. . ’ The Japan Society
Applied Physics Express m! of Applied Physics

APEX REVIEW « OPEN ACCESS You may also like

- Magnon-magnon entanglement generation

Hybrid quantum systems based on magnonics between two remote nteraction-iree

optomagnonic systems via optical Bell-
state measurement

To cite this article: Dany Lachance-Quirion et al 2019 Appl. Phys. Express 12 070101 S Golkar, E Ghasemian, M Setodeh
Kheirabady et al.

- Review and prospects of magnonic
crystals and devices with reprogrammable
band structure

View the article online for updates and enhancements. M Krawczyk and D Grundler

- Applications of nanomagnets as dynamical
systems: Il
Bivas Rana, Amrit Kumar Mondal, Supriyo
Bandyopadhyay et al.

This content was downloaded from IP address 3.142.173.227 on 28/04/2024 at 07:10


https://doi.org/10.7567/1882-0786/ab248d
https://iopscience.iop.org/article/10.1088/1402-4896/ad0d8d
https://iopscience.iop.org/article/10.1088/1402-4896/ad0d8d
https://iopscience.iop.org/article/10.1088/1402-4896/ad0d8d
https://iopscience.iop.org/article/10.1088/1402-4896/ad0d8d
https://iopscience.iop.org/article/10.1088/0953-8984/26/12/123202
https://iopscience.iop.org/article/10.1088/0953-8984/26/12/123202
https://iopscience.iop.org/article/10.1088/0953-8984/26/12/123202
https://iopscience.iop.org/article/10.1088/1361-6528/ac2f59
https://iopscience.iop.org/article/10.1088/1361-6528/ac2f59

OPEN ACCESS

Applied Physics Express 12, 070101 (2019)

APEX REVIEW

https://doi.org/10.7567/1882-0786/ab248d

Hybrid quantum systems based on magnonics

Check for
updates

Dany Lachance-Quirion'”, Yutaka Tabuchi', Arnaud Gloppe', Koji Usami', and Yasunobu Nakamura'+?"

"Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo 153-8904, Japan
2Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan

“E-mail: dany.lachance.quirion@qg.rcast.u-tokyo.ac.jp; yasunobu@ap.tu-tokyo.ac.jp
Received February 22, 2019; revised April 24, 2019; accepted May 24, 2019; published online June 4, 2019

Engineered quantum systems enabling novel capabilities for computation and sensing have blossomed in the last decade. Architectures benefiting
from combining complementary physical systems have emerged as promising approaches for quantum technologies. A new class of hybrid
quantum systems based on collective spin excitations in ferromagnetic materials has led to the diverse set of platforms outlined in this review
article. The coherent interaction between microwave cavity modes and spin-wave modes is presented as a key ingredient for the development of
more complex hybrid systems. Indeed, quanta of excitation of the spin-wave modes, called magnons, can also interact coherently with optical
photons, phonons, and superconducting qubits in the fields of cavity optomagnonics, cavity magnomechanics, and quantum magnonics,
respectively. Notably, quantum optics experiments in magnetically-ordered solid-state systems are within reach thanks to quantum magnonics.
Applications of hybrid quantum systems based on magnonics for quantum information processing and quantum sensing are briefly outlined.

© 2019 The Japan Society of Applied Physics

1. Introduction

In the last few decades, technologies engineered from quantum
systems have flourished and found applications in
quantum computing,' > quantum simulation,”® quantum
communication,”'” and quantum sensing.'” An exciting
strategy has been explored in the last few years to access
through hybrid quantum systems novel capabilities in existing
quantum technologies by the combination of distinct physical
systems possessing complementary characteristics.'”'" For
example, merging techniques developed in the field of circuit
quantum electrodynamics (cQED) to the field of electron spin
resonance has enabled drastic improvements of the detection
sensitivity of electron spins.'>™'”

In recent years, hybrid quantum systems based on collective
spin excitations in ferromagnetic crystals have become a
promising platform for novel quantum technologies. Indeed,
the quanta of these collective excitations, called magnons, can
interact coherently with microwave and optical photons, as
well as with phonons through magnetic dipole,>*>*
magneto-optical,” > and magnetostrictive interactions,’>"
respectively. As schematically shown in Fig. 1, this diverse set
of interactions allows one to further engineer coherent inter-
actions between drastically different physical systems. Of
particular interest is the architecture of quantum
magnonics,”**>~" where the strong and coherent effective
interaction between magnetostatic modes and superconducting
quantum circuits enables one to reach the quantum regime of
magnonics to resolve single magnons,”® for example. More
generally, hybrid quantum systems based on magnonics offer
opportunities to develop novel quantum technologies such as
microwave-to-optical quantum transducers® for quantum
information processing and quantum-enhanced detection of
magnons for applications such as magnon spintronics®® and
dark matter searches.”™”

The theoretical background and experimental landscape of
the field of cavity electromagnonics, in which the magnetic
dipole coupling of magnetostatic modes to microwave-
frequency cavity modes is investigated, are first discussed
in Sect. 2. Section 3 discusses the possibility of entering the

quantum regime of magnonics by engineering an effective
coherent interaction between magnetostatic modes and mi-
crowave-frequency superconducting circuits. Section 4 then
discusses the fields of optomagnonics and cavity optomag-
nonics, which are both key platforms for future applications
of hybrid quantum systems based on magnonics in the optical
domain, such as microwave-to-optical quantum transducers.
Section 5 discusses the relatively new subfield of cavity
magnomechanics which combines cavity electromagnonics
and the coupling between mechanical and magnetostatic
modes through magnetostrictive forces. Finally, Sect. 6
provides perspectives and outlook, as well as possible future
applications, for hybrid quantum systems based on magno-
nics, with a particular focus on quantum magnonics. For
clarity, Table I summarizes the definitions of the excitations,
bosonic operators, frequencies, and decay rates of the modes
of the different physical systems considered in this review.

2. Cavity electromagnonics

The interaction between collective degrees of freedom of solid-
state systems and electromagnetic fields of cavities serves as the
basis of cQED***" and cavity optomechanics*® through
electric dipole and radiation-pressure interactions, respectively.
More recently, the strong and coherent magnetic dipole
interaction between collective spin excitations in ensembles of
spins and microwave cavities has been considered for both
paramagnetic'>**~>? and ferromagnetic spin ensembles.”’*"
Applications of such hybrid systems for quantum technologies
include storage and retrieval of microwave fields,”*>* quantum
transduction,”>”® and quantum sensing.'""'>'®

In this section, the field of cavity electromagnonics, which
makes use of the magnetic dipole interaction between
magnetostatic modes in a ferromagnetic spin ensemble and
the modes of a microwave cavity, is introduced. Cavity
electromagnonics serves as the basis of almost all hybrid
systems based on magnonics. Indeed, the magnetic dipole
interaction between magnetostatic modes and microwave
cavity modes is used in both quantum magnonics and cavity
magnomechanics to engineer interactions with modes of
physically distinct systems [Fig. 1].
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Fig. 1. (Color online) Hybrid quantum systems based on magnonics.
Schematic diagram of the different interactions in hybrid quantum systems
based on quanta of collective spin excitations of magnetostatic modes in a
ferromagnetic crystal. The basis of most implementations of hybrid systems
with magnons is cavity electromagnonics, where a strong coupling between
magnetostatic modes and microwave cavity modes is achieved through a
collective enhancement of the magnetic dipole interaction of a single spin. In
quantum magnonics (green), the strong electric dipole coupling of super-
conducting qubits to microwave cavity modes is used to engineer an effective
strong coupling between the magnetostatic modes and the qubits. In cavity
optomagnonics (red), magneto-optical effects allow a coupling between the
magnetostatic modes and optical cavity modes, enabling, in combination
with cavity electromagnonics, bidirectional conversion between optical and
microwave photons. In cavity magnomechanics (purple), the magnetostric-
tive force couples the magnetostatic modes and mechanical modes of the
ferromagnetic crystal. Interactions in the strong (weak) coupling regime are
shown as bold (thin) arrows and direct (indirect) interactions are shown as
solid (dashed) arrows.

2.1. Magnetostatic modes

2.1.1. Ferromagnetic spin ensemble. We first start by
describing an ensemble of N spins with a quantum number
s =1{1/2,...} and of operator Si with nearest-neighbor
ferromagnetic exchange interaction J>0 in an external
magnetic field By. The Hamiltonian of such a spin ensemble
is given by

N
HS:g*uBZBO-Si—ZJZSi-S», (1)
i (i)
where g* is the g-factor and ugp is the Bohr magneton.
While the first term describes the Zeeman effect, the second
term describes the ferromagnetic exchange interaction

57,58)

between neighboring spins. Note that the second term is
negligible for a paramagnetic spin ensemble as J = 0.

The Hamiltonian of Eq. (1) can be written in terms of
bosonic operators 611 and ¢k to get a picture based on spin
waves described by a dispersion relation @,(K)

Hu/li =Y wn(K)G Cx, 2)
k

where k is the wavevector of the spin-wave mode.”’”® For
example, for an infinite cubic lattice with a lattice parameter
ay, the dispersion relation in the long-wavelength limit is
given by

fiwm(k) = g*pugBo + 4sJaik?, 3)

where By = |By| is the amplitude of the external magnetic
field and k = |k| is the momentum. While the first term again
describes the standard Zeeman effect, the second term shows
that the exchange interaction lifts the degeneracy between
modes with different momenta k.

2.1.2. Magnetostatic limit. In the static limit, corre-
sponding to kay << 1, the spin-wave modes correspond to
magnetostatic modes, where the long-range dipole—dipole
interactions between spins is dominant over the short-range
exchange interactions.”® In that case, the Hamiltonian of
Eq. (2) can be written as

Hu/li =S wWéle,, “4)

where 1 labels the magnetostatic mode of frequency w{" and
with creation and annilation operations ¢ and é,, respec-
tively. The geometry of the ferromagnetic crystal is important
for determining the frequencies w'” of the modes. For
example, in a sphere, the magnetostatic modes correspond
to the Walker modes.””®” The simplest Walker mode is the
uniform magnetostatic mode, or Kittel mode.®” In that case,
Jiwm = g*ugBo, where the mode index n is omitted for
simplicity. Therefore, for the Kittel mode, the energy Aw,,
necessary to excite a single magnon corresponds to the
energy necessary to excite a single spin 1/2 in the same
external magnetic field By. However, in stark constrast to a
single spin 1/2, the Kittel mode corresponds to a harmonic
oscillator with creation and annihilation operators ¢ and é,
respectively. Indeed, as long as the number of magnons
excited in the magnetostatic mode is much smaller than the
number of spins N, the system is well approximated by a
harmonic oscillator.””

2.2. Magnetic dipole interaction with a microwave
cavity mode: theory

2.2.1. Microwave cavity mode. The magnetic dipole
interaction between a magnetostatic mode and a microwave

Table I. Definitions. Excitations, bosonic operators, and typical values for the frequencies and decay rates of the modes of the different physical systems
considered.

Physical system Mode Excitation Operators Frequency Decay rate
Microwave cavity Microwave cavity mode Microwave photon a,a’ /2 ~ 10 GHz K/2m ~ 1 MHz
Optical cavity Optical cavity mode Optical photon b, b’ wo/2 ~ 200 THz Ko/2m ~ 1 GHz
Ferromagnetic crystal Magnetostatic mode Magnon ¢, ef /2 ~ 10 GHz Ym/27m ~ 1 MHz
Ferromagnetic crystal Deformation mode Phonon d, al wq/2m ~ 10 MHz ~val2m ~ 1 kHz
Superconducting qubit First qubit transition Excited state 4, q" wy/2m ~ 10 GHz Yq/27 ~ 0.1 MHz
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cavity mode, depicted in Fig. 2(a), is considered here. The
Hamiltonian of a cavity mode of frequency @, is given by

He/ 7l = wed'a, (5)

where @' and 4 are the creation and annihilation operators of
a microwave photon in the mode. It is worth noting that both
magnetostatic modes and microwave cavity modes are linear
systems described as quantum harmonic oscillators. Notably,
as will be later discussed, this means that tools developed for
quantum optics can readily be applied to magnonics in the
quantum regime.

2.2.2. Coupling to magnetostatic modes. The magnetic
dipole interaction of magnetostatic modes with microwave-
frequency cavity modes is achieved by placing a ferromag-
netic crystal so that it overlaps with the microwave magnetic
field of the cavity mode.*” This magnetic dipole interaction
is described by the Hamiltonian

N
Ho = g¥ug@ +ahH > oB) - S, (©6)

where Bi(r) = dB(r)(d + a") is the microwave cavity
magnetic field at position r; of spin i, and |dB(r;)| is the
amplitude of the corresponding vacuum fluctuations.
Notably, this interaction Hamiltonian is the same for a
paramagnetic spin ensemble.****

Considering a linearly-polarized microwave cavity mag-
netic field and applying the rotating wave approximation, the
Hamiltonian of Eq. (6) can be expressed in terms of the
magnetostatic modes in the ferromagnetic spin ensemble as

Huo/ = g™ (a%e, + ae)), 7

where gr;"zc is the coupling strength between the magneto-
static mode n and the microwave cavity mode.”” The
magnetic dipole coupling strength is given by

7 = By [ dr 3B - 5,0, ®)
2 %

where the interaction is integrated throughout the volume V
of the ferromagnetic crystal, and s,(r) is the orthonormal
mode function describing the spatial profile of the amplitude
and phase for the magnetostatic mode #.

2.2.3. Coupling to the Kittel mode. If the microwave
magnetic field dB(r) is uniform throughout the ferromagnetic
crystal, the magnetic dipole coupling vanishes except for the
uniform magnetostatic mode, i.e., the Kittel mode.”® As will
be later discussed, coupling between higher-order magneto-
static modes and a microwave cavity mode therefore requires
a non-uniform cavity magnetic field. Considering only the
Kittel mode, the Hamiltonian of the interaction is given by

Ho o/ 71 = g, (@'¢ + ach), 9)

where the coupling strength g _. between the Kittel mode
and the microwave cavity mode is given by

Mo = %mg*uséBW, (10)

where 6B = |dB| is the amplitude of the vacuum fluctuations
of the microwave cavity magnetic field in the ferromagnetic

070101-3

(a) Cavity electromagnonics

Magneto-
static
mode

(b) Reflection or transmission

ke v

out
b K
Microwave
cavity

int
C
Magnetostatic modes
) It]/ [tol
’I,:; 1
S 8.50
=
[a\]
~
3
g 845 Gm—c/T
(]
3
g
&=
2
o 8.40
o 2 4 6 8 10 - Data
Coil current I (mA) — Fit

Fig. 2. (Color online) Cavity electromagnonics. (a) Schematic diagram of
the coupling between a magnetostatic mode and a microwave cavity mode of
frequencies w,, and w,, respectively. The magnetic dipole interaction leads to
a coupling strength g,,_. between these two modes. The magnetostatic and
microwave cavity modes have linewidths given by 7, and «,, respectively.
(b) Schematic representation of a general hybrid system for cavity electro-
magnonics. The vacuum fluctuations B of the microwave magnetic field of
a cavity mode overlaps with one or more ferromagnetic crystals. An external
magnetic field By is applied either uniformly or locally to each ferromagnetic
spin ensemble. Depending on the uniformity of the microwave magnetic field
of the cavity mode, different magnetostatic modes can be coupled. The
microwave cavity can be probed either by transmission or reflection through
coupling rates s and k2 to input and output ports. The internal loss of the
microwave cavity mode is given by ni"‘. (c) Amplitude of the transmission
coefficient |#| measured as a function of the probe frequency w and the
current / in a coil that controls the amplitude B, of the static magnetic field.
The amplitude of the transmission coefficient is normalized by its amplitude
far from the avoided crossing, |#y|. The clear avoided crossing indicates the
strong and coherent coupling between the Kittel mode of a sphere of
ferrimagnetic yttrium iron garnet (YIG) and a mode of a three-dimensional
microwave cavity. The coupling strength g, /27 = 22.9 MHz is deter-
mined from the spectrum measured when the two modes are resonant (right
panel). Horizontal and diagonal dashed lines show the frequencies of the
uncoupled cavity and Kittel modes.
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crystal transverse to the external magnetic field By. As in a
paramagnetic spin ensemble, a /N collective enhancement of
the coupling strength between a single spin and the micro-
wave cavity mode is realized by using an ensemble of N
spins.** 72 Ag depicted in Fig. 2(a), the resulting coupling
strength g _. between the Kittel mode and the microwave
cavity mode has to be compared with the linewidth of the
Kittel mode, ~,,, and the linewidth of the cavity mode, ..
When g _. > 7, k¢, the hybrid system enters the strong
coupling regime.

2.3. Magnetic dipole interaction with a microwave
cavity mode: experiments

2.3.1. Strong coupling regime. Magnetic dipole cou-
pling strengths of tens of MHz between microwave
cavity modes and paramagnetic spin ensembles with spin
densities of 10'® — 10'"® y, cm™3 have been previously
demonstrated.*>#**%3192 A5 ferromagnetic materials have
much larger spin densities of about 10?2 pp cm™~3, larger
coupling strengths between the magnetostatic modes of a
ferromagnetic crystal and microwave cavity modes are
expected.””*" By combining these large coupling strengths
with the linewidths of magnetostatic modes, which are in
the MHz range even at room temperature, the strong coupling
regime of cavity electromagnonics can be readily reached.
Furthermore, as opposed to paramagnetic spin ensembles, the
ferromagnetic exchange interaction between neighboring
spins offers a rigidity to the magnetostatic modes that favors
long-wavelength excitations.

A first step towards reaching the strong coupling regime in
cavity electromagnonics was achieved in an experiment
which used a rectangular gallium-doped ferrimagnetic YIG
crystal placed directly on top of a superconducting
resonator,”” analogous to pioneering experiments with para-
magnetic spin ensembles, +740:48:51,52) However, due to the
inherent inhomogeneity of the microwave magnetic field of
the superconducting resonator and the large magnon line-
width due to the gallium doping, the normal-mode splitting
was not observed despite the hybrid system achieving a large
cooperativity.

These issues were addressed in subsequent experiments by
using three-dimensional microwave cavities and spherical
crystals of undoped YIG [Fig. 2(b)], enabling the observation
of the normal-mode splitting at both cryogenic
temperatures”' > and at room temperature®> with coupling
strengths reaching up to a few GHz.***» Indeed, as both
systems are linear and are coupled through a linear beam
splitter-like interaction, the underlying physics is mostly
classical. Therefore, thermal populations of the different
modes do not significantly affect the dynamics of the coupled
hybrid system and the normal-mode splitting can be observed
even at room temperature.®”

2.3.2. Example of the strong coupling regime. As an
illustrative example, Fig. 2(c) shows a measurement of the
normal-mode splitting between the Kittel mode of a YIG
sphere and a mode of a three-dimensional microwave cavity
at millikelvin temperatures. The microwave cavity is a three-
dimensional cavity made out of copper with dimensions of
24 x 3 x 53mm’. The lowest frequency modes are the
transverse electric (TE) modes TE;o, of frequencies
wigp and linewidths xo,. For example, the TE;;, mode
has a frequency ;027 =8.41GHz and a linewidth

070101-4

K102/2m =2.1 MHz. The two ports of the microwave cavity
enable one to probe the cavity modes either in reflection or
transmission.

A YIG sphere with a diameter of 0.5 mm is placed inside
the microwave cavity near the antinode of the microwave
magnetic field of the TE;j; mode. The uniformity of the
microwave cavity magnetic field dB(r) throughout the sphere
is better than 1% for the TE;y; mode, highly favoring the
magnetic dipole coupling to the Kittel mode compared to
higher-order modes. A static magnetic field By is applied
along the (100) crystal axis and perpendicular to dB. The
amplitude B, of the static field sets the magnon frequency
wm = g*ugBo /7% and is created by a combination of a pair of
permanent magnets, a yoke made out of pure iron, and a
10*-turn superconducting coil. The disk-shaped neodymium
permanent magnets produce a uniform static magnetic field
By~ 0.29 T at the YIG sphere inside the microwave cavity.
The coil enables one to change in situ the magnon frequency
by varying the current [ in the coil with a proportionality
constant of ~1.7 mTmA ™.

The device is placed inside a dilution refrigerator with a
base temperature of a few tens of millikelvins, leading to a
thermal occupancy much smaller than unity of every relevant
mode of the hybrid system. Furthermore, the microwave line
connected to the input port of the microwave cavity is highly
attenuated to prevent further thermal excitations from stages
of the dilution refrigerator at higher temperatures. The output
port is connected to cryogenic and room-temperature low-
noise microwave amplifiers. The device is isolated from the
thermal noise of the amplifiers by cryogenic circulators and
isolators. More details on the experimental setup can be
found in Refs. 24, 35, and 36.

The normalized amplitude of the transmission coefficient,
[t]/|to], is shown in Fig. 2(c) as a function of the current / in
the coil, effectively changing the magnon frequency w,,. The
microwave cavity is probed at a power corresponding to, on
average, much less than a single photon populating the cavity
mode. Due to the large magnetic dipole interaction, when the
Kittel mode is close to resonance with the TE,(, cavity mode,
the two modes hybridize, leading to a normal-mode splitting;
the hallmark of the strong coupling regime of cavity
electromagnonics.”> > Indeed, the coupling strength
8m_c/2m™ = 22,9 MHz, extracted from the spectrum mea-
sured when the hybrid system is fully hybridized, is much
larger than the linewidths of the Kittel and microwave cavity
modes, 7, /27 = 1.4 MHz and . /27 = 2.1 MHz, respec-
tively. The magnon linewidth is determined from the line-
width (v, + K¢)/2 when wy = w. and from a measurement
of the microwave cavity linewidth k. far from the avoided
crossing.

2.4. Further experimental work

2.4.1. Materials. Early works on cavity electromagnonics
have mainly focused on using YIG as the ferromagnetic
material. > > These experiments prompted the study of
the properties of ferromagnetic materials at millikelvin
temperatures, which did result in novel observations.
Notably, in Ref. 21, the temperature dependence of the
linewidth ~,, of the Kittel mode was investigated from a few
Kelvins down to about 10 mK. When decreasing the tem-
perature down to about 1 K, the linewidth decreases mono-
tonically as expected from slow relaxation due to impurity

© 2019 The Japan Society of Applied Physics
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ions and losses due to magnon-phonon scattering.”"**~%

However, for temperatures below 1 K, the magnon linewidth
increases again and saturates at 7,,/27~ 1 MHz at a tem-
perature of about 100 mK. This behavior can be understood
by the presence of a bath of two-level systems (TLSs)
resonant with the Kittel mode, similar to losses from TLSs
in superconducting resonators.’” Indeed, for a temperature
T < /uwy, /kg, the bath of resonant TLSs acts as a new decay
channel for magnons. For kg7 > /aw,, however, the TLSs
are saturated and therefore do not contribute to magnon
decay. The observed temperature dependence of the magnon
linewidth is well reproduced by this model.”" The origin of
the bath of TLSs however remains to be clearly identified and
is an important open question for hybrid quantum systems
based on magnonics.”” While losses attributed to TLSs make
up a large fraction of the losses at millikelvin temperatures,
the remaining linewidth can be ascribed to elastic magnon—
magnon scattering at the surface of the ferromagnetic
crystal.>"*%> Fortunately, this contribution to the magnon
linewidth can probably be improved by decreasing the
surface roughness of the ferromagnetic sample. The signature
of TLSs in YIG has also been observed in Refs. 68, 69.
Subsequent works in cavity electromagnonics have also
been performed on other materials. For example, the strong
coupling between magnetostatic modes in lithium ferrite and
a microwave cavity has been demonstrated.”” Interestingly,
the softening of the magnetostatic modes at low magnetic
fields enables the hybrid system to reach a regime where the
magnon frequency is both first-order and second-order
insensitive to the amplitude of the external magnetic field,
in analogy to clock transitions in atomic and spin
systems.’""”? Furthermore, the multiferroic chiral magnetic
insulator Cu,08SeOj3 has also been investigated in the strong
coupling regime of cavity electromagnonics.”” Notably, the
phase transition of the material from paramagnetic to
ferromagnetic is observed through a change in the coupling
strength between the collective spin excitations in the
material and the microwave cavity mode. Finally, the
coupling between antiferromagnetic magnons and high-
frequency cavity modes has been recently observed in
dysprosium ferrite.”” These early results hint that cavity
electromagnonics could be used as a novel tool to charac-
terize materials with a magnetic order.
2.4.2. Microwave cavity geometries. Many different
geometries of microwave cavities have been investigated in
cavity electromagnonics. In addition to the three-dimensional
microwave cavities previously discussed [Fig. 2(b)], super-
conducting coplanar waveguide resonators,””’> coaxial-like
cavities’®’” and lumped-element cavities”’* ™ have been
used to reach the strong coupling regime. In particular,
lumped-element cavities, also used in experiments with
paramagnetic spin ensembles,'>***” enable one to achieve
larger filling factors 7 of the microwave cavity magnetic field
within the volume of the ferromagnetic crystal compared to a
three-dimensional cavity of the same frequency, leading to a
larger magnetic dipole coupling strength g _. o /7 9
Furthermore, antinodes of the microwave cavity magnetic
and electric fields can be more easily spatially separated in a
lumped-element cavity as they are respectively located at the
inductive and capacitive elements. This is a great advantage
for adding elements, such as superconducting qubits, that
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couple to the electric field of the microwave cavity through
an electric dipole interaction and that are adversely affected
by the external magnetic field applied to the ferromagnetic
crystal.®” Finally, as lumped-element cavities have an
effective dimensionality of zero, smaller cavities can be
designed while keeping the frequencies of the modes at about
10 GHz.””%? As discussed in Sect. 4, this could be particu-
larly advantageous for cavity optomagnonics, where the
optomagnonic coupling is increased in smaller ferromagnetic
samples.””

2.4.3. Multiple modes and multiple ferromagnetic
crystals. Thus far, the interaction between a single micro-
wave cavity mode and a single magnetostatic mode in a
ferromagnetic crystal has been discussed. The theory pre-
sented earlier can readily be adapted to consider the multi-
mode nature of both the ferromagnetic crystal and most types
of cavities simply by summing the system and interaction
Hamiltonians over all the relevent modes. Furthermore,
devices incorporating multiple ferromagnetic crystals within
the mode volume of a single microwave cavity mode have
been investigated.®* > Notably, the coupling between the
collective modes of strongly coupled Kittel modes in up to 8
spheres to a common microwave cavity mode has enabled
one to realize a gradient memory in dark collective modes.*®
Furthermore, an effective coupling between the Kittel modes
of two spatially separated spheres has been achieved by using
the commonly coupled cavity mode as a coupling bus.*”
These results show that coupling magnetostatic modes to
microwave cavity modes provides a new way to couple
distinct magnetic systems, such as ferromagnetic and anti-
ferromagnetic samples.”®

2.4.4. Higher-order magnetostatic modes. In ferro-
magnetic spheres, the spatial uniformity of the Kittel mode
favors coupling to the microwave cavity modes compared to
higher-order magnetostatic modes when the cavity mode is
uniform throughout the ferromagnetic sample. This enables
one to greatly simplify the description of the hybrid system
by having to only consider a single magnetostatic mode
strongly coupled to microwave cavity modes.>'** Even then,
in most experiments, hints of a finite coupling to higher-order
magnetostatic modes are observed in the measurement of the
avoided crossing between the Kittel mode and a microwave
cavity mode.”**” Experiments voluntarily having a nonuni-
form microwave magnetic field throughout the volume of the
ferromagnetic sphere have been performed to investigate the
coupling to higher-order magnetostatic modes.”*’> This is of
particular interest for cavity optomagnonics, discussed in
Sect. 4, as the optomagnonic coupling is expected to be larger
for higher-order modes.””~*> To this end, a tomography
technique has been recently devised to experimentally
characterize magnetostatic modes in a ferromagnetic
sphere.”®”

2.4.5. Dissipative coupling. Up to now, the coherent
coupling between a magnetostatic mode and a microwave
cavity mode due to the magnetic dipole interaction has been
discussed. Recently, it has been shown that a dissipative
coupling due to the Lenz effect is also possible in cavity
electromagnonics.®'*>°”? For example, when the ferromag-
netic crystal is placed at the node of the magnetic field of a
microwave cavity mode, the coherent coupling vanishes
[Eq. (10)]. However, the cavity Lenz effect induces a

© 2019 The Japan Society of Applied Physics
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microwave current in the cavity when magnons are excited,
which in turn impedes the excitation of magnons.”” This
leads to a level attraction when the hybrid system is on
resonance, in stark contrast to the usual avoided crossing
observed for a coherent coupling [Fig. 2(c)].”® As discussed
in Ref. 97, this hints that great care needs to be taken when
evaluating the coherent coupling strength g, _. from the
avoided crossing as a finite dissipative coupling will affect
the experimentally observed normal-mode splitting. In the
presence of both coherent and dissipative couplings, the
interaction Hamiltonian of Eq. (9) between a magnetostatic
mode and a microwave cavity mode can be generalized as

Ho o/ = g, _(@'¢ + e®ach), (11)

where the coupling phase ® describes the competing coherent
and dissipative couplings.”” The Hamiltonian of Eq. (9),
describing only the coherent coupling, corresponds to the
case & =0.

3. Quantum magnonics

A promising approach to observe quantum effects in mag-
nonics is to consider a nonlinear system interacting through a
linear, beam splitter-like interaction with the magnetostatic
modes. Such nonlinear quantum systems can be implemented
in superconducting circuits where the Josephson effect
provides the nonlinearity necessary to use these circuits as
qubits.””'"” Furthermore, superconducting qubits can in-
teract strongly with microwave cavity modes through a
Jaynes—Cummings-like electric dipole interaction in the
cQED paradigm®*" in close relation to cavity quantum
electrodynamics.'®"'%® In quantum magnonics, this qubit-
cavity interaction is combined with the beam-splitter-like
magnetic dipole interaction between the microwave cavity
modes and magnetostatic modes of a ferromagnetic crystal to
provide the nonlinearity necessary to explore quantum effects
in magnonics.”**>>” We note that a similar approach was
investigated in paramagnetic spin ensembles.' %'
3.1. Coupling to a qubit: theory
3.1.1. Superconducting qubit. The hybrid system con-
sidered in quantum magnonics, depicted schematically in
Fig. 3(a), is composed of a ferromagnetic crystal, a micro-
wave cavity, and a superconducting qubit. The supercon-
ducting qubit can be described as an anharmonic oscillator by
the Hamiltonian

N P T R (12
where @, is the frequency of the transition between the ground
state |g) and the first excited state |e), « is the anharmonicity,
and ¢§" and § are respectively the creation and annihilation
operators for the qubit. The frequency of the transition
between the first and second excited states is given by
wq + . For the so-called transmon regime of a supercon-
ducting qubit, « is negative and sufficiently large to operate
such anharmonic oscillators as qubits.'” The coherence time
T;" of the qubit is related to its linewidth , through 5, = 2/T5".
For example, for a very modest coherence time 75° = 1 s, the
qubit linewidth oA /27r = (0.32 MHz is already smaller than the

linewidth v /2w ~ 1 MHz of the Kittel mode at millikelvin
temperatures.m)
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Fig. 3. (Color online) Quantum magnonics. (a) Schematic diagram of the
coupling between a magnetostatic mode and a superconducting qubit of
frequencies wy, and @y, respectively. Both systems are coupled to a common
microwave cavity mode of frequency @, through magnetic and electric dipole
interactions of coupling strengths g,,_. and g, ., respectively. This leads to a
second-order effective coupling between the magnetostatic mode and the
superconducting qubit of coupling strength g, _ ... The strong coupling regime is
reached when g, _, is larger than both magnon and qubit linewidths 7, and g,
respectively. (b) Schematic representation of the device used to demonstrate the
strong coupling between the uniform magnetostatic mode, or Kittel mode, of a
YIG sphere and a transmon-type superconducting qubit. The frequency of the
magnons in the Kittel mode is tunable through the amplitude of the external
magnetic field |By|. Both systems are placed inside a multimode three-
dimensional microwave cavity, leading to an effective qubit-magnon coupling.
(c) Relative change of the transmission coefficient Re (At’) /|#o| of the
microwave cavity mode at a probe frequency w ~ w, as a function of the
spectroscopy frequency @ ~ @ and the current / in a coil changing the magnon
frequency wy,. The qubit-magnon coupling strength 8q-m/2m =712 MHz,
determined from the spectrum shown in the right panel, puts the hybrid system
in the strong coupling regime. Horizontal and diagonal dashed lines show the
frequencies of the uncoupled qubit and Kittel mode.

3.1.2. Description of the hybrid system. The large
electric dipole of superconducting qubits enables them to
strongly couple to the electric field of the modes of planar
superconducting resonators and three-dimensional microwave

© 2019 The Japan Society of Applied Physics



Appl. Phys. Express 12, 070101 (2019)

APEX REVIEW

cavities.*""'” Under the rotating wave approximation, the
qubit-cavity electric dipole interaction is described by the
Hamiltonian

ﬂq—c/ﬁ = gq,c(zi"'& + ‘,I\&T)a

where g, is the qubit—cavity coupling strength.*? 1t is
therefore possible to describe the hybrid system considered in
quantum magnonics by the Hamiltonian

ﬂ:ﬂm +7:(c+7:(q+7:(m—c+7:[q—c’

where the different terms are given by Egs. (4), (5), (12), (9),
and (13), respectively.

3.1.3. Effective coupling. The individual interactions of
both the magnetostatic mode and the qubit to common micro-
wave cavity modes enable one to engineer an effective interac-
tion between these two very distinct macroscopic physical
systems.”**> When the magnetostatic mode and the qubit are
close to resonance and far detuned from the microwave cavity,
so that [wy — Wil < & _c» &m-c K lwg — wel, lwm — wel,
the effective qubit-magnon interaction is described by the
Jaynes—Cummings-type Hamiltonian

7,:(qu/ﬁ = gqu(qATé + Q@T),

where the microwave cavity modes have been adiabatically
eliminated.”~>** With the magnetostatic mode and the
qubit on resonance, such that wy, = Wy = wq,m, the coupling
strength g,_,, is given by

13)

(14)

5)

» 5
gmfcgqfc
q.

Gym R (16)
P

b
Wam — w(cp)

where w( is the frequency of the microwave cavity mode of
index p with magnetic and electric dipole coupling strengths
g!”. and g” to the magnetostatic mode and the qubit,
respectively.”® The regime of strong qubit-magnon coupling
is reached when g, _,, is much larger than the linewidths of
both the magnetostatic mode and the qubit, vy, and -,
respectively.

3.2. Coupling to a qubit: experiment

3.2.1. Device. Figure 3(b) shows a schematic representa-
tion of the device used to demonstrate the strong coupling
regime of quantum magnonics.”” The results mentioned here
are with the same device as in Sect. 2 and Ref. 36. The
transmon-type superconducting qubit is made out of two
large-area aluminum antenna pads connected by a Josephson
junction (Al/Al,O5/Al) fabricated on a silicon substrate. The
bare frequency wy/27r=7.97 GHz and anharmonicity o/
2 = —0.14 GHz of the qubit are set by the Josephson energy
Ey/h ~ 60 GHz and the charging energy Ec/h ~ 0.14 GHz.'">
The qubit is placed close to the antinode of the electric field
of the TEy, cavity mode and is separated by about 35 mm
from the YIG sphere. A magnetic shield made of aluminum
and pure iron covers half of the microwave cavity to protect
the qubit from the stray magnetic field of the magnetic circuit
used to apply the external magnetic field.

3.2.2. Experiment. The effective coupling between the
Kittel mode and the qubit is investigated by performing two-
tone spectroscopy of the qubit. Indeed, the dispersive qubit-
cavity interaction enables one to measure the qubit absorption
spectrum by probing the change in reflection or transmission
of one of the microwave cavity modes.'”’~'%” While the
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qubit-magnon coupling is mainly mediated by the TE;q;
cavity mode of frequency w.*/ 27 = 8.450 GHz, the TE;
cavity mode of frequency w? /2w = 10.446 GHz is used for
reading out the qubit.*>>® Figure 3(c) shows the measured
qubit spectrum close to resonance with the Kittel mode. The
clear avoided crossing indicates that the engineered effective
interaction has reached the strong coupling regime. Indeed,
the coupling strength g, ., /2 = 7.2 MHz is much larger
than the linewidths of the Kittel mode and the qubit.

While the coil current can be used to control in situ the
detuning between the qubit and the magnetostatic modes, the
strength of the qubit-magnon coupling g, _,, is determined by
the static detuning between wp = Wy = wgm and the fre-
quencies of the microwave cavity modes [Eq. (16)]. A
dynamically tunable qubit-magnon interaction can be engi-
neered by using a parametric drive at a frequency given by
the average frequency of the detuned Kittel mode and
qubit.>> While the resulting coupling strength is smaller
than for the static case, the ability to activate the coupling on-
demand on a nanosecond timescale without any modifica-
tions to the hardware of the hybrid system can be useful to
transfer excitations between the Kittel mode and the qubit in
a controllable way.*>!'-119
3.3. Dispersive coupling
3.3.1. Dispersive regime. A dynamically tunable cou-
pling or detuning can be used to prepare quantum states in
bosonic modes."'*"""® Alternatively, a strong and static
dispersive coupling enables one to prepare and characterize
quantum states in a harmonic oscillator'**'"*'?? such as the
Kitte] mode. The qubit-magnon hybrid system enters the
dispersive regime when the detuning between the qubit and
the Kittel mode is much larger than the static coupling
strength, i.e., |wg — Wm| > g_,,- In analogy to the qubit-
cavity dispersive regime in cavity and cQED,**'%? the
Hamiltonian of the interaction between a magnetostatic
mode and the superconducting qubit in the dispersive regime
is given by

o) = 2x_nd'de"e, a7
where x,_,, is the strength of the dispersive interaction. The
dispersive coupling therefore shifts the qubit frequency by
2X4_m for every magnon in the Kitte] mode, and, recipro-
cally, shifts the frequency of the Kittel mode by 2x,_,, when
the qubit is excited.

As the interaction between the Kittel mode and the qubit
is a second-order process mediated by the couplings to
the microwave cavity modes, the effective dispersive inter-
action is a fourth-order process, leading to the ordering
IXg-m| < &-m < &m_c» &~ While an analytical expres-
sion of x,_,, is given in Ref. 35, it can also be calculated
directly by diagonalizing numerically the Hamiltonian of the
hybrid system given by Eq. (14).°
3.3.2. Strong dispersive regime. Of particular interest is
the strong dispersive regime, characterized by a shift per
excitation larger than the linewidths of both systems.'*%"'?"
As illustrated in Fig. 4(a), this regime enables one to resolve
quanta of excitations in the bosonic mode to distinguish, for
example, coherent, thermal, and squeezed states. 21122
Experimentally, the strong dispersive regime has been used
in cQED to resolve single microwave photons in a mode of a
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(Color online) Resolving single magnons. (a) Schematic diagram of the dispersive coupling between the Kittel mode and the superconducting qubit.

The strong dispersive regime corresponds to a shift per magnon, 2|x,_,, |, larger than both ~, and ~,, respectively. In this regime, when the Kittel mode is
coherently driven to a nonzero magnon population 77,, > 0, the qubit spectrum splits into multiple peaks, each corresponding to a given magnon number state
[m). (b), (c) Normalized qubit spectra S(w;) obtained from Ramsey interferometry with the Kittel mode in (b) the vacuum state and in (c) a coherent state
corresponding to a population of 77, = 0.53 magnons obtained through a continuous coherent drive resonant with the Kittel mode. The detuning |w; — wgl is
between the spectroscopy frequency w; and the frequency of the qubit with the Kittel mode in the vacuum state, wg / 2m = 7.933 2 GHz. The shift per magnon
2|Xq-m|/2m = 2.5 MHz is larger than the linewidth of each of the systems. The frequency of the Kitte] mode with the qubit in the ground state,

w8 /2m = 7.791 5 GHz, is far detuned from the qubit frequency.

—123 . . .
121-123) and in cavity electromechanics to

124-126)

microwave cavity
resolve single microwave-frequency phonons.

The strong dispersive regime of quantum magnonics was
demonstrated in Ref. 36 by performing qubit spectroscopy
while driving the Kittel mode to create a steady-state
coherent state with different average numbers of magnons
fim. Through a careful analysis of the spectra based on the
theory of Ref. 109, these results establish that the Kittel mode
has a thermal population below 0.01 magnons, as expected
from thermal equilibrium at 7= 10 mK. This shows that the
Kittel mode is very close to the vacuum state when undriven;
a significant advantage compared to MHz-frequency mechan-
ical modes which need to be sideband cooled to reach the
quantum ground state.'?” Furthermore, the probability dis-
tributions of the magnon number states |n,,) follow closely
the Poisson distributions expected for a bosonic mode.'**'**

As an alternative to the continuous-wave measurements
used in Ref. 36, the qubit absorption spectrum can be
obtained from the Fourier transform of the Ramsey fringes
measured in a time-domain experiment. Figure 4(b) shows
the resulting spectrum when the Kittel mode is undriven.
Compared to the continuous-wave measurements, the broad-
ening of the qubit by the spectroscopy tone is avoided and a
qubit linewidth Y /2m =0.38 MHz is obtained, corre-
sponding to a coherence time 75 = 850 ns, limited by the
Purcell effect and dephasing from thermal photons in the
microwave cavity modes. Figure 4(c) shows the corresponding
measurement in the presence of a coherent drive on resonance
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with the Kittel mode when the qubit is in the ground state at
w8 /2w =7.7915 GHz. A peak corresponding to a single
magnon in the Kittel mode is clearly visible as the shift per
magnon 2|x,_,| /2m = 2.5 MHz is larger than the linewidths
of the Kittel mode and the qubit of 1.4 MHz and 0.38 MHz,
respectively. As later discussed, the ability to count magnons,
starting from the vacuum, is a key ingredient for future
applications of quantum magnonics.

3.4. Other nonlinearities

3.4.1. Self-Kerr effect. The strong and coherent coupling
between the Kittel mode and a superconducting qubit gives
access to new types of nonlinearities in quantum magnonics
beyond the dispersive qubit-magnon interaction previously
discussed. Indeed, a self-Kerr nonlinearity at the level
of single magnons is made possible by the presence of
the qubit.’® In the presence of such an interaction, the
Hamiltonian of the magnetostatic mode becomes

/7 = (wm + %)Hc - %(6*6)2, (18)

where K,,, is the coefficient of the self-Kerr interaction.'2'3*!31
In Ref. 36, a self-Kerr coefficient K,/27=—0.2MHz is
detected by the presence of a small nonlinearity in the average
number of magnons 77, when increasing the Kittel mode drive
power. While this nonlinearity is smaller than the linewidth of
the Kittel mode, it is many orders of magnitude larger than the
intrinsic nonlinearity of the magnetostatic modes’®'**'** and
could potentially be used to study nonlinear magnonics in the
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quantum regime. Furthermore, it is worth noting that it is
possible to achieve a large qubit-magnon dispersive interaction
with |Xq_m| > ~,, while keeping the Kittel mode linear with
|Km| < 7, by a careful choice of the magnon frequency w,
relative to the qubit transition frequencies wq and wgy + o 013
3.4.2. Cross-Kerr effect. A cross-Kerr nonlinearity be-
tween the magnetostatic modes and the microwave cavity
modes is also made possible by their mutual coupling to the
qubit."*>"*9 In the presence of such a cross-Kerr interaction,
the Hamiltonian of the interaction between a magnetostatic
mode and a microwave cavity mode becomes

Huo/ 7= g, (@7¢ + a6") + Ky_a'aé'e, (19)

where K, . is the cross-Kerr coefficient which
depends strongly on the magnon frequency relative to the
qubit transition frequencies. The cross-Kerr interaction leads
to a frequency shift of the microwave cavity mode (magneto-
static mode) for every magnon (microwave photon) excited
in the magnetostatic mode (microwave cavity mode).
Evidence of such a cross-Kerr interaction in quantum
magnonics is seen in Ref. 36 as a power-dependent offset
of the qubit spectra, indicating a magnon-number-dependent
shift of the readout cavity mode. Similar to the self-Kerr
effect, the amplitude of the cross-Kerr effect depends
strongly on the frequency of the Kittel mode relative to the
transition frequencies of the qubit. In the single-excitation-
resolved cross-Kerr interaction regime, corresponding to
|Km—c| > ke, 7,» a number state in one of the modes can
be stabilized through dissipation in the other mode."*®

130,136)

4. Cavity optomagnonics

Similar to the interaction between magnetostatic modes and
superconducting qubits, the interaction between light and
spin waves in ferromagnetic crystals is indirect. Indeed, the
optomagnonic interaction consists of electric dipole interac-
tions between the electric component of the optical field and
the electrons of the ferromagnetic material, mediated by
the spin—orbit interaction.'*’~'*” The magnetic dipole
interaction, in  comparison, is  negligible."*'™'*?
Phenomenologically, magneto-optical effects are contained
in the expression of the dielectric tensor €(M) which depends
on the magnetization M'**'**!4 and encapsulates the
Faraday and Cotton—-Mouton effects. For decades, light has
been used to probe magnon physics. As illustrated in Fig. 5
(a), now with the advent of quantum magnonics, the coherent
control of spin waves with light holds the promise for an
efficient ~ microwave-to-optics  transduction,  enabling
quantum-limited microwave amplification and optical inter-
facing of superconducting qubits. After the first implementa-
tion of such a magnon-based transducer”at the frontiers
between optomagnonics and cavity electromagnonics
[Fig. 5(b)], the interaction is now explored in an optical
cavity, revealing a new physical playground, cavity opto-
magnonics [Fig. 5(c)].

4.1. Optomagnonics in solids

41.1. Light as a probe. From pioneering experiments
revealing one and two-magnon scattering in the antiferro-
magnetic material FeF,,"*® coherent spin waves in a YIG
rectangular bar'*” and thermally-excited magnons in metallic
thin films of Ni and Fe,'* light scattering has been
frequently used to probe spin-wave physics. Micro-focused
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Fig. 5. (Color online) Cavity optomagnonics. (a) Schematic diagram of the
optomagnonic coupling g, .. between a magnetostatic mode of frequency
®y, and an optical cavity mode of frequency w,. The magnetostatic mode can
be furthermore coupled to a microwave cavity mode of frequency w, through
a magnetic dipole interaction of coupling strength g, _.. The combination of
cavity optomagnonics and cavity electromagnonics therefore enables an
effective coupling g,_. between optical and microwave cavity modes. The
linewidths of the optical cavity mode, the magnetostatic mode and the
microwave cavity modes are respectively ko, 7, and k., respectively.

(b) Schematic representation of a device realizing the architecture of cavity
electromagnonics probed with light. Through the Faraday effect, the
polarization of optical photons passing through the microwave cavity and the
ferromagnetic crystal will be modulated at the frequency of the magnetostatic
mode w,, when magnons are excited. (c) Schematic representation of light
evanescently coupled to whispering gallery modes (WGMs) in a ferromag-
netic sphere through a nanofiber along the plane transverse to the external
magnetic field By, such that whispering gallery and magnetostatic modes
share the same equatorial plane. Panel (c) is adapted from Ref. 26.

Brillouin light scattering,'*” with a diffraction-limited spatial
resolution, is now a mature imaging tool for magnon
spintronics'**'*" and fundamental magnon studies,'>*~'>%
notably for the observation of Bose—Einstein condensation of
magnons at room temperature in YIG thin films.'>>'5®

4.1.2. Light as a control interface. Another attractive
aspect of optomagnonics lies in the ability to control magnons
with light. For example, ultrafast optics experiments have
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unveiled the time-resolved dynamics of the magnetization in
nanostructures by exciting spin waves with femtosecond
pulsed lasers.'>7~100 Later, the bidirectional and coherent
conversion between optical and microwave photons using
spin waves was demonstrated with the Kittel mode of a
750 im diameter YIG sphere.”> As schematically illustrated
in Fig. 5(b), the sphere is embedded in a three-dimensional
microwave cavity and is illuminated by a 1550 nm continuous-
wave laser. The Kittel mode is hybridized with the funda-
mental mode of the microwave cavity through a magnetic
dipole coupling. Induced by the spin waves excited by the
microwave photons, the Faraday effect results in a modulation
of the polarization of the transmitted beam at the frequency of
the hybridized mode, generating two optical sidebands around
the laser frequency which can be detected by a heterodyne
measurement with a high-speed photodiode.

The creation of microwave photons by light is, on the other
hand, established by using two co-propagating lasers with a
stabilized relative phase and frequencies different by the magnon
frequency. The created magnons relax in the microwave cavity,
resulting in a microwave signal measured with a vector network
analyzer. The phase coherence is preserved in the conversion
process, resulting in a photon conversion efficiency of ~10'°
for 20mW of optical pump power. Bidirectional conversion
between microwave and optical photons is appealing for
quantum-limited microwave amplifiers.'®” and quantum
telecommunications.*'” This inaugural work calls for more
developments to increase the optomagnonic interaction, espe-
cially towards experiments in an optical cavity.

4.2. Cavity optomagnonics in solids

4.2.1. Optical WGMs. A spherical dielectric ferromagnetic
crystal itself hosts optical WGMs.”® Optical WGMs in mono-
lithic resonators offering high optical quality factors and
relatively small mode volumes'®*'®? are particularly appealing
for cavity quantum electrodynamics,'®” optomechanics,'®>'®
and frequency combs.'®” The low absorption of YIG in the
teleccommunication band,'®® could lead to optical quality
factors of ~10° but has been limited to an order of magnitude
less by losses due to surface roughness, resulting in an optical
cavity linewidth of k,/27 ~ 2 GHz. In a large sphere, the optical
WGMs are confined close to the equator and can be discrimi-
nated into two families; quasi-TM and quasi-TE modes,
corresponding respectively to a polarization in-plane and out-
of-plane with respect to the equator. The input and output light
modes are evanescently coupled to the optical cavity along the
plane transverse to the external magnetic field By, such that
whispering gallery and magnetostatic modes share the same
equatorial plane [Fig. 5(c)].

Similar to Brillouin light scattering in thin films, an incoming
photon is scattered by a magnon into an orthogonally polarized
photon. The scattered photon sideband is dependent on whether
the process creates or annihilates a magnon. The Hamiltonian of
the linearized optomagnonic interaction can be written as

Floom = /ige_m(b'¢ + bET), (20)

— > [or ar EL 02 0DEL 0. @1
where g _ . is the optomagnonic coupling strength, b' and b
respectively creates and annihilates an optical photon from
the WGM, and E;,(¥) and E,(?) are respectively the electric
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fields of the input and scattered photons of the WGM.> %
The contribution of the spin-wave mode is enclosed in the
permittivity (M) through the expression of its magnetization
M. The scattered light leaks out of the cavity and can be
measured by a heterodyne measurement with a high-speed
photodiode.

4.2.2. Triple resonance condition. By energy conserva-
tion, the optomagnonic interaction should be maximized at
the triple resonance condition, where the frequency of the
considered magnetostatic mode matches the difference be-
tween the frequencies of the input and scattered optical
photons. Two optical modes of the same polarization family
separated by one azimuthal index are split by the free spectral
range FSR = c/ndnvyg, where c is the speed of light, d is the
diameter of the sphere, and nyjg = 2.19 is the refractive index
of YIG. For a millimeter-sized sphere, the resulting FSR is
about 50 GHz. Due to birefringences in the sphere, the
frequency of a TM mode is systematically shifted by
B ~ FSR\/n¢;c — l/nYIG ~ 0.89 x FSR compared to a
TE mode with the same indices. Therefore, for an external
magnetic field By~ 0.3 T, leading to magnetostatic mode
frequencies in the GHz range, the triple resonance condition
is within reach for scattering between a TM mode and a TE
mode separated by one azimuthal index, as their frequency
difference is FSR — B ~ 0.11 x FSR ~ 5 GHz.

4.2.3. Experiments on the Kittel mode. In an early
experiment, infrared light was evanescently coupled with a
tapered fiber to the optical modes of a 750 um diameter YIG
sphere.”® This first demonstration of Brillouin light scat-
tering of WGM photons with magnons in the Kittel mode
revealed non-reciprocal behavior: the two possible input orbit
directions of light in the sample, with respect to the external
magnetic field, resulted in scattering levels which differed by
one order of magnitude.

Demonstration of the triple resonance has been realized on

spheres with diameters of 500 gm and 300 pm, respectively
coupled by a birefringent rutile prism* and a SiN optical
waveguide.”” These experiments are deep into the weak
coupling regime as the intrinsic optomagnonic coupling strength
& —_m/2m™ ~ 5 Hz is much smaller than the linewidths of both
the magnetostatic and optical cavity modes, v,, /27 ~ 1 MHz
and k,/27 ~ 1 GHz,”"*¥ respectively. Following these early
demonstrations, a theoretical framework has been established
for cavity optomagnonics,”'"'"” followed by thorough
work more specifically on spherical cavity optomagnonics,
extending the studies to spin-wave modes beyond the Kittel
mode.*”
4.2.4. Higher-order magnetostatic modes and angular
momentum conservation. Higher-order magnetostatic
modes, presenting a variety of spin textures, allow a deeper
understanding of the optomagnonic interaction. In particular,
the exchange of orbital angular momentum between magnons
and optical photons has been experimentally demonstrated
with a 1 mm diameter YIG sphere.”>”” Associated with
birefringences in the system favoring a particular sideband,
the selection rules along the azimuthal axis explain the non-
reciprocal behavior of the Brillouin light scattering.
Dependent on the azimuthal dependence of the considered
magnetostatic mode and on the input orbit direction of light
in the sample,”” this phenomenon constitutes an original
implementation of chiral photonics.'”"
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(Color online) Cavity magnomechanics. (a) Schematic diagram of the coupling between a deformation mode, a magnetostatic mode, and a microwave

cavity mode of frequencies wy, @, and ., respectively. The magnetostrictive force leads to a coupling between deformation and magnetostatic modes of
strength g _,, which can be parametrically enhanced beyond the linewidth -4 of the mechanical mode by driving the magnetostatic mode. A magnetic dipole
interaction of coupling strength g _. further couples the magnetostatic and microwave cavity modes. (b) Schematic representation of the coupling between a
deformation mode (left) and a magnetostatic mode (right) enabled through magnetostrictive forces.

4.3. Future directions
4.3.1. Increasing the optomagnonic coupling. The op-
tomagnonic coupling, faint for the Kittel mode because of the
low spatial overlap with the optical WGMs, will be increased
for higher-order modes whose spatial distribution is further
localized towards the resonator boundaries where the optical
modes are located.””> The challenge lies in the ability to
efficiently excite these higher-order modes, respecting energy
and orbital angular momentum conservation laws and even-
tually being able to identify them properly.”®

New magnetic materials could be investigated, such as
bismuth-doped YIG'? and, at low temperatures, CrBr3'73) or
fully concentrated rare-earth ion crystals.'”* The ideal material
would require a small linewidth ~,, for the magnetostatic
modes, strong magneto-optical effects, low optical absorption,
and the technological ability to prepare surfaces which allow
for high optical quality factors. The magnetostatic mode
volume could also be tuned by changing the shape of the
optical resonator. A disk would have reduced spin-wave mode
volumes compared to a sphere of the same diameter.
Additionally, as recently proposed in Ref. 175, this geometry
would allow the exploration of a new kind of optomagnonic
coupling by working with a vortex mode in an optical
resonator, which could also couple to microwave-frequency
cavity modes through a magnetic dipole interaction.'’®

More generally, the size of the sample can be reduced to
increase the optomagnonic coupling.”” The challenge here lies
in preparing high optical quality magnetic structures below
250 yum. Recent progress in YIG microfabrication,'””-'"®
could grant access to regimes where light-matter interactions
are governed by optical Mie resonances,'’” potentially
opening up a new paradigm of cavity nano-optomagnonics.
For quantum transducers based on magnonics, the reduction of
the size of the ferromagnetic crystal should be explored while
keeping the magnetic-dipole interaction with the microwave
cavity modes in the strong coupling regime using, for example,
microwave cavities with smaller mode volumes.””

070101-11

4.3.2. Perspectives with stronger coupling. Cavity
cooling and amplification of magnons by light has been
studied theoretically'®” and will be within experimental
reach if the optomagnonic coupling can be increased by
about two orders of magnitude. Analogous to the DLCZ
protocol,” a heralding protocol consisting of the creation of
magnon Fock states through entanglement with optical
photons has been recently theoretically investigated.'®" In
the strong coupling regime, this would constitute an im-
portant step towards quantum information protocols in
optomagnonic devices. The field of cavity optomagnonics
in the solid state is just emerging and is expected to
experience a blooming of new implementations in the near
future.

5. Cavity magnomechanics

In analogy to cavity optomechanics® and cavity electro-
mechanics,'gQ) the use of mechanical degrees of freedom in
ferromagnetic crystals is a natural new avenue for hybrid
quantum systems based on magnonics.”>**'**~1% Notably,
deformation modes in a ferromagnetic crystal could be used
as mechanical modes intrinsic to the sample that couples to
magnetostatic modes through magnetostrictive forces.'*'%”)
As depicted in Fig. 6(a), combined with the magnetic dipole
interaction between magnetostatic and microwave cavity
modes, this leads to the recently demonstrated platform of
cavity magnomechanics.™

5.1. Coupling to deformation modes

A mechanical mode of frequency wy can be described as a
harmonic oscillator by the Hamiltonian

ﬂd/fl/ = wddATdA,

where d” and d respectively creates and annihilates a phonon
in the mechanical mode. When this mode corresponds to a
deformation mode hosted in a ferromagnetic material, mag-
netostrictive forces lead to a radiation pressure-like interac-
tion between a magnetostatic mode and the mechanical mode

(22)
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strong resonant coupling of magnetostatic modes to superconducting qubits has enabled one to reach the strong dispersive coupling. Both regimes should be
useful for potential future demonstrations, such as encoding arbitrary qubit states into nonclassical magnon states and quantum sensing of magnons.

described by the Hamiltonian
o/ 71 = g,,_qéTe(d + d), (23)

where g, 4 is the magnomechanical coupling strength.” As
opposed to the beam splitter-like interaction previously
discussed, the radiation pressure-like interaction between
the deformation and magnetostatic modes enables the access,
as in cavity optomechanics,*” to phenomena such as side-
band cooling of the mechanical mode and parametric
enhancement of the coupling strength.

5.2. Experiment

The platform of cavity magnomechanics has been first
demonstrated at room temperature with a millimeter-sized
YIG sphere inside a three-dimensional microwave cavity.*”
For spheres with a diameter of approximately 250 ym, the
frequency wq of the low-order mechanical modes reaches
about 10 MHz. Mechanical modes at larger frequencies could
be possible by using micrometer-sized ferromagnetic me-
chanical oscillators."””'”® In the experiment of Ref. 33, in
order to greatly reduce the clamping losses of the deforma-
tion modes, the YIG sphere is glued to an optical fiber,
enabling a mechanical linewidth of v4/27 = 150 Hz.

In this system, the magnomechanical coupling strength
8m_a/2m ~ 10 mHz is much smaller than every linewidth in
the hybrid system. However, as the magnetostrictive interac-
tion is of the radiation pressure type, the coupling strength
can be parametrically enhanced to approximately 30 kHz by
strongly pumping the magnetostatic mode.* This enhance-
ment leads to a coupling strength larger than the linewidth 4
of the deformation mode, but still smaller than the ~MHz
linewidth of magnetostatic modes in YIG spheres. Despite
this limitation, a large diversity of phenomena has been
observed in this hybrid system.”” Notably, the so-called
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triple resonance condition, in which the frequency of the
mechanical mode matches the magnetic dipole coupling
strength between the resonant magnetostatic and microwave
cavity modes, is demonstrated.

5.3. Future directions

Recently, it has been proposed that tripartite entanglement
between the deformation, magnetostatic and microwave
cavity modes could be realized in cavity magnomechanics
to study, for  example, macroscopic quantum
phenomena.’*'#'%) The key ingredient of the proposal is
to strongly pump the magnetostatic mode in order to enhance
the magnostrictive interaction and to cool down the mechan-
ical mode to the quantum ground state using sideband
cooling.*” Tt is shown that the multipartite entanglement
survives for temperatures slightly above ~100mK. This
proposal could be challenging to achieve experimentally as
it requires one to pump the magnetostatic mode with milli-
watts of power, a feat potentially difficult to achieve in a
dilution refrigerator. Despite the possible difficulties, this
proposal shows the potential of cavity magnomechanics to
bring quantum phenomena to magnonics.

6. Perspectives and outlook for quantum magnonics

Hybrid systems based on magnonics have progressed at
a rapid pace since the first experiments were
conducted.?*?"23-20-28:32:33.35.36) Thig progress has been par-
tially made possible by the adaption of tools developed in
cavity and cQED to the field of quantum magnonics. This path
has enabled steady progress, while the features specific to
quantum magnonics, which can be considered as quantum
optics in magnetically-ordered solid-state systems, still provide
insight into newly discovered physical phenomena and novel
applications.
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The important steps demonstrated in quantum magnonics,
as well as potential future demonstrations, are shown
schematically in Fig. 7. Two main applications are envi-
sioned here. The first one aims to develop a quantum
transducer based on magnonics to interface microwave-only
superconducting circuits with optical photons.®'*?>!%%) Ope
key ingredient for such a technology to be demonstrated in
quantum magnonics is to faithfully transfer quantum infor-
mation from a superconducting qubit to a magnetostatic
mode. The second main application aims to use quantum
magnonics to provide sensitive detection of magnons through
quantum-enhanced sensing protocols.'” As later discussed,
this could be useful for a variety of fields, from ultra-sensitive
detection of magnetic excitations for magnon spintronics to
dark-matter searches for axions.

6.1. Encoding quantum information in magnetostatic
modes

As a magnetostatic mode can be described as a harmonic
oscillator, arbitrary nonclassical states are not naturally
created in this system. Indeed, for example, a coherent drive
creates coherent states of magnons.”®'*® A nonlinearity in
the system is therefore necessary in order to create non-
classical states. Furthermore, while creating any nonclassical
state in a magnetostatic mode is a great feat in itself, schemes
enabling one to encode arbitrary quantum states of a qubit
into the quantum state of a magnetostatic mode are of
potentially even greater interest. We identify two such
schemes based on the strong resonant and dispersive cou-
plings between a superconducting qubit and a magnetostatic
mode previously demonstrated in quantum magnonics.”~®
6.1.1. Schemes based on a resonant coupling. The
most natural scheme to prepare quantum states in a magneto-
static mode is by using the strong and coherent interaction
with a superconducting qubit when both systems are
resonant.>”) Indeed, on resonance, quanta of excitations are
exchanged between the two systems at a rate proportional to
the coupling strength g, ... Therefore, a single excitation can
be transferred to the magnetostatic mode after preparing the
qubit in the excited state |e) using a classical drive, an
operation possible due to the nonlinearity of the qubit. This
scheme has been successfully implemented to create quantum
states of the motional degree of freedom of a trapped ion,'®”
photons in a microwave resonator' >''® and, more recently,
phonons in a mechanical oscillator.''”-''®

With an always-on resonant interaction, the exchange of
excitations is continuous and a single excitation is swapped
back and forth between the two systems. It is therefore
necessary to have either a dynamically tunable coupling or
detuning. With such a dynamical control, after the excitation
is transferred from the qubit to the bosonic mode, the
coupling can be turned off to halt the exchange, or,
alternatively, the detuning can be increased to suppress the
amplitude of the exchange. The quantum states naturally
created with this resonant scheme are number states''>''"-!'®
as well as arbitrary quantum states.''*!''®

A dynamically tunable coupling has been demonstrated in
quantum magnonics,” and a dynamically tunable detuning
could be implemented, for example, by using a flux-tunable
superconducting qubit.''>~""® Therefore, arbitrary states of
the qubit can be encoded in a magnetostatic mode provided
that the coupling strength g, _,, is much larger than the rate
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at which the quantum information is lost in the qubit
(=2 / T5) and in the magnetostatic mode (7,,,). While the
strong coupling regime of quantum magnonics has been
demonstrated,35) improvements are required to further in-
crease the ratio between the coupling strength and the
decoherence and dissipation rates.

Two possible paths for increasing the coupling strength

8q-m relative to the linewidths of the different constituents of
the hybrid system are discussed here. First, in order to
decrease the qubit linewidth to a few tens of kHz, the losses
of the microwave cavity modes need to be reduced. However,
as an external magnetic field needs to be applied to the
ferromagnetic crystal inside the microwave cavity, this
cannot be readily achieved by using a standard supercon-
ducting microwave cavity due to the Meissner effect.
Secondly, as there is no clear path on how to reduce the
linewidth of magnetostatic modes significantly below 1 MHz
in the quantum regime,”" the coupling strength between the
magnetostatic modes and the qubit needs to be increased
from the ~10MHz previously demonstrated.”**>=" This
can be achieved, for example, by increasing the strength of
the magnetic dipole interaction between the magnetostatic
modes and the microwave cavity modes in order to match the
electric dipole coupling strength between the qubit and the
cavity modes of about 100 MHz. Such improvements are
within experimental reach as magnetic dipole coupling
strengths up to 2 GHz have been demonstrated in cavity
electromagnonics.””
6.1.2. Schemes based on a dispersive coupling. As
an alternative to the resonant coupling, a dispersive interac-
tion can be used to transfer the quantum information encoded
in superconducting qubits into bosonic modes such as
magnetostatic modes.'”*''” An advantage of this approach
is that a dynamical control of the coupling or the detuning is
not necessary. However, the time required to perform the
encoding is proportional to 1/[x_,|, as opposed to 1/g,_,,
for the resonant scheme, such that any scheme based on a
dispersive coupling is inherently slower than those based on a
resonant coupling. Another distinction is that the quantum
states prepared using a dispersive interaction are superposi-
tions of coherent states, often called cat states.

The protocol used in Ref. 119 to encode the quantum state
of a superconducting qubit into a cat state in a microwave
cavity mode will be described as an illustrative example. This
scheme uses the strong dispersive interaction between the
qubit and the bosonic mode enabling conditional operations
on one system depending on the state of the other system.
More specifically, a coherent state in the bosonic mode
acquires an additional phase shift if the qubit is in the excited
state |e), therefore corresponding to a conditional rotation in
phase space. Starting with the qubit in a coherent super-
position of the ground and excited states, this operation
directly leads, after a free evolution time 7 = 7 /2| x,_,|. to a
cat state in the bosonic mode entangled with the qubit.
Additional steps enable one to disentangle the bosonic mode
and the qubit. In the end, deterministic encoding of arbitrary
quantum states of the qubit into cat states of the bosonic
mode can be achieved with this protocol.''”

While the strong dispersive regime has been previously
demonstrated in quantum magnonics,’® the ratio between the
amplitude of the dispersive shift|x,_,,| and the linewidths of
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the Kittel mode and the qubit, ~,, and -, respectively, needs
to be significantly improved in order to implement the
encoding protocol presented here. This can be quantified by
the dispersive cooperativity C, =4 |xq_ul*/(3%)- In
quantum magnonics, the best demonstrated dispersive co-
operativity was C,~ 12.°? In comparison, in cQED, C,
reaches ~8 x 10*.""” While the amplitude of the dispersive
interaction is similar, the dispersive cooperativity is much
larger in the latter thanks to the very small linewidth of three-
dimensional superconducting microwave cavity modes
(k/2m ~ 10 kHz) compared to the linewidth of magnetostatic
modes (/27 ~ 1 MHz). Furthermore, in quantum magno-
nics, the qubit linewidth ~4/27 ~ 0.4 MHz is limited, at the
moment, by a reduced lifetime due to the Purcell effect and
increased dephasing due to thermal populations in the lossy
microwave cavity modes mediating the coupling. For ex-
ample, in order to reach the desired dispersive cooperativity
C,= 10%, the amplitude of the dispersive coupling needs
to reach about 10 MHz and the qubit linewidth needs to be
reduced to about 40kHz. As both are realistic figures,
the parameters necessary to faithfully encode the quantum
state of a superconducting qubit into a nonclassical magnon
state in a magnetostatic mode for quantum transducers should
be within experimental reach in the near future.

6.2. Quantum sensing of magnons

The development of hybrid quantum systems based on
magnonics opens up opportunities for using tools developed
in cryogenic microwave experiments for quantum-enhanced
detection of magnons. Sensing of magnons in hybrid
quantum systems has been demonstrated in cavity electro-
magnonics at millikelvin temperatures. For example, ferro-
magnetic resonance has been measured while probing the
system with, on average, much less than a single magnon in
the ferromagnetic crystal.>’’> Magnetostatic modes can
therefore be probed with minimal disturbance of the ferro-
magnetic order. For example, a new relaxation mechanism of
magnons, which can only be observed in the quantum regime
where the average number of excited magnons is much
smaller than one, has been identified.”"

The detection of magnons at cryogenic temperatures has
recently found applications in dark matter searches for
galactic axions through a coupling to electron spins in a
ferromagnetic material.”*>'*°~'*? Indeed, according to a
particular model of axions, the movement of Earth via the
motion of the Solar System through the galactic halo of
axions leads to an effective microwave-frequency magnetic
field which excites magnons in the Kittel mode of a
ferromagnetic crystal if the axion mass is such that it is
resonant with this mode.'”” Preliminary experiments use
strongly coupled and resonant magnetostatic and microwave
cavity modes in the architecture of cavity electromagnonics
to detect magnons possibly generated by the axion
wind.'?*~'? These experiments could be improved by using
quantum-limited amplifiers such as narrowband Josephson
parametric amplifiers'®® or broadband traveling-wave para-

metric amplifiers,'*® or, alternatively, by using single micro-
wave photon detectors based on superconducting
circuits.'*>197

The coupling of magnetostatic modes to superconducting
qubits in quantum magnonics also enables quantum-en-
hanced sensing of magnons. Indeed, magnon number states
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|nm) have been resolved by using the qubit as a quantum
probe.*® This demonstration opens up the possibility to
detect a population of magnons in the magnetostatic modes
using quantum sensing protocols.'" For example, the shift of
the qubit frequency caused by a magnon population 77, in a
magnetostatic mode dispersively coupled to a qubit can be
measured through Ramsey interferometry. Furthermore, in
analogy to experiments in cQED,'?® the strong dispersive
regime of quantum magnonics makes it possible to use the
device as a single-magnon detector. The many avenues for
quantum sensing of magnons in quantum magnonics, made
possible by the coupling of the magnetostatic modes to the
qubit, makes this architecture promising for achieving the
equivalent of a single-photon detector for magnonics, a
technological step potentially useful, for example, for
magnon spintronics.”

7. Conclusions

To conclude, the various hybrid quantum systems based on
magnonics outlined in this review article have allowed proof-
of-principle experiments that show great potential for a
variety of quantum technologies such as quantum-enhanced
sensing of magnons and microwave-to-optical quantum
transduction for superconducting circuits. More specifically,
the development of cavity electromagnonics has prompted a
large variety of experiments for the study of the coupling
between collective spin excitations in different ferromagnetic
materials and modes of different types of microwave
cavities.”">* Furthermore, we note that ferromagnetic crys-
tals in microwave cavities enables one to study topological
many-body states in arrays of microwave cavities with a
nonreciprocity induced by ferromagnetic crystals.'?%->?

Starting from cavity electromagnonics, the platform of
quantum magnonics adds nonlinear elements in the form of
superconducting qubits in order to engineer an effective
strong and coherent interaction between qubits and magneto-
static modes”*~> While strong and coherent couplings have
been demonstrated in both the resonant.”” and dispersive’®
regimes, improvements in the microwave cavity should
increase the coupling strengths and reduce qubit losses.
Through these improvements, deterministic encoding of the
state of a superconducting qubit into a nonclassical magnon
state should be within experimental reach and would
constitute a great step towards building a quantum transducer
based on this architecture. Even with the currently demon-
strated parameters, it is expected that quantum-enhanced
sensing of magnons by using the qubit as a probe is possible,
as best exemplified by the observation of magnon number
states.”® Bringing to the field of magnonics the equivalent of
the single-photon detector for optics would be a great
demonstration of the possibilities of quantum sensing in
quantum magnonics.

In combination with cavity electromagnonics, cavity
optomagnonics serves as a key ingredient for the bidirec-
tional conversion between microwave and optical photons for
the development of quantum transducers.” Increasing the
optomagnonic coupling with, for example, smaller ferromag-
netic samples or higher-order magnetostatic modes, could
potentially enable the efficient coherent control of magnons
with light.”>* Finally, the platform of cavity magnomecha-
nics promises to offer the possibility to observe quantum
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effects in magnonics with linear systems only,*-*18418% 30)
Overall, the diversity of platforms based on hybrid
. . . 31
quantum systems with magnetostatic modes provides )
many opportunities for novel quantum technologies 32)
with applications in both fundamental and applied
physics'37,66,68,69,74,8(),92,93,l 33,183,184) 33)
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