows. Consequently, the
presented method obtained satisfactory results using an aggregation factor of 34,
reaching values of 0.6625 and 0.7899 for the Jaccard and Dice coefficients,
respectively.

1.4 Conclusions

This chapter presents a fully automatic system for segmentation of DRT edema in
OCT images, following the reference clinical classification in ophthalmology. For
this purpose, two retinal regions were defined and extracted for subsequent analysis:
the ILM/OPL region (inner retina) and the OPL/RPE region (outer retina). A
learning process was then applied using different classifiers to validate the appro-
priateness of the selected features in the segmentation of these ocular lesions. In
addition, two complementary post-processing stages were designed to improve the
results obtained by the presented system. This system was validated using 70 OCT
scans, being 560 samples labeled to represent the presence of DRT edemas,
including 280 samples for each category, DRT and non-DTR. The best result was
obtained by the 7-kNN, using 21 features and a window size of (4 X 23) pixels,
according to Jaccard and Dice (0.6625 and 0.7899, respectively) and with a
combination of post-processing stages. Therefore, the presented system has demon-
strated its suitability in the automatic segmentation of DRT regions in OCT scans.
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