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Abstract

Building on one decade of theory and methodology maturation, we investigate the coherent and incoherent
components of the response of the Martian surface to nadir-looking orbital radar. We apply a reflectometry
technique known as radar statistical reconnaissance to Mars Reconnaissance Orbiter Shallow Radar data over a test
region with a large dynamic range in echo strength. This technique provides a set of statistical parameters
describing the heterogeneity of the surface and near-surface structure, presumably at a scale of ∼15 m. We discuss
the physical meanings of these parameters related to surface and near-surface properties. Most (but not all)
investigated terrains have a dominantly coherent surface return, a characteristic that is not necessarily indicative of
a smooth surface. The observed behavior of the coherent and incoherent power components of the echo matches
signal growth with increasing surface roughness. This finding allows us to identify smooth and level terrains that
we use as a reference to approximate the surface height and slope variations of other regions. Nearly systematic
mismatches between the SHARAD and MOLA-pulse-width roughness illustrate the complementarity of these data
sets from their respective sensitivity range, and advocate for the use of self-affine radar backscattering models to
account for roughness variations at different scales. Our methodology provides a wealth of surface properties
assessment based on radar scattering with quasi-global coverage, without a dependence on other data, and at a
decametric horizontal scale relevant to subregional geology investigation and landing site reconnaissance.

Unified Astronomy Thesaurus concepts: Mars (1007); Planetary surfaces (2113); Remote sensing (2191)

1. Introduction

The information contained in the surface echo return of
nadir-looking radar data can be used to classify, outline, and
characterize planetary surfaces by being sensitive to a
combination of properties unique to radar instruments.
However, the contributions of the near-surface composition,
structure, and surface roughness are rarely untangled from the
signal strength, making the surface characterization by radar
usually qualitative and ambiguous (e.g., Ostro & Shoemaker
1990; Watters et al. 2007; Boisson et al. 2009; Grima et al.
2012; Hofgartner et al. 2014). The term reflectometry encom-
passes all the techniques using signal radiometry (i.e., measure-
ment of the signal energy) to characterize the reflection
properties of an interface and to assess its geological and
geophysical meaning.

Various nadir-looking radar instruments at different wave-
lengths (λ) have been used to study planetary bodies since the
1960s. Examples include radar altimeters at decimeter
wavelengths at Venus (e.g., Masursky et al. 1980; Kotelnikov
et al. 1985; Saunders et al. 1990), Saturn’s icy satellites (Elachi
et al. 2004), and the Moon (Nozette et al. 1996, 2010; Spudis
et al. 2009); radar sounders at decameter wavelengths at the

Moon (Porcello et al. 1974; Ono et al. 2010) and Mars (Croci
et al. 2011; Orosei et al. 2015; Fan et al. 2021). Radar sounders
are also being developed for the investigation of the Galilean
icy moons (Blankenship et al. 2009; Bruzzone et al. 2011).
Several reflectometry techniques are routinely used. Tech-

niques based on the echo shape associate the shape of the signal
tail that follows the surface-return arrival to a signature of
surface scattering. This approach has been extensively applied
at the Moon with data from the Apollo Lunar Sounder
Experiment (ALSE; λ= 2–60 m) to estimate the surface
roughness slopes (e.g., Fung 1964; Hagfors 1964, 1970;
Simpson & Tyler 1982). Similarly, Campbell et al. (2013) and
Campbell et al. (2018) used both the echo shape and strength of
the Shallow Radar (SHARAD; λ= 15 m) signal to provide
roughness descriptors on Mars. However, the echo-shape
approach has been criticized for its analytic inaccuracies and
provides dimensionless descriptors that are not quantitatively
mapped to physical properties (Barrick 1970; Salem &
Tyler 2006).
Other techniques use third-party data to reduce the number

of unknowns in the radar backscattering equation. A common
approach is to predict the radar losses due to roughness from an
existing digital elevation model (DEM), and then subtract those
losses to the radar return to derive dielectric properties (e.g.,
Kobayashi & Lee 2015). This approach was first used with the
Mars Advanced Radar for Subsurface and Ionosphere Sound-
ing (MARSIS; λ= 55–230 m) supported by the Mars Orbiter
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Laser Altimeter (MOLA) DEM (Mouginot et al. 2010).
However, the derived dielectric maps have a coarse
(>100 km) resolution that does not allow local investigations.
Similar attempts with SHARAD (λ= 15 m) data (Castaldo
et al. 2017) necessitate to extrapolate the MOLA roughness
statistics down to shorter scales, an operation that can produce
major biases (Campbell et al. 2003). Other Martian DEMs
suffer from lack of either a broad coverage (the High
Resolution Imaging Science Experiment; DEM coverage of
Mars is <1%; McEwen et al. 2007) or height accuracy (∼10 m
for the High-Resolution Stereo Camera; Gwinner et al. 2010)
that should be a fraction of λ to render appropriately the
interferences of the backscattered radar signals. Conversely, the
surface roughness can also be deduced when reasonably tight
assumptions can be made for the dielectric properties. This is
the case for the ethane–methane–hydrogen composition of the
Titan hydrocarbon seas (e.g., Mitchell et al. 2015; Mastrogiu-
seppe et al. 2016) for which roughness estimates have been
made from the Cassini RADAR (λ= 2.2 cm) altimetric data set
(Wye et al. 2009; Zebker et al. 2014; Grima et al. 2017).

The alternative technique used in this study is the radar
statistical reconnaissance (or radar statistical reflectometry,
hereafter RSR; Grima et al. 2012, 2014b). The RSR is a stand-
alone approach that breaks down the amplitudes of the surface
echo into several statistical descriptors, therefore increasing the
number of radar observables. It is used routinely by the
airborne High Capability Radar Sounder (λ= 5 m; Peters 2005;
Peters et al. 2007) in the terrestrial cryosphere to provide
insights into the surface roughness and snow density, validated
by concurrent altimetry measurements and independently
derived snow accumulation rate (e.g., Grima et al.
2014a, 2016, 2019). The RSR has also been used to outline
the extent of the near-surface brine at McMurdo Ice Shelf, near
East Antarctica (Grima et al. 2016), and to reveal the pattern of
refrozen percolated meltwater on the Devon Ice Cap in the
Canadian Arctic (Rutishauser et al. 2016). Surface RSR from
the Cassini RADAR (λ= 2.2 cm) data set in altimetry mode
gave tight contraints on the roughness parameters for the three
largest hydrocarbon seas of Saturn’s moon Titan (Grima et al.
2017). An early application on SHARAD data estimated some
vertical roughness at regional scales (Grima et al. 2012).
However, the theoretical framework employed was limited in
its application to very smooth terrains. Later, another
application on SHARAD data supported the assessment for
the selection of the Insight landing site (Putzig et al. 2017).

When dealing with surface roughness, the horizontal scale
over which roughness is measured (hereafter, roughness scale)
is an important consideration. It has long been observed that
most bare planetary surfaces are self-affine processes, i.e., their
statistical descriptors vary with the measurement scale (e.g.,
Shepard et al. 2001; Orosei 2003; Eltoft 2005; Schenk 2009;
Gao 2010; Rosenburg et al. 2011; Pommerol et al. 2012; Ward
et al. 2013). The roughness scale relevant to radar reflectometry
is not known with certainty. It is usually assumed to be near the
wavelength (λ= 15 m for SHARAD). However, this premise
has never been clearly demonstrated (Dierking 1999). As
discussed by Grima et al. (2012), the wavelength is likely both
a lower limit and a fundamental scaling factor, but it has to be
considered in combination with the surface footprint extent
over which large-scale roughness variations of the self-affine
surface can also be manifest.

In this paper, we build upon a preliminary study of
SHARAD reflectometry (Grima et al. 2012) by integrating
the theory and methodology matured through the RSR
technique over the last decade. The purpose is to provide a
wealth of descriptors for the Martian surface, as well as
theoretical and empirical insights to address their physical
meaning. We first present the data set used and the
preprocessing applied to SHARAD radiometric content.
Second, we provide a comprehensive description of the
statistical nature of the surface echo and its relationship with
surface and near-surface properties. The methodology to
extract the statistical parameters from the surface return by
the RSR technique is presented, as well as an assessment of the
related error estimation. Finally, we discuss the observed
relative coherent and incoherent responses over the studied
region, leading to a novel roughness approximation technique
independent of third-party observation. It includes an approach
to quantitatively assess the bias driven by the relative ignorance
of the permittivity. The results are compared with roughness
measurements from MOLA to discuss the relative roughness
scale measured by radar reflectometry.

2. Data

2.1. Region of Interest

The studied region covers longitudes 135°E to 165°E and
latitudes −5°N to 15°N. We chose this region because it
gathers in a contained area most of the 30 dB wide dynamic
range of SHARAD reflectivity that can be observed planet-
wide (Grima et al. 2012). The region includes a range of dim
terrains including Medusae Fossae Formation (MFF) outliers
and scattered Noachian rises (NR), the moderately bright
Hesperian Elysium shield (ES), as well as the middle-to-late
Amazonian volcanic complex of the Elysium plains (EP) that
account for one of the brightest regions of Mars at SHARAD
wavelengths. This broad continuum of reflectivity that reflects
the heterogeneity of terrain textures is essential in making
physical sense of the relative coherent and incoherent signal
behavior described in Section 4 that frames the methodology
we use to approximate surface roughness. The studied region
also encompasses the Curiosity and Insight’s landing sites.

2.2. The Shallow Radar

SHARAD transmits a 10 MHz bandwidth centered at 20
MHz (λ= 15 m) (Seu et al. 2004; Croci et al. 2011), and has
been in operation aboard NASA’s Mars Reconnaissance
Orbiter (MRO) since 2006. The SHARAD signal is reflected
by each dielectric gradient on its propagation path until
extinction. The resulting echoes are recorded at the antenna,
providing the electric field amplitude and phase along the
transmitted polarization axis. The transmitted signal is
characterized by a nearly isotropic illumination pattern so that
the first recorded echo is usually originating from the closest set
of surface reflectors–scatterers, which, at first order, is assumed
to be near the spacecraft nadir point. SHARAD provides an
effective pulse-repetition interval every ∼20–40 m along the
track.
We use the raw data products (also called Experimental Data

Records, hereafter EDR) available on the Planetary Data
System platform.7 The data set represents a global coverage

7 https://pds-geosciences.wustl.edu/missions/mro/sharad.htm
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from more than 11 yr of observations at the time of processing.
The usage of the raw products ensures that the data are free
from ground-based post processing that could alter the
radiometric gain through a terrain-dependent component hard
to predict a priori. For instance, focusing techniques,
commonly integrated in derived radar data products, have a
radiometric stability dependent on the along-track surface
backscattering function produced by roughness and local
slopes (Peters et al. 2007; Scanlan et al. 2021). A SHARAD
radargram can be of any length along the track, but has a fixed
vertical size corresponding to a receiver window of 135 μs
digitized over 3600 samples.

2.3. Processing

Preprocessing. The EDR data preprocessing is identical to
what is described in more detail by Steinbrugge et al. (2022,
Section II-B). It includes (i) a range compression using an ideal
reference chirp following the methodology by Campbell et al.
(2011), and (ii) a correction of the dispersive phase shift and
the related signal loss due to the propagation through the
ionosphere by using an approach maximizing the signal-to-
noise ratio (S/N) to focus the surface echo. Absorption losses
that occur during the ionosphere propagation are not corrected.
Depending on radio solar flux conditions, such loss is
contained below 1.5 dB at SHARAD frequencies (Grima
et al. 2012). That is of the second order in comparison with
the geologic signal dynamic range dealt with in the rest of this
study. One-third of our data set has been acquired on the day
side and might suffer such signal absorption.

Surface echo extraction. We extracted the surface echo
strength from the preprocessed EDR using the detection criteria
proposed by Grima et al. (2012). This criteria looks for the
maximum of the stronger surface echo strength weighted by the
derivative preceding it in the fast-time domain (i.e., the vertical
dimension). However, as we use the range-compressed EDR
data that have a low S/N, we avoid unreliable detection by
computing the criteria over a restricted 100 sample long
vertical window centered on a location where the surface is
expected. This predetermined location is obtained through
pulse retracking techniques adapted from terrestrial ocean
altimetry to identify the rising edge of the surface return as
applied by Steinbrugge et al. (2022) on SHARAD.

Gain corrections. MRO quasi-polar orbits are characterized
by a periapsis (resp. apoapsis) reaching ∼250 km (resp. ∼320
km) above the Martian geoid over the north (resp. south) polar
regions. The total variation in gain due to geometric losses
reaches 3 dB (Grima et al. 2012; Campbell et al. 2021). We
adjusted each echo strength using a relative geometric
propagation factor of =f h h2

ref
2( ) where h represents the

observed altitude, and href is a common reference arbitrarily set
to 250 km (Grima et al. 2012). The configuration of MRO’s
solar arrays (SA) and high-gain antenna (HGA) alters the
radiation pattern of the SHARAD antenna and is therefore a
major source of signal-to-noise variations. We correct for this
effect by applying the empirical gain model derived by
Campbell et al. (2021). MRO’s attitude has varied across the
mission to accommodate specific observations. It has been
shown that the S/N for SHARAD is strongly dependent on the
roll angle of the spacecraft, but an accurate correction model is
yet to be obtained (Campbell et al. 2021). To limit any
nonquantifiable S/N variations due to MRO’s attitude, we
excluded data with an absolute roll angle greater than 0°.5

around the axis corresponding to the velocity vector of MRO’s
orbit around Mars.

3. Surface Echo Statistics

This section describes the wealth of geophysical information
contained in the surface echo strength. It also explains the RSR
methodology that extracts statistical parameters describing the
behavior of the surface echo.

3.1. The Surface Echo

The surface echo, or surface return, is the signal reflected by
the atmosphere–surface interface. It is the earliest arrival
recorded at the antenna affected only by ionospheric attenua-
tion (Mouginot et al. 2008; Campbell et al. 2014). We mitigate
this effect as described in Section 2.3.
Scattering volume. The strength of the surface echo is the

summation of all the elementary electric fields reflected and
scattered by the dielectric contrasts within a volume bounded
horizontally by the circular radar footprint and vertically to the
near-surface depth (<15 m, depending on the dielectric
properties of the ground; Grima et al. 2012; Figure 1(a)). The
size of the radar footprint for a perfectly smooth surface is
given by the Fresnel zone, an area from which the scattered
signals interfere constructively (Haynes 2020). However, since
the incoherent scattering is fully integrated into our analyses,
we shall consider the larger pulse-limited footprint that
accounts for the contribution of peripheral scatterers. The
resulting effective footprint in the absence of along-track
focusing is about 5 km in diameter for SHARAD (Seu et al.
2007). Therefore, the echo strength holds crucial information
about both the surface roughness and the near-surface
composition and structure (Figure 1(b)).
Components. It can be demonstrated analytically that the

total power of the surface return is composed of a coherent
component (or reflectance, Pc) and an incoherent component
(or scattering, Pn), so that the total power received is
Pt= Pc+ Pn (e.g., Ishimaru 1978; Tsang 2001; Ulaby &
Long 2014). By opposition to the coherent component, Pn

pertains to a diffused random field that is related to the
scatterers randomly distributed within the scattering volume
(volumic inclusions) and at its interface (surface roughness;
Figure 1(b)). In the absence of volume scatterers, Pc and Pn are
equally scaled by the surface reflection coefficient that is
determined by the apparent permittivity (ε) of the ground (see
Section 4.2 for basic analytic relationships).
Apparent permittivity. ε is a first indicator of the ground

composition since geologic materials (e.g., ices and sedimen-
tary, basaltic, metamorphic rocks) lie in various, although often
overlapping, ranges of permittivity (e.g., Campbell &
Ulrichs 1969; Telford 1990). ε is also dependent on the
volume fraction of impurities (including void spaces) in the
medium (Sihvola 1999; Martinez & Byrnes 2001; Grima et al.
2009).
Layering. The apparent permittivity sensed by the radar is

further modulated by the deterministic and nearly horizontal
structure of the ground that generates specular reflections that
may interfere with each other. The term deterministic has to be
understood as a structure that is not randomly varying across
the footprint such that the outgoing wave front of the
electromagnetic field is spatially undisturbed and steady.
Depending on the geologic context, such deterministic
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structures could come from the overburden floor, the ice table,
or aquifers present in the near surface (e.g., Mouginot et al.
2009; Grima et al. 2016; Scanlan et al. 2022). The overall effect
of near-surface layering is extremely sensitive to the ratio
between the signal wavelength and the layers’ thicknesses
(Mouginot et al. 2009; Lalich et al. 2019).

Surface roughness. Surface roughness at a horizontal scale
that equals the wavelength is usually the primary source of
randomly distributed scatterers. The tilted elements of the
surface, usually associated to the random surface slopes, are
mainly responsible for diffusing the backscattered field into
different, not-specifically specular directions. Distinctly, the
vertical distribution of surface heights is the main roughness
attribute that is ubiquitous to both the deterministic and random
surface responses through the Pc and Pn components,
respectively. Its physical effect on ¶c is very similar to a layer
with a thickness that approximates the root mean square of the
heights.

Volumic inclusions. Incoherent scattering could also come
from near-surface inclusions such as ice lenses, buried blocks,
or strongly brecciated media with typical dimensions repre-
senting a fraction of the radar wavelength (Rutishauser et al.
2016). As a first approximation, volume scattering is isotropic
(Lambertian; Nayar et al. 1991), therefore with a minimal
specular contribution. Such volume scattering is ignored in
Section 4 related to surface roughness approximation, but
might contribute to enhance the incoherent component in very
specific settings.

3.2. Homodyned K-statistics

Introduction. One can attempt to describe the randomness of
the surface echo amplitude from its envelope distribution with a
probability density function (PDF) assuming specific assump-
tions for the statistical properties of the surface. Grima et al.
(2012) demonstrated that the statistics of the SHARAD surface
echoes for dominantly coherent signals (i.e., smooth terrains)

are well reproduced by a Rice envelope (Rice 1945).
Conversely, when the coherent signal shrinks over rougher
terrains, the K-distribution (Jakeman & Pusey 1976) better
reproduces the signal statistics over the most common Rayleigh
distribution used for homogeneous scattering medium (Grima
et al. 2012). This observation is expected since a K-noise is a
generalization of Rayleigh scattering that allows the scatterers
to be clustered, an assumption certainly more robust to model
scattering from planetary bare surfaces. The Rice and the
K-distribution have been bridged together by the homodyned
K-distribution (HK; Jakeman 1980; Jakeman & Tough 1987;
Dutt & Greenleaf 1994) that we therefore propose to use in this
study as a more suitable model for systematic application
across the Martian surface. The flexibility of the HK has been
leveraged in many diverse applications ranging from ultra-
sound imagery, synthetic aperture radar imagery, and ice-
penetrating radar reflectometry (e.g., Tison et al. 2004;
Grima 2014; Tresansky 2020). Grima (2014) provides a brief
overview of the HK relationships with basic PDFs in the
context of nadir-pointing radar surface reflections. Compre-
hensive and extensive reviews for other applications can
also be found in Destrempes & Cloutier (2010) and Tresansky
(2020).
Definition. The HK is analytically built from the summation

of N phasors (reproducing the effects of N interfering
scatterers) in a 2D random walk following a negative-binomial
distribution, and into which is added one deterministic (or
homodyning) component (Dutt & Greenleaf 1994). Physically
this allows the N scatterers to be clustered within the radar
footprint (i.e., not necessarily independent and identically
distributed). The law of large number of scatterers, typical for
Rayleigh scattering, does not have to be fulfilled. The HK also
appears to be the only model for which the parameters keep
their physical meaning in the limiting case of vanishing
homogeneity, while remaining valid for a high density of
uniformly distributed scatterers (Dutt & Greenleaf 1994;

Figure 1. (a) The recorded surface echo strength is the coherent summation of all the electric fields reflected and diffused at the surface within the scattering volume
bounded by the footprint (∼5 km) and the near-surface depth (<15 m). (b) Physical properties of the surface and near surface that can contribute to the coherent and
incoherent powers.
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Destrempes & Cloutier 2010). The HK distribution is given by

⎜ ⎟
⎛
⎝

⎞
⎠

òm = +
m¥ -

P A a s A uJ ua J uA
u s

du, , 1
2

,

1

HK
2

0
0 0

2 2
( ∣ ) ( ) ( )

( )

where A is the signal amplitude, J0(•) is zeroth-order Bessel
function of the first kind, u is a nonspecific variable of
integration. The coherent and incoherent powers are given by
Pc= a2 and Pn= 2s2μ, respectively. Figure 2 illustrates the
typical shapes of HK distributions for various sets of of
parameters.

Physical meaning. a is the constant amplitude added to the
random walk and characterizes the coherence of the signal. It
controls the location of the HK envelope mode. Physically, it
results from the coherent summation of superposed fields
reflected by flat interfaces nearly perpendicular to the
propagation path: usually the surface boundary in the first
place, but also any sharp dielectric gradient in the near surface
as well as any stair-like shape of those interfaces within the
footprint. 2s2 is the scale parameter of the HK. It somewhat
represents the scattering strength of an individual scatterer. The
total scattering strength is obtained by multiplying 2s2 by μ.

μ is a parameter of the negative-binomial distribution used to
model the 2D random walk associated with the scattering (Dutt
& Greenleaf 1994). It is morphologically related to the kurtosis
of the HK envelope and is called the scatterer number density
parameter or clustering parameter. This double designation
underlines its intricate meaning for the disorganized structure
of the target within a resolution cell. Studies suggest that a
resolution cell could be translated to a λ3 volume, where λ is
the sensing wavelength. However, most of the observations
reported in this paragraph are derived from the context of
ultrasound biologic tissue characterization where the scattering
media is usually a volume, although a 2D surface-like space is
often considered for model simplicity. A comprehensive effort
to understand the quantitative meaning of μ in the context of
radar sensing of bare planetary surfaces still remains to be
undertaken, but advancements made in other fields provide a
valuable framework. Simulations and phantom experiments
suggest that μ increases monotonically with the number of
scatterers per resolution cell so that it provides a relative
indication of the density of scatterers (e.g., Abraham &
Lyons 2002; Cristea et al. 2020). The relationship appears
almost linear for independent and identically distributed

random samples (Dutt & Greenleaf 1994; Cristea et al.
2020). It is noteworthy that similar results are obtained in the
field of seafloor sonar sensing (Abraham & Lyons 2002).
Geologic processes do not necessarily produce independent
and identically distributed random scatterers. In this case, the
HK theory also predicts μ to vary with the clustering of the
scatterers, i.e., the degree to which the scatterers tend to be
spatially gathered in patches (Dutt & Greenleaf 1994). This is
validated by experiments showing that μ increases with the
decreasing degree of clustering (Hu et al. 2017). This trend
appears to break when the media loses any signature of entropy
either by reaching a certain saturation threshold for the scatterer
population or when the scatterers become regularly distributed
(i.e., without randomness) [ibid.].
The literature often makes use of a ratio that combines a, s,

and μ as a relative measure of coherence within the signal. For
instance, Destrempes et al. (2013) uses an expression of the
coherent-to-diffuse signal ratio m=k a s( ) that appears to
increase linearly with the periodicity of scatterers, while
Tresansky (2020) proposes the “coherent fraction” as the
relative power in the total signal Pc/(Pc+ Pn)= a2/(a2+ 2s2μ)
that carries a more intuitive meaning. One common motive is to
produce a scale-independent parameter that is insensitive to
signal attenuation as well as Fresnel reflection and transmission
losses. Here we use the “coherent content” defined by
Pc/Pn= a2/(2s2μ) as proposed by Grima et al. (2012,
2014b). In a way similar to other ratios, the coherent content
is theoretically only dependent on roughness and near-surface
disorder although its relationship with heterogeneity descriptors
is not monotonic (Section 4.2). The coherent-to-incoherent
balance illustrated by the coherent content is also a first-order
indicator to drive the choice of a relevant backscattering model
for a further physical properties inversion as it indicates what
type of power is dominant in the signal. Morphologically, a
negative coherent content or fraction shifts the HK envelope
morphology toward a positive skewness.

3.3. Methodology

Standard estimation techniques for the derivation of the
HK parameters include a variety of methods of moment
(MoM) algorithms based on the combination of moments for
the assumed HK-distributed empirical data (e.g., Dutt &
Greenleaf 1995; Hruska & Oelze 2009; Destrempes et al.
2013; Haynes 2019), as well as maximum likelihood estimators

Figure 2. A set of various homodyned K-probability density functions.
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(e.g., Hu et al. 2017). Here, we use a simple curve-fitting
estimation algorithm8 based on a nonlinear least squares fitting
of the surface echo amplitude distribution (Markwardt 2008).
Initial conditions a0 and s0 are obtained for each fit from the
mean and standard deviation (STD) of the empirical data,
respectively, while μ0 is initially set to unity. More relevant
initial conditions could also be fed from a MoM estimator at
the cost of computation time (Tresansky 2020). Each iteration
of the curve-fitting process is constrained by the condition that
the sum of the derived Pc and Pn values should equal the total
signal power (defined by the mean of the set of echoes
considered) in order to match the theoretical relationship
between the signal components (Section 4.2). The bin width for
an amplitude histogram is determined with the rule from
Freedman & Diaconis (1981) that estimates the scale of the
distribution from its interquartile range. The apparent robust-
ness of curve-fitting estimators against noise makes them more
appropriate when the size of the data set is low, typically on the
order of 100–1000 s of points as is the case for our data set
(Section 3.5; Tresansky 2020). The error estimation of our
algorithm is assessed in the following section.

3.4. Error Estimation

We investigate the error with which our algorithm
determines both the coherent and incoherent powers of the
surface return as well as the surface clustering parameter. Our
core methodology is to draw a synthetic set of 1000 pseudo-
random amplitudes following the inverse transform sampling
(ITS) technique (Devroye 1986) applied to an HK noise with
predefined parameters. We add an arbitrary Gaussian noise of
∼1 dB to simulate the effect of nongeophysical noise (e.g.,
instrumental) introduced in the measured signal. Haynes (2019)
proposed to account for the instrumental noise by adding a
random variable (i.e., an additional unknown) to the analytic
expression of the PDF used. While we do not do that, our
approach enables to assess how our estimator behaves when an

unknown and limited non-HK instrumental noise is introduced.
We then apply our algorithm to this set of 1000 synthetic
amplitudes to derive the predicted HK parameters. This
operation is repeated N= 1000 times for a given combination
of predefined (true) HK parameters within a range encompass-
ing 99% of the empirical measurements in our study area.
Results are presented in Figure 3 in terms of the relative bias

-E y y y( [ ˆ] ) and the normalized STD y yVar[ ˆ] of a
predicted value ŷ with respect to a true value y. The relative
bias and normalized STD can both be interpreted in terms of
scaled measurement accuracy and precision, respectively
(Walther & Moore 2005). Figure 4 provides an alternative
visualization through the true-versus-predicted plots for the
coherent content and μ.
Overall, the measured coherent content (Pc/Pn) emerges as a

metric to assess the reliability of the predicted values, as noted
by former studies (e.g., Hruska & Oelze 2009; Destrempes
et al. 2013). In accordance with the uncertainty principle, when
a power component weakens relatively to the other one, the
uncertainty on its predicted value worsens. Still, confidence
ranges exist: When the coherent content is measured
between±5 dB (resp., <10 dB), the relative bias on the
predicted Pĉ and Pn̂ is <1 dB (resp., <2 dB). The normalized
STD is <0.5 for coherent contents down to −5 dB. The
prediction of μ is highly sensitive to the coherent content in a
manner that might preclude using it for further qualitative
interpretations. However, comparative analysis can be
attempted for surfaces with similar coherent contents as their
true-versus-predicted plots are monotonic (Figure 4, right).

3.5. Results

Application. The region of interest is spatially segmented
into circles of diameter d= 0°.17 (∼10 km at the equator) and
spaced every d/2 in both longitude and latitude. Our RSR
algorithm is then run over the set of surface echoes contained
within each circle. A single set gathers about 1000 echoes in
average. Results for the RSR-derived Pc, Pn, Pc/Pn coherent
content, and μ are presented in Figure 5. The goodness of fit
between the amplitude distributions and the corresponding HK

Figure 3. Error estimators for Pĉ, Pn̂, and m̂. (Top) Relative bias where warm (resp. cool) colors indicate overestimation (resp. underestimation) from the true value. For
ease of use, the Pĉ and Pn̂ plots include contours showing the relative bias from the true value in dB by increment of 1. (Bottom) Normalized standard deviation. The
power components that are relatively weaker are usually derived with more uncertainty, although a stable domain exists when the coherent content is within ±5 dB
(or, to some extent, pm 10 dB).

8 All the applications, including error estimations, use the RSR processor
v1.0.6 available at https://github.com/cgrima/rsr.
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fits is also assessed through their respective correlation
coefficients in the bottom right panel of Figure 5 with most
of it being >80% with a median at 98%. For illustration,
typical amplitude distributions and their associated HK fit in
this region can be found in Putzig et al. (2017, their
Figure 5(b)).

Observations. We observe that the relative dynamic range of
the total signal spans about 30 dB, similar to what was
observed by Grima et al. (2012) across a significant portion of
the Martian surface, confirming that our selected case-study
region is mostly representative of the power dynamic that could
be encountered throughout the planet. Noticeably the full
extent of this 30 dB dynamic range is mainly driven by Pn

whereas the coherent signal Pc is due to geologic variations
(i.e., not considering the background noise signal as determined
below) and only spans ∼15 dB. The total radiometric range
could be artificially reduced by the RSR-induced bias high-
lighted in our sensitivity analysis (Section 3.4) that is especially
important for low coherent contents associated with high μ
values. However, the facts that the derived μ values are mostly
lower than 2 and that Grima et al. (2012) measured a similar
dynamic range from the raw surface return (i.e., without
resorting to the RSR methodology) suggest that this range
underestimation is a minor effect.

Another important observation comes from the bulk of the
measured coherent contents in decibels being positive,
implying that the signal return at the antenna is often
dominantly coherent. This is especially of interest for driving
SHARAD data users toward an appropriate backscattering
model for a surface properties inversion in a specific region. In
particular, backscattering models for a dominantly coherent
signal have a more tractable form and a reduced number of
surface property unknowns than for a more balanced coherent–
incoherent power location (e.g., Ulaby et al. 1981;
Ogilvy 1991). Interestingly, rough terrains such as the MFF
and some Noachian units exhibit a strong coherent content
despite intuitively being expected to scatter the signal. In some
cases, this coherency could be explained by the incoherent
power fall-off being greater than for the coherent one (Haynes
et al. 2018), so that the distance to the target naturally filters out
the relative strength of the incoherent signal. In some other
cases, a positive coherent content is simply the manifestation of
the surface signal being so weak that our surface picker
samples the random noise in a biased manner. The regions
where these effects are dominant can be identified and
discriminated as described in the following section.

Background noise. In locations where the surface signal is
too dimmed to be reliably detected, the derived Pc and Pn

components might be misinterpreted as proxies for the surface
properties while they are in fact signatures of the background
noise. To predict this effect and avoid geophysical interpreta-
tion pitfalls, we characterize the coherent signature of the
background noise as seen by our surface picker. The purpose is
not to characterize the noise itself, but rather to give insights on
how the noise is rendered in the Pc− Pn space by the selective
signal determination of our picker. For each radargram
crossing, our region of interest, we run our surface picker into
the first 100 earliest fast-time samples where the surface is
usually absent. This is repeated 1000 times along track over
equally spaced range lines. The obtained set of 1000
amplitudes is used to determine a single pair of Pc and Pn

values per radargram through the RSR algorithm. The results
reported in Figure 6 are within a range of relative power
defined by Pc< 60 dB and Pn< 50 dB, and restricted into a
narrow Pc/Pn ratio of 12± 0.5 dB.
Thanks to this range of values, one can identify the regions

that correspond to background noise. The bottom left panel of
Figure 5 represents the distribution of our samples in the 2D
Pc− Pn space. The bottom left end of this distribution is split in
two groups, both with Pn< 50 dB, but one with Pc> 60 dB
while the other is coherently weaker than 60 dB. This latter
group of points corresponds to the range of power for the
background noise as outlined by the overlapping red contours.
Interestingly, those two groups of points can be both
geolocated within the MFF, indicating that the S/N of the
surface echo there oscillates around the limit of detection for
our surface picker. A closer look at the map of the incoherent
power (Figure 5, upper right) shows that similar powers within
the MFF tend to be arranged along track. It suggests that the S/
N oscillations triggering the surface echo detection are driven
by the conditions of acquisition (e.g., SA-HGA configuration,
ionosphere attenuation) specific to each track.

4. Roughness Approximation

4.1. Coherent–Incoherent Growth

The behavior of the distribution in the 2D Pc− Pn space
(bottom left panel of Figure 5) exhibits a noteworthy comma-
like shape that we interpret in the context of signal growth with
increasing surface roughness. This interpretation is detailed in
the paragraph below through three types of regimes and

Figure 4. Actual vs. predicted median plots for the coherent content (left) and μ (right).
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Figure 5. Maps and associated distributions of derived surface HK parameters. μ values higher than 10 are saturated as they cannot be discriminated with sufficient
precision by our estimator. Black contours outline geologic unit boundaries (Tanaka et al. 2014). Red stars indicate Insight (+4°.5) and Curiosity (−4°.6) landing
sites. The bottom left panel depicts the distribution of the measured surface echoes in the Pc − Pn space and also exhibits red contours outlining the distribution of
background noise also shown in Figure 6.
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illustrated by Figure 7. It will drive our logic for roughness
approximation in the Section 4.2.

When the roughness increases over that of a flat surface
(regime (1)) to a very rough surface with quasi-isotropic
scattering properties (regime (3)), the coherent power
diminishes until it eventually becomes undetectable. The
coherent power lost thereby is progressively transferred into
the pool of incoherent power, so that the incoherent power
integrated over the half-space above the surface grows
continuously with roughness. However, the incoherent power
that is intercepted by the spacecraft at normal incidence does
not exhibit a monotonic behavior. It first grows with roughness
around the specular direction. But then, when the tilted surface
elements reach a certain threshold depicted by regime 2, the
growth of the incoherent power tends to be concentrated in off-
normal directions, and counterintuitively, the incoherent power
intercepted by the antenna around the normal then diminishes
(Ulaby et al. 1981), going from regime (2) to regime (3),
although the incoherent power integrated in the upper half-
space increases. The coherent content provides another
signature of this entire dynamic. It drops rapidly between
regimes (1) and (2) since Pc and Pn evolve in an opposite
manner. Then, the coherent content nearly stabilizes or even
slightly increases, as both Pc and Pn shrink.

4.2. Analytic Relationships

The analytical relationships that bound the coherent and
incoherent energies to the physical properties of the surface can
be given by backscattering models. In general, at a given
altitude z from the surface, at normal incidence, without
volume scattering and for a stationary and ergodic surface,
those components can be written in the forms

a c s=P r , 2c h
2 2( ) ( )

a z s=P r L z l, , 3n h c
2 2( ) ( ) ( )

where α is a calibration constant that can be adjusted so that
Pc= 1 (or 0 dB loss) when the surface is a perfectly flat and

conductive reflector (Fresnel coefficient r= 1). r2 is the Fresnel
reflection coefficient that is a function of the surface
permittivity such as follows:

e
e

e=
-
+

< <r r
1

1
, for 1 and 0 1.

4

2
2

2

( )

L(z) is the relative geometric propagation loss with respect to
a specular reflection. For a flat surface, L(z)= 1/(πz)2 (Grima
et al. 2012). The surface roughness properties are defined by
the rms height (σh) and correlation length (lc). For a more
intuitive interpretation, we will refer to the effective slope
se= σh/lc (Campbell & Garvin 1993; Shepard et al. 2001). It is
equivalent to the rms slope for a surface profile with an
exponential autocorrelation (Ogilvy 1991). c sh

2( ) and
z s l,h c

2( ) are functions describing losses due to roughness.
These are both dependent on the backscattering model
considered. From Equations (2) and (3), it follows that the
coherent content is independent on the surface permittivity and
is only a function of the two roughness parameters when the
altitude is known:

c s
z s

=
P

P L z l,
. 5c

n

h

h c

2( )
( ) ( )

( )

4.3. Methodology

When the surface backscatter tends toward regime (1) in
Figure 7, the coherent power is weakly affected by roughness
and is mainly dependent on the surface permittivity through r2.
Our study area encompasses the transition between regime (1) to
regime (2) through a distinguishable nearly horizontal distribu-
tion of measurements on Figure 7. The surface backscatter tends
toward regime (1) for »P dB76c0 . We use this value as a
reference for the surface echo strength reflected from a flat
surface (σh= 0) with a given, but unknown, reflection coefficient
r0

2. A surface with the same r2 that is affected by roughness will
lose coherent power with respect to Pc0 by a factor c sh

2( ) . This
allows to associate each Pc measurements to a σh value. To this
end, we use the analytical relationship c s = s-eh

k2 2 h
2( ) ( ) ,

where k is the wavenumber, as it tends to be an ubiquitous
relationship across standard backscattering models as a first-
order approximation (e.g., Ulaby et al. 1981; Ogilvy 1991).
Each measurement is now associated to a coherent content

Pc/Pn and an rms height σh. Then, both can be injected into
Equation (5) to derive a correlation length, where ζ(σh, lc) is
evaluated from the simplified integral equation method (IEM)
that is valid for a stationary surface with normally distributed
heights, with rms slopes <0.3 (∼17°) and with kσh< 2 (i.e.,
σh< 4.8 m at SHARAD wavelength) (Fung & Chen 2010).
The approximation for the surface roughness parameters

obtained from this methodology is shown through the red grid
on Figure 8. We note that the distribution of measurements lie
within the application limits of the simplified IEM (Section 4.2).

4.4. Effect of Varying Surface Dielectric Constant

This inversion method allows for the quantitative approx-
imation of the surface roughness parameters at the radar
wavelength scale, and without the support of a third-party data
set. However, it requires the fundamental assumption that the
reflection coefficient r0

2 (or similarly permittivity, ε0) of the

Figure 6. Results obtained from our surface picker when run over SHARAD
radargrams’ background noise. Each point represents a Pc and Pn value
associated to a single radargram. The whole cloud of points represents the
range of RSR signature that should be expected in the absence of surface echo.
Dashed diagonals are coherent content isolines.
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flat-surface reference is the same for all the terrains investigated.
When this is not the case, the bias (or accuracy) induced on the
approximated roughness can be estimated, provided that reason-
able assumptions can be made regarding the permittivity
difference between the two terrains. Let D = -r r ri

2
0
2 2 be the

relative difference between the Fresnel coefficient of the flat-
surface reference and another considered terrain r2i . Remember
that both Pc and Pn are equally proportional to r2 (Equations (2)
and (3)). It follows that the true roughness of the considered
terrain can be obtained by (1) locating the position of its measured
P P,c ni i( ) pair on Figure 8; (2) sliding diagonally from their by an
amount Δr2 in both the x- and y- directions (i.e., parallel to the
coherent content isolines); (3) the roughness values given at this
new location on the plot are the true ones and can be compared
with the roughness obtained at the initial P P,c ni i( ) location to
estimate the bias.

For example, let us consider a terrain with measured surface
components of =P P, 65, 60c ni i( ) ( ) dB. The approximated
roughness from Figure 8 is σh= 1.8 m and se= 1°.2. Let us
now consider ε0= 9 and εi= 4. These permittivities corre-
spond to typical end values for materials of igneous origins
(Ulaby et al. 1981), which we assume to be covering most of
the studied regions as a first approximation. Δr2 is then equal
to+3.5 dB, and the derived roughness parameters corrected
from Δr2 are σh≈ 1.4 m and se≈ 1°.0. Therefore, the accuracy
of the derived roughness grows with Δr2, but it remains
limited, especially when the surface is already rough. For
nonvolcanic materials like nearly clean H2O ice, εi= 3.1
(Grima et al. 2009), Dr

2 with a reference volcanic terrain of
ε0= 9 is 5.2 dB. In that case, a new flat-surface reference over
an icy terrain would certainly provide better accuracy. When
the surface is very smooth, the roughness bias due to Δr2

grows faster and might require other approaches to better assess
the surface properties, such as the inversion technique
combining the small angle approximation with the assumption
of large correlation length (Grima et al. 2012, 2014a).

The bias due to the relative ignorance of the permittivity
difference, between the reference terrain and the studied terrain,
has to be combined with the uncertainties on Pc and Pn if the

coherent content is outside of the confident ranges defined in
Section 3.4.

4.5. Results

The methodology described in Section 4.3 provides a pair of
roughness parameters (σh, se) for each measured pair of
coherent and incoherent surface echo powers (Pc, Pn). The
results are mapped on the top row of Figure 9. The bottom row
provides comparable parameters independently obtained from
the MOLA, but with different inversion techniques and at
larger horizontal scales than SHARAD (Kreslavsky &
Head 2000; Neumann 2003). A detailed study of the relation-
ship between the SHARAD-derived roughness with the
depositional and erosional geologic processes particular to this
region will be addressed in a follow-on study. Our aim here is
to discuss the validity of the so-derived roughness parameters
by comparison with MOLA products. This work can be seen as
an extension to the discussion initiated by Grima et al. (2012,
Section 3) on the comparison between SHARAD total
reflectivity and MOLA roughness.
Surface slopes. The MOLA median differential-slope product

at 600 m scale (Figure 9, bottom left) is obtained from the
median absolute values of the slopes measured at a 600 m
horizontal baseline length from altimetry, but detrended from the
regional slope measured at twice this scale (Kreslavsky &
Head 2000). The removal of the regional topographic trend is
responsible for the low, generally subdegree, median differential
slope, making it hard to quantitatively compare with SHARAD
roughness. However, the MOLA differential-slope product
provides a good indicator outlining with fine sensitivity the
spatial variations of intrinsic surface roughness that are really
due to features at the baseline scale considered. The SHARAD-
derived se at a 15 m baseline exhibits similar trends. The large
outliers of the MFF (known to be rough at decameters scale;
Mandt et al. 2008) and cratered NR appear both highly rough on
SHARAD and MOLA slopes. More spatial variations can be
distinguished within the MFF on the MOLA data set, while the
SHARAD signal strength saturates at about se= 5°. This
corresponds to the limit beyond which the signal strength

Figure 7. Sketches illustrating three typical regimes depicting the relative evolution of the coherent (Pc, green) and incoherent (Pn, red) power with increasing surface
roughness for a nadir-looking radar. Three regimes illustrating milestones in the evolution of the signal powers are placed on the Pc − Pn distribution plot (left). Each
regime is also illustrated in a surface backscattering radiation pattern (right). Dotted curves depict the evolution with increasing roughness of the relative strength of
each type of power component in the normal direction. The area between the dashed curves is the coherent content.
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reaches the background noise (Figure 5, bottom right), then
becoming barely detectable. This behavior demonstrates that the
upper limit of SHARAD sensitivity to roughness is controlled by
its S/N capability to overcome extinction from strong surface
scattering. Outside of those rough areas, many spatial nuances
suggesting lava flow margins and/or structures in the smooth EP
are mostly recovered in SHARAD-derived slopes similar to
MOLA’s, outlining small-scale variations in EP between 150°E
and 155°E, for instance. The ES appear in both maps as terrains
of intermediate roughness getting locally rougher within crater
rims and ejecta.

Surface heights. The MOLA rms height (Figure 9, bottom
right) is obtained from the relative spreading of the altimetric
laser return after reflection onto the surface Neumann (2003).
The result is a measure of vertical roughness at a horizontal
baseline similar to the laser footprint diameter of ∼75 m, i.e.,
the smallest baseline at which roughness can be retrieved with
global coverage so far. Theoretically, the linear additivity of the
various sources of errors predicts that rms heights as low as 1 m
can be resolved. Yet, the nuances of lava flows within EP are
not recovered, while the transition from EP to ES is barely
noticeable. The only terrains where inner variations are
distinguishable are within the rougher MFF. By contrast, the
SHARAD-derived rms heights at 15 m baseline still exhibit the
subtle contrasts observed with the MOLA median differential
slopes at 600 m baseline with the various geologic units
considered. EP especially shows a large spectra of roughness
from intermediate values of σh= 1.8–2 m gathered in a north–
south band centered at 157° longitude that transitions abruptly
eastward to a very smooth and narrow terrain with σh < 1 m,
also seen on the MOLA median differential slopes. This latter
terrain mostly contributes to the flat reference surface used in
Section 4 to produce our roughness approximation grid. Its
coherent content up to 15 dB is higher than that for the south
polar layered deposits measured at 12 dB by Grima et al.

(2012), and thus is one of the smoothest terrains observed
on Mars.
SHARAD-MOLA complementarity. The rms heights derived

from SHARAD and MOLA are quantitatively compared in
Figure 10 (left). Both data sets measured at different baselines
are not expected to exhibit self-similarity (i.e., lying around the
identity line) since bare planetary terrains are mostly observed
to be self-affine (Shepard et al. 2001). However, Figure 10
displays specific behaviors worth mentioning. Two group of
points can be distinguished that illustrate saturation effects
related to both data products and their respective sensitivity
range. A horizontal group of points aligned around the y
coordinate 2.25 m outlines the detection limit beyond which the
SHARAD surface return is lost into the background noise
(Section 3.5.0.0). A vertical group of points mainly slightly
below x-coordinate 1 m corresponds to measurements within
ES and EP. These illustrate the lower-resolution limit of
MOLA pulse-width measurements.
Those detection thresholds define ranges where both data sets

are sensitive to roughness variation. Again, this range for
SHARAD is <2.25m, defining where the surface signal is not
pure noise. It is >1m for MOLA, a range where pulse-width
variations are distinguishable from the pulse expected from a
perfectly flat surface (Neumann 2003). Mapping the locations
where those sensitivity ranges are achieved (Figure 10, right)
provides highlights on how complementary the MOLA pulse-
width and SHARAD roughness are when it comes to quantify
relative rms heights at decametric scales. The roughest terrains
(MFF and NR) are mainly within the detection limits of MOLA
only (blue on Figure 10, right). By contrast, SHARAD provides
the only measurement able to distinguish roughness variations
throughout the smoothest terrains (red) like Elysium Planitia
(Kreslavsky & Head 2000). Various transitional terrains between
those two roughness behaviors can be characterized by both data
sets (yellow). Thus, SHARAD complements MOLA at

Figure 8.Measurement distribution in the 2D Pc − Pn space overlapped by approximation of surface roughness parameters as described in Section 4.3 (red grid). Note
that »P dB76c0 is set as a flat surface reference with σh = 0.
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decametric scales since it can sense roughness variations over
smooth terrains where the MOLA pulse-width technique is below
its detection threshold. This can be informative for a finer
quantitative comparison of smooth terrains to, for example,
support the selection process of landing site candidates (e.g.,
Golombek et al. 2017) while small-scale measurements from
MOLA pulse-width do not exhibit any contrast between sites.
Note that two landing sites are covered by our study. SHARAD
roughness of the most nearby measurements are about σh= 1.5m
and se= 1°.3 for the Curiosity landing site, and σh= 1.9m and
se= 0°.9 for the Insight landing site. MOLA provides σh 1.2m
and σh < 1m for Curiosity and Insight, respectively.

SHARAD-MOLA discrepancy. It is remarkable and counter-
intuitive that the rms heights are usually higher for SHARAD
than for MOLA, while the SHARAD baseline length of 15 m is
lower. Indeed, fractal laws predict that height variations of self-
affine surfaces decrease with the horizontal scale at which they
are measured (Shepard et al. 2001). We propose that this
discrepancy is explained by the 2 orders of magnitude
difference between the footprint size of SHARAD and that of
MOLA. Indeed, although the SHARAD signal interacts with
wavelength-sized (15 m) objects, the electromagnetic field
received at the antenna is the coherent summation of all the
fields scattered within the larger 5 km wide footprint. Hence,
any large-scale trend of the surface, like kilometer-wide
undulations, would increase the height range of the scatterers

that contribute to the total phase of the wave front reaching the
antenna, then increasing the approximated rms height. The
effect of large-scale topography is much less pronounced for
the MOLA pulse-length since the footprint contributing to the
laser signal is only 70 m wide. To some extent, this effect is
very similar to the MOLA median differential slopes giving
much smaller values than those from altimetric roughness
measurements not detrended from the regional slopes from
Aharonson et al. (2001), Kreslavsky & Head (2000).
This hypothesis suggests that any quantitative multiscale

comparison of radar-derived roughness should be wary of the
footprint extent at which measurements are obtained in addition
to the sounding wavelength. In addition, it also suggests that
very small rms heights approximated from SHARAD (e.g., the
submeter reference terrains within EP) are not only smooth but
also necessarily extremely level across the 5 km footprint.
These observations advocate for the use of fractal (self-affine)
backscattering models whose surface roughness parameteriza-
tion accounts, in essence, for variations at different scales
(Franceschetti et al. 1999; Shepard & Campbell 1999; Campbell
& Shepard 2003.

5. Conclusion

The surface echo strength recorded by radar sounders contains
precious information about the surface roughness and near-surface
structure at meter to decameter scales. However, their

Figure 9. (Top) Effective slope (se) and rms height (σh) derived following our methodology applied to SHARAD surface reflectivity. (Bottom) Median differential
slope at 600 m baseline (Kreslavsky & Head 2000) next to rms height at 75 m baseline, both derived from MOLA altimetry and MOLA pulse-width, respectively
(Neumann 2003). Acronyms are shown to identify specific terrains discussed in the text: Elysium shield, Elysium plains, Medussa Fossae Formation and
Noachian rise.
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deconvolution and quantification from the surface-return strength
is usually ambiguous and underconstrained. We apply the RSR
methodology using homodyned K-statistics to the SHARAD data
over a test region with a large radiometric spectra. The product
provides several statistical parameters whose physical meaning in
terms of heterogeneity population and distribution is described.
The error estimation of those parameters in the presence of noise
is negligible for coherent contents between −5 and 5 dB, while
mostly limited and predictable if extended from −10 to 15 dB.

The coherent content is a strong relative indicator to drive
the choice of an appropriate backscattering model for a further
surface properties inversion. Most (but not all) of the covered
terrains have a positive coherent content (suitable for quasi-
specular models), including rough surfaces for which incoher-
ent power is filtered out faster through differential geometric
losses.

The measured Pc and Pn powers exhibit a very specific
behavior that can be explained by the evolution of the surface
scattering pattern with growing roughness. This finding enables
us to identify smooth terrains that we use as flat references to
estimate, from the IEM backscattering model, the roughness
parameters of the entire studied area at, presumably, a 15 m
horizontal baseline scale Fung (1994). This inversion technique
preliminary requires the assumption of constant surface
permittivity that necessarily introduces a bias in the retrieved
roughness. However, this bias can be assessed if the
permittivity difference between the studied terrains and the
flat reference zone can be estimated or hypothesised. Any
volume scattering would essentially add incoherent power to
the signal. Therefore, following Figure 8, our neglecting of this
diffusion effect would not affect the rms height approximation
but will underestimate the effective slope when volume
scattering is present. Also, the required assumption of
homogeneous permittivity generates a quantifiable bias that is
additive to the RSR error estimation (Section 4.4).

SHARAD roughness maps display subtle spatial variations
similar to the MOLA median differential slope at 600 m scale.
It also provides complementarity with greater sensitivity in
smooth terrains where the MOLA pulse-width rms height at 75
m scale, the smallest baseline at which roughness can be

retrieved with global coverage so far, is below its detection
threshold. Large topographic variations within the SHARAD
footprint could explain why SHARAD rms heights are usually
greater than those derived from MOLA pulse-width, despite
being sensed with a smaller theoretical baseline.
The properties of the smooth reference terrains located in

Elysium Planitia suggest that these constitute the smoothest
regions ever observed on Mars. Increasing the portfolio of
smooth terrains identified by their flat Pc− Pn behavior, and
with a large spectra of apparent permittivity, can also help
approximate with better accuracy the decameter-scale rough-
ness of terrains of various origins across the planet.
This study provides a wealth of radiometric observations and

statistical descriptors to better relate radar reflectometry to
geologic properties of planetary surfaces and near surfaces.
These statistical descriptors can be used to discriminate and
characterize terrains through the specific distribution of their
structural heterogeneity (e.g., near-surface ices, lava flows,
potential subsurface brines) at the radar wavelength scale. It
also provides additional ways to complement landing site
assessment with quantitative constraints on the surface
roughness.
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Figure 10. (Left) Scatter plot SHARAD-derived vs. MOLA pulse-length rms heights. Dashed line is the identity line. Colors indicate sensitivity ranges pertaining to
each data set (σh < 2.25 m for SHARAD, σh >1 m for MOLA). Red, blue, and yellow are where SHARAD only, MOLA only, or both are within their sensitivity
ranges, respectively. (Right) Mapping showing where the SHARAD and MOLA sensitivity are achieved. Color coding is the same as for the left figure.
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