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Calculation of Refractive Index Distribution from
Interferograms Using the Born and Rytov’s Approximation

Koichi IWATA and Ryo NAGATA

Department of Mechanical Engineering, College of Engineering,
University of Osaka Prefecture, Mozu, Sakai, Osaka 591

Discussion is made of calculational reconstruction of refractive index distribution from
“multidirectional interferograms.” Two approximate calculation formulae are given for two-
dimensional case. One is derived using the Born approximation and corresponds to a generaliza-
tion of the formula in X-ray structure analysis. The other is obtained using Rytov’s approxima-
tion and a generalization of straight path approximation.

Introduction

§1.

Three-dimensional distribution of refractive
index can be measured by ‘“‘multi-directional
interferometry.”!” The procedure is in two
steps.? The first step is to measure complex
amplitude of a scattered or transmitted light
wave when a wave is incident on an object with
spatially varying refractive index. This meas-
urement can be made by using ordinary or
holographic interferometry. Many similar
measurements are performed corresponding to
many incident waves propagating in different
directions. In this paper, details of these
measurements will not be discussed; the meas-
urement of complex amplitude is assumed
possible. The second step is to calculate refrac-
tive index distribution from the measured
complex amplitudes. Almost all the proposed
calculation procedures are based on the as-
sumption that light travels straight.’:*~> This
restricts its applicability to large objects having
small refractive index variation: e.g. in aero-
dynamic experiments. On the other hand,
Wolf has proposed a calculation procedure?
using the Born approximation for three-di-
mensional case. Some experiments were per-
formed according to the theory.®:”’ However,
when a small object is to be measured, Wolf’s
calculation procedure is found to contain
certain difficulty in practical computation, as
will be shown in §2.

In order to find a calculation procedure
applicable to the whole range of objects, the
discussion should be based on Maxwell’s
equations. In this paper, however, we neglect
vectorial nature or polarization of light and
also assume that a total complex amplitude
U'(r) of monochromatic light is related to
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refractive index n(r) at a point r by the wave
equation

V2U\(r)+k2{n(r)}*U'(r)=0, 1

where k, is the propagation constant in vacuo.
The present problem is to find a procedure for
calculating the coefficient n(r) from the be-
haviour of U'(r)’s outside the object for many
different incident waves or under many different
boundary conditions with eq. (1) as the basis.
This problem may be classified into an inverse
problem of a partial differential equation.®’

This paper presents two approximate solu-
tions of the inverse problem when incident
waves are plane. For simplicity two-dimen-
sional problem is discussed, and the inversion
formulae are given only for two-dimensional
case.* The essential points of the discussions
and conclusions, however, will be applicable to
three-dimensional problem.

§2. The Born Approximation

2.1 Approximation of the wave equation
As an incident wave is plane,

(2
where s is a unit vector in the direction of
propagation and n, is the constant refractive
index outside the object. The total wave U" is
written as the sum of the incident wave U' and
the scattered one U®. Under the assumption

Ui(s, r)=exp (ik,ngys-r),

|UT|»>|U, 3
eq. (1) is reduced to the equation
VU +k3U*=F,U', )
where
Fy=—k3{(n/no)* -1} 5)

*Derivations of the inversion formulae are not given in
this paper; they will be published in the near future.
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and k,=kn, Equation (4) is the first order
Born approximation of eq. (1). By using
Green’s function G(r, r') of eq. (4), U® can be
expressed by an integral representation®

Us(s, r)=— 4% jFl (r)Ui(s, ¥')G(r, r')dV’, (6)

where

G(r, r')y=inHy(kolr—r'|) @)
for the two-dimensional problem. In this and
the subsequent equations the Hankel function
of the first kind and mth order is denoted by
H,. The present problem is reduced to the
problem of finding an inversion formula of
eq. (6).

To estimate the valid region of the appro-
ximation, we introduce a simple model which
has a constant refractive index ny+ An inside
a circle with radius a:

ng for [r|>a

n(r)= {n0+An for [r|<Za. ®)
When we calculate U® using eq. (6) for this
model and compare U with U® at |r|=0, eq. (3)
is converted to the condition®

k,Ana«<]1. )

If we adopt this as a rough criterion of validity,
the Born approximation seems effective for a
small object unless refractive index variation is
very small. For example, we obtain the condi-
tion a«1 mm for light in visible spectrum
when An~ 1074,

2.2 Inversion formula
Wolf has proposed an inversion formula of

y
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Fig. 1. Optical system and coordinates for the inver-
sion using the Born approximation.

eq. (6).? In his proposal U* is measured on two
fixed planes (x=const) shown in Fig. 1 with
broken lines and its Fourier transform is
calculated. However, when an object having
small dimension is considered, the scattered
wave is almost cylindrical for an ordinary size
of the measuring surface. Phase of the cylindri-
cal wave varies very rapidly on the measuring
planes. In order to express U* properly, the
scattered wave has to be sampled at an interval
in the order of wavelength, which causes the
computation to require extraordinarily long
time and large memory.

To remove this difficulty we have to measure
U*® on a cylindrical surface (r=const) shown in
Fig. 1 as a bold circle. The inversion formula
for this system is obtained by expressing the
position with polar coordinates (r, 8) and (r’,
0’), and the propagation direction of the inci-
dent waves with 6,:

1 2n
Hm(ko") im+ IA(m’ 00)= Py Us(ra 0, 00)
2n ),

x exp (—im6)do, (10-a)
~ 1 &
Fik,O===3 X Am,0))
x exp {im(2¢ —0,—mn)},  (10-b)

where
i 3
k=2kq cos (E—0y,—m) §§£—00§§n. (1)

In these equations F, is the Fourier transform
of F, and (k, &) is the polar coordinate in the
Fourier plane. For a single incident wave, F,
can be calculated on a circle represented by
eq. (11) and shown in Fig. 2. From measure-
ments with various 6,, we obtain F . inside the
circle of radius 2k, and the Fourier inversion
can be made with resolution of 4,/2, where
/o is the wavelength in the surrounding me-
dium. Distribution of refractive index can be
calculated with this resolution.

2.3 Relation to X-ray Structure analysis
When k,r— 00, U® in eq. (6) is approximated
by the equation

U, 6, 00)=—in2\/ 2

nkor

y exp{i<kor— ’Z‘)} U6, 6,), (12)
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So

Fig. 2. Fourier plane and the region accessible by the
inversion using the Born approximation.

where
1 ’ ’
030,00 =32 | i, 0)
x exp [ikor'{cos(8’ —6,)—cos (0 —6)}]
xr'dr’'df'. (13)
Substitution from eq. (12) into eq. (10) leads to
F\[2ko cos (E—0,—m), &l=Ug(2& — 0o —, Bo).-
(14)
This agrees with the basic equation in X-ray
structure analysis.!® It should be noted that
U; does not contain the unimportant phase
factor exp (ikor), which causes the difficulty in
the Wolf’s calculation procedure. Equation
(10) corresponds to a generalization of the
inversion formula of the X-ray structure ana-

lysis, which is valid also when the measuring
surface is not in the Fraunhofer region.

§3. Rytov’s Approximation
3.1 Approximation of the wave equation

We shall introduce logarithmic amplitudes
defined by the equations

Y'=In U, y'=InU', ¢, =In(U"/U"). (15)

By using these notations, eq. (10) is rewritten
into an equation
VA, + (V)2 +2VYi VY, + k2(n* —n3)=0. (16)
Under the assumption

Vi[> Vil 17
this equation is reduced to
VX U+ k3, U)=F,U". (18)

As this equation has the same form as eq. (4),

its integral representation is given in the same
form as eq. (6) in terms of the Green’s function
defined by eq. (7):

. 1 .
Yi(s, NU(s, r)=— ym jFl(r')U‘(s, r’)
x G(r, ') dV". (19)

This approximation is due to Rytov.!) The
inversion of this equation is the present pro-
blem.

A rough criterion!? of the validity of this
approximation is obtained from eq. (17) as

(20)

for large-scale distribution of refractive index:
i.e. for an object where no significant variation
of refractive index exists within a scale much
larger than the wavelength of light. For small-
scale distribution, the amplitude of the scat-
tered wave must be small compared with the
amplitude of the incident wave in addition to
eq. (20). This condition is the same as that of
the Born approximation.

As far as the above criterion is concerned,
Rytov’s approximation seems to impose no
severe restriction on the size of the object with
large-scale distribution of refractive index.

no>|n—ng|

3.2 Inversion formula

The inversion formula similar to the Born
approximation may be applied to the present
problem because both integral representations
have a similar form. However, in order to
avoid rapid phase variation on the left side of
eq. (19), we have to measure y, on a plane
parallell to the wavefront of the incident light.
Such a measuring surface (x,=const) is shown
in Fig. 3. In the figure the coordinate system
(x, y) is fixed and the coordinate system (x,,
yo) rotates according to the direction of the
incident wave. In this system U' may be called
as a transmitted wave. The inversion formula
is obtained in a similar procedure given by
Wolf? for the inversion of eq. (6). The result
is as follows:

A 1 (=
b3, .00 =5; |

WI(XO7 y09 80)
xexp (—ivyg)dyo,  (21-a)
. iu . A

F(U, V)= ;CXP {—i(u—ko)xo ¥ (xo,0, 05),

(21-b)
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Fig. 3. Optical system and coordinates for the inver-
sion using Rytov’s approximation.

Ui n(r)

where
U=(u—k,) cos 8y—v sin 0,
V=(u—kg) sin 6,+ v cos ,,
W+ v =ki.

(22)

In these equations arguments of the Fourier
transform F, are in a rectangular coordinate
(U, V). For a single incident wave, F; can be
calculated on a half circle expressed by eq. (22)
and shown in Fig. 4. However, due to a large
interval of practical sampling of V,, its Fourier
component can be calculated only in a region
of small v. As a result, by varying 6,, F, is
obtained in a region of rather small spatial
frequency: e.g. a region enclosed by a broken
circle in Fig. 4. Refractive index can be calcu-
lated by the Fourier inversion although the
resolution is limited. The limited resolution

rV
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/ \
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o

Fig. 4. Fourier plane and the region accessible by the
inversion using Rytov’s approximation.

does not harm its applicability if Rytov’s ap-
proximation is valid also for large objects. If
the sampling is made in an interval of the order
of wavelength and also the back scattered wave
is measured, accessible region becomes larger
and resolution improves.

3.3 Relation to straight path approximation
In the case when k,— o0, as v<k,, eqs.
(21-b) and (22) are reduced to the equations

171 4
(U, V)= E[E'h(xo, v, 00):| (23)

and

U=—vsinf,, V=vcosb,, (24)

where n,=n—n, and A, is the Fourier trans-
form of n,. As the real part of the value in the
brackets corresponds to optical path difference,
this equation agrees with that of straight path
approximation.”’ The imaginary part of eq.
(23) has a similarity with the equation used in
the three-dimensional reconstruction of ab-
sorption coefficient from radiographs and
electron micrographs.!3-14

Error Ax, in the determination of position
of the measuring surface affects the value of F,
through the exponential factor in eq. (21-b).
The condition that we can neglect the error is
that

|(u—ko)Axo|=|U cos 8y + V sin 6]

X |Ax,| < 27. (25)

In a qualitative expression, measuring surfaces
should be located more accurately as we wish
to calculate refractive index with higher re-
solution. This result is applicable also to
ordinary  “uni-directional interferometry,”
where refractive index distribution is calculated
under the assumption of straight path of light
and constant refractive index along the path.

§4. Conclusion

Two approximate inversion formulae in
multi-directional interferometry were given for
the two-dimensional case. Both are valid when
variation of refractive index in an object is
small. As for the size of the object, the formula
using the Born approximation, eq. (10), seems
more applicable to a small object. On the other
hand, the formula using Rytov’s approxima-
tion, eq. (21), is applicable to a large object
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when practical measurement is taken into con-
sideration. In this sense the two procedures are
complementary.

The shape of the measuring surface should
conform to the respective situation in order to
avoid computational difficulty: for the Born
approximation and a small object the measur-
ing surface is suggested to be a cylinder and for
Rytov’s approximation the measuring surfaces
are planes which are parallel to the wavefronts
of corresponding incident light.

Discussions on the relation of multi-direc-
tional interferometry to X-ray structure analysis
clarified that they can be considered as different
aspects of the same problem: an inverse pro-
blem for the wave equation having a variable
coefficient.

Although the given inversion formulae are
two-dimensional, the above conclusions will
be applicable to three-dimensional case.

The authors greatly appreciate the financial
support for this study by the Matsunaga Science
Foundation.
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