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Perspective on Quantifying causal emergence shows that macro can beat micro

Sara Imari Walker,
Arizona State University

More is Not Just Different, its Causal

The reductionist paradigm in science has worked remarkably well for almost four
centuries, ever since Newton consolidated much of our understanding of motion into
a few concise equations. In the ensuing centuries, reductionism has given us insights
into the structure of the atom, the fundamental forces of nature, and the inner
workings of the cell among many others. Nonetheless there remain hints that
reductionism qua reductionism cannot be the entire story. Fundamental components
of reality—including life and mind—are not easily reconciled with the idea that all of
reality may be reduced to description solely in terms of those fundamental laws that
operate at its most microscopic layers. In the words of the Nobel Laureate Philip
Anderson in his famous essay More is Different [1]:

‘The ability to reduce everything to simple fundamental laws does not imply the
ability to start from those laws and reconstruct the universe.’

As we move up in scale, the universe appears to become more and more complex,
and it seems clear that as complexity increases entirely new properties emerge. For
example, How is it that the collection of atoms in a human brain is organized to give
rise to thoughts, feelings and urges? Perhaps more mysterious is that our thoughts
appear to matter to the world. A simple thought experiment (no pun intended) of
intending to lift your left arm and then executing that action provides the evidence.
There is intense debate about whether this kind of example represents a conscious or
subconscious action (it may not matter for this debate), and specifically whether one
can really consider the action to be caused by a thought in your brain. A thought is
an informational abstraction—so the debate really centers on whether information
can have causal power. If all of reality can be described by mechanical actions at the
micro-level only, there is no ‘room at the top’ for your thoughts to be causal. Stated
succinctly, the challenge we are faced with is to determine what is doing the causal
work—is it you or your atoms?

Settling the debate requires quantifying causal emergence, such that we can
identify where the ‘causal work’ actually lies. There has been a long-held assumption
that the bottom-up picture of reality excludes higher-levels from playing a role. This
is refuted by the work of Hoel et al who explicitly quantify cause and effect
information and show that more causal power can exist at macroscopic levels in
some systems, depending on how they are networked together [2]. The key result is
that even though there may exist a complete lower-level description of a physical
system, higher levels can still be causal above and beyond the causal work of lower
levels. Emergence and reductionism are not at odds. In fact, reductionism is what
makes emergence possible [3]: if we could not reduce reality to the study of a few
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component building blocks, we would not be able to describe how those building
blocks come together to create more complex ‘higher-levels’.

This is significant since there are many examples across the sciences where ‘top-
down’ causal effects are essential to building a coherent explanatory narrative [4].
Our conscious experience is only the most blatant example. Others come from
quantum physics, thermodynamics, complex systems science and biology. For the
latter, a causal role for macroscopic entities may even play a critical role in defining
its life’s origins [5]. In short, these same issues emerge (pun!) anywhere the term
‘emergence’ is cast about. We need a theory of causal emergence to understand the
hierarchical organization of our universe, and why ‘higher-levels’ not only appear so
much richer and more complex than the lower-levels they emerge from, but why they
seem to matter at all.

This story is just beginning. While the idea of causal emergence has been
demonstrated as a proof of concept, it is unclear if the formalism as presented
will be the ultimate one science settles on. Important open questions remain. For
example, causal emergence occurs in networks with particular architectures that are
highly non-linear and include feedback loops and irreversible logic operations.
Clearly these kinds of structures exist at macroscopic levels in the human brain, but
how are these compatible with our lowest level descriptions of reality in physics,
which are cast in terms of initial states and local, reversible laws of motion? Can
causal emergence still occur if we consider the deepest layers of reality and do not
already start from a macroscopic description? There also remains the open question
of whether the macro could actually intervene on the micro (and not just beat it),
such that top-down causation might be said to truly occur. These questions represent
the next frontier for 21st century science to explain the emergent layers of reality as
we experience them.
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Causal interactions within complex systems can be analyzed at multiple spatial and
temporal scales. For example, the brain can be analyzed at the level of neurons,
neuronal groups, and areas, over tens, hundreds, or thousands of milliseconds. It is
widely assumed that, once a micro level is fixed, macro levels are fixed too, a relation
called supervenience. It is also assumed that, although macro descriptions may be
convenient, only the micro level is causally complete, because it includes every
detail, thus leaving no room for causation at the macro level. However, this
assumption can only be evaluated under a proper measure of causation. Here, we
use a measure [effective information (EI)] that depends on both the effectiveness of a
system’s mechanisms and the size of its state space: EI is higher the more the
mechanisms constrain the system’s possible past and future states. By measuring EI
at micro and macro levels in simple systems whose micro mechanisms are fixed,
we show that for certain causal architectures EI can peak at a macro level in space
and/or time. This happens when coarse-grained macro mechanisms are more
effective (more deterministic and/or less degenerate) than the underlying micro
mechanisms, to an extent that overcomes the smaller state space. Thus, although the
macro level supervenes upon the micro, it can supersede it causally, leading to
genuine causal emergence—the gain in EI when moving from a micro to a macro
level of analysis.

In science, it is usually assumed that, the better one can characterize the detailed
causal mechanisms of a complex system, the more one can understand how the
system works. At times, it may be convenient to resort to a “macro”-level
description, either because not all of the “micro”-level data are available, or because
a rough model may suffice for one’s purposes. However, a complete understanding
of how a system functions, and the ability to predict its behavior precisely, would
seem to require the full knowledge of causal interactions at the micro level. For
example, the brain can be characterized at a macro scale of brain regions and
pathways, a meso scale of local populations of neurons such as minicolumns and
their connectivity, and a micro scale of neurons and their synapses (1). With the goal
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of a complete mechanistic understanding of the brain, ambitious programs have
been launched with the aim of modeling its micro scale (2).

The reductionist approach common in science has been successful not only in
practice, but has also been supported by strong theoretical arguments. The chief
argument starts from the intuitive notion that, when the properties of micro-level
physical mechanisms of a system are fixed, so are the properties of all its macro
levels—a relation called “supervenience” (3). In turn, this relation is usually taken to
imply that the micro mechanisms do all of the causal work, i.e., the micro level is
causally complete. This leaves no room for any causal contribution at the macro
level; otherwise, there would be “multiple causation” (4). This “causal exclusion”
argument is often applied to argue against the possibility for mental causation above
and beyond physical causation (5), but it can be extended to all cases of super-
venience, including the hierarchy of the sciences (6).

Some have nevertheless argued for the possibility that genuine emergence can
occur. Purported examples go all of the way from the behavior of flocks of
organisms (7) to that of ant colonies (8), brains (9), and human societies (10).
Unfortunately, it remains unclear what would qualify some systems as truly
emergent and others as reducible to their micro elements. Also, most arguments
in favor of emergence have been qualitative (11). A convincing case for emergence
must demonstrate that higher levels can be causal above and beyond lower levels
[“causal emergence” (CE)]. So far, the few attempts to characterize emergence
quantitatively (12) have not been based on causal models.

Here, we make use of simple simulated systems, including neural- like ones, to
show quantitatively that the macro level can causally supersede the micro level, i.e.,
causal emergence can occur. We do so by perturbing each system through its entire
repertoire of possible causal states (“counterfactuals,” in the general sense of
alternative possibilities) and evaluating the resulting effects using “effective infor-
mation” (EI) (13). EI is a general measure for causal interactions because it uses
perturbations to capture the effectiveness/selectivity of the mechanisms of a system
in relation to the size of its state space. As will be pointed out, EI is maximal for
systems that are deterministic and not degenerate, and decreases with noise (causal
divergence) and/or degeneracy (causal convergence).

For each system, we completely characterize the causal mechanisms at the micro
level, fixing what can happen at any macro level (supervenience). Macro levels are
defined by coarse graining the micro elements in space and/or time, and this mapping
defines the repertoire of possible causes and effects at each level. By comparing EI at
different levels, we show that, depending on how a system is organized, causal
interactions can peak at amacro rather than at amicro spatiotemporal scale. Thus, the
macro may be causally superior to the micro even though it supervenes upon it.
Evaluating the changes inEI that arise from coarse or fine graining a systemprovides a
straightforward way of quantifying both emergence and reduction.

Theory
In what follows, we consider discrete systems S of connected binary micro elements
that implement logical functions (mechanisms) over their inputs. We first introduce a
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state-dependent measure of causation, the “cause” and “effect information” of a
single system state s0, before we describe the state-independent EI of the system S.

Significance

Properly characterizing emergence requires a causal approach. Here, we construct
causal models of simple systems at micro and macro spatiotemporal scales and
measure their causal effectiveness using a general measure of causation [effective
information (EI)]. EI is dependent on the size of the system’s state space and reflects
key properties of causation (selectivity, determinism, and degeneracy). Although in the
example systems the macro mechanisms are completely specified by their underlying
micro mechanisms, EI can nevertheless peak at a macro spatiotemporal scale. This
approach leads to a straightforward way of quantifying causal emergence as the
supersedence of a macro causal model over a micro one.

State-Dependent Causal Analysis. The micro mechanisms of S specify its state-to-
state transition probability matrix (TPM) at a micro time step t. Building upon the
perturbational framework of causal analysis developed by Judea Pearl (14; see also
ref. 18), the TPM can be obtained by perturbing S at t0 (13) into all possible n initial
states with equal probability 1/n [do(S = si) ∀i ∈ …n]. Perturbing the system in
this way corresponds to the unconstrained repertoire (probability distribution) of
possible causes UC and determines the probability of the resulting states at t+1,
corresponding to the unconstrained repertoire of possible effects UE. Although UC is
thus identical to the uniform distribution U [with p(s) = 1/n, ∀s ∈ S ], UE is typically
not uniform. A current system state S = s0 is associated with the probability
distribution of past states that could have caused it (“cause repertoire SP|s0,”
obtained by Bayes’ rule), and the probability distribution of future states that could
be its effects (“effect repertoire SF|s0”). A system’s mechanisms and current state
thus constrain both the repertoire of possible causes UC and that of possible effects
UE. An informational measure of the causal interactions in the system (15) can then
be defined as the difference [here Kullback–Leibler divergence (DKL) (16)] between
the constrained and unconstrained distributions:

= ∣
= ∣

s D S S U
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Cause/effect information depends on two properties: (i) the size of the system’s
state space (repertoire of alternatives), because both are bounded by log2(n); (ii) the
effectiveness of the system’s mechanisms in specifying past and future states. To
isolate effectiveness from size, we define the following normalized coefficients:
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The “cause coefficient” describes to what extent a state is sufficient to specify its
past causes, and the “effect coefficient” indicates how necessary a state is to specify
its future effects (Fig. 1B). In turn, the effect coefficient itself is a function of two
terms, “determinism” and “degeneracy” (see Effect Coefficient and Effectiveness
(Eff) Expressed as Determinism and Degeneracy for derivation):
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The determinism coef. is the difference DKL ((SF|s0), U) between the effect repertoire
and the uniform distribution (U) of system states, divided by log2(n), and measures
how deterministically (reliably) s0 leads to the future state of the system: it is “1”
(complete determinism) when the current state leads to a single future state with
probability p = 1, and is “0” (complete in-determinism or noise) if it could be
followed by every future state with p = 1/n. The degeneracy coef. measures to what
degree there is deterministic convergence (not due to noise) from other states onto
the future states specified by s0. In broad terms, degeneracy refers to multiple ways of
deterministically achieving the same effect or function (17, 18). The degeneracy coef.
is 1 (complete degeneracy) when s0 specifies the same future state as all other states,
and 0 when s0 specifies a unique future state (no degeneracy).

Both cause and effect coefficients are minimal (0) in a completely noisy or
completely degenerate system (Fig. 1 C and D) and maximal (1) in a deterministic,

Fig. 1. Cause and effect coefficients in example systems with different causal architectures. (A) The systems
consist of two interconnected binary COPY gates with possible states 0 and 1. (B) A causally perfect system, in
which each state has one cause and one effect. Thus, s0 = [11] has a cause and effect coefficient (coef.) of 1.
Moreover, there is no divergence (determinism coef. = 1) and no convergence (degeneracy coef. = 0). (C and D)
In both the completely indeterministic and completely degenerate systems, state s0 = [11] is completely insufficient
to specify past system states and completely unnecessary to specify future states (cause and effect coefficient = 0).
Note that the degeneracy coef. is 0 in the completely noisy system, because all convergence is due to noise alone.

Ahead of the Curve

5-7



nondegenerate system (Bounds of Cause and Effect Coefficients and Effectiveness Eff
(S). The contribution of a single state to the system’s determinism and degeneracy
are best demonstrated by decomposing the effect coefficient. Although the cause
coefficient also reflects the degeneracy and determinism of the system, it is not
subdivided further here.

State-Independent Causal Analysis. A state-independent informational measure of a
system’s causal architecture can be obtained by taking the expected value of cause or
effect information over all system states, a quantity called effective information

(EI):
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The two terms are identical, because the system is assumed to be time invariant
→ = →− +t t t t( )1 0 0 1 , and cause and effect information are related via Bayes’

rule. EI is also the mutual information (MI) between all possible causes and their
effects, MI(UC;UE) (Effective Information EI(S) Expressed in Terms of Cause and
Effect Information and Mutual Information MI).

As a measure of causation, EI captures how effectively (deterministically and
uniquely) causes produce effects in the system, and how selectively causes can be
identified from effects. As with the state-dependent measures, the effectiveness (Eff)
of the causal interactions within a system can be captured by normalizing EI by the
system’s size: Eff (S) = EI(S)/log2(n). Also as in the state-independent case,
effectiveness can be split into two components, determinism and degeneracy:
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Thus, Eff(S) = 1 if EI is maximal for a given system size, and decreases with
indeterminism (divergence due to noise) or degeneracy (deterministic convergence),
with Eff(S) = 0 for completely noisy or degenerate systems (Fig. 1 C and D). In a
system with perfect effectiveness (Fig. 1B), each cause has a unique effect, and each
effect has a unique cause. Thus, such a system [where Eff(S) = 1] is perfectly
retrodictive/predictive, in the sense that not only the unique future trajectory, but
also the unique past trajectory of all states can be deduced from the TPM (complete
causal reversibility).

Levels of Analysis. A finite, discrete system S can be considered at various levels,
from the most fine-grained micro causal model Sm through various coarse-grained
causal models SM. All macro levels SM are assumed to be “supervenient” on the
micro level Sm: given the micro elements of Sm and the causal relationships between
them, all other members of {S}—the set of all possible causal models of system S—
are fixed as well (19). Although Sm fixes SM, any SM may be fixed by a number of
different lower level descriptions, a property known as “multiple realizability” (20).
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Groupings. Micro elements are binary and labeled by Latin letters {A, B, C ...},
macro elements by Greek letters {α, β, γ …}. Micro states are labeled {1, 0} and
macro states {“on,” “bursting,” “quiet”…). Micro elements can be grouped into
macro elements spatially, temporally, or both. Micro states are grouped into macro
states through a mapping M : Sm → SM. The mapping must be exhaustive and
disjunctive over micro elements (all of the states of one micro element must be
mapped to the states of the same macro element; note that a macro element can
consist of a single micro element as long as the state space of the system is reduced).
Moreover, the mapping must be such that no micro-level information is available at
the macro level (the identity of the micro elements grouped into a macro element is
lost). For example, the grouping of the four states of two micro elements into the
two states of one macro element as [[00, 01, 10] = off, [11] = on] is permitted,
whereas the grouping [[00, 01], [10, 11]] is not, because distinguishing 01 from 10
requires knowing the identity of the micro elements.

Level-Specific Perturbations. Causal analysis at the micro level Sm, requires setting S
into all possible micro states with equal probability (i.e., testing all micro alter-
natives) and determining the resulting effects. When moving to a macro level SM, S
must similarly be set into all possible macro states with equal probability (i.e., testing
all macro alternatives). To causally assess any macro state, then, one must set S into
all of the nmicro micro states {sm} that are grouped into the corresponding macro
state sM, and average over the effects. This is done using a “macro perturbation”:

∑= = =
∈

do S s
n

do S s( )
1

( )M M
micro

s S M m i,
m i M,

. Using such macro perturbations, one

can obtain cause/effect information and EI for every coarse grain of Sm. EI at each
macro level is then equivalent to the MI between the set of macro causes and their
macro effects.

Causal Emergence/Reduction. Finally, by assessing EI(S) over all coarse grains of Sm,
one can ask at which level of {S} causation reaches a maximum. This provides an
analytical definition of causal emergence, expressed in bits: CE = EI(SM) −EI(Sm).

Thus, if EI(S) is maximal for a macro-level SM rather than the micro-level Sm, then
CE> 0 and causal emergence occurs. If for every macro-levelCE< 0, causal reduction
holds. Although the focus here is on emergence/reduction relative to the micro-level
Sm, the above measure can of course be used to compare different macro levels.

As mentioned above, EI(S) depends on both the size of the system’s repertoire of
states and on the effectiveness of its mechanisms. When moving from one system
level to another, both terms change as the state space becomes smaller or larger, and
the individual states become more or less selective with respect to the past, and more
or less determined or degenerate with respect to the future. The respective informa-
tional contributions of repertoire size and effectiveness to ΔEI(S) can be expressed
separately as follows: ΔIEff = (Eff (SM) − Eff(Sm)) · log2(nM), ΔISize = Eff(Sm) ·
(log2(nM) − log2(nm)), where nm/M is the state repertoire size of Sm/M. It follows that
ΔEI = ΔIEff + ΔISize = CE. A positive ΔIEff can thus be due to the macro reducing
the degeneracy of the micro level, increasing the determinism of the micro level, or
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both. Notably, coarse graining the micro-level Sm into macro-level SM implies that
ΔISize is always negative. Hence, for causal emergence to occur [EI(SM) > EI(Sm)],
the increase in effectiveness ΔIEff must outweigh the decrease in ΔISize.

Results
Causal analysis was performed across all coarse grains of a system [only the SM with
maximal EI(S) is shown in the figures] with a custom-made Python program. Data
plots were created using MATLAB. Below, we consider examples of spatial, temporal,
and spatiotemporal emergence (see Fig. S1 for an example of spatial reduction).

Spatial Causal Emergence. As a proof-of-principle example, consider a system of
four binary elements Sm = {ABCD} (Fig. 2A). Each micro mechanism is an
AND-gate (two inputs) operating over some intrinsic noise. The 16 × 16 Sm TPM
was constructed by setting the system into all possible micro states from [0000] to
[1111] with equal probability (Fig. 2B). At the micro level Sm, effective information
EI(S) = 1.15 bits, out of maximally 4 bits, with effectiveness Eff(Sm) = 0.29. The
macro level SM (Fig. 2D), composed of two elements {α, β}, each with states {“on,”
“off”}, is a coarse graining of Sm as defined by the mappingM in Fig. 2C. The 4 × 4
SM TPM was obtained by setting the system into all possible macro states from [off,
off] to [on, on] with equal probability (Fig. 2E). For the macro level, EI(SM) = 1.55
bits, higher than EI(Sm) = 1.15 bits. Thus, CE(S) = 0.40 bits, demonstrating that in

Fig. 2. Spatial causal emergence (counteracting indeterminism). (A) The micro level Sm of system S is
composed of identical noisy micro mechanisms. (B) The micro TPM. (C) A macro causal level SM and its TPM
are defined by the mapping M (shown for AB to α, CD to β is symmetric). (D) SM and its macro mechanisms.
(E) By reducing indeterminism and increasing effectiveness Eff, the macro beats the micro in terms of EI
despite the reduced repertoire size (CE = 0.40 bits).

Ahead of the Curve

5-10



this case the macro SM beats the micro Sm and constitutes the optimal causal model
of system S. This is because the TPM for SM is much closer to perfect effectiveness
[Eff(SM) = 0.78] and the increase in effectiveness gained by grouping ΔIEff = 0.97
bits outweighs the loss in size ΔISize = −0.57 bits. In this example, the gain in
effectiveness ΔIEff at the macro level comes primarily (91%) from counteracting
noise [determinism coef. (Sm) = 0.34; (SM) = 0.78] and less so (9%) from reducing
degeneracy [degeneracy coef. (Sm) = 0.05; (SM) = 0.006].

The higher effectiveness of the macro level is also evident comparing Sm and SM
in a state-dependent manner. As an example, the cause/effect distributions for Sm in
state {ABCD} = [0001] are compared with the corresponding SM state {αβ} = [off,
off] in Fig. 3. Comparing the cause/effect distributions of Sm = [0001] against the
unconstrained repertoires (using DKL) yields 0.83 bits of cause information and 0.43
bits of effect information. For the macro SM, cause information is 2 bits and effect
information 1.35 bits. The macro beats the micro because {αβ} = [off, off] is both
more selective and more reliable than {ABCD} = [0001].

Causal emergence may arise not only frommacro gains in determinism (as above),
but also from reducing degeneracy. In Fig. 4, micro elements A-F are deterministic
AND gates connected in away that ensures high degeneracy (Fig. 4A, determinism
coef. = 1; degeneracy coef. = 0.6), resulting in Eff(Sm) = 0.4 and EI(Sm) = 2.43 bits
(Fig. 4C). The optimal macro groups the six micro AND gates into three macro
COPY gates (αβγ) (Fig. 4B). Both macro and micro are deterministic, but by
eliminating degeneracy ΔIEff = 1.79 bits > −ΔISize = 1.22 bits. As a result, Eff
(SM) = 1, EI(SM) = 3 bits, and the macro emerges over the micro (CE = 0.57 bits).

Fig. 3. State-dependent cause/effect information. (A) The cause information of Sm in micro state {ABCD} =
[0001] is calculated as the difference (DKL) between the cause repertoire of state [0001] and the unconstrained
micro repertoire UC (Left). The cause information of SM in the supervening macro state {αβ} = [off/off] (Right)
is the difference (DKL), between the cause repertoire of [off/off] and the unconstrained macro repertoireUC. (B)
Effect information. The higher cause and effect information at the macro level is due to an increase in
determinism and decrease in degeneracy, reflecting higher selectivity.
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Temporal Causal Emergence. The same principles allowing for emergence through
spatial groupings hold for temporal groupings, which coarse grain micro time steps
(tx) into macro time steps (Tx). The example in Fig. 5 shows micro elements that,
upon receiving an input “burst” of two spikes, respond with an output burst of two
spikes. Thus, elements implement second-order Markov mechanisms over both
inputs and outputs (Fig. 5A). Fig. 5B shows that causal interactions assessed over
one micro time step are weak [EI(Sm) = 0.16 bits; Eff(Sm) = 0.03] because they fail to
capture the second-order mechanisms. By contrast, causal analysis over two micro
time steps (Fig. 5C) gives EI = 1.38 bits and Eff(Sm) = 0.34. The temporal grouping
of micro into macro states α = {At, At+1} and β = {Bt, Bt+1} (Fig. 5D) is analogous
to the spatial grouping in Fig. 2: {00, 01, 10} = {off} and {11} = {on}. Over macro
time steps, the system becomes fully deterministic and nondegenerate, EI(SM) = 2
bits, Eff(SM) = 1, and CE(S) = 0.62 bits (Fig. 5 E and F).

Spatiotemporal Causal Emergence. In general, emergence may occur simultaneously
over space and time (Fig. 6). As in Fig.5, the nine neural-like micro elements in Fig.
6A are second-order Markov mechanisms, integrating inputs and outputs over two
micro time steps, t−2 t−1, and t0 t+1, respectively [compare to longer time constants of
NMDA receptors (21)]. Moreover, in the examples above, the micro elements within
a macro element were not connected and were causally equivalent. To demonstrate
that this is not a requisite for causal emergence, in Fig. 6, the micro elements are
fully connected and causally heterogeneous (self-connections not drawn). All ele-
ments are spontaneously active (1) with heterogeneous probabilities: p(A/D/G) =
0.45; p(B/E/H) = 0.5; p(C/F/I) = 0.55. The elements are structured into three groups
{ABC, DEF, GHI} due to different intra- group and intergroup mechanisms: within
each group, if the sum of intragroup connections Σ(intra) = 0 (for two time steps), all
elements stay 0 (for the next two time steps). However, if the sum of intergroup
connections Σ(inter) = 6 from one or both of the other two groups over two time
steps (burst of synchronous activity), p(1) is raised by 0.5 for the next two time steps
(see Fig. S2 for macro and micro TPMs of a spatial system with equivalent rules). At
the macro-level SM (Fig. 6B), the three groups of neurons become macro elements,
and two micro time steps (tx) are grouped into one macro time step (Tx). In neural
terms, these macro elements could represent “minicolumns” having three states:
“inhibited” (all minicolumn neurons silent at Tx), “receptive” (some firing at Tx), or
“bursting” (all firing at Tx). Macro causal interactions can be summarized as follows:
if a macro element is inhibited, only receiving a burst can move it to the receptive or
(more unlikely) the bursting state; otherwise, it stays inhibited. As in previous
examples, the coarse-grained SM has higher EI(SM) = 3.51 bits and Eff(SM) = 0.74
than Sm [EI(Sm) = 0.59 bits; Eff(Sm) = 0.033]. In this case, spatiotemporal causal
emergence [CE(S)= 2.92 bits] is due to an increase in determinism that far outweighs a
slight increase in degeneracy and the decrease in size.

Discussion
This paper provides a principled way of assessing at which spatio-temporal grain
size the causal interactions within a system reach a maximum. Causal interactions
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are evaluated by effective information (EI), a measure that is sensitive both to the
effectiveness of the system’s mechanisms and to the size of its state space. Examples
with simulated systems demonstrate that, after coarse graining the micro mecha-
nisms in both space and time, EI can be higher at a macro level than at a micro level.
In these cases, the macro mechanisms, rather than the micro ones, can be said to be
doing the causal work within a system.

Effective Information, Effectiveness, and Emergence. As shown here, EI corresponds
to the “effectiveness” of a system’s mechanisms multiplied by repertoire size,
expressed in bits. Effectiveness Eff(S) is the average of the effect coefficients over
all system states. The effect coefficient measures to what extent the current system
state is necessary to specify the system’s future state. This, in turn, is a function of
determinism minus degeneracy. On the cause side, the equivalent to the effect
coefficient is the cause coefficient, which measures to what extent the current state is
sufficient to specify the system’s past state. For a particular current state, cause and
effect coefficients may differ: for example, a state may have many causes but only
one effect. However, the average of the effect coefficients over system states,
i.e., effectiveness, corresponds to the average of the cause coefficients (weighted
by the probability of the effects). In other words, within a time- invariant system the
average selectivity of the causes corresponds to the average selectivity of the effects.
Note that, in principle, other measures of causation that, like EI, reflect causal

Fig. 4. Spatial causal emergence (counteracting degeneracy). (A) A degenerate Sm with deterministic AND
gates. (B) The cycle of AND gates is mapped onto a cycle of COPY gates at the macro level. (C) The
deterministic but degenerate micro TPM. (D) The deterministic macro TPM with zero degeneracy. By
eliminating degeneracy and achieving perfect effectiveness, the macro beats the micro (CE = 0.57 bits).
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structure (selectivity, determinism, degeneracy) and system size, should demonstrate
causal emergence as well.

The main result obtained in the simulations is that coarse graining, both in space
and in time, can yield a higher value of EI. This happens even though the micro has,
by definition, a larger state space than the macro—an advantage with respect to EI.
Given this inherent advantage of the micro, it is understandable why the default
scientific strategy for analyzing systems has been one of reduction (Causal
Reduction). However, the examples presented above show that the inherent loss in
EI due to the macro’s smaller repertoire size can be offset if the macro achieves a
greater gain in effectiveness. In turn, greater effectiveness stems from macro
mechanisms constructed from their constituting micro mechanisms in such a way
that, at the macro level, determinism is increased and/or degeneracy is decreased.
Genuine causal emergence can then be said to occur whenever there is a gain in EI
(CE > 0) at the optimal macro level. If instead there is a loss in EI (CE < 0), causal
reduction is appropriate, and the micro level is the optimal level of causal analysis.
The causal approach pursued here suggests that qualitative or noncausal accounts of

Fig. 5. Temporal causal emergence. (A) Sm is composed of second-order Markov mechanisms A and B: at t0,
each mechanism responds based on the inputs at t−2 and t−1, and outputs over t0 and t+1. (B) Causal analysis
over one micro time step gives an incomplete view of the system. (C) A causal analysis over two micro time
steps reveals the second-order Markov mechanisms. (D) The optimal macro system SM groups two micro time
steps into one macro time step for macro elements {α,β}. (E) Each coarse grained macro mechanism effectively
corresponds to a deterministic COPY gate. (F) The macro one-time step TPM SM has Eff(SM) = 1, and the
micro two-time step TPM has Eff(Sm) = 0.34; CE = 0.62 bits.
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emergence may have been hindered by not being able to characterize how and why a
macro level can actually have greater causal effectiveness than a micro level (22, 23).

Micro Macro Mappings and Repertoires of Alternatives. The present approach
makes it possible to compare causation at the micro and macro levels in a fair
manner. First, the simulated examples are such that the macro supervenes strictly
upon the micro: once the micro is defined, all macro levels are fixed. Specifically, no
extra causal ingredients are added at the macro level, such as rules that apply to the
macro only (24). Furthermore, the mapping of micro into macro elements is such
that the identity of micro elements is lost; otherwise, the macro level would have
access to micro-level information that could offset its reduced repertoire size.
Finally, when causation is evaluated a uniform distribution of alternatives is
imposed independently at the micro and macro levels. For this uniform distribution
of perturbations to be imposed at the macro level, the probability of the underlying
micro perturbations must be modified by averaging the micro states that map into
the same macro state. The modified distribution of micro perturbations yielding a
uniform distribution of macro perturbations makes EI sensitive to the causal
structure at each level, ultimately allowing the supervening macro EI to exceed
the micro EI.

Emergence as an Intrinsic Property of a System. EI is a causal measure, because it
requires perturbing the system in all possible ways and evaluating the resulting
effects on the system. It is also an informational measure, because its value depends
on the size of the repertoire of alternatives. Indeed, in the present approach,
causation and information are necessarily linked (25), hence the term “effective
information.” Finally, measuring EI reveals an “intrinsic” property of the system,
namely the average effectiveness/selectivity of all possible system states with respect
to the system itself. Effectiveness/selectivity can be assessed at multiple spatio-
temporal grains, and the particular spatiotemporal grain at which EI reaches a
maximum is again an intrinsic property of the system. This in no way precludes an
observer from profitably investigating the system’s properties at other macro levels,
at the micro level, or at multiple levels at once (e.g., neuroscientists studying the
brain at the level of ion channels, individual neurons, local field potentials, or
functional magnetic resonance signals). However, causal emergence implies that the
macro level with highest EI is the one that is optimal to characterize, predict, and
retrodict the behavior of the system—the one that “carves nature at its joints” (26).

The search for the macro level at which EI is maximal has a parallel in
information theory: channel capacity is an intrinsic property defined as the maximal
amount of information that can be transmitted along the channel at a certain rate,
found by searching over all possible input distributions (27). Finding the optimal
level of coarse graining for causal emergence is based on a similar search, with
several differences. First, EI is evaluated using perturbations over the system itself,
rather than across a channel (the system is its own input and output). Second, the
probability distributions over micro states that can be considered must conform to a
proper mapping of micro into macro elements (or time intervals). Additional
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connections of causal emergence to established measures, such as reversibility and
lumping in Markov processes (28), or epsilon machines (29), are a potential subject
for future work.

Causal Exclusion and Its Implications. Causal analysis as presented here endorses
both supervenience (no extra causal ingredients at the macro level) and causal
exclusion [for a given system at a given time, causation occurs at one level only,
otherwise causes would be double counted (4)]. However, causal analysis also
demonstrates that EI can actually be maximal at a macro level, depending on the
system’s architecture. In such cases, causal exclusion turns the reductionist assump-
tion on its head, because to avoid double-counting causes, optimal macro causation
must exclude micro causation. In other words, macro mechanisms can always be
decomposed to their constituting micro mechanisms (supervenience); however, if
there is emergence, macro causation does not reduce to micro causation, in which
case the macro wins causally against the micro and takes its place (supersedence).
The notion of irreducibility among levels (does the macro beat the micro?) is
complemented by the notion of irreducibility among subsets of elements within a
level [is the whole more than its parts (15, 25)?]. From the perspective of a system,
emergence (CE > 0) implies causal “self-definition” at the optimal macro level—the
one at which its causal interactions “come into focus” (30) and “the action
happens.”

Applicability to Real Systems. Measuring EI exhaustively, across all micro/macro
levels, is not feasible for complex physical or biological systems (Applicability—
Network Motifs as Indicators of Emergence). However, some useful guidelines can be
derived from the above analysis: (i) if Eff(Sm) ⩾ Eff(SM), then causal emergence is
impossible and causal reduction holds; (ii) if EI(Sm) > log2(nM), where nM is the state

Fig. 6. Spatiotemporal causal emergence. (A) A “neuronal” system merging the temporal characteristics of the
system in Fig. 5 with a differentiated spatial structure (Fig. S2). Regular and rounded arrows indicate
intergroup and intragroup connections, respectively. (B) Each macro element receives inputs from itself and
the other macro element. The macro level beats the micro level, leading to spatiotemporal emergence [CE(S) =
2.92 bits].
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repertoire size of SM, causal reduction holds; (iii) if for some coarse graining, Eff
increases drastically, causal emergence is to be suspected (as ΔIEff >> −ΔISize).
Therefore, systems that already are close to maximal effectiveness at the micro level
(Fig. S1) indicate causal reduction. By contrast, heavily interconnected groups of
elements with spontaneous activity and the ability to distinguish between intragroup
and intergroup connections, such as the simplified neural system of Fig. 6, are more
suitable for emergence.

In real neural systems, one could compare the respective effective information at
the micro scale of single neurons over millisecond intervals, the meso scale of
neuronal groups over hundreds of milliseconds, and the macro scale of brain regions
over several seconds (using tools such as optogenetics and calcium imaging). In this
way, classic notions, such that cortical minicolumns may constitute the fundamental
units of brain function (31), or that the cortex works by population coding in space
(32) or rate coding in time (33) in the face of high intertrial variability (34), could
then be tested rigorously using a measure of effectiveness. Examining small motifs
that are overrepresented in complex networks [such as brains (35)] could determine
whether the network as a whole is biased toward emergence or reduction. Heuristic
assessments of the likelihood of emergence could also rely on the analysis of wiring
diagrams, which can offer an estimate of degeneracy, combined with knowledge of
the amount of intrinsic noise in a system, which can provide an estimate of
determinism.

Conclusions
The approach to emergence investigated here provides theoretical support for the
intuitive idea that, to find out how a system works, one should find the “differences
that make [most of] a difference” to the system itself (25) (cf. ref. 36). It also suggests
that complex, multilevel systems such as brains are likely to “work” at a macro level
because, in biological systems, selectional processes must deal with unpredictability
and lead to degeneracy (18). This may also apply to some engineered systems
designed to compensate for noise and degeneracy. More broadly, this view of causal
emergence suggests that the hierarchy of the sciences, from microphysics to macro-
economics, may not just be a matter of convenience but a genuine reflection of
causal gains at the relevant levels of organization.
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Effect Coefficient and Effectiveness (Eff) Expressed as Determinism and Degeneracy

The state-dependent effect coefficient =s
s

n
( )

effect information( )
log ( )

0
0

2

can be described

as a function of two terms, the determinism and degeneracy coefficient. To derive
these two terms, the effect information (S0), the distance between the effect repertoire
(SF|s0) and the unconstrained repertoire of effects UE, is split into the distance
between (SF|s0) and the uniform distribution U with p(sU) = 1/n, and a residual term:
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where SF denotes a state of the system SF at t+1 with probability p(sF) according to
the unconstrained distribution of effects UE · S0 is the present system state. The
determinism coefficient is then the left term in lines S5 and S6 divided by log2(n):
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the degeneracy coefficient the right term:
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as defined in the main article.
The effectiveness (Eff) of a system assesses the causal relations in a system in a

state-independent manner, irrespective of the size of the system’s state space:
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where the effective information EI(S) is the average effect information of all system
states S0, distributed according to UC, the unconstrained repertoire of causes, which
is identical to the uniform distribution U; thus, here p(s0) = 1/n. EI(S) can then be
divided in the same way as the state-dependent effect information:
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The last equality is due to the fact that p(SF) is the probability of state sF to occur at
t+1 following U

E, the unconstrained distribution of effects (future states) obtained by
setting the system S at t0 into all possible states S0 with equal probability p(s0) = 1/n.

Both, indeterminism and degeneracy at the micro level may be indicative of
causal emergence (Discussion, main text). Note that, in previous work, it was
suggested that a convergence of two causes onto the same effect—an instance of
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degeneracy—may actually disqualify the micro level from causation (1, 2) (although
see ref. 3).

1. Yablo S (1992) Mental causation. Philos Rev 101:245–280.
2. List C, Menzies P (2009) Non-reductive physicalism and the limits of the

exclusion principle. J Philos CVI(9):475–502.
3. Shapiro L, Sober E (2012) Against proportionality. Analysis 72:89–93.

Effective Information EI(S) Expressed in Terms of Cause and Effect Information
and Mutual Information MI

The effective information of a system, EI(S), can be obtained as the expected value
of the cause or effect information. Moreover, EI(S) is identical to the mutual
information MI(UC; UE): the MI between the system S set to all possible counter-
factuals (system states) with equal probability (unconstrained repertoire of causes,
UC) and the resulting distribution of system states at the next time step (uncon-
strained repertoire of effects, UE). Note that EI was originally introduced as a
measure of causal influence of one subset of a system over another (1), whereas here
it captures the overall effectiveness of system S onto itself (see refs. 2 and 3 for
related measures).

In the following derivation, we start from the definition of EI(S) as the average
effect information of all system states S0 as counterfactual causes [distributed
according to UC with equal probability p(s0) = 1/n for all system states]:
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Using Bayes’ rule and time invariance, we then show that the average effect
information is indeed equivalent to the mutual information MI(UC; U

E) and to the
expected value of the cause information, which is the average cause information of
each accessible state at t0, weighted by p(s0) according to U
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MI is originally a statistical measure of how much information is shared between a
source and a target (4). In the present context, MI is applied between two time steps
of a system that is first perturbed into all counterfactuals (alternative states) with
equal probability and then observed at the next time step. Because of the system
perturbations, MI here is a causal measure. In other words, EI(S) is the MI between
the set of all possible causes UC and the set of all their effects UE. Usually, however,
MI is calculated for observed distributions of system states and thus not a causal
measure, but a statistical measure of correlation.

1. Tononi G, Sporns O (2003) Measuring information integration. BMCNeurosci
4:31.

2. Ay N, Polani D (2008) Information flows in causal networks. Adv Complex
Syst 11(1): 17–41.

3. Korb KB, Nyberg EP, Hope L (2011) Causality in the Sciences, eds Illari P,
Russo F, Williamson J (Oxford Univ Press, Oxford), pp 628–652.

4. Cover TM, Thomas JA (2006) Elements of Information Theory (Wiley-
Interscience, Hoboken, NJ).

Bounds of Cause and Effect Coefficients and Effectiveness Eff(S)
In the following, we will show that the cause and effect coefficients, as well as the
effectiveness Eff(S), are bounded between 0 and 1 (∈[0 …1]):
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The lower bound (0) is given by the fact that the Kullback–Leibler divergence (DKL)
is always nonnegative (Gibbs’ inequality). Because the cause and effect information
are expressed in terms of DKL and the state-independent effective information EI(S) is
just an average of the state-dependent values, neither of the three coefficients can be
negative. It thus remains to show that cause and effect coefficients cannot exceed 1.

The cause information (S0) is theDKL between the cause repertoire (Sp|S0) andUC,
the unconstrained cause repertoire, which is identical to the uniform distribution
with p(sp) = 1/n ∀sP. It follows that
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The effect information (s0) is the DKL between the effect repertoire (SF |S0) and UE,
the unconstrained effect repertoire. UE is in general not identical to the uniform
distribution. However,

∑= ⋅
∈

p s p s s p s( ) ( ) ( ), (S8)
s U

F F 0 0
C

0
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where p(s0) = 1/n ∀s0 and thus:

⩽ ⋅ ∀p s s n p s s( ) ( ), . (S9)F F F0

Using Eq. S9, if follows that:
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and thus

⩽sEffect coefficient( ) 1. (S13)0

Finally, because the effect coefficient (S0) ∈ [0 … 1] ∀S0, also its average over all
system states, the state-independent effectiveness Eff (S) ∈ [0 … 1].

Causal Reduction

To complement the examples of causal emergence in the main text, we here provide
an example in which causal reduction is called for. In Fig. S1, a macro mechanism
works as an XOR logic gate (as an isolated part of a larger circuit board) with inputs
X, Y, and output Z (Fig. S1A). At the macro level, the system (XOR,X,Y,Z)
generates 2 bits of EI over one macro time step Tx (the XOR operates after a
“decision” period where it processes the input) and Eff(SM) = 0.5. The macro XOR
gate is actually composed of (supervenes upon) nine deterministic micro logic gates
(COPY, NOT, AND, OR). In this case, however, causal interactions are stronger at
the micro level and over a single micro time step tx[EI(SM) = 7.43 bits and Eff(SM) =
0.83 ]. Thus, CE =−5.43 bits, corresponding to negative causal emergence, i.e.,
reduction. Note that in this case the micro circuit is deterministic and minimally
degenerate (0.17), so the macro cannot offset the loss of effective information due to
its reduced size by a gain in determinism or a reduction in degeneracy.

To demonstrate this case of causal reduction, we have assumed that a determin-
istic micro circuit underlies the above macro circuit. In general, however, real digital
circuits are often built from many stochastic analog micro elements in a highly
degenerate manner, to compensate for noise at the lower level and to create
deterministic macro elements. In this way, digital circuits and other engineered
systems follow similar design principles as the more physiological examples
presented in the main text. Consequently, there is the potential for either causal
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emergence or reduction in digital circuits, depending on the underlying micro level,
just as in physiological systems.

More generally, the notion of causal reduction (CE < 0) stands in contrast to
previous accounts of reduction that focused on the relationship between scientific
theories and whether or not they are reducible to one another (1). In the present
account based on causal analysis, the focus is instead on the relationship between
micro and macro levels of mechanisms. This account reveals why there is a bias in
favor of reductionism in mechanistic scientific explanations. The bias is under-
standable given that, everything else being equal, the micro would always beat the
macro: being more detailed by definition, the micro has an inherent advantage in
how informative its causal mechanisms are. This inherent advantage is captured
quantitatively in causal analysis because the micro can benefit from both ΔIEff and
ΔISize, whereas the macro can only gain from ΔIEff.

1. Nagel E (1961) The structure of science: problems in the logic of scientific
explanation (Harcourt, Brace & World, New York).

Causal Emergence in a System with Causally Heterogeneous Elements

Although the examples in the main text (with the exception of Fig. 6) all have macro
elements with underlying unconnected and causally equivalent micro elements, this
is not a necessity for causal emergence. In Fig. S2A, the six micro elements are fully
interconnected and causally heterogeneous. The elements are structured into two
groups {ABC, DEF} due to different intra-group and intergroup mechanisms:
within each group, if the sum of intragroup connections Σ(intra) = 0, all elements
stay 0 (inactive) the next time step. However, if the sum of intergroup connections
Σ(inter) = 3 (synchronous activity from the other group), all elements turn 1, unless
they are all 0, in which case they become spontaneously active (1) with probabilities:
p(A/D) = 0.45; p(B/ E) = 0.5; p(C/F) = 0.55. Because the micro transition
probability matrix (TPM) is noisy, EI(Sm) = 1.13 bits and Eff(Sm) = 0.19
(Fig. S2B). The optimal macro grouping SM (Fig. S2C) has a more deterministic
TPM (Fig. S2D), EI(SM) = 1.84 bits and Eff(SM) = 0.58. Thus, the macro supersedes
the micro [CE(S) = 0.72 bits] despite its reduced repertoire size, because it counter-
acts noise by responding almost deterministically to synchronous activity over
intergroup connections.

The neural-like system of Fig. 6 in the main text has equivalent spatial properties
to the example system of Fig. S2 (fully connected, causally heterogeneous elements,
sensitive to differences in intraconnections and interconnections). In addition, it has
the same temporal properties as the system shown in Fig. 5 (main text), with second-
order Markov mechanisms at the micro level. The system’s states space at the micro
level thus contains 218 states, which prohibited an exhaustive search for the optimal
macro level. Nevertheless, the spatiotemporally emergent macro grouping shown in
Fig. 6B (main text) is assumed to be the optimal macro grouping based on the results
obtained from the examples of Fig. S2 and Fig. 5 (main text).

Ahead of the Curve

5-26



Applicability—Network Motifs as Indicators of Emergence
Measuring EI exhaustively, across all micro/macro levels, is not feasible for large
systems. This is because, assuming N binary elements, BN − 1 (Nth Bell number)
possible groupings of those micro elements into macro elements exist, each of which

entails∏ −
= +B( 1)

j

k
m j1 ( ) 1 possible groupings of micro into macro states, where k is

the number of macro elements with m( j) micro elements each. The number of EI
computations to determine the spatiotemporal grain with maximal EI thus increases
dramatically with N (N = 1, 1; N = 2, 5; N = 3, 27; N = 4, 180 computations, etc.) if
calculated exhaustively.

In large, complex networks where an exhaustive causal analysis is unfeasible,
overrepresented network motifs could already indicate whether the network as a
whole is biased toward emergence or reduction. For example, the two most common
network motifs shared by the gene networks in Escherichia coli and the brain of
Caenorhabditis elegans are the feedforward loop and the bifan (1). Both these
network motifs mimic in their connectivity precisely the micro element groups that
made up the optimal (winning) macro elements in our chosen examples. In Fig. 2
(main text), the first spatial example, the macro elements are bifans, whereas in Fig.
6 (main text), the first temporal example, the macro elements are feedforward loops.
These are perhaps the simplest possible functionally relevant macro elements. Both
the bifan and the feedforward loop show causal convergence (degeneracy) in either
space or time. A greater than random prevalence of these or similar network motifs,
paired with some amount of intrinsic noise in the system, may indicate that the
system operates at a macro level.

1. Milo R, et al. (2002) Network motifs: Simple building blocks of complex
networks. Science 298(5594):824–827.

Fig. S1. Causal reduction. (A) A part of a larger circuit is presented, which performs a macro XOR logic
function over its inputs X, Y, and outputs to Z. (B) At the micro level, the XOR consists of nine deterministic
logic gates. The system is deterministic at both the micro and the macro level. Moreover, the degeneracy
coefficient at the micro level is lower than at the macro level. Therefore, in this case, the micro beats the macro,
leading to causal reduction. CE(S) = −5.43 bits.
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Fig. S2. Causal emergence in a system with differentiated connectivity. (A) Micro system Sm with six elements.
Regular and rounded arrows indicate intergroup and intragroup connections, respectively. (B) Noisy micro-
level TPM. (C) Macro system SM. Each macro element receives inputs from itself and the other macro element.
(D) More deterministic macro-level TPM. CE(S) = 0.72 bits.
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Case Study 15: Standard Deviation not S.E.M.

Streiner (1996) Maintaining standards: differences between the standard deviation and the standard error, and
when to use each.
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Perspective on Maintaining Standards: Differences between the Standard Deviation
and Standard Error, and When to Use Each
Can J. Psychiatry 41:498–502

Dany Spencer Adams
Research Professor
Tufts University

‘…[U]ncertainty and its components should be expressed in the form of ‘standard
deviations.’ Recommendation INC-1 (1980) by the Working Group on the
Statement of Uncertainties convened by the [International Bureau of Weights
and Measures], a recommendation that the [International Committee for
Weights and Measures] approved in 1981 and reaffirmed in 1986 via its own
Recommendations 1 (CI-1981) and 1 (CI-1986).

‘The SE reflects the variability of the mean values, as if the study were repeated a
large number of times. By itself, the SE is not particularly useful…’ (Streiner
1996).

This is not the first paper to introduce or even review these ideas. A PubMed search
for articles similar to this one finds 122 papers published since1946, including 16 that
were published prior to 1996, and there are surely more that were not recognized by
this search technique. This one was chosen for this collection because it is excep-
tionally clear. The rules it explains were taught to us all but are, nevertheless, often
disregarded, probably because dividing by the square root of the sample size makes
the uncertainty look smaller; that is not a good reason. The trend graph shows how
SE and SD are neck and neck when it comes to use. This article explains why that is
unfortunate.
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Maintaining Standards: Differences between the Standard Deviation and Standard
Error, and When to Use Each

David L Streiner, PhD1

Many people confuse the standard deviation (SD) and the standard error of the mean
(SE) and are unsure which, if either, to use in presenting data in graphical or tabular
form. The SD is an index of the variability of the original data points and should be
reported in all studies. The SE reflects the variability of the mean values, as if the study
were repeated a large number of times. By itself, the SE is not particularly useful;
however, it is used in constructing 95% and 99% confidence intervals (CIs), which
indicate a range of values within which the “true” value lies. The CI shows the reader
how accurate the estimates of the population values actually are. If graphs are used,
error bars equal to plus and minus 2 SEs (which show the 95% CI) should be drawn
around mean values. Both statistical significance testing and CIs are useful because
they assist the reader in determining the meaning of the findings.

(Can J Psychiatry 1996;41:498-502)

Key Words: statistics, standard deviation, standard error, confidence intervals, graphing

Imagine that you’ve just discovered a new brain protein that causes otherwise
rational people to continuously mutter words like “reengineer,” “operational
visioning,” and “mission statements.” You suspect that this new chemical, which
you call LDE for Language Destroying Enzyme, would be found in higher
concentrations in the cerebrospinal fluid (CSF) of administrators than that of other
people. Difficult as it is to find volunteers, you eventually get samples from 25
administrators and an equal number of controls and find the results shown in Table
I. Because you feel that these data would be more compelling if you showed them
visually, you prepare your paper using a bar graph. Just before you mail it off,
though, you vaguely remember something about error bars, but can’t quite recall
what they are; you check with a few of your colleagues. The first one tells you to
draw a line above and below the top of each bar so that each part is equal to the
standard deviation. The second person disagrees, saying that the lines should reflect
the standard errors, while the third person has yet another opinion—the lines should
be plus and minus 2 standard errors, that is, 2 standard errors above and 2 below the
mean. As you can see in Figure 1, these methods result in very different pictures of

Manuscript received March 1996.
This article is the eleventh in the series on Research Methods in Psychiatry.
For previous articles please see Can J Psychiatry 1990;35:616–20, 1991; 36:357–62, 1993;38:9–13, 1993;38:140–8,
1994;39:135–40, 1994; 39:191–6, 1995;40:60–6, 1995;40:439–44, 1996;41:137–43, and 1996;41:491–7.
1Professor, Departments of Clinical Epidemiology and Biostatistics and of Psychiatry, McMaster University,
Hamilton, Ontario.
Address reprint requests to: Dr David L Streiner, Department of Clinical Epidemiology and Biostatistics,
McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5
e-mail: streiner@fhs.csu.mcmaster.ca
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what’s going on. So, now you have 2 problems: first, what is the difference between
the standard error and the standard deviation, and second, which should you draw?

Standard Deviation
The standard deviation, which is abbreviated variously as S.D., SD, or s (just to
confuse people), is an index of how closely the individual data points cluster around
the mean. If we call each point “Xi,” so that “X1” indicates the first value, “X2” the
second value, and so on, and call the mean “M,” then it may seem that an index of
the dispersion of the points would be simply Σ(Xi − M), which means to sum (that’s
what the Σ indicates) how much each value of X deviates fromM; in other words, an
index of dispersion would be the Sum of (Individual Data Points—Mean of the Data
Points).

Logical as this may seem, it has 2 drawbacks. The first difficulty is that the answer
will be zero—not just in this situation, but in every case. By definition, the sum of the
values above the mean is always equal to the sum of the values below it, and thus
they’ll cancel each other out. We can get around this problem by taking the absolute
value of each difference (that is, we can ignore the sign whenever it’s negative), but
for a number of arcane reasons, statisticians don’t like to use absolute numbers.
Another way to eliminate negative values is to square them, since the square of
any number—negative or positive—is always positive. So, what we now have is
Σ(Xi − M)2.

The second problem is that the result of this equation will increase as we add more
subjects. Let’s imagine that we have a sample of 25 values, with an SD of 10. If we
now add another 25 subjects who look exactly the same, it makes intuitive sense that
the dispersion of these 50 points should stay the same. Yet the formula as it now
reads can result only in a larger sum as we add more data points. We can
compensate for this by dividing by the number of subjects, N, so that the equation
now reads Σ(Xi − M)2/N.

In the true spirit of Murphy’s Law, what we’ve done in solving these 2 difficulties
is to create 2 new ones. The first (or should we say third, so we can keep track of our
problems) is that now we are expressing the deviation in squared units; that is, if we
were measuring IQs in children with autism, for instance, we may find that their
mean IQ is 75 and their dispersion is 100 squared IQ points. But what in heaven’s
name is a squared IQ point? At least this problem is easy to cure: we simply take the
square root of the answer, and we’ll end up with a number that is in the original units
of measurement, so in this example, the dispersion will be 10 IQ points, which is
much easier to understand.

The last problem (yes, it really is the last one) is that the results of the formula as it
exists so far produce a biased estimate, that is, one that is consistently either higher
or (as in this case) lower than the “true” value. The explanation of this is a bit more
complicated and requires somewhat of a detour. Most of the time when we do
research, we are not interested so much in the samples we study as in the populations
they come from. That is, if we look at the level of expressed emotion (EE) in the
families of young schizophrenic males, our interest is in the families of all people
who meet the criteria (the population), not just those in our study. What we do is
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estimate the population mean and SD from our sample. Because all we are studying
is a sample, however, these estimates will deviate by some unknown amount from
the population values. In calculating the SD, we would ideally see how much each
person’s score deviates from the population mean, but all we have available to us is
the sample mean. By definition, scores deviate less from their own mean than from
any other number. So, when we do the calculation and subtract each score from the
sample mean, the result will be smaller than if we subtracted each score from the
population mean (which we don’t know); hence, the result is biased downwards. To
correct for this, we divide by N − 1 instead of N. Putting all of this together, we
finally arrive at the formula for the standard deviation, which is:

Σ= −
−

SD
X M
N

( )
1

i
2

(By the way, don’t use this equation if, for whatever bizarre reason, you want to
calculate the SD by hand, because it leads to too much rounding error. There is
another formula, mathematically equivalent and found in any statistics book, which
yields a more precise figure.)

Now that we’ve gone through all this work, what does it all mean? If we assume
that the data are normally distributed, then knowing the mean and SD tells us
everything we need to know about the distribution of scores. In any normal
distribution, roughly two-thirds (actually, 68.2%) of the scores fall between −1
and +1 SD, and 95.4% between −2 and +2 SD. For example, most of the tests used
for admission to graduate or professional schools (the GRE, MCAT, LSAT, and
other instruments of torture) were originally designed to have a mean of 500 and an
SD of 100. That means that 68% of people get scores between 400 and 600, and just
over 95% between 300 and 700. Using a table of the normal curve (found in most
statistics books), we can figure out exactly what proportion of people get scores
above or below any given value. Conversely, if we want to fail the lowest 5% of test
takers (as is done with the LMCCs), then knowing the mean and SD of this year’s
class and armed with the table, we can work out what the cut-off point should be.

So, to summarize, the SD tells us the distribution of individual scores around the
mean. Now, let’s turn our attention to the standard error.

Table I. Levels of LDE in the CSF of Administrators and Controls

Group Number Mean SD

Administrators 25 25.83 5.72
Controls 25 17.25 4.36

Standard Error
I mentioned previously that the purpose of most studies is to estimate some
population parameter, such as the mean, the SD, a correlation, or a proportion.
Once we have that estimate, another question then arises: How accurate is our
estimate? This may seem an unanswerable question; if we don’t know what the
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population value is, how can we evaluate how close we are to it? Mere logic,
however, has never stopped statisticians in the past, and it won’t stop us now. What
we can do is resort to probabilities: What is the probability (P) that the true
(population) mean falls within a certain range of values? (To cite one of our mottos,
“Statistics means you never have to say you’re certain.”)

One way to answer the question is to repeat the study a few hundred times, which
will give us many estimates of the mean. We can then take the mean of these means,
as well as figure out what the distribution of means is; that is, we can get the standard
deviation of the mean values. Then, using the same table of the normal curve that we
used previously, we can estimate what range of values would encompass 90% or 95%
of the means. If each sample had been drawn from the population at random, we
would be fairly safe in concluding that the true mean also falls within this range 90%
or 95% of the time. We assign a new name to the standard deviation of the means:
we call it the standard error of the mean (abbreviated as SEM, or, if there is no
ambiguity that we’re talking about the mean, SE).

But first, let’s deal with one slight problem—replicating the study a few hundred
times. Nowadays, it’s hard enough to get money to do a study once, much less
replicate it this many times (even assuming you would actually want to spend the
rest of your life doing the same study over and over). Ever helpful, statisticians have
figured out a way to determine the SE based on the results of a single study. Let’s
approach this first from an intuitive standpoint: What would make us more or less
confident that our estimate of the population mean, based on our study, is accurate?
One obvious thing would be the size of the study; the larger the sample size, N, the
less chance that one or two aberrant values are distorting the results and the more
likely it is that our estimate is close to the true value. So, some index of N should be
in the denominator of SE, since the larger N is, the smaller SE would become.
Second, and for similar reasons, the smaller the variability in the data, the more
confident we are that one value (the mean) accurately reflects them. Thus, the SD

Figure 1. Data from Table I, plotted with different types of error bars.
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should be in the numerator: the larger it is, the larger SE will be, and we end up with
the equation:

=SE
SD

N

(Why does the denominator read N instead of just N? Because we are really
dividing the variance, which is SD2, by N, but we end up again with squared units,
so we take the square root of everything. Aren’t you sorry you asked?)

So, the SD reflects the variability of individual data points, and the SE is the
variability of means.

Confidence Intervals
In the previous section, on the SE, we spoke of a range of values in which we were
95% or 99% confident that the true value of the mean fell. Not surprisingly, this
range is called the confidence interval, or CI. Let’s see how it’s calculated. If we turn
again to our table of the normal curve, we’ll find that 95% of the area falls between
−1.96 and +1.96 SDs. Going back to our example of GREs and MCATs, which
have a mean of 500 and an SD of 100, 95% of scores fall between 304 and 696. How
did we get those figures? First, we multiplied the SD by 1.96, subtracted it from the
mean to find the lower bound, and added it to the mean for the upper bound. The CI
is calculated in the same way, except that we use the SE instead of the SD. So, the
95% CI is:

= ± ×CI M SE95% (1.96 )

For the 90% CI, we would use the value 1.65 instead of 1.96, and for the 99% CI,
2.58. Using the data from Table I, the SE for administrators is 5.72/ 25 , or 1.14,
and thus the 95% CI would be 25.83 ± (1.96 × 1.14), or 23.59 to 28.07. We would
interpret this to mean that we are 95% confident that the value of LDE in the
population of administrators is somewhere within this interval. If we wanted to be
more confident, we would multiply 1.14 by 2.58; the penalty we pay for our
increased confidence is a wider CI, so that we are less sure of the exact value.

The Choice of Units
Now we have the SD, the SE, and any one of a number of CIs, and the question
becomes, which do we use, and when? Obviously, when we are describing the results
of any study we’ve done, it is imperative that we report the SD. Just as obviously,
armed with this and the sample size, it is a simple matter for the reader to figure out
the SE and any CI. Do we gain anything by adding them? The answer, as usual, is
yes and no.

Essentially, we want to convey to the reader that there will always be sample-to-
sample variation and that the answers we get from one study wouldn’t be exactly the
same if the study were replicated. What we would like to show is how much of a
difference in findings we can expect: just a few points either way, but not enough to
substantially alter our conclusions, or so much that the next study is as likely to show
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results going in the opposite direction as to replicate the findings. To some degree,
this is what significance testing does—the lower the P level, the less likely the results
are due simply to chance and the greater the probability that they will be repeated
the next time around. Significance tests, however, are usually interpreted in an all-or-
nothing manner: either the result was statistically significant or it wasn’t, and a
difference between group means that just barely squeaked under the P < 0.05 wire is
often given as much credence as one that is highly unlikely to be due to chance.

If we used CIs, either in a table or a graph, it would be much easier for the reader
to determine how much variation in results to expect from sample to sample. But
which CI should we use? We could draw the error bars on a graph or show in a table
a CI that is equal to exactly one SE. This has the advantages that we don’t have to
choose between the SE or the CI (they’re identical) and that not much calculation is
involved. Unfortunately, this choice of an interval conveys very little useful
information. An error bar of plus and minus one SE is the same as the 68% CI;
we would be 68% sure that the true mean (or difference between 2 means) fell within
this range. The trouble is, we’re more used to being 95% or 99% sure, not 68%. So, to
begin with, let’s forget about showing the SE: it tells us little that is useful, and its
sole purpose is in calculating CIs.

What about the advice to use plus and minus 2 SEs in the graph? This makes
more sense; 2 is a good approximation of 1.96, at least to the degree that graphics
programs can display the value and our eyes discern it. The advantages are twofold.
First, this method shows the 95% CI, which is more meaningful than 68%. Second, it
allows us to do an “eyeball” test of significance, at least in the 2-group situation. If
the top of the lower bar (the controls in Figure 1) and the bottom of the higher bar
(the administrators) do not overlap, then the difference between the groups is
significant at the 5% level or better. Thus we would say that, in this example, the 2
groups were significantly different from one another. If we actually did a t test, we
would find this to be true: t(48) = 2.668, P < 0.05. This doesn’t work too accurately if
there are more than 2 groups, since we have the issue of multiple tests to deal with
(for example, Group 1 versus Group 2, Group 2 versus 3, and Group 1 versus 3),
but it gives a rough indication of where the differences lie. Needless to say,
when presenting the CI in a table, you should give the exact values (multiply by
1.96, not 2).

Wrapping Up
The SD indicates the dispersion of individual data values around their mean, and
should be given any time we report data. The SE is an index of the variability of the
means that would be expected if the study were exactly replicated a large number of
times. By itself, this measure doesn’t convey much useful information. Its main
function is to help construct 95% and 99% CIs, which can supplement statistical
significance testing and indicate the range within which the true mean or difference
between means may be found. Some journals have dropped significance testing
entirely and replaced it with the reporting of CIs; this is probably going too far, since
both have advantages, and both can be misused to equal degrees. For example,
a study using a small sample size may report that the difference between the control
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and experimental group is significant at the 0.05 level. Had the study indicated the
CIs, however, it would be more apparent to the reader that the CI is very wide and
the estimate of the difference is crude, at best. By contrast, the much-touted figure of
the number of people affected by second-hand smoke is actually not the estimate of
the mean. The best estimate of the mean is zero, and it has a very broad CI; what is
reported is the upper end of that CI.

To sum up, SDs, significance testing, and 95% or 99% CIs should be reported to
help the reader; all are informative and complement, rather than replace, each other.
Conversely, “naked” SEs don’t tell us much by themselves, and more or less just take
up space in a report. Conducting our studies with these guidelines in mind may help
us to maintain the standards in psychiatric research.

Résumé
Beaucoup de gens confondent l’écart-type et l’erreur-type de la moyenne et ne savent
pas lequel utiliser pour présenter les données sous forme graphique ou tabulaire.
L’ecart-type indique la variabilité des données originales et devrait être mentionné
pour toutes les etudes. L’erreur-type montre la variabilité des valeurs moyennes,
comme si l’étude avait été reprise de nombreuses fois. En soi, l’erreur-type n’a pas
d’utilité particulière; toutefois, on s’en sert pour créer les intervalles de confiance à
95% et à 99% utilises pour établir la fourchette de valeurs dans laquelle se situe la
valeur «réelle». Les intervalles de confiance signalent au lecteur la précision des
estimations des valeurs démographiques. Lorsqu’on se sert de graphiques, la barre
d’erreur représente un intervalle de plus à moins 2 écarts-types (ce qui correspond à
l’intervalle de confiance de 95%). Elle devrait entourer la valeur moyenne. Les
épreuves de signification statistique et les intervalles de confiance présentent une
grande utilité, car ils aident le lecteur à établir l’importance des constatations.
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Case Study 16: Field Models of Pattern Formation

Goodwin (1985) Developing organisms as self-organizing fields. In this graphic we have compared this
theoretical approach to the frequently cited reaction-diffusion theory.
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Perspective on Developing Organisms as Self-Organizing Fields

Wendy Brandts, PhD
University of Ottawa,

Understanding complex systems top-down

I. Introduction

Against the tide of fashion dictating that biological systems are to be understood
primarily from their molecular- and cellular-level behaviours, this ground-breaking
paper makes the case that understanding biological systems requires structural laws
at multiple levels. Drawing on the deep biological understanding and unique
perspective of Goodwin, and the insight and knowledge of quantitative structural
laws of L.E.H. Trainor, a mathematical framework is proposed for structural laws
of biological form.

After all, biological systems are also physical systems, with some special addi-
tional properties. The historical success of physics to describe physical systems (e.g.
quarks, nucleons, atoms, molecules) via structural laws at many levels suggests
carrying out a similar program at higher levels of organization and complexity.

II. Structuralist Approach

Goodwin takes the structuralist point of view, going back to Hans Driesch and
Darcy Thompson, that seek laws of form showing regularities of morphology over
many taxonomic groups. He builds on the approach of the Clockface Model
(French et al 1976) which are rules of morphogenesis making no reference to
composition or inheritance. In particular, Goodwin’s morphogenetic field serves to
inform different parts of an organism ‘where in the whole it is’.

In this interpretation, the morphogenetic field is the self-organizing entity. The
organism, not the cell, is the fundamental biological entity. Spatial organization of the
whole derives from the global morphogenetic field plus the constraints of the parts.

Goodwin and Trainor (1980) provide a mathematical formalism for this
morphogenetic field, which was not attained by the creators of the Clockface
Model. The field is a structure: it belongs to an invariant set defined by internal
relations (the field equations). An analogy from classical mechanics is the trajecto-
ries of motion of an object in a central force field, where the set of possible solutions
to Newton’ss laws are restricted to the conic sections.

The formalism of this morphogenetic field is akin to electrodynamic field
equations of physics. The concept of ‘selection rules’, also borrowed from physics,
determines which possible solutions of the field equations will actually be manifested
in the system, subject to other constraints. The resemblance to physical theory in this
approach echoes the background of the late L.E.H. Trainor, originally a nuclear
physicist, who developed the new field of theoretical biophysics at the University of
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Toronto with inspiration from Goodwin, C.J. Lumsden and others (see various
authors, [Physical Theory in Biology: Foundations and Explorations (1997)]).

The use of physical fields is both convenient and natural because the proposed
biological fields actually demonstrate properties similar to physical fields, e.g.
smoothness and continuity (one cell is more similar to a neighbouring cell than to
a distant cell). The holistic nature of physical fields which allows, for example, a
unique electric field to be determined everywhere in a region given sufficient
information about the field on the boundary, is reminiscent of the ability of a
morphogenetic field to interpolate in regeneration, and thus to reform a whole
organism from the information contained in some of the parts.

With this formulation of the morphogenetic field, Goodwin describes early
cleavage processes by applying the Laplace equation over a sphere (representing
the blastula) and selecting solutions of spherical harmonics whose null lines then
indicate cleavage planes.

He concludes that constraints determining specific forms arise from other
organizational levels than simple molecular composition and therefore top-down
models are required for understanding. Gene products act within the context of
fields (electric, visco-elastic, etc) which generate morphology. He argues the
inadequacy of any theory of biological form based only on genes and molecules.

III. Models based on Goodwin’s Morphogenetic Field Approach.

In the years since Goodwin’s pioneering papers, the morphogenetic field formal-
ism (Goodwin and Trainor 1980) has formed the starting point for a number of more
detailed applications, which in turn confirm the usefulness of the fundamental
concepts.

1. Limb regeneration in amphibians
Valuable predictions can be made, such as the outcome of transplant experiments,

without needing to know all the underlying details of structure and composition. For
example, a field model of limb regeneration based on fields with solutions of specific
symmetry can predict handedness of supernumerary growth (Tevlin and Trainor
1985, Totafurno and Trainor 1987).

2.Regulation in a single cell
Analogous to multi-cellular pattern formation, the growth is governed by global

patterning fields, not based on genes or molecules. The field model describes the
organism at a ‘high level’ or macroscopic level of the structural hierarchy,
organizing large and various collections of experimental data and predicting
developmental configurations and pathways (Brandts and Trainor 1990a, Brandts
and Trainor 1990b, Brandts 1993).

3. Electrical signals (dynamics of voltage potentials in gap junction-coupled
bioelectric network within non-neural tissues) as global patterning fields (Levin et al
2015).
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These applications all demonstrate the power of top-down models.
While morphogenetic field models stand on their own as useful tools, it may

nevertheless be informative to investigate what underlies the morphogenetic field.
Many different lower-level factors could contribute to the expression and main-
tenance of the field.

Some examples are: order parameters relating to the organization of microfila-
ments in the cell surface (Goodwin 1980); viscoelastic forces (Hart et al 1989);
reaction-diffusion of a binary fluid (Brandts 1995); electrical potentials (Levin et al
2015).

IV. Recent ideas that support Goodwin’s perspective.

The structuralist approach embraced by Goodwin has been largely under-
appreciated due to fashions and successes in microbiology. Scientific progress in
recent years in the new field of complexity has brought several fundamental issues to
the fore that should encourage a more general acceptance of Goodwin’s approach.
Here I touch on three of these issues:

1. Simulation vs duplication
A simulation of the behavior of a system does not necessarily duplicate the way a

system itself actually operates. Nevertheless, simulating or modeling the behaviour
of a complex system through top-down processes can aid understanding. After all,
no one questions whether a particle calculates its velocity while deciding how to
move according to laws of motion; the laws are valuable for predicting behavior,
and making control decisions, regardless of the interpretation.

Complex system behaviour can often be viewed as dynamics or as computation.
[Brandts (1997). ‘Complexity: A Pluralistic Perspective’.].

The point is, when systems behave ‘as if’ they were calculating, they can fruitfully
be modelled as such. Regardless of the philosophical interpretations, such as those
entertained by Einstein and Bohr on Quantum Mechanics, in the end, the predictive
power of a model wins out.

Recent concerns about goal-directed behaviour and the apparent role of teleology
in top-down models may thus be dismissed.

2. Emergence and reducibility
One definition of emergence (from physics) is that emergence is a new behaviour

that arises at a higher level and which can not be predicted from the lower level
behavoirs. For example, in physics the exchange symmetry of fermions, which
influences the structure of the periodic table, is a rule which applies to multi-fermion
systems but cannot be derived from the behaviour of a single fermion. See also the
two proposed broad and distinctive classes of emergence, reducible and a prior
irreducible (Trainor 1997, Trainor 1985).

In a different case, consider Thermodynamics, TD, the higher-level macroscopic
model of the behaviour of the gaseous state of matter. The concepts and laws of TD
relate observable quantities, namely temperature and pressure, and provided
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essential understanding to power the industrial revolution. But TD laws do not
apply to single molecules, or even require any particular molecular structure. The
lower-level model, Statistical Mechanics, which was developed later, provides the
microscopic theoretical underpinnings of TD; nevertheless, TD concepts and laws
are still useful and applicable today.

In addition, it is important to discriminate between reduction of theories and
reduction of phenomenon [Brandts (1997). ‘Complexity: A Pluralistic Perspective’.].
If the high level processes are irreducible, then they will certainly not be explicable
by a lower-level theory—i.e. a higher level or top-down theory will be essential for
understanding. But even if the processes are reducible, the theories may not be.

Moreover, while the biological distinction between local and global interactions
can often be made clear, and tested in a laboratory situation, in the mathematics of
modeling, the distinction between global or local control can be ambiguous. This is
because dynamical systems often have alternative mathematical representations
which may be entirely equivalent but lead to seemingly different interpretations. An
example from classical physics is mechanics, in which a particle can be described as
moving according to Newton’s laws, which are local, or so as to minimize action
over any segment of its future path, which is non-local in both space and time.

In the particular case of field models, the mathematical expression of pattern
control is formulated in terms of minimization of total energy, a global property.
However, the model could in principle have been formulated in terms of differential
equations which express field values and interactions locally. In fact, there are many
different dynamical processes (equations) which could give rise to the same steady
state minimum energy solutions of the global field.

3. Complexity
Complexity exists on many levels and scales in biological systems. Even defining a

quantitative measure of complexity is a daunting task, demanding that many
different levels of explanation be employed.

Recent developments in the science of complexity and consideration of biological
systems as complex systems has lead to the realization multiple levels of modeling
will be required to understand complex biological systems (Brandts 1997). Top-
down modeling is essential for a pluralistic approach; no single level of analysis has
priority. Each description or model naturally emphasizes its own variables and
should be considered a legitimate method of modeling without requiring descrip-
tions and their language to translate into each other in a reductionist fashion
(although it may sometimes be possible to do so).

Laws and models are simplifications of the world. For example, even position and
momentum, in Newton’s classical mechanics, are properties of the formalism, and do
not necessarily reflect the real world because position and momentum do not exist
simultaneously in the lower-levelQuantumMechanical formulation. That is,Newton’s
formalism is only applicable to the real world over a restricted range of velocities,
timescales, and sizes; at other levels, new phenomenology and models are required.
Real systems map to many formal systems, each one capturing different aspects
of behaviour. There are distinctive ideas in biology not translatable into physics.
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In complex systems such as biological ones, incorporating all lower-level details is
unwieldy or impossible, and top-down models like the field approach are required in
order to make predictions about higher-level biological behaviours. High level
models, with all their simplifications, are needed because when models contain
‘everything’—field data, a plethora of parameters, a patchwork of dynamics—and
simulations are run as a black box, little in the way of strategic relationships between
variables, or the effect of the numerous parameters on the dynamics, can be
uncovered (Brandts 2002). We may simulate nature, but we will gain little insight,
or control.

Or as J.L. Borges put it, Of what use is a map as big as the world?
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DEVELOPING ORGANISMS AS SELF-ORGANIZING FIELDS

B.C. GOODWIN

5.1 Introduction
Self-organization is a property of a structurally and functionally integrated entity
which is considered to be made up of, or to have, “parts.” There are essentially two
ways of relating the whole and the parts: either the parts are regarded as given (with
or without some temporal sequence of presentation or production) and the entity is
generated by their interaction; or the entity is regarded as a whole defined by certain
invariant relations, the “parts” coming into being as a result of systematic trans-
formations which preserve invariance while generating heterogeneity (“parts”)
within a functional and structural unity. The most extreme form of the first
description is atomism, which assumes that all the information necessary for
generating the entity is resident in the parts, so that spontaneous assembly occurs
simply as a result of their interaction. This hypothesis, in various forms and
with various modifications, is a dominant theme in contemporary models of
evolutionary, developmental, behavioral, and even cognitive processes. What
characterizes this conceptualization is the assumption that there are no laws of
self- organization other than those governing the interaction of the parts or
constituents so that the whole is reducible to these parts and their interactions. In
developmental biology, the constituents are usually considered to be, ultimately,
molecules, although there are theories in which cells are used as intermediate
“atoms” in the analysis. Since genes are generally considered to be the determinants
of which molecules are present in organisms, it follows that organisms are reducible
to genes. The self-organizing process of embryo-genesis is then regarded as a
consequence of two activities: the operation of the “genetic program” which
determines the types of molecular constituents in the organism, the sequence and
spatial location of their appearance; and the interaction of these constituents
according to physical and chemical laws.

Such an approach to embryogenesis means that the specific forms generated by
morphogenetic processes, defining different species of organism, are irreducibly
complex because there are no laws or principles which constrain the “genetic
program” which is the determinant of specific form. This program is the result of
random permutation and natural selection, purely contingent processes as far as
organisms are concerned, the only constraint being that the organism specified by
the program must be able to survive and leave offspring in some environment. In
such a view, there can be no general laws of biological form. Each species is,
speaking more than metaphorically, a law unto itself. This is reflected in the primacy
of the species concept in neo-Darwinism and the emphasis placed upon competition
and survival as the expression of the individual species’ success in establishing a
unique, singular relationship of order and stability within itself and with its
environments. Thus, as one might expect since cognitive constructs are themselves
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“self- j organizing,” there is a clearly-defined continuity between the way organisms
are conceptualized in neo-Darwinism as “survival machines” and the way in which
they are considered to be generated from their molecular parts.

There is no a priori reason why such a description of self-organization should not
be valid, and indeed it is clear that there are special cases in both the animate and the
inanimate realms where atomistic explanations appear to be appropriate. As regards
structure or form, these are the instances where a crystallization or “self-assembly”
type of process leads to a unique morphology. However, even in inorganic chemisty
one encounters many instances of polymorphism in which the same substance can
crystallize into different forms, familiar examples being graphite and diamond, or
rhombic and mono-clinic sulphur. Thus, in general, composition does not determine
form. A,similar polymorphism is observed in biological structures at different levels
of organization, the molecular (Oosawa et al., 1966), the cellular (Sonneborn, 1970),
the tissue (Saunders et al., 1957) and so on. Much of embryology consists in fact of
generating a variety of “abnormal” forms out of cells of identical genotype: for
example, the induction of supernumerary limbs in an amphibian by a simple
manipulation of tissue in the embryonic limb bud involving no addition or deletion
of cells, but simply a change of relative position, and no change in the external
environment. Furthermore, organisms containing specific mutant genes (e.g.
homoeotics) may or may not express them; while organisms with wild-type genes
can show the “mutant” phenotype (spontaneous homoeotic transformation). Hence
there is no one-to-one relationship between genotype and phenotype, always
assuming j a constant external environment, so that genes are not the specific
determinants of morphology. That is to say, the form of an organism is not
determined by its genome, with the consequence that self-assembly theories together
with a genetic program are inadequate to provide a generative theory of biological
self-organization (see Webster and Goodwin, 1982, for a more detailed argument
leading to this conclusion).

We must now consider whether or not there is empirical evidence relating to
general organizational principles, or laws of form in biology, manifesting as
regularities of morphology over large taxonomic groups. We have seen above that
neo-Darwinism, which takes the view that “the chief part of the organization of
every being is simply cue to its inheritance” (Darwin, 1859; inheritance meaning, in
contemporary usage, the genetic program), provides no basis for understanding any
such regularities since biological form in this theory is determined by contingency,
not by law. However, if ordering constraints do exist in the biological realm, then
this must be taken into account of in any theory of biological self-organization. This
leads us to the work of the pre-Darwinian rational morphologists, who were
animated by a belief in the possibility of a rational, intelligible ordering or
classification of organisms which would provide an insight into the laws of organic
creation (i.e. generative rules). This tradition reached its peak in the work and
insights of the great comparative morphologists of the late eighteenth and early
nineteenth centuries such as Geoffroy St. Hilaire, Cuvier, Reichert, and Owen, who
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searched for and discovered empirical regularities of organismic structure. These
regularities appeared as invariant structural relations or “typical forms” which were
seen to define that which is common to a variety of particular realizations of the
same type. Owen’s demonstration of the structural homologies which exist between
the great variety of vertebrate limbs, leading to the concept of the pentadactyl limbs
as the typical form, is characteristic of this work. Each specific member of the
invariant set, such as the limb of the horse, of the bat, of the frog, etc., can then be
seen as equivalent to every other member under a transformation, so that a common
plan is revealed which unifies the diversity of manifest forms. It is, in fact, straight-
forward to demonstrate the simple proposition that tetrapod limb morphogenesis
may be understood in terms of some basic generative principles capable of
producing a great variety of limb forms which are all transformable one into the
other under modifications of the limb generating process (Goodwin and Trainor,
1982). This is analogous to the realization that the different forms of motion shown
by bodies under the action of a central attracting force, obeying Newton’s laws, all
belong to the same invariant set known as the conic sections; and indeed the rational
morphologists were inspired by the same vision as Newton, which was the
Enlightenment Ideal of a mathematical natural science. Their conviction was, and
they provided good evidence for the belief, that the morphological complexity of
organisms is not irreducibility complex but that there exist rational principles or laws
of form which render the diversity intelligible.

Despite the fact that this tradition was largely eclipsed by Darwinism, which
adopted the diametrically opposite view that organismic form is determined not by
rational law but by historical accident, by contingency, a few rather isolated and
sometimes misunderstood biologists have pursued this approach further. Among
these the embryologist Hans Driesch stands out and his work is very relevant to the
view of self-organization which will be developed below. He introduced the field
concept into embryology as a result of his demonstration that relative position in the
whole embryo is an important determinant of cell fate. He used the concepts of
wholeness, self-regulation, and transformation to define the properties of tissues
which respond to a variety of disturbances (e.g., removal or addition of cells, or
spatial reordering of parts) by a reorganization such that tire normal form is
generated. Examples of such fields are the amphibian embryo from fertilization up
to about the gastrula stage, the limb and eye primordia, and a variety of other tissues
domains which define secondary fields. Within such domains, relative position is a
primary determinant of cell fate and the parts which emerge during individuation
and differentiation come into being as a result of local and global ordering
principles, generating a structural and functional unity. Driesch assumed, like the
rational morphologists, that there are organizing rules which operate within
organisms to constrain or limit the forms which can be generated (Driesch, 1929)
but, again like his predecessors, he failed to give them any mathematical formula-
tion. The problem to be addressed now is what type of mathematical description
may be appropriate for these organizing principles, for which there is clear biological
evidence.

Ahead of the Curve

5-46



5.2 Organisms as Fields
The proposition which emerges from the above analysis is that living entities are
wholes or structures defined by internal relations which remain invariant under
certain categories of transformation, the latter limiting the possible generative
processes which can result in organisms of specific form (species). Organisms are
not, in this view, generated as a result of the interaction of “atomic” constituents,
whatever these may be construed to be. Heterogeneity (“parts”) arises as a result of
systematic transformations of the organized whole, which may be described as the
manifestation of states selected from a potential set which satisfies a primary
property of invariance characteristic of organisms. Thus the organism is not so
much a self- organizing system which generates an ordered state from disordered or
less ordered parts; it is more a self-organized entity which can undergo trans-
formations preserving this state. The problems faced by this conceptualization are
those of making explicit the nature of the invariant internal relationships which
define the whole; the type of transformation which it can undergo; and the
relationship between whole and part which confers upon it the properties of
generation (reproduction) and regeneration.

Following Driesch’s insight that developing organisms have field properties, we
may proceed to the question of what type of field and how it may be characterized
mathematically. A very extensive body of experimental work in developmental
biology since Driesch’s pioneering studies has led recently to the observation that an
appropriate arithmetic description of the spatial smoothness characteristic of
developmental fields is a simple spatial averaging or intercalculation rule applied
to field values (French, Bryant, and Bryant, 1976). This states simply that the field
value at any point within the boundaries of a developmental field is the arithmetic
mean of the values at equidistant neighboring points. Mathematically, this leads to
the most general field equation used in physics, namely Laplace’s equation. The
question then naturally arises whether one can use solutions of this and related
equations, known as harmonic functions, to describe developmental fields and hence
biological form. Preliminary essays in this direction have been published (Goodwin,
1980; Goodwin and Trainor, 1980; Goodwin and Trainor, 1982). This approach will
now be illustrated by an analysis of the earliest stage of amphibian embryogenesis,
following the treatment of Goodwin and Trainor (1980), and then certain con-
clusions regarding the problem of self-organization in biology will be drawn.

5.3 A Field Description of the Typical Cleavage Process
The first five stages of the typical cleavage pattern is described by classical
investigation as shown in Figure 5.3-I, starting from the two-cell stage after the
first division of the egg. From the 32-cell stage, cell divisions continue to show an
alternation between vertical and horizontal cleavage planes, but there is at some
stage a loss of spatial and temporal order (synchrony) which differs between species.
Since our interest is in the geometry of the cleavage planes, we project the typical
pattern onto the original spherical egg to get the schematic sequence in Figure 5.3-II,
which illustrates the first seven cleavages up to the 128-cell morula. This is
immediately suggestive of a sequence of harmonic functions on the sphere, the

Ahead of the Curve

5-47



cleavage lines corresponding to nodal lines of spherical harmonics. Accordingly, we
develop an “eigenfunction” description of cleavage on the basis of a minimization
principle wherein the eigenstates of a morphogenetic surface field describe the
successive stages of the cleavage process in the early embryo. The cleavage process is
then seen as a series of transformations to successively higher characteristic states of
the morphogenetic field as metabolism proceeds. An analogy to this may be found in
the electron density distributions of the hydrogen atom, in which the transitions to
successively higher energy states results from the action of some external optical
pumping field. A characteristic biological feature is that the cleavage transforma-
tions are “pumped” or induced internally, the system being self-generating.

5.4 A Variational Principle for Cleavage Planes
Proceeding with the analysis at a fairly abstract level, let us now introduce a field
function u(θ, ϕ) over the surface of the sphere and adopt the convention that its
nodal lines represent lines of least resistance to a furrowing process preliminary to
the development of cleavage planes. This function may be taken to be some kind of
order-disorder parameter relating to the organization of microfilaments in the cell
surface. The basic stability of the typical cleavage pattern suggests the use of a
minimization principle on this field function. An appropriate surface density
function, which in a physical problem would be the energy density, is
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where the constants A and β incorporate relevant physiological units. Then suppose
that the characteristic cleavage planes correspond to a minimum of the integral of
this density function over the surface energy E,

∫ ∫δ θ ϕ θ θ ϕ =
π π

E( , )sin d d 0 (5.4-2)
0

2

0

subject to a conservation law on u2

∫ ∫ θ ϕ θ θ ϕ =
π π

u ( , )sin d d 1 (5.4-3)
0

2

0

2

which amounts to a normalization condition on the field variable u. Equations
(5.4-2) and (5.4-3) require satisfaction of the Euler-Lagrange equation (see Trainor
and Wise, 1979)

Figure 5.3-I. The holoblastic radial cleavage pattern.
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where α: incorporates the parameter β and an undetermined multiplier of equation
(5.4-3).

The usual conditions on u, that it be finite, single-valued and continuous over the
sphere restricts the possible solution u to a characteristic (eigen-function) set, viz. the
spherical harmonics (real part taken):

θ ϕ θ ϕ θ ϕ→ =u Y( , ) ( , ) 2 N P (cos ) m (5.4-5)ℓm ℓ ℓm
m

where ℓ takes on the integral values 0, 1, 2, etc., and for given ℓ, the m values are
integers ranging from −ℓ to +ℓ. The parameter α is restricted to the corresponding
characteristic values (eigenvalues) ℓ (ℓ + 1). In equation (5.4-5), the Pℓ

m are associated

Figure 5.3-II. The geometry of typical cleavage planes up to the 128-cell stage.

Ahead of the Curve

5-49



Legendre polynomials (Hobson, 1955) and the Nℓm are the normalization constants
given by

π
= + − !

+ !

⎡
⎣⎢

⎤
⎦⎥m

N
(2ℓ 1)(ℓ m

4 (ℓ )
(5.4-6)ℓm

1/2

It is easy to calculate the surface “energy” corresponding to each characteristic
cleavage state. The result is:

β= + +ℓ ℓE A{ ( 1) }. (5.4-7)ℓ

However, not every characteristic state (5.4-5) is realized in the cleavage process
since the mitotic apparatus imposes a biological constraint (somewhat analogous to
superselection rules in physics: Wick, Wightman and Wigner, 1952) that the number
of cells is doubled in each cleavage stage.

According to the ideas set out above, the nodal lines of the characteristic function
Yℓm(θ, ϕ) on the sphere are in correspondence with the furrow lines of a character-
istic cleavage state, except that the set of characteristic states is limited by the
requirement that the number of cells is given by 2p where p is the number of cell
divisions. It is easily shown that the number of cells in a state characterized by Yℓm is
2m(ℓ −m+l) unless m = 0 in which case the number is ℓ + 1 . (It is sufficient to choose
the real part of Yℓm, i.e. the cos mϕ solutions, so that we need consider only in m ⩾
0.) Hence the biological constraint requires that

= − + ≠
= + =

ℓ
ℓ

2 2m( m 1) if m 0, or
1 if m 0.

(5.4-8)
p

In general this equation, for a given characteristic cleavage state corresponding to p
divisions, is satisfied by more than one set of (ℓ, m) values. It is natural to suppose
that the choice is made primarily on the basis of lowest ℓ value, since according to
equation (5.4-7), this minimizes the “energy.” The choice is then nearly unique,
except for a two-fold degeneracy every second division. It is assumed that the
animal-vegetal polarity of the embryo defines a secondary polar field weaker than
the primary field which removes this degeneracy in favor of the highest m value for a
given ℓ, in much the same way as a magnetic field removes the (2ℓ + 1) fold
degeneracy of magnetic- states in the hydrogen atom.

Table 5.4-1 shows the correspondence between cleavage states and characteristic
functions Yℓm = 2Nℓm Pℓ

m cos mϕ by listing the number of cells to be expected from
each set of (ℓ, m) values up to ℓ = 7. The appropriate (ℓ, m) pair is then selected out
uniquely by the conditions expressed in equations (5.4-8), together with the
minimization condition (5.4-7), except for the two-fold degeneracies at the first,
second, fourth, etc., cell divisions. As remarked above a unique correspondence is
achieved by assuming that a weaker polar field selects (1,1) over (1,0), (2,2) over (2,1)
and (5,4) over (5,2), that is, it favors highest m value for a given ℓ.

In Table 5.4-1 the selected states for the 6th and 7th cleavages corresponding to
the 64 and 128 cell stages have been included, without listing all of the rejected (ℓ, m)
values. Figure 5.3-II illustrates the nodal lines for the successive stages in a typical
cleavage process. (Note that in the model used here the furrowing process
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corresponds to an accumulative conjunction of surface harmonic patterns. In a
variant of the model (Goodwin and LaCroix, 1982), the pattern is not cumulative
and each stage is described by a single harmonic pattern of nodal lines.)

Table 5.4-1. Correspondence between Yℓm(θ, ϕ) and cell number, defined by ℓ + 1 if m = 0, otherwise by
2m(ℓ − m + l).

ℓ value m value cell number (ℓ, m) pair selected

1 0 2 (1, 1)
1 2
0 3

2 1 4 (2, 2)
2 4
0 4

3 1 6 (3, 2)
2 8
3 6
0 5
1 8

4 2 12
3 12
4 8
0 6
1 10

5 2 16 (5, 4)
3 18
4 16
5 10
0 7
1 12
2 20

6 3 24
4 24
5 20
6 12
0 8
1 14
2 24

7 3 30 (7,4)
4 32
5 30
6 24
7 14

11 8 64 (11,8)

15 8 128 (15, 8)
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5.5 Fields and Self-Organization
This example clarifies some of the abstract concepts introduced in the discussion on
organisms as fields, and it is now of some interest to elaborate on these and their
relationship to the concept of self-organization in biology. The first point to emerge
is the primacy of the organism as the fundamental biological entity, replacing the
usual definition of the cell as the unit of life. This follows from the fact that the field
is the self-organizing entity, and this is coextensive in the above description with the
organism. The orderly geometry of the cleavage planes is a reflection of this
organization at the level of the developing embryo. This does not mean that the
parts, which in this case are cells, have no properties of their own. On the contrary,
the constraint of binary division, a cellular property, is a major source of the
distinctive geometry of the cleavage process, since this defines one of the three
selection rules which determine the harmonic functions allowable as descriptions of
this process. What thus becomes apparent is that the spatial organization of the
whole derives from principles relating to global field behavior together with
constraints coming from the properties of the entities which are generated as parts.
Such a description avoids both atomistic reduction and a holistic description which
identifies the whole with some (conceptually or materially) isolable essence. The
genome is such an isolable essence, traceable historically to its conceptual roots in
idealistic holism via Weismann’s conceptualization of the organism as separable into
germ plasm (essence) and somatoplasm (expression of the essence; see Webster and
Goodwin, 1982). A field description of developing organisms sees spatial organ-
ization as the expression of distributed influence, global order being constrained to
give specific morphology as a result of autonomous properties of parts. This defines
a ‘‘decentered structure.”

The ambiguity between the concepts of “cell” and “organism” can be resolved in
terms of the above description. The fertilized egg is both a cell and a developing
organism. It is an organism insofar as it is a totality describable by a field; it is a cell
insofar as it embodies the specific constraints (e.g., binary division) characteristic of
such an entity. As cleavage proceeds, the organism continues to be identified with
the whole field (the embryo), while cells are identified as parts which play specific
roles within a transforming context. After gastrulation, more complex parts such as
neural plate, limb fields, eye fields, etc., come into existence. These consist of
aggregates of cells so that an integrated hierarchy of parts emerges within the
context of the organism as the global field which continues to impose organizational
constraints upon the whole, the parts imposing reciprocal constraints so that further
specific form emerges.

This type of description allows one to make comparisons between developmental
processes in a cellular (or unicellular) and in multicellular organisms and to
understand them in the same terms, which is the classical view. If one adopts a
position such as that of Wolpert (1971), that development is to be understood in
terms of the responses of cells (really, of their genomes: Wolpert and Lewis, 1975) to
“positional information” established over multicellular domains, then such compar-
isons become problematical, as discussed by Frankel (1974). The view of organisms
as fields overcomes this difficulty and leads to the suggestion of some unexpected
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homologies between the morphology of ciliate protozoa and of amphibian gastrulae
(Goodwin, 1980). This is very much in the tradition of rational morphology, since
this makes clear that one must seek homologies at the level of “deep structure,” i.e.
at the level of generative principles such as those defining field properties, not in
terms of “surface structure” such as whether or not an organism is partitioned into
cells. Again, this is not to deny that surface structure imposes constraints which
affect manifest form; it is simply that in comparing field effects at the level of the
whole organism, these are secondary.

A very important problem in embryogenesis relates to the means whereby new or
emergent aspects of morphogenesis are initiated at specific times in the process. For
example, the relatively simple recursive process of cleavage in amphibian embryos is
followed by the dramatic phenomenon of gastrulation, which transforms the hollow
blastula into the three-layered late gastrula. The transition from cleavage to
gastrulation has been described (Goodwin, 1980) as the expression of a cortical or
surface field which is radially symmetric in the unfertilized egg but develops bilateral
symmetry, normally as a result of sperm entry. The description of such a surface field
in terms of harmonic functions reveals that with bilateral symmetry there appears a
special point on the surface, a saddle point, which is identified with the future dorsal
lip of the blastopore. However, it is assumed that the influence of this singularity on
the morphogenetic process cannot become significant and be expressed until
cleavage transforms the initially solid sphere of the egg into a hollow spherical
shell, the blastula. Then the saddle point can make its presence felt as a point on the
blastula where surface polarity is absent and a radial influence can manifest as the
force causing bottle cell formation and the initiation of invagination. Thus cleavage
is seen as a process which establishes a necessary condition for the emergence of a
new phase of morphogenesis resulting from the interaction between a singularity in
the surface or cortical field and the residual radial component of the cleavage field,
which is described by solid harmonics.

5.6 Generation and Regeneration
There is another basic property of organisms relating the whole and the part, and
this is the capacity of a part to generate or to regenerate the whole. So far, in
discussing embryogenesis, the view has been developed that the fertilized egg is a
whole which undergoes transformations resulting in the appearance of parts which
have distinctive properties but are not, within the context of the whole organism,
autonomous in the sense that atomistic theories would have them be. However, there
was a time when the egg was a cell within the ovary, itself a part of the parent
organism. The oocyte during its maturation develops the capacity to develop into a
new whole. Such a transformation can be achieved also by parts (multicellular
fragments) of hydroids such as Hydra, or parts (noncellular fragments) of ciliate
protozoa such as Stentor, or a cell of a carrot, any of which can regenerate the whole
organism. The capacity of plants to propagate from leaves and stems, of insects and
urodeles to regenerate limbs from stumps, and of higher organisms to regenerate
skin and liver, are other manifestations of this same property of parts to transform
into wholes. It is evident that different organisms vary widely in their regenerative
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capacities, but it is true of all organisms that from particular parts, wholes can be
produced. This defines reproduction or generation, as well as regeneration, and it is
one of fundamental self-organizing properties which living creatures display. What
does a field description of organisms have to say about such behavior?

There is an interesting property of harmonic functions which is suggestive of
precisely this capacity. If such a function is described over any part of its domain of
definition (e.g., part of the surface of a sphere), then the function can be recovered
uniquely over the whole domain by analytic continuation. Thus, in a particular
sense, the part contains the whole. This gives us a kind of existence theorem for the
generative and regenerative properties of organisms, defined as fields describable by
harmonic functions. It is just this type of property that needs to be embodied in a
description of biological self-organization, although the specific property of har-
monic functions described here is neither necessary nor sufficient to account for the
actualities of generation and regeneration in the living realm.

5.7 Structuralist Biology
It may well have become apparent to the reader before this point that the general
context within which this essay has been constructed is that of contemporary
Structuralism, as defined by Levi-Strauss (1968) and Piaget (1968), and developed in
another, more extended analysis by Webster and Goodwin (1982). A field as used
above is an example of a structure in that it belongs to an invariant set (the harmonic
functions) defined by internal relations (those defining the field equation over a
domain), each member of which is a transformation of the other (by a change of
boundary values). The particular field functions which have been used in this
treatment are, in a general sense, not as important as the structuralist principles
which inform the analysis. For these principles emphasize the necessity to identify
that which is specific to a particular area of study, such as biology, before attempting
to develop a theory to “explain” the phenomena. This is why, in approaching the
problem of self-organization in embryogenesis, it was necessary first to identify any
empirical regularities emerging from the study of biological form which might
suggest the existence of principles of organization or invariant relationships in
organisms. The evidence points clearly in this direction so that organisms, and hence
embryos, are indeed structures in the technical sense: i.e., entities with the defining
characteristics of wholeness and self-organization, capable of undergoing trans-
formations which preserve these deep properties while changing manifest form. This
is just a more elaborated description of a view which has been clearly articulated by
those who insisted that the primary problem of biology is that of organization and
form, not of composition or heredity, the latter finding their place within the context
of the former (cf. Russell, 1930; Needham, 1936). The use of the field concept and
the more specific description of biological form in terms of harmonic functions
simply makes more explicit the implications of this view. Gene products can in
certain instances select specific form, such as left- or right-handed spiralling in the
third cleavage planes and, consequently, in the shells of the snail, Limnaea.
However, in general we have seen from the field description of cleavage that the
constraints determining specific form arise from other organizational levels than

Ahead of the Curve

5-54



simple molecular composition, these being such processes as binary cleavage,
animal-vegetal polarity, and a minimum “energy” condition. This emphasizes
once again the primacy of organizational principles in biological process and the
inadequacy of any theory based upon genes and molecules.

We may say that the role played by the genes is to specify the potential molecular
composition of an organism and to define some temporal sequences in which
molecular components are made. These constitute constraints which impose some
limitations on the forms which organisms can assume, and in certain instances may
actually determine higher-order form; but in general the relationship between
“genotype” and “phenotype” is one of causal necessity, not sufficiency, since gene
products act within the context of fields (electrical, visco-elastic, etc.) which generate
morphology. A linguistic analogy would be that genes essentially determine the set
of words out of which a text can be constructed. Words are clearly insufficient to
define a text, which embodies higher-order syntactical, semantic, and; contextual
constraints or rules. These are rules of organization which limit the set of allowed
arrangements of the words within the text. Such organizational principles are
described in this essay as field constraints, which limit the allowed range of
biological forms. The generative principles of organismic morphogenesis then
consist of organizational constraints or rules (laws of form) common to all
organisms in the form of fields (thus defining biological universals) together with
specific constraints characteristic of individual species (which then define partic-
ulars). Genes specify some of the latter but none of the former.

One of the most significant aspects of the structuralist approach is the deliberate
avoidance of any a priori material reduction of the organism to parts such as cells,
molecules, or genes. Once the problem of biological (self-) organization is clearly
and explicitly described, and an appropriate description is available, then it may be
possible to carry out a relevant material reduction. Certainly it will be possible to
achieve an abstract reduction to laws and rules, such as those which have emerged
from the analysis and description of cleavage given above. This description was itself
inspired by a paper which was, in my opinion, a landmark in the discovery of general
rules of morphogenesis expressed in terms which make no reference to composition
or inheritance and are of a purely relational nature (French, Bryant, and Bryant,
1976). To start with the assumption that one knows what the basic parts of the
organism are is to make a strategic error at the outset, which can lead one badly
astray in seeking at once the most economical and the most rigorous analytical
treatment of the problem. The description of organisms as fields which embody self-
organizing properties and can undergo transformations preserving invariant rela-
tionships is, despite its limitations, a step towards a biological science of form and
organization which relates part to whole in a manner which preserves organismic
unity in the diversity of manifest morphology
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Case Study 17: Noise and Prediction in Biology
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Perspective on Irreproducible Results and the Breeding of Pigs (or Nondegenerate
Limit Random Variables in Biology)

Dany Spencer Adams
Research Professor
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and
Michael Levin
Professor
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‘Bernoulli knew that life is lawful to the ensemble though chaos to the individual’

This paper is not an easy read, despite the fact that it mixes real-world examples with
profound and fundamental mathematics concepts. Its applicability ranges among
ecology (Ulanowicz 2007), developmental genetics (Ropers and Grimm 1977),
cognitive neuroscience (Nakada 2011), the spread of disease in a population,
and even cosmology. Indeed, any process where one of the variables studied is a
‘non-degenerate limit random variable’. Random variable means just that. A non-
degenerate limit means that chance can cause large differences in the results of
replicated experiments even if they are performed identically. Flipping a fair coin is
’degenerate’ because eventually, every experiment will converge on a probability of
heads of 0.5. Non-degenerate means the probabilities will not converge to a single
predictable number. Ignoring this can lead to false positives in all kinds of studies.
Cohen gives a couple of examples, but an important point is summed up in this excerpt:

‘I want to emphasize what almost sure convergence to a nondegenerate limit
random variable looks like to people participating in a[n] experiment with this
property. With increasing time, each [researcher’s] experiment settles down to
systematic, regular, and lawful behavior; his graphical plot of proportion [with
phenotype X] as a function of time wiggles at first but smooths out gradually to a
steady flat line [at a certain value]. However, if he repeats the experiment or
gets a friend to do so under identical conditions, … the curve of the replicate
experiment levels out [at a value that] seems to bear no relation to the original.
It is only after a change in the level of analysis—only after considering an
ensemble of replications—that regularity and simplicity reappear.’

In other words, if you are dealing with a non-degenerate limit random variable,
replicates of experiments (each of which comprises many samples) may be
performed identically, but there will nonetheless be differences among results. To
learn about the population, not just about sets of samples, requires examination of
the results from ‘ensembles’ of replicated experiments.

More broadly, the paper explores the highly counter-intuitive dynamics of
recursive processes, so prevalent in biology, where events are modified by the
outcomes of prior events. Under those conditions, small initial differences can be
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amplified toward distinct outcomes. This not only makes prediction difficult, but can
mislead one toward inferring the presence of deterministic causes where the role of
chance is sufficient to explain strongly divergent results from identical experimental
setups. Though not often cited, the concepts in this paper (and the even earlier
discussion of Polya’s Urn (Eggenberger and Polya 1923)) are fundamental to the
understanding of chance, causation, and prediction in biology.
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Irreproducible Results and the Breeding of Pigs
(or Nondegenerate Limit Random Variables in Biology)

Joel E. Cohen

Many people believe that a coin in ordinary currency will come up heads nearly half
the time it is tossed. Few people have reported a systematic experimental test of that
belief.

DuringWorld War II an English statistician, J. E. Kerrich, was in Denmark when
the Germans overran it. Interned under benevolent Danish supervision, he
performed and recorded (Kerrich 1946) 10,000 spins of an ordinary coin. The
proportions of trials which came up heads after ten, a hundred, a thousand, and ten
thousand trials were, respectively, 0.400, 0.440, 0.502, and 0.507. If the ten thousand
trials are broken into ten blocks of a thousand trials each, then the proportions of
heads after each of the ten blocks were 0.502, 0.511, 0.497. 0.519, 0.504, 0.47 6,
0.507, 0.5I8, 0.504, and 0.529.

Viewed as a single long series, the data show that the proportion of heads tended
toward and remained near one-half as the number of trials (tosses or spins)
increased. Viewed as ten shorter series, the data suggest that the proportions of
heads in independent experiments under the same conditions tended toward a single
common value.

In 1713, Bernoulli constructed a mathematical idealization of the coin-tossing
experiment as a sequence of independent trials each with a fixed probabilily p of
coming up heads. Here p is some fraction near one-half. Imagine a very large
number of copies of Kerrich all tossing copies of the same coin under the same
conditions in perfect synchrony, but with the outcome of each coin toss independent
of every other outcome. Bernoulli showed that, as the number of tosses increases, the
proportion of all the copies of Kerrich for each of whom the fraction of his trials
coming up heads differs from p by less than some arbitrarily small fixed amount
approaches 100%. Mathematicians call this phenomenon convergence in probability
to the constant limit p.

Two centuries later, in 1909, Borel proved that the same imaginary situation is
even more lawful than Bernoulli had supposed. Bernoulli’s result does not rule out
the possibility that the proportion of heads in the trials of a particular copy of
Kerrich could continue indefinitely to wander away from p by at least some fixed
nonzero amount. Borel ruled out this possibility: for 100% of the copies of Kerrich,
as the number of each man’s tosses increases, the proportion of his trials coming up
heads must approach and remain arbitrarily near the value p. Mathematicians call
this phenomenon convergence with probability 1 or almost sure convergence to the
constant limit p (see Loève 1963, pp. 14 and 19 for short proofs). Few people find
these results a shock to their intuition.

The author is with Rockefeller University, New York, NY 10021.
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ONE GOOD URN
Now consider an equally simple experiment. Suppose a very large box (whose
capacity can be extended indefinitely by adjunction of similar boxes) initially
contains one green ball and one blue ball. Choose one ball at random, look at its
color, replace the ball in the box, and add to the box another ball of the same color
as the one chosen. At each successive point in time, say once every second, choose
one ball at random and then repeat exactly the above. The precise meaning of “at
random” is that if there are n balls in the box when a drawing is made, each ball has
an equal chance 1/n of being drawn.

The proportion of green balls in the box is the number of green balls divided by
the total number of balls, whether blue or green. What will happen to the proportion
of green balls as time increases?

Before reading further, please make a serious effort to guess. You have three
guesses. When I proposed this problem to a very august mathematical ecologist in
the course of a country march, he gave up after two wrong guesses. When I first
heard the answer myself, I was astonished both by the general phenomenon it
exemplifies and by the particular details. On reflection, I think the general
phenomenon permeates population biology. My purpose here is to describe the
phenomenon, give some biological examples of it, and suggest its consequences for
the interpretation of biological data.

The experiment just described is a special case of what is known as “Polya’s urn
scheme.” Eggenberger and Polya (1923) introduced the scheme in 1923 to model the
spread of infection in a population. David Blackwell and David Kendall (1964)
studied another generalization of this experiment and even mentioned its implica-
tions for stochastic population growth. But an overgrowth of related mathematical
results obscured their message for biologists.

So, suppose a single Kerrich performs the experiment with blue and green balls.
As time goes on, the proportion of green balls will converge to some limit p. (This
fact alone is not obvious.) As in the Bernoulli model, “converge” means that if you
pick some nonzero tolerance interval around p, then there is some time at which the
proportion of green balls will be in that tolerance interval and after which it will
never leave it; the proportion approaches and remains near p.

But what is p? For the first copy of Kerrich, call him Kerrich1, all one can say is
that his value of p, call it p1, lies between 0 and 1 inclusive The chance that his p1 is
exactly equal to any particular fixed p between 0 and 1 is zero! However, the chance
that his p1 falls between 0.2 and 0.3 inclusive is exactly 0.3−0.2 = 0.1.

At the next desk, Kerrich2 is finding that the proportion2 of green balls in his box2
is getting and remaining closer and closer to a fixed number p2. But whereas
Kerrich1’s proportion seems to be approaching p1 = 0.2435871…, his proportion2 is
approaching p2 = 0.9342265 … And on his other side, Kerrich3’s proportion is
approaching p3 = 0.59943312.… Each man’s proportion of green balls converges to
a limit, which is constant for each particular man but which varies from one man to
another, even though all- are performing exactly the same experiment. In this case,
the limiting proportion p is uniformly distributed over the interval from 0 to 1: that
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is, the chance that Kerrich17’s limit p17 falls between a and b, where 0 ⩽ a ⩽ b ⩽ 1, is
b - a.

Blackwell and Kendall (1964) proved that if the box starts out with one ball of
each of k different colors, where k may exceed 2, then the limiting distribution
of proportions of each of the k colors is uniform over the set of all possible ways of
dividing 100% into k proportions.

The behavior of this hypothetical experiment exemplifies what mathematicians
call almost sure convergence to a nondegenerate limit random variable.
“Nondegenerate” means that the limiting value of the proportion of green balls is
not restricted to a single point. In Bernoulli’s model of the real experiment which the
real Kerrich performed, the limit random variable is degenerate because every such
Kerrich would (in theory) have obtained the same limiting proportion p of heads.

This hypothetical experiment behaves identically to an apparently quite different
experiment. Suppose each Kerrich has a box with one green and one blue ball. He
receives a coin; one side is green, one blue. Though the coin looks fair, the real
probability p that the coin will come up green is distributed uniformly between 0 and
1. For any given coin, p is constant in time. No man has any reason to suspect that
his coin differs from any of the others; in particular, he does not know his coin’s
value of p. Once a second, each man flips his coin and adds to his box a ball of the
color indicated. Then (since this experiment is just Bernoulli’s model and Borel’s
theorem applies) each man’s proportion of green balls converges with probability 1
to his coin’s p.

Here each man’s limiting proportion p is assigned first. The color of the next ball
is chosen by an independent trial with probability p of green. In the previous
hypothetical experiment, each new ball’s color is determined by random choice
among the colors which have occurred so far. To an observer of the balls deposited
in the boxes, the two experiments are indistinguishable3

Before proceeding to biological examples. I want to emphasize what almost sure
convergence to a nondegenerate limit random variable looks like to people
participating in an experiment with this property. With increasing time, each
man’s experiment settles down to systematic, regular, and lawful behavior; his
graphical plot of proportion green as a function of time wiggles at first but smooths
out gradually to a steady flat line. However, if he repeats the experiment or gets a
friend to do so under identical conditions, where the curve of the replicate experi-
ment levels out seems to bear no relation to the original.

It is only after a change in the level of analysis–only after considering an ensemble
of replications–that regularity and simplicity reappear. It is the law of the limit
random variable that is simple.

In retrospect, Bernoulli himself made just such a change in the level of analysis. If
each copy of Kerrich were to toss a coin just once, then Kerrich1 might get heads,
Kerrich2 tails, Kerrich3 again heads, and so on without apparent pattern. As the size
of the ensemble of copies of Kerrich increases, however, the proportion of copies

3Violet Cane (197 3) has discovered an equally surprising, and closely connected, observational equivalence of
models for negative binomially distributed counts, such as accident statistics.
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whose single trial results in heads approaches the limit p near one-half. Already
Bernoulli knew that life is lawful to the ensemble though chaos to the individual.

BACK ON THE FARM
Now suppose that a breeding stock on a pig farm is maintained by mating a boar
and a sow each generation. One male and one female from the offspring are chosen
to mate in the next generation. Suppose there is a single gene locus at which, in the
initial generation, both parents are heterozygotes. For example, each has genotype
Aa. Since each off-spring receives one allele chosen at random from each of its
parents, there is positive probability that both offspring will have the genotype aa. If
this happens, all future offspring will have the same genotype at that locus. There is
an equal positive probability that both offspring will have the same genotype AA,
with the same consequence.

Sooner or later both offspring must become homozygous for the same allele, and
geneticists have calculated the rate of approach to homozygosity under the regime of
inbreeding just described. The offspring of a particular pair of heterozygous parents
will fixate on the genotype aa with probability one-half and on the genotype AA
with probability one-half.

Aside from their good looks and intelligence, pigs are bred for characteristics of
commercial interest such as quantity of edible meat. These quantitative characters
are believed to be controlled by the additive effects of genes at several loci. Suppose,
for the sake of illustration, that weight is controlled by five independently assorting
loci with alleles A, a; B, b; and so on up to E, e. Let homozygosity for the capital
letter at a locus correspond to an increase in one kilogram over the heterozygote and
homozygosity for the small letter at a locus correspond to a decrease in one kilogram
below the heterozygote.

If a breeding line is started with parents both of genotype AaBbCcDdEe, then
eventually the descendants in that line are certain to drift to homozygosity, at each
locus the same for both male and female. The weight of pairs in successive
generations will cease fluctuating eventually, all else being equal, and will be the
same for both members of the pair. Their weight at fixation will be 5 kilograms
above those of their initial ancestors if all five loci fixate at capital letters, 3
kilograms above if four of the five loci fixate at capitals. 1 kilogram above if three of
the five fixate at capitals, or symmetrically below the weights of their ancestors. The
weight at fixation of another line of descent might differ. As the size of an ensemble
of lines of descent increases, the proportions of lines at each weight approach the
probabilities calculated from a binomial distribution with parameters 5 and 1/2
(roughly, a bell-shaped histogram with its highest values symmetrically placed on
either side of the ancestral weight).

When a selective breeding program uses a finite stock of pigs (and infinite
numbers of pigs have not yet been observed), this underlying drift, due to random
sampling of genes, sets limits to what selection can accomplish. Moreover, drift to a
nondegenerate limit random variable sets different limits in different replications of
an identical breeding program. As Robertson (1960, p. 244) observed: “If u(q) [the
chance of fixation of an allele whose frequency at the beginning of a breeding
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program is q 1 is very different from unity for many genes, we will notice that
replicate lines from the same initial population will be very different in the limit they
reach.” In our example, q = l/2 and u(q) = l/2 for all five loci, so Robertson’s warning
applies.

A failure to recognize the nondegeneracy of the limit random variable to which
polygenic characters drift has practical consequences. Hill (1971, p. 294) points out
that some authors estimate realized heritability in a single selection program “by
fitting a linear regression to cumulative response and cumulative selection differ-
ential each generation. But with genetic sampling (drift) the variance of the
population mean increases each generation, and these means become correlated.
In standard regression analysis the observations are assumed to have equal variance
and be uncorrelated, so that the estimates of variance of realised heritability
obtained by. . . . using standard regression techniques are biassed downwards. In
other words, the observed variance among heritability estimates from a replicated
experiment would exceed the variance predicted from a single replicate.” Hill gives
an explicit quantitative analysis of what nondegenerate drift does and what to do
about it in an important series of papers (most recently, 1974).

While geneticists have long known of genetic drift and have recently assayed its
practical impact on breeding programs, other areas of population biology seem to
have remained in bliss. Suppose two bacteria, say a wild type and a mutant, are
distinguishable by some marker but are absolutely identical with respect to growth
in a particular culture, which is sufficiently favorable to growth that no deaths occur.
After a while one or the other of the bacteria will divide, giving three bacteria. Then,
one of those three will divide, each one being equally likely, and so on. If we ignore
the interval between divisions and advance an artificial clock by one unit at each
division in the culture, we obtain exactly the Polya urn model. If we identify the wild
type with green balls, and the mutant with blue, then after a long time, since the
proportion of green balls converges to a limit, so will the proportion of wild type
bacteria in the culture, and to the same limit. The chance that this limit is exactly
one-half is zero. lf the limit is p, the culture would behave as if each new bacterium
added were wild type with probability p. Blackwell and Kendall (1964, p. 295) state
succinctly: “This might lead the incautious observer to attribute a real difference to
the … clones in respect of their growth mechanism, although in fact they are in all
ways identical.” The same phenomenon might lead incautious observers to infer that
a genetic change affecting growth had occurred if they attempted to replicate the
experiment and found, as they must, a different limiting proportion of the wild type.

Similarly, suppose that individuals of a growing population fall into one of k age
categories, where k may exceed 2. Under certain assumptions (Athreya and Ney
1972, p. 206), which may even be defensible in some real situations, the proportions
in each class will approach proportions which depend only on the fertility and
mortality, but not on the initial numbers of individuals, of each age class. Moreover,
the population will (with positive probability) eventually grow exponentially at a
rate which also depends only on the fertility and mortality of each age class. If total
population size is plotted on a logarithmically scaled ordinate against time on the
abscissa, the graph will eventually fall along a straight line. The point at which this
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straight line intersects the time axis is where a deterministically growing population
with the same growth rate would have had to begin growing exponentially in order
to fall into step alongside the stochastically modeled population. Call this point the
lag time. It is a nondegenerate random variable. Though the laws of growth are the
same, the lag times, or times to apparent exponential take-off of growth, of initially
identical populations obeying this stochastic model are different.

No deterministic interpretation of such differences in limiting proportions or lag
times could possibly be right, though the differences are real enough. The variation
in an ensemble of replicates must become the object of study when the limit random
variable of an individual replicate is nondegenerate. Luria and Delbrück (1943)
practiced this precept in their classic experimental proof that phage-resistant
mutants arise randomly.

But population biologists who study macroscopic populations seem less inclined
to this view of nature. Here are a few heretical possibilities Is it possible that
differences in successional changes and in so-called climax state in apparently similar
habitats are not to be explained as due to any causal difference between the habitats,
but should be interpreted as variation in an ensemble of such habitats? Is it possible
that the differences in species composition of apparently similar islands result from
the operation of identical forces which produce regularity only in an ensemble of
islands? Could observations that one animal population cycles with a period of 4
years and another with a period of 3 or 13 or 17 years become intelligible if the
ensemble of periods of cycling animal populations were examined? Could the
differences in the sizes of prides of lions or in the social organization of troops of
Japanese’ macaques reflect the inherently but lawfully variable outcome of identical
underlying stochastic forces, rather than deterministic ecological differences?

In behavior, for example, is it possible that some of the significant differences
among mother-child interactions, which are obvious by the time a child reaches five
years of age, are due neither to inherent differences among individuals nor to
environmental differences, but to sequentially dependent random forces applying
equally to all mother-infant pairs? (Which hand the mother first holds the infant with
is random, perhaps, but that choice affects the skill with which she performs tasks
with her remaining hand, which affects the infant’s response, wh1ch affects.…)
Could nondegenerate stochastic limits provide useful models of what students of
plant development (Evans 1972) call “ontogenetic drift”?

The possibilities I raise will leave cold or enrage people who believe they know
that deterministic factors explain some of the differences I cite. They may well be
right in part. All I suggest is that there may be variation which deterministic factors
do not usefully explain and that the possibility of understanding phenomena is
preserved by redirecting attention to a lawful-looking ensemble.

CHAOS AND COSMOLOGY
May (1974, p. 645) has emphasized the ecological interpretation of the mathematical
fact that very simple deterministic difference equations can have astonishingly messy
trajectories, including “cycles of any period, or even totally aperiodic but bounded
… fluctuations.” The recent, still unpublished work of several people shows that
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many (though not necessarily all) difference equations studied by ecologists can act so
weirdly. Implicit is the suggestion that the apparent variability of population
fluctuations may represent the working of a simple deterministic mechanism. The
behavior predicted by this mechanism is so sensitive to the values of the parameters in
at least some ranges that it will probably be necessary to compare observations with a
probabilistic approximation. Thus, the apparent variability of population fluctua-
tions, for example, is interpreted at two levels in the models May and others consider:
first, in the complexity of the trajectories predicted with fixed parameters (including
initial values); and second, in the impossibility of estimating exactly, and the likely
actual fluctuation of, the parameter values. These models do not attempt to account
for uncertainty or fluctuations in parameters but assume, at the kernel of phenomena,
a simple determinism.

It seems impossible to reject with any data an affirmation of faith that a
deterministic mechanism could supply sufficient apparent variability to describe a
real population whose parameters were known and constant. The preceding
biological examples, and others which could be cited, suggest an alternate view:
At least some biological processes incorporate stochastic elements that can cause
long-term behavior which appears lawful only in an ensemble of replicates. The
empirical program suggested by this view is to examine such ensembles.

Worn exclusively, the deterministic glasses of Laplace and the stochastic glasses
of Charles Sanders Peirce give equally roseate views of the world. In the interest of
fair advertising, I have to admit that the strategy of moving from the individual to
the ensemble to find order in variability will not always work. There are stochastic
processes which approach a limit (any kind of limit, degenerate or not) only with a
probability 0. Some misanthropes claim experience is like that, too: Some parts of
nature simply change more slowly than others, they say, and those parts that change
slowly compared to the time scale we are interested in serve us as points of reference,
or limits built on sand. Such misanthropes may be right.

Having speculated thus far, let me raise and answer a metaphysical question
prompted by Polya’s urn which would, I hope, have amused Peirce as it amuses me
on dark nights. If you and I had been- born in another universe which had started
from exactly the same initial conditions as our present one and which had been
subject to the same dynamics, would we necessarily infer the same Jaws of nature as
we (in the collective sense of civilized thought) infer for this universe? I take the
existence of genetic drift on pig farms as establishing a stochastic element in the
dynamics of the universe, and therefore have no guarantee that the apparent
lawfulness in this copy of the universe would take the same form in any other.
The order of this universe may be an irreproducible result.4
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