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The recent progress of linear-scaling or OðNÞ methods in density functional theory (DFT) is remarkable. In this paper, we show that all-atom
molecular dynamics simulations of complex biological systems based on DFT are now possible using our linear-scaling DFT code CONQUEST. We
first overview the calculation methods used in CONQUEST and explain the method introduced recently to realise efficient and robust first-principles
molecular dynamics (FPMD) with OðNÞ DFT. Then, we show that we can perform reliable all-atom FPMD simulations of a hydrated DNA model
containing about 3400 atoms. We also report that the velocity scaling method is both reliable and useful for controlling the temperature of the
FPMD simulation of this system. From these results, we conclude that reliable FPMD simulations of complex biological systems are now possible
with CONQUEST. © 2016 The Japan Society of Applied Physics

1. Introduction

Molecular simulation technology is now commonly used
to explore biological phenomena of biomolecular systems.
It helps us understand the mechanisms of various biological
phenomena, including enzyme reactions, photoexcitations,
molecular interactions, and so on.1) Although most molecular
simulations of biological systems use parameterised inter-
atomic potentials, the reliability of such empirical potentials
in various environments or for some phenomena is some-
times doubtful. Thus, it is important that we should be able to
perform molecular simulations based on quantum mechanics.
However, quantum simulations, such as first-principles (FP)
simulations based on density functional theory (DFT), are
usually very expensive, especially for large systems. As is
well known, the CPU time of a conventional DFT calculation
is proportional to the cube of the number of atoms N in
the simulation cell. It is very difficult and expensive to
treat systems containing more than 1000 atoms within DFT.
To reduce this demanding cost, the quantum mechanics
and molecular mechanics (QM=MM) hybrid method or its
molecular dynamics version (QM=MM-MD) is often used
for molecular simulations on biological systems. However,
it is usually impossible to remove the effect of the artificial
boundary between the two regions introduced in the hybrid
calculations. There are increasing demands for all-atom DFT
simulations on complex biological systems.

In this respect, the recent advances in a computational
technique for large-scale DFT calculation called the linear
scaling or OðNÞ method, whose calculation cost is only pro-
portional to N, are encouraging.2) We have been developing
our own linear-scaling DFT code called CONQUEST3) and have
recently demonstrated that we can treat million-atom systems
with DFT using the code.4,5) We have also recently intro-
duced a method to realise efficient and reliable first-principles
molecular dynamics (FPMD) on large systems, by combining
the OðNÞ DFT and extended Lagrangian Born–Oppenheimer
molecular dynamics (XL-BOMD) methods.6) We investi-
gated the requirements for calculations with accurate OðNÞ
FPMD simulations and actually performed the FPMD simu-
lation of a very large crystalline silicon system containing

32,768 atoms.7) We expect that we can also employ this
technique for large and complex biological systems.

In this paper, we overview the calculation methods used
in CONQUEST and explain the combined method for efficient
and accurate FPMD simulations. Then, we show that we
can perform reliable all-atom FPMD simulations of a test
DNA model, a DNA decamer hydrated with a large number
of water molecules, consisting of about 3400 atoms. We
demonstrate that the FPMD simulations on the hydrated
DNA system are robust and accurate.

2. Linear-scaling first-principles molecular dynamics
method

2.1 Linear-scaling DFT code CONQUEST

In this subsection, we first overview the computational
methods and recent progress of CONQUEST.

In CONQUEST, we use the Kohn–Sham density matrix
defined as

�ðr; r0Þ ¼
X

n

fn�nðrÞ��
nðr0Þ; ð1Þ

where Ψn(r) is the eigenfunction (Kohn–Sham orbital) of
the Kohn–Sham Hamiltonian for the band index n and fn is
its occupation number.8–10) The total energy based on DFT
can be calculated from the density matrix using the
pseudopotential method and a standard exchange–correlation
functional such as the local density approximation (LDA) or
a generalised gradient approximation (GGA). Note that an
efficient technique for calculating the exact exchange term
has recently been introduced11) to the code, and thus hybrid
functionals are also now available.

In CONQUEST, we represent the density matrix by localised
orbitals called “support functions”, ϕiα(r), with the matrix
elements Kiα, jβ, which are the coefficients of the density
matrix expressed in this nonorthogonal basis of support
functions.

�ðr; r0Þ ¼
X

i�; j�

�i�ðrÞKi�; j��j�ðr0Þ: ð2Þ

The support function ϕiα(r) for the orbital α is centred on
the atom i and is nonzero only inside the “support region”.
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The support functions themselves are represented in terms
of basis functions, and two types of basis sets are available
in CONQUEST: B-splines on regular grids12) and numerical
pseudo-atomic orbitals (PAOs).13–15) When B-splines are
used, we can systematically improve the accuracy of the basis
set by reducing the grid spacing and can reach the planewave
accuracy. On the other hand, we can employ efficient calcu-
lations with a reasonable accuracy by using PAOs as basis
sets. Even with PAO basis sets, we can improve the accuracy
by increasing the number of basis functions, but the com-
putational cost usually increases very rapidly. We have
recently introduced a method to treat such accurate but large
PAO basis sets efficiently.16–18) With this method, called the
multisite support function (MSSF) method, we can perform
accurate calculations without increasing the CPU time
significantly.

The matrix Kiα, jβ is obtained either by the conventional
diagonalization method, or by a linear-scaling [or OðNÞ]
method. In the case of OðNÞ calculations, CONQUEST uses the
density matrix minimisation (DMM) method proposed by Li
et al.19) In this method, we express the matrix K following
McWeeny’s purification transformation,20)

K ¼ 3LSL � 2LSLSL; ð3Þ
to impose weak idempotency on the density matrix. Here,
the matrix L is called the auxiliary density matrix and S
(Siα, jβ = 〈ϕiα∣ϕjβ〉) is the overlap matrix between the support
functions. To achieve the OðNÞ behaviour using the locality
of the density matrix, we introduce a spatial cut-off RL on
the L-matrix, Liα, jβ = 0 for ∣Ri − Rj∣ > RL, where Ri are the
atomic positions. Then, we calculate the matrix elements
Liα, jβ, which minimise the DFT total energy using numerical
optimisation methods, such as the residual minimisation
method.21,22) One of the advantages of the DMM method is
that it satisfies the variational principle and we can monitor
the accuracy of the OðNÞ calculations by checking the RL

dependence of the total energy. Figure 1 shows the RL

dependence of the total energy for a DNA system, which is
the target of the MD study shown in the next section. Here,
the total energy using the Harris–Foulkes functional obtained
by non-self-consistent (NSC) technique23,24) is also presented
together with the DFT total energy using the self-consistent-
field (SCF) charge density. This graph shows that the total
energy converges as the cutoff applied to the L matrix is
increased, regardless of self-consistency. We can also see that

the result with the NSC technique converges faster than the
SCF result. This is probably due to the fact that the electronic
structure obtained by the NSC technique usually has a larger
energy gap and is more localised than that obtained using the
SCF. We also note that tests on smaller systems (dry DNA
with NSC) show that it converges to the exact diagonalisation
result.25)

Another strong point of CONQUEST is its excellent efficiency
on massively parallel computers. Since CONQUEST uses the
locality of the electronic structure, it also has an advantage in
parallelisation. We have recently reported its parallel effi-
ciency on the K computer and showed that it has almost ideal
parallel efficiency even when we use more than 200,000
cores.5,26) It was also demonstrated that we can now treat
million-atom systems using CONQUEST on such large-scale
parallel computers. Using this ability of the code, the code
has been used for structure relaxations of the nanoscale
systems of semiconductor surfaces.27,28)

2.2 Molecular dynamics with the CONQUEST code
Even though we can now calculate the total energy and atomic
forces29,30) of very large systems using OðNÞ DFT method,
this does not guarantee that stable, efficient, and accurate
FPMD simulations are also practically possible. There are two
methods widely used in conventional FPMD simulations:
Car–Parrinello MD (CPMD) and Born–Oppenheimer MD
(BOMD) methods. To realise OðNÞ FPMD simulations, we
adopt the BOMD method to eliminate the ambiguity of
fictitious mass, which is used in CPMD simulations. Another
advantage of the BOMD method is we can use a larger time
step than the CPMD method. However, note that the stability
or accuracy of BOMD simulations strongly depends on the
accuracy of the calculated forces. We usually use an iterative
method to calculate the ground state of the electronic structure
even in conventional methods. It is well known that we can
have an unphysical energy drift, if the electronic structure
is not well converged and the calculated forces are not
sufficiently accurate. This problem is closely related to the
time reversibility of the optimised electronic structure. To
solve this problem, Niklasson and coworkers have recently
proposed a new method called the XL-BOMD method. With
this method, the time reversibility of the electronic structure
is maintained and the stability of the BOMD simulations is
greatly improved.6,31,32)

Recently, we have combined this XL-BOMD scheme
with the DMM method and demonstrated that the combined
method enables us to perform efficient and reliable FPMD
simulations with the OðNÞ method.7) The Lagrangian in the
XL-BOMD scheme LXBO is defined as follows, using the
Lagrangian in the usual BOMD method LBO,

LXBOðX; _X;R; _RÞ ¼ LBOðR; _RÞ þ �

2
Tr½ _X2�

� �!2

2
Tr½ðLS � XÞ2�; ð4Þ

where the matrix X is the sparse matrix introduced to prepare
the initial guess of the L matrix at each MD step. μ is the
fictitious electronic mass and ω is the curvature of the
electronic harmonic potential. As in the original XL-BOMD
method, if we take the limit μ → 0, LXBO becomes LBO and
we have two equations of motion for nuclear positions and X.
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Fig. 1. Total energy of a hydrated DNA system, whose structure is shown
in Fig. 2, as a function of RL, the cutoff range of the auxiliary density matrix
L. The total energy obtained by the non-self-consistent technique (NonSCF)
is also presented.
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If we apply the time-reversible Verlet scheme to calculate X
using the equation of motion, we have

Xðt þ �tÞ ¼ 2XðtÞ � Xðt � �tÞ þ �t2!2ðLðtÞSðtÞ � XðtÞÞ; ð5Þ
which shows that X(t) is time-reversible and evolves in a
harmonic potential centred around the ground-state L(t)S(t).
We can expect that a good initial guess for the L-matrix,
which will obey time reversal symmetry, can be calculated
by multiplying X and S−1 (in CONQUEST, the sparse approx-
imate inverse S is computed using Hotelling’s method33)).
As a result, the optimised L matrix also satisfies time revers-
ibility and the trajectories of FPMD simulations become
stable and accurate. In practice, for the numerical propaga-
tion of the matrix X, we use an equation of motion with
a dissipative term to maintain the numerical stability
of the matrix X.34)

In our previous study, we clarified the effects of control
parameters used in the DMM method in the FPMD simu-
lations. We found that, even when the total energy is not fully
converged, MD trajectories are almost the same as those
in more accurate MD simulations. We also demonstrated
that reliable MD simulations can be actually performed on
a 32,768-atom crystalline silicon system using 1024 CPUs
(8192 cores) of the K computer. Since we already showed
that the parallel efficiency of CONQUEST is ideal even when
using more than 200,000 cores, we can conclude that FPMD
simulations on million-atom systems are now feasible using
a large supercomputer such as the K computer.

3. All-atom FPMD simulations on a hydrated DNA
system with the CONQUEST code

Although we already demonstrated the practical ability of
the combined (DMM+XL-BOMD) method, the examples of
FPMD simulations using CONQUEST have been limited to
simple systems so far, such as crystalline silicon and bulk
water. In this section, we present another example of MD
simulations on a more complex system, a hydrated DNA
system, whose structure is shown in Fig. 2. The system,
which was studied in our previous work,25) consists of 10
DNA base pairs [d(CCATTAATGG)2 in PDB ID: 1WQZ] of
634 atoms, 9 Mg atoms being counter ions, and 932 H2O
molecules, with a total of 3,439 atoms. The initial structure is
prepared by classical MD simulation using AMBER9 with
the force fields of PARM9935) for the DNA atoms and TIP3P
for water molecules. In classical MD simulations, the system
is equilibrated with a constant pressure and the structure at
the last step is adopted as the initial structure of the FPMD
simulation. Figure 3 shows the energy profile of the FPMD
simulation in the microcanonical case (NVE simulation).
In this O(N) FPMD simulation, a periodic boundary con-
dition, a single-zeta with polarization (SZP) basis set, the
Perdew–Burke–Ernzerhof (PBE)36) exchange–correlation
functional, the NSC technique with the Harris–Foulkes
energy functional, the cutoff range of 16 bohr for the L
matrix, and the numerical integration grid cutoff of 75 Ha are
used. Note that the SZP basis set used in the present MD
simulations tends to show a slightly larger error than the DZP
basis set. For example, the mean absolute error of the bond
lengths in the adenine molecule is 0.05Å using the SZP basis
set, while it is 0.02Å using the DZP basis set. However, we
believe that the qualitative aspects reported in this paper are

not affected by the choice of the basis set. As a dissipation
term in the equation of motion for the X matrix, we consider
the terms up to the order of 5. The time step is 0.5 fs and the
initial temperature for the atomic velocity is 300K.

The most important point we can see from Fig. 3 is that the
total energy, which is the sum of the potential energy (DFT
total energy) and kinetic energy of nuclei, is constant during
the simulation. This means that the present method is reliable
also for this complex system. We can also see that the
potential and the kinetic energies of the system both fluctuate
relatively markedly in the early stage (up to about 50 MD
steps). This probably shows a rapid response to the dif-
ferences of chemical bonds between classical force fields
and the CONQUEST calculation with the present conditions.
However, after about 100 MD steps, these two energies show
much slower changes. We do not clearly understand why we
have observed such a behaviour, but we expect that using
the initial structure given by classical MD simulations would
help to reduce the simulation time for the equilibration of
FPMD simulations.

Next, we investigate the temperature-controlled FPMD
simulations by the velocity scaling method. Figure 4 shows
the energy profiles of the FPMD simulation of the same

Fig. 2. (Color online) Structure of a DNA decamer (PDB ID:1WQZ)
hydrated with 934 water molecules, consisting of about 3400 atoms.
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Fig. 3. (Color online) Energy profile in the FPMD simulation of the
hydrated DNA system (NVE simulation). Total energy (green), potential
energy (blue), and kinetic energy (red) are shown.
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hydrated DNA system at the temperatures of (a) 300 and (b)
600K, respectively. In this method, we simply rescale the
velocity at each MD step to make the average of the kinetic
energy the same as the given temperature, and use the
corrected velocity in the equation of motion for nuclei. In
Fig. 4, the profiles of the kinetic energy calculated with the
velocities before the correction are plotted, together with the
potential and total energies.

As can be seen in Fig. 4, although the fluctuation of the
kinetic energy defined by the velocities before the correction
is large in the early stages (0–50 MD steps), the change in
kinetic energy becomes very small after 50 MD steps. In both
cases, i.e., at 300 and 600K, the kinetic energy is close to the
correct temperature after around 120 steps, and the profile
of the total energy becomes flat. This rapid convergence
should be useful for controlling the temperature in FPMD
simulations. We expect that it will also be possible to perform
stable microcanonical (NVE) MD simulations around the
given temperature after we employ the velocity scaling
method for a short time. This may be a useful technique for
FPMD simulations of similar hydrated biological systems.
We have also recently implemented another method to
control the temperature, the Nose–Hoover-chain method. The
stability of this method with the DMM+XL-BOMD scheme
will be reported elsewhere. We believe that these techniques
will contribute to the realisation of many efficient, reliable,
and accurate FPMD simulations of complex biological
systems in the near future.

4. Summary

The linear-scaling or OðNÞ code CONQUEST has the ability
to treat million-atom systems based on DFT. In this paper,

we first gave an overview of the methods used in the code
and introduced recent progress, especially the newly
introduced method that combines the DMM and XL-BOMD
methods to realise accurate and efficient FPMD simulations
with the OðNÞ method.

Then, we demonstrated that the method can also be
applied to a complex biological system, a hydrated DNA
system, containing about 3400 atoms. We showed that the
total energy is conserved accurately in the microcanonical
simulations when the combined method (DMM+XL-
BOMD) is applied. Furthermore, we found that the velocity
scaling method is useful for controlling the temperature of
the FPMD simulation of this system. From these results,
we can conclude that reliable FPMD simulations of complex
biological systems can be performed with CONQUEST.
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Fig. 4. (Color online) Energy profile of the FPMD simulation on the
hydrated DNA system (NVT simulation) with the velocity scaling method at
(a) 300 and (b) 600K; total energy (green), potential energy (blue), and
kinetic energy (red) calculated from the atomic velocities before the
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